
New Generation Computing. I (1983) 10%124
OHMSHA, LTD. and Springer-VerIag

Leading Article

t| Ew 01,,W '
�9 OHMSHA, LTD. 1983

Logic Programming
--Past, Present and Future--*

J. A. ROBINSON

Logic Programming Research Center, Syracuse University
313 Link Hall, Syracuse, New York 13210, U.S.A.

Thank you very much. I wish 1 could speak to you in Japanese. Next time
perhaps I will be able to do so with the help of a Fifth Generation computer.

In thinking about the history and future of the idea of logic programming
it helps to distinguish the following periods:

distant past (1879-- [970)
near past (1971-- 1980)
present (1981-- 1990)
near future (1991--2000)
distant future (2001-- ?)

w The Distant Past (1879--1970)
The distant past starts with an important milestone in the history of ideas.

1879 happens to be the year in which Albert Einstein was born. But in that year
something else was born, namely, the predicate calculus, as we now have it. It
was invented by one man, Got t lob Frege, a mathematician whose goal was to
analyze completely the formal structure of pure thought. Frege called his system
the Begriffsschrift , a word he appears to have also invented. It seems to mean
something like "notation for concepts". He lhought of it as a universal language
in which every possible form of rational thought that could enter into a piece
of deductive reasoning could be represented in a systematic and mathematically

precise way.
And so it proved. I think that the history of this systematic notation of

Frege's has borne out his faith in it. The rest of the distant past is
essentially about the development in one particular line of that notation. The
particular line is what we might call "computat ional predicate calculus", the

* The following text is an edited and condensed transcript of an ICOT Public Lecture given in
Tokyo on l0 February 1983.

t08 J.A. Robinson

line that is always seeking algorithms in which the processes of deduction are
captured in a systematic way. As Frege then saw it, these processes were to be
mathematically precisely presented, so that they could be studied formally.
However, he was not directly concerned with computat ional issues as such.

So the distant past of logic programming is the history of computat ional
logic. There was a long period, of about thirty five years, after the introduction
of the Begriffssehrif t before anything really significant happened. It's fashion-
able to mention in the history of the predicate calculus the famous work of
Whitehead and Russe l l - -Pr ine ip ia Mathemat i ca . However, that work is not
really part o f computational logic, but part of another branch of the develop-
ment in which Frege was also very interested, namely, the effort to analyze to
their very foundations the basic ideas of mathematics ; the notions of function,
infinity, s e t , and so on. Frege believed, and so did Whitehead and Russell, that
these notions could be analyzed in purely logical terms, and that is what that
particular line of deve lopmen t - - l og i c i sm- -was endeavouring to do.

In computat ional logic the first really significant work after Frege was
that of L6wenheim in 1915. This began a fruitful period of exploration and
discovery culminating in about 1930. At about that time, the discovery of what
we now think of as the fundamental theorem of the predicate calculus was made
independently by the French algebraist and logician, Jacques Herbrand, who
was writing his Ph .D . thesis in 1929 and in 1930, 21 years old at that time ; a
Norwegian, Thoralf Skolem, a mature professional mathematician working
throughout the 1920's on the same problem; and Kurt Godel, an Austrian
ma thema t i c i an ; a f t of whom were attempting to prove about the predicate
calculus the basic fact which Frege took on faith when he invented it in the first
place, namely, that it is indeed a complete system of notation, that it actually

does do everything that it is intended to do.
The intention behind the language is that it should provide a formal

proof of every sentence in the language which is logically val id-- that is, true
under all possible i n t e r p r e t a t i o n s - and that this proof should be systematically
constructible, given the sentence. Godel, Herbrand and Skolem showed in

different ways that this is the case. It is to these men that we owe today's
predicate calculus proof procedures.

Herbrand gave several versions of the proof procedure, one of which
involved him in the idea we now call "unification".

Of course in 1930 there were no computers to run the procedure on, and
indeed computers did not arrive on the scene until the early 1950's. So nobody
was able to think of programming the proof procedure for a modern computer
until about 1955 when a Dutchman, Evert Beth, decided to try it, and he was
followed by others we should remember, Stig Kanger and Dag Prawitz from
Sweden, Paul Gilmore, Hao Wang, Martin Davis and Hilary Putnam from the
USA, all of them decided to try the now 25-year-old process on the
computers of that era.

Logic Programming--Past, Present and Future 109

In doing so, Dag Prawitz, in 1960, revived the unification notion, and

used it in one of his early programs.
It was the experience of these investigators that the algorithm, as it was

formulated in 1930, wasn't very well thought out from the modern computa-
tional complexity point of view, and that it involved enormous combinatorial

explosions. They were somewhat disappointed in its performance.
At this stage i myself became involved in this effort. About 1961 I started

to study these papers, and it occurred to me that there were a few tricks one
might use to improve the computational performance of the basic algorithm. In
the course of that work, I stumbled across the idea that's now known as
"resolution", which was a way of involving the unification concept right at the
very heart of the proof system that one was dealing with.

