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Abstract

An ad hoc data sourcés any semistructured data source for which
useful data analysis and transformation tools are not Iseadail-
able. Such data must