! will say more about the developments that ensued after the early time
when resolution began to be the way people attempted to make the computer

efficiently carry out the basic process.
But I would first like to mention another thread in this brief history of

logic programming. This was not quite as direct a part of the development of
logic proper, but certainly it belongs in the logicprogramming story. In the

middle 1960's two gentlemen whose names are not as widely known as they
should be--Michael Foster and Ted Elcock were experimenting with a
programming formalism that they called ABSYS (for ABerdeen SYStem). Later

they renamed it ABSET (for ABerdeen SET language). It was a computing
language based on the idea that the programmer would simply make a s s e r -

t i o n s .
These assertions, or sentences, would be, so to speak, axioms that the

programmer believed to be true. They would be entered into the memory of the
computer, and then used as the premisses of deductive inferences when a query,
as we would now call it, was submitted to the system. These assertions would
then be invoked automatically in deducing the answer to the query.

This was a very interesting early attempt to do what we now think of as
logic programming. It was not, however, carried through in the context of the
formal predicate calculus, but was done intuitively in more or less ordinary
mathematical notation, It was a rather complex system, and didn't behave quite
as efficiently as one could have wished. But anyone who wants to go back to the
beginnings of logic programming should be aware of that work.

Well, resolution spread around and many people took it up, including an
early pioneer in resolution logic programming, Cordell Green, in Stanford in
the late 60"s, who attempted to use resolution in essentially the modern way as

the basis of a logic programming system. He thought of it as a question
answering system. Rightly enough ; that's what logic programming really is all
about. His work attracted quite a lot of attention ; - - s o m e good, some bad.
The good part was that at last here was a systematic plan for a question-
answering computing system. It seemed to be very general and potentially

110 J.A. Robinson

applicable to a wide range of problems. The bad part was that thc particular
resolution algorithm underlying it was still computationally complex enough to
limit the applications of the system to fairly small problems. On larger problems,
Green's system would again run into combinatorial explosions. This was once
again disappointing.

So at the end of the 1960's and at the beginning of the 1970's there were
some rather negative comments made, especially from the direction of
Cambridge, Massachusetts, to the effect that doing artificial intelligence comput-
ing by logic, and especially by resolution, was an extremely silly thing to do ;
and that the proper way to proceed was in a different manner. The MIT system
P L A N N E R emerged during that controversy. It was another line of develop-
ment that I think now is joining again into the main stream.

A number of people--Robert Kowalski, Donald Kuehner, David
Luckham, Donald Loveland, and others--were attacking relentlessly the
problem of the combinatorial complexity of resolution ; - - and a lot of ideas
were tried. The winning one turned out to be to restrict the resolution rule so

that the deductive structures that would be generated by the algorithm would be
linear in form.

That would mean that each proof would be a tree structure with one
main branch. Every inferred clause would lie on the main branch and would
resolve the previous clause on the main branch with one of the input clauses.

Another line was to take the unification process, and try to make it faster,
and improve its performance.

Several peop le - - I was one - -were working on this: Bob Boyer and J

Moore joined us at that time. This was in Edinburgh in Scotland. They thought
of all sorts of wonderful algorithmic tricks including structure sharing for
speeding up the resolution process. Essentially, the development down to here
can be summed up by saying : all the pieces were now available for PROLOG.

w The Near Past (1971--1980)
It took someone like Alain Colmerauer to see all those pieces and put

them together into a homegeneons system. First of all, Colmerauer invented one
that he called SYSTEM Q, and then he named it (or it was his colleague
Philippe Roussel who named it, or may have even been Roussel's wife who
named it) PROLOG ; we can't quite find out who thought of that name.

At any rate PROLOG was born in Marseille in 1971. Put simply, it consist-
ed of a linear resolution system in which the clauses involved in the problem were
restricted to be Horn-clauses, together with an interpretation which is due to

Kowalski of what is happening when you run the system--an interpretation
which directly transforms the theorem proving process into a more traditional
computation process. Each step is the invocation of a procedure which then
returns some kind of result to its caller. All of those computational notions were
exploited by Kowalski in this procedural interpretation of linear Horn-clause

Logic Programming Past, Present and Future-- 111

resolution systems. This then was how logic programming as a concept came

about.
It was Kowalski who saw all this in P R O L O G . He saw how to look at

it in both ways : first as logic : second as computing.
The near past, then, begins with P R O L O G springing fully grown from

the head of Colmerauer , and with Kowalski beginning his crusade as a tireless
proponent of the idea, effectively spreading the news. PROLOG existed ! People
very quickly saw its virtues and began to use it. Kowalski 's 1974 IFIP address
was an extremely influential exposition of logic programming in general and
P R O L O G in particular. It was he who first sparked the rapid growth of interest

in logic programming.
This caused a number of the best younger computer scientists in Europe

to take up logic programming as their main activity. 1 would like just to mention
the main ones that 1 know : Sten-Ake Tffrnlund from Sweden : Keith Clark
from England : Maarten van Emden from Holland : Maurice Bruynooghe from
Belgium: Peter Szeredi from Hungary: Herve Gallaire from France: David
Warren, our colleague here today : Luis and Fernando Pereira from Portugal :
all these people collectively gave an enormous impetus to logic programming.I t
was quite remarkable what force gathered behind the idea due to these splendid

people.
We also saw a rather quick organizational development : as illustrated,

for example, by the excellent book Logic Programming edited by Clark and
Tffrnlund, which is a record of an international Workshop of the whole
communi ty of logic programming researchers, telling their ideas for developing
and applying the notion. This 1 think helped a great deal. We have now had
further Workshops in Syracuse (Spring 1981) and Los Angeles (Summer 1981) ;
and one is planned for Summer 1983 in Portugal. In Summer 1982 we had the
First International Logic Programming Conference in Marseille, and plan the
Second for Summer 1984 in Uppsala, Sweden.

Logic programming has been helped by some excellent books :
Kowalski ' s Logic for Problem Solving; the P R O L O G manual of Clocksin
and Mellish; and I 3 ust merit io ned Clark and T~.rnlund's book. But of course we've
got to pay our respect to the wonderful implementat ion that P R O L O G w a s
given after the original Marseille FORTRAN-based implementation.

Logic programming has been extremely fortunate to have David Warren 's
fantastic Edinburgh DEC-10 PROLOG, which 1 think really pushed logic
programming over the top and made it into a useful tool for all manner of
purposes. One cannot praise highly enough David 's influence through that

implementat ion.
In 1975 Ernie Sibert and 1 decided to implement a logic programming

system in LISP at Syracuse. We call our system LOGLISP. The general idea
behind LOGLISP is to try to take the logic programming notion to blend it
as nicely as possible with the function programming notion exemplified by

112 J .A. Robinson

LISP. L ISP is the most famous case, but now there are purer and more elegant

function p rogramming systems sucb. as David Turner 's S A S L and KRC, Peter
Henderson 's L ISPKIT , and the one spoken about by John Backus in his 1977

Tur ing A w a r d lecture.
Func t ion p rogramming seems on the surface to be an independent and

somewhat separate not ion from logic programming.
My content ion is that they are both examples o f a more fundamental

single c o m m o n idea, which we might (remembering the Aberdeen idea) call
"assertional p r o g r a m m i n g " - - a type o f programming in which what you do is
assert some sentences to be true, and then ask for others to be deduced as a
consequence.

In logic programming, those asserted sentences happe'a to be condi-
tionals. In function programming, they happen to be equations. But that 's
really only a superficial difference. 1 think the main point to notice is that when

we run systems of either kind we are running deductive engines : we are asking
them to make deduct ions for us.

So L O G L I S P , which we are currently finishing up at Syracuse, is an
attempt to embody both styles o f p rogramming within one framework. Other
people such as Jan Komorowsk i o f Linkoping in S w e d e n - - n o w at Harvard
U n i v e r s i t y - a l s o have tried to combine LISP and logic p rogramming and o f
course 1 needn' t point out to this audience that this isvery much a theme in your
own Fifth Generat ion Project.

The beginning of the Fifth Generat ion Project is the great event which
marks the end of the near past. Quite suddenly we in the West had this delightful
surprise. We found that here in Japan you had been quiet ly s tudying this idea,
unknown to us, and had spotted it for what it was, namely, a beautiful, strong
technique which could be exploited in the ways that you saw. For us, this was
a wonderful way to end the 1970's.

1 th ink one should say, instead o f adopt ing logic p rogramming as a

central idea in your notion, what yQu really are doing is adopt ing assertional
programming as the central idea. Because I have heard over and over again in
visiting research groups here that same idea, to combine logic p rogramming with
function programming.

So we end the near past with a fine orchestral c l imax ; and we enter the
present.

w The Present (1981--1990)
Now, we can ' t discuss the present in this talk in historical style, since it

is not yet over. Instead, I would like to offer some observat ions about where we
are going and what we ought to try to do.

I th ink there are some trends that we should be anxious about. 1 am afraid
that the very success o f P R O L O G , which has been so resounding, may have some
unfor tunate aspects. For example , 1 regret (for similar reasons to Dijkstra 's

Logic Programming--Past, Present and Future 113

concern ing G O T O) that P R O L O G has the C U T feature in it, and that P R O L O G

programmers are encouraged to be ingenious in managing the part icular way in
which P R O L O G develops that basic tree construct ion, it happens to do it depth

first by backtracking, visiting all the nodes in the tree.
That 's not a necessary feature o f a logic p rogramming system ; it happens

to be the P R O L O G way. It would be better if the details of that were invisible
to the user; not thrust upon the user as one o f the main things the user should

be clever about in writing programs.
So, C U T is not a g o o d thing, but then it may already be on its way out

since it is a serial not ion. As more and more paral le l P R O L O G imple-
mentat ions come along, you won ' t be doing backt racking internally, you

will be doing tree development in a holistic, parallel manner. The intui t ions
behind the P R O L O G programmers ' design of P R O L O G algori thms will then
change and move to a higher level. And that will be good.

What P R O L O G is really after in the C U T construct ion is a way for the
p rogrammer to plan computa t iona l economies in the construct ion of that tree.

And of course one we ld like the programmer to be able to pass a long advice
to the system about what parts of the tree to neglect as being unnecessary, given
that developments in the computa t ion have reached a certain state, which
cou ldn ' t be detected until run time. It's quite desirable, it seems to me, to provide
the p rogrammer with some way of influencing the efficiency of the tree develop-

ment. Not, however, at the expense o f intelligibility o f the program !
A somewhat related point is that it ought not to make any difference in

what order we assert the componen t s o f a conjunct ion , because logically they have
no part icular order. To give them an order is to superpose something else on

what you are saying.
Within a clause, we ought not to have to worry about the order. Nor

should we have to worry about the order of the clauses among themselves.
In short, we ought not to incorporate into the logical nota t ion itself

par t icular convent ions about how to manage the details o f the deductive search.
Such details as the processor cannot be expected to decide wisely must be
managed by the p rogrammer through control inputs. But these should be

separate from the logical inputs.
We need to keep in mind that logic p rogramming in general is not to be

identified with P R O L O G , in particular. The relat ionship is that P R O L O G is
an implementat ion, a par t icular realization o f the logic programming not ion. I
would even say that more generally, logic p rog ramming is not totally to be
identified with Horn clause resolution programming. That just happens again to
be a special case and a very good one, as we have seen, of the general idea o f

deduct ive comput ing from assumptions.
You might even go further still, and say it's not even really limited to the

first order predicate calculus. After all, there are other interesting logics ; there
is higher order logic ; various flavours of modal logic, and so on. There are all

114 J.A. Robinson

sorts o f rich formalisms that it might be th inkab leone day to use in the way we
now use a restricted predicate calculus to do logic programming.

So, 1 think we should preserve the terminology, and keep logic program-
ming as a separate concept, and then have individual not ions for various special
cases o f it.

1 th ink we ought, in the same spirit, to contrast the general idea o f a logic
p rogramming system with that o f a complete p rogramming environment. It
seems to me that some of the things that you have to do in the various
P R O L O G s I have met are strange. You have to, for example, make side-effects
take place, like printing, by a t tempt ing to prove a sentence ; and in the act o f
trying to prove it, somehow off to the side, events take place. That doesn' t seem
to be very good conceptually. 1 th ink it's better to be honest about imperative
p r o g r a m m i n g ; if you want something to happen, you should, 1 think, have
facilities available for saying so and for making them happen. Your assertional

semantics won ' t then be all cluttered up with side-effects.
I th ink another point which should be made about P R O L O G is that it

overstresses the role played by relat ions in assertional programming. Relations
have a very important role, o f course, but they are not everything.

It sometimes seems to me that we have returned to the earliest days o f
comput ing , when in expressing the evaluat ion of an expression, one had to
in t roduce names for intermediate values and store them in cells with those
names ; finally there would be a cell with one's answer in it. Of course, the
intermediate naming of steps in a successive evaluat ion o f an expression is
something that we really don ' t want to have to do. And it seemed to be progress
when F O R T R A N arrived, and a l lowed one to just write the expression down,
and have it evaluated without having in assembly language oneself to name all
those intermediate results.

If you look at some P R O L O G programs where deeply nested expressions
are involved, you suddenly find yourself back in those days, having to name
intermediate stages o f a successive nested evaluat ion in order to come out at the
end with a value. I don ' t think that the expression itself is un log ica l - - i t ' s a term,
after a l l - - a n d 1 would prefer to elevate functions to the same level as relations,
as Frege did in the original design of the predicate calculus.

1 know that it's literally true that a function is just a special kind o f
relation. But you can turn that a round , and you can observe also with equal
merit that a relation is just a special kind of function. As a ma t t e ro f fact, that 's
how Frege saw it. For him, a relation is a function f rom tuples of things to
truth values. And so, you think o f evaluat ing a relation in just the same way as
you think o f evaluating any other function. It's just a different target domain.

Well, this provokes us to ask the ques t ion : Wha t is the best total
p rogramming environment ? What should be the elements o f it ? If we want to
have it conta in editors, I / O commands , and other kinds o f side-effecting
machinery, we had better think it all out carefully so as not to mess up one o f

Logic Programming Past, Present and Future-- 115

our most magnificent tools, namely, the logic p rogramming formalism. It's

surely got to be part o f that environment , but we don ' t want to over load it, it
seems to me, with all these other duties as well.

I have more anxieties. Hitherto, all the logic p rogramming systems that
we have had experience with, have been small. What do i mean by that ? Mainly

that they have been running on machines in whose main memory all o f the
assumptions were stored and thus r andomly accessible through good indexing
and associative retrieval methods.

What happens when we go to larger systems, where we can ' t put it all in

the main memory ? We are going to have to work with essentially disk-based
virtual memories. And so we have to face the problem of the slowing down of
the accessing to the assumptions, which is a little worrisome. It isn't clear to me
how, if we are going to get to very large systems, we are going to be able to get
the speed-ups that the Fifth Genera t ion Project is ta lking about.

Today ' s speeds in L IPS- - log ica l inferences per s e c o n d - - o f logic
p rogramming systems are in the order o f t en to the four. If we are going by 1990
to get up ten to the nine, we've got to think out where that speed-up is going to
come from. It seems to me that if we can stay inside the main memory of the

machine, we can quite happi ly plan on that speed-up. By going to parallel
working, we can probably gain a factor of a hundred. By going to 1990 hardware

we probab ly get another factor of hundred. The remaining factor of ten we can
hope to get by being even cleverer than we

basic algorithms.
So, I think a ten to the five speed-up

do it in fast memory. But if we have to get

have a problem to go that fast. Yet, how
informat ion ?

have been so far in organiz ing the

is reasonable, provided that we can
our clauses from disk memory, we

else are we to store a terabyte o f

I confess that I sometimes have a twinge o f anxiety about your having

made logic programming the central theme in your Fifth Generat ion Project. 1
wonder whether your great conf idence in this idea is going to be justified. There
are some risks involved, as you well know, in put t ing this idea in the center. It
is really an experiment. 1 think it's overwhelmingly probable that the experiment
is go ing to be successful. But there are some hazards. 1 will say more about these
in a moment .

A final, general worry what 's going to happen to logic programming, as

a pure abstract idea, when you people get through with it ? Everybody now is
paying intense attention to the paradigm ; changing it, experimenting with it in
var ious ways with different motives. Someth ing is going to happen to it, and
I have the anxiety that it might not always be for the best. We have to try to
guide the development now in this decade that we are just beginning, so that at
the end of the decade we have a not ion o f logic p rogramming systems that we
can be proud of, a not ion that is still elegant, powerful , and simple, and indeed

that has all the virtues that logic programming now seems to have as an idea.

116 J .A. Robinson

Let's hope that in making logic programming into a practical success on
a large scale we don't have to sacrifice any of that elegance and beauty. I
sometimes feel a little nervous when I see papers and listen to discussions in
which logic programming is being blended in with everything under the sun.
That's perhaps an unnecessary worry. I hope so.

Lastly, since I love LISP very much, as do a lot of other people, I hope
that LISP, which is a beautiful thing, doesn't disappear, i am not so fanatical a
logic programming proponent as to want LISP to be defeated, and to be
superceded entirely by something like PROLOG. As 1 said earlier, the proper
line is for both of them to become what each of them is trying to be, namely, an
assertional programming system. So, I want LISP to survive--not necessarily
down to the smallest detai l - -but as the basic idea of a lambda calculus based
formalism, with a universal data structure of the dotted pair. That's a beautiful

and powerful idea.
So, let's not destroy LISP in making logic programming a success.
We really do have a wonderful opportunity to do good work on the

paradigm of logic programming. Consider what Peter Landin did in the early
60's with LISP. He set out to show what surprisingly enough McCarthy, in
inventing LISP, hadn't realized fully, that LISP, was essentially the lambda
calculus. He explained this with a marvellously elegant abstract machine, the
SECD machine. This work of Landin's was [think extremely important and

very beautiful work.
If you look at the work of the modern function programming researchers,

like David Turner and Peter Henderson, you find a similar hunger for elegance
there, which I personally react to very positively. 1 think that it's important to
go for elegance and beauty in these mathematical engineering quests. You can't
really go far wrong if it's beautiful.

We don't want logic programming to spawn off kludges. That would be
very distressing. One of the unfortunate themes in the last fifteen or twenty years
in artificial intelligence programm, ing has been the tendency to create effective
but ugly software. Let's try to avoid that.

An example of an opportunity for greater elegance is unification. [

believe, and so do many others, that unification is a very powerful idea, which
can explain a number of other ideas that have arisen in computer science, very

well, very simply, and properly. I think it's the underlying mechanism for all
processes of parameter passing as between function calls and function activa-

tions.
That's of course how PROLOG sees it; how Kowalski's procedural

interpretation sees it. But it's never really been tried, as far as l am aware, in the
function programming context. In ALGOL, PASCAL, LISP and so on, the
parameter passing corresponds to a one-sided matching of formal parameter
with actual parameter. And the actual parameter in such a comparison doesn't
change. Only the formal parameter changes. And it's set to be the same as the

Logic Programming--Past, Present and Future 117

actual, and then the body of the procedure is executed.
We now have a chance to see what happens to the functional program-

ming situation, when we generalize parameter passing through making it into a
two-sided exchange of information. Kenneth Kahn and Harvey Abramson have
both looked into the design of function programming systems, in which unifica-
tion is the leading principle.

Also, 1 think it's now clear to many people--cer ta inly to Colmerauer and
also to a number of people I have talked to here in Japan- - tha t one can very
readily compute with what otherwise might be described as infinite expressions.
They are not really infinite; they are representations of infinite things. The
representation is done by means of pointers which can introduce cycles into the
structure. LISP has dealt with such structures for years, but furtively. The use of
R P L A C A and R P L A C D was thought to be "not quite respectable" and in any
case dangerous.

Unification can perfectly well be generalized, and now is in many
systems, to handle expressions of that character also, as well as the more usual
finite expressions that we originally had in mind.

If you do that, you get the ability to represent streams, and also to
introduce lazy evaluation into deductive computing, and many other good
things. This is being worked out by a number of people including many groups
in Japan.

As your Fifth Generat ion Project plans point out, we now have a chance
to develop new architectures, to incorporate various kinds of parallelism, and to
go for very large database applications. I earlier alluded to the worry that 1 have,
whether you can have both huge collections of clauses up in the terabyte range
and a gigalips of speed. It seems to me that we've got a problem there that I
personally don't know yet how to cope with. However, the new technology is

beckoning.
I think we are ready now for something like a Knuth treatise on logic

programming methodology, This would make a major impact on the world
communi ty of computer scientists who may not have heard of logic program-
ming yet. Perhaps Sten-~,ke T~irnlund and Keith Clark, or Ehud Shapiro, or
Maarten van Emden, would be good people to do it. They should really make
a definitive attempt to write out what it is that logic progamming has going for
it. 1 know there are books already. I know Kowalski has an introduction to the
ideas. That 's not quite what 1 have in mind. I allude to Knuth, because
everybody knows what a wonderful job he has done for, so to speak, von
Neumann comput ing; and logic programming needs a Knuth now. Perhaps,
Knuth himself--who knows ? - - m a y get interested.

Another thing that worries me is the identification of logic programming
with artificial intelligence as a movement in the history of ideas. It seems to me
that they aren't the same at all, and my advice is : we should try to keep logic
programming well apart from artificial intelligence; not try to hook them

118 .1. A. Robinson

together. For one thing, I believe that artificial intelligence is just about to go
down into another of its periodic troughs. If you look at the history of AI, you
will see that it's been rather up and down; excessive enthusiasm followed by
equally excessive disappointment. When you begin to see lots of superficial
journal ism and lots of television interviews with well-known faces, you begin to
think that the wrong forces are at work. A good scientific trend happens more
quietly than that, and doesn't need the kind of media exposure that AI seems to
be getting, if not actually to be seeking.

1 think that many of the famous accomplishments in AI are benign
kludges, that is to say, I don ' t think you can extract from them, successful as
some of them are, any systematic deep fundamental science. It's not always clear
why things work well, if they work well. It seems to me that AI has got a long
way to go before it becomes anything like a science; before it deserves that
label. It seems to me mostly to consist of very worthwhile aspirations. Lots of
good undertakings are afoot, but to aspire is not the same thing as to achieve.
You have to do the work as well as talk about doing it.

For example, I feel that some of the propaganda that the notion of
"expert systems" is now getting in the press, is slightly misleading. If you look
at the well-known examples, for example, at MYCIN, or PROSPECTOR, or
M A C S Y M A (these are successful examples ; don't get me wrong !) and if you
ask why are they successful 1 think you will see that it isn't the methodology that
was followed out in constructing them, because the methodology involved is
relatively trivial. What really made these systems successful (especially
M A C S Y M A ; this bears out the point most strongly, I think) is that they are
packed full of subject matter expertise. M AC SYMA is a collection of symbolic
mathematics algorithms, which has been put together by really strong applied
mathematicians, people who really know that field, who also happen to be
fluent in LISP.

So, they were expressing themselves in LISP ; and M A C S Y M A is the
result. The person who wrote M Y C I N is a doctor who is a good diagnostician
himself.

What you have in these cases is people who know their field, essentially
taking advantage of a computat ional formalism, that helps them say what they
know. And it's natural enough that if they are clearheaded about it, they can get
some good applications going.

Feigenbaum has made this very poin t - - tha t in expert systems it is always
the particular expertise that counts, not some general uniform technique.

It little becomes the AI community to say : "Look at these successes ; AI
technology was simply applied to this problem area or that problem area, and
we got expert systems". That 's not how it happened. There is no such thing as
a general A1 technology, which these people took advantage of. What they took
advantage of was computers, and a good programming language.

Well, that may have provoked some questions when 1 am finished, so 1

Logic Programming Past, Present and Future 119

will go on.
Finally, let me say something about the Fifth Generation Project. I

discern, as a very friendly observer, two classes of goal in the Fifth Generat ion
Project : one class is what you might call "software and hardware engineering".
It seems to me these goals are realistic ; they will be achieved certainly ; they are
even conservative. They are so well thought through and planned.

On the other hand, 1 think that the goals that you might classify as AI
goals- -such as speech understanding, vision and language t ransla t ion-- those
are very ambitious, wonderful aspirations, but have a different order of difficul-
ty, because they so much involve the unknown, with not much already in our
bag of tricks to help us get there. 1 hesitate to say these goals are too ambit ious;
but they are of a different kind.

w The Near Future (1991--2000)
In the 1990's we shall be experiencing the results of the Fifth Generat ion

Project. We might expect that the main impact of the Fifth Generation will be
what it is trying to achieve, namely, to open up all kinds of new applications of
this new way of computing.

1 think we can expect expert systems to be in general use. Once the tools
are available, I do not believe that a special kind of expert-- the "knowl-
edge engineer"--wil l be needed to implement such systems. The point of the
Fifth Generation revolution is to eliminate, as far as possible, the role of such
a go-between. Today's situation, in which the professional expert is not
necessarily able to express his expertise in suitable computat ional form, is not the
model for the future. We must expect that "logic programming literacy" will
become widespread.

The expert system of the near future will only superficially be super-
h u m a n ; it will simply be the embodiment of existing expertise as currently
stored inside humans. Of course, the entrancing prospect is the possibility to
scale up the speed and the size of problems, which are like what humans can
cope with, but are beyond the computat ional capacity of the human data
processing instrument.

We humans have such small buffers-and such slow, if highly parallel,
processors that we are strongly limited in how we can deploy such expertise "as
we manage to acquire in a short life time.

If we can learn how that works-- learn how to express it, and how to
invoke it and activate it, then we have the possibility to amplify what we already
understand.

A very good example of that in today's technology is the uncanny and
rather upsetting power of the best chess playing programs. The underlying
process performed by all of the current chess playing programs is elementary and
uninspiring, mere look-ahead in the tree of moves, and evaluation according to
some quite understandable plan of weighing the features of the configurations

120 J .A. Robinson

out on the horizon, and then backing up those values in the minimax way. That ' s
not a very deep idea, but it just happens that the scale on which it's performed
is such that it's already sufficient to give a hard time to some of the very best
human chess players. There are recorded examples of international grand
masters finding it difficult to avoid defeat in some of the specialized endgame
situations in chess, when the machine is simply playing in this open, easy-to-
understand way, but on a huge scale and at enormous speed.

So, the poor human is faced with something which in principle he too
could do, but which is being done on such an enormous scale, that there is a
difference in degree in per formance-- the "order of magnitude effect".

All of that, it seems to me, might be brought about if we just extrapolate
a little bit current trends in all these different fields. Especially interesting, it
seems to me, is the prospect of a low-cost personal work station with all of the
different capabilities that we might look for in the 1990's. It seems not unlikely
that we shall each have as a personal possession something like a world library
- - a Library of Congress. A small shelf of optical disks, much like today 's
personal collections of phonograph records, would be enough to store it.

w The Distant Future (2001-- ?)

Many people associate the year 2001 with the title of the popular film by
Stanley Kubrick and Arthur Clarke in which the talking computer H A L
develops a catastrophic neurosis and sabotages the mission to Jupiter. This kind
of "realistic" science fiction seems not too different from the sort of rational
speculation needed for looking ahead at the more distant future.

1 am sure there are people in the audience who are much better placed
than 1 to speculate. But it seems to me that we can now discern two longer term
trends that will reach some sort of culmination not long after 2001.

There are already people who are investigating the fabrication possibili-
ties opened up by genetic engineering-- in which protein structures would be
constructed according to programs that are in the DNA, just as they are in
nature. The idea would be that we too could exploit the genetic coding and use
it as a programming medium and assemble structures down in that scale. Such ultra
large scale integration is the natural culmination of present trends, and it is
nature's own technology. She has had much experience with it, and our
brains and nervous systems are compact, complex, powerful devices built
entirely in this way.

1 see no reason at all why we shouldn't be looking for a direct modeling
of neuro-physiological systems. The rate at which the experimental work is now
proceeding in the medical research centers around the world is really quite
astonishing. Last year's Nobel Prize winners, Hubel and Wiesel, have shown us
some amazing things about the way the vision system works, in animals and
presumably humans.

There appears to be a systematic structure in there that looks very familiar

Logic Programming Past, Present and Future-- 121

to designers of comput ing equipment, i think that given another two or three

decades, we should be very far a long in this unders tanding of actual natural
systems, and that we will be able to reproduce them to some extent.

We should also expect the interfacing of artificial systems with our own :
supplementary prosthetic devices for enhancing what we already have. T h u s we

might see extra memory modules, enhanced vision and hearing, and auxiliary
processing units for direct access to external informat ion resources, dictionaries,
and so on. We are today seeing medical technology accomplishing many kinds
o f mechanical prostheses. We are beginning to be able to think of devising
prostheses also to informat ion processing functions as well.

Finally, let us try to think ahead to what intelligent comput ing might do
['or important problems which are extremely large or extremely difficult (or
bo th) and which we now can ' t do much about. Detailed models o f the world
economy or the world e c o l o g y ; spoken natural language translation in real
time. Obviously, the long-range goals o f the Fifth Genera t ion Project bear upon
these. And obviously, these goals will be reached. The only question is how
soon. 1 think we can each elaborate for ourselves the speculations about what
that might mean for the way life is lived, and what it might mean indeed for
peace and harmony between different peoples.

I would like to conc lude by saying that even though there is some sort o f
a language barrier be tueen you and me, 1 have never had a happier and more
fruitful three weeks than I am just concluding here in Japan, language barrier or
not. Perhaps we don ' t need the automat ic t ranslator quite as badly as some
people say we do.

Thank you very much. If there is time for questions, I would be happy to
try to answer them.

M o d e r a t o r : Thank you. The next ; question and answer.
M r . F u r u k a w a : i want to ask you about your thought to combine
logic programming and funct ional programming. I think there are three issues ;
that 's my question.

One is at a rather phi losophica l level. And I think you may have some deep
considerat ion why you need to combine logical p rogramming and funct ional
programming.

And the second level is the notat ional level. We need some kind of
nota t ional device to combine.

And the third level is the implementat ion : How to manage these two
different ideas.
M r . R o b i n s o n : Thank you. Perhaps 1 can take them in reverse order.

The way I think we would want to implement a unified system would be
to design an extension of existing function p rog ramming notat ion from the
reduct ion semantics point o f view, where you understand the computa t ion
process in terms of a col lect ion of rewriting rules, which are looking for matches

t22 J.A. Robinson

for their left-hand sides, whereupon their r ight-hand sides are replaced there ;

and just that is done.
There is a natural parallelism there, because many rules can find matches

for their left-hand sides all at the same time. And so, if you think of the
replacement being done at all places possible, you get a natural large "'grain o f
progress". Then, if you can find a place in there for the logic p rogramming
process, you have the implementa t ion plan, at any rate up to within details.

A n d I propose to make that happen in this manner , namely, to in t roduce
a set expression in addit ion to the normal expressions o f function programming,
which are basically appl ica t ions o f functions to arguments. By a set expression
i mean the normal mathematicians" notat ion with the curly brackets : the set o f
all x such that P(x). That is not a functional appl icat ion. It has a different

semantics. But you can give perfectly simple s t ra ightforward replacement rules
for such expressions. And the replacement rule for such expressions essentially

is to replace one o f t h e goals in the condi t ion part o f them by the r ight-hand
sides o f clauses which unify with it.

So, a given set expression is replaced by an expression saying "un ion of
several set expressions", one each for each distinct resolvent, as we would
normal ly think of it in a logic programming context.

I f you introduce that replacement rule for the set expression, and
supplementary rules for work ing out the details o f the union construct, you find
that you can harmonious ly make the logic p rogramming process happen inside
the reduct ion of set expressions.

So much for implementat ion.
For notation, I think the same idea of extending the normal funct ion

applicat ive notat ion with set expressions gives a beautiful p rogramming nota-
tion. And I am not alone in advocat ing it. As it happens, David Turner is now
doing that with his own funct ion programming formal i sm; so is John

Darlington.
The function p rog ramming people have seen the need to add the set

expression to their notation. It's a very natural nota t ion : it's the sort of nota t ion
that one uses mathematically, intuitively, on paper. So, there is no problem, it
seems to me, about that. It 's a good move from the nota t ion point of view.

Finally, from the phi losophica l point of view, i think the motive for

going this way is, as always, some sort of unders tanding of what one is do ing ;
how th inking works. And for that, one needs some features o f one's model ,
which include certainly simplici ty and elegance and power. This is going back
all the way to Frege now, who had those criteria before him when he designed
the Begri f fsschr i f t . I think it's a matter of looking for forms of expression that
we find natural in our own thought-processes, and representing what we do as
nearly isomorphical ly to the way we think as possible.

These are the forms of pure thought. If you look at logic, u'hat is it giving
you ? two things : abstraction, appl icat ion o f funct ions to arguments, and that 's

Logic Programming-- Past, Present and Future f23

all. The set expression is really abstraction, par e x c e l l e n c e .
And so, there is very little going on in that model. Appl ica t ion and

abstract ion are really the two main things that are in the notat ion, and I believe
that makes it an extremely simple but powerful model for all o f thinking. So I
want to do it that way.

M r . S u w a : My name is Motoi Suwa from ETL.
Al though I unders tood that you do hate AI. I don ' t really think that you

hate AI. Because you give us your foreseen o f Fifth Generat ion C o m p u t e r
Pro jec t ,and you pointed out that the expert systems will be achieved in all areas.
But you said that the "expert systems" propaganda is misleading. What do you
mean by "expert systems" '?

Mr. Robinson : Well, I don ' t know whether you have that idiom in
the Japanese language, but in English you have the not ion o f using the quota -
t ion marks in a rather sarcastic way. So, if you wish to mock something, you can
put quotes a round it.

I think another device is to preface it with the prefix "so-called".
Now, 1 apologize for the sarcastic quota t ion marks. I will erase them from

my transparency. 1 didn ' t really mean to mock expert s y s t e m s so much as the
idea that we have "AI t echno logy" or '~knowledge engineering" to thank for
them. 1 will stand by those quota t ion marks ! 1 like to stimulate a debate, and
it's fun to put one's posi t ion more strongly perhaps than one really feels it.

1 am simply point ing at something that gives me disquiet. I don ' t know
what fields you all come from, but all of us here p robab ly represent a number o f

different fields which are very ancient : logic is a very old subject ; mathematics ;
physics, chemistry, biology, and so on. Now there is a certain dignity to good
science, which involves one in being faithful to criteria o f modesty and testing

ideas and being very systematic in one's expositions, and so on, which I value
very highly. And 1 think so does everyone else who has ever been involved in
that cultural tradition.

As I watch the field o f AI, and its literature, and its practitioners, I find

that there is not much respect for that spirit. There is an exuberant energy and
an infectious excitement, but there are also a lot o f careless and half-completed
results being published. It's a vibrant, youthful , chaot ic field.

So, while 1 want to identify myself with the quest of artificial intelligence,
(! think it's a magnificent adventure) on the one hand, 1 don' t , on the other
hand, want to be associated with some of the style that l observe among at least
some practit ioners of it.

I think in fact that AI perhaps hasn't advanced as well as it might have,
if more attention had been paid to some of the niceties of the older disciplines.
And so, when I have an oppor tun i ty to say this in public, 1 do so ; my intention
is to try to improve the si tuat ion a little bit, to raise the standards o f practice in
AI.

I24 j.A. Robinson

There is a lot more AI goes on in the popula r press than I would like to

see. I suppose that 's inevitable. The public is interested. It 's an exciting subject.
But if you look at, for example, the history of physics, if you look at the careers
of, say, Albert Einstein, or John yon Neumann, you find that they were very

reticent and very careful about what they would say to the newspapers. They
took great pains to underplay what they were doing, and not to hype up the
excitement level in the media.

It's quite plain that such sober reticence is not the prevailing style in AI,

at least at present. But 1 don ' t hate AI ; I love it. I just want it to be better than
it is.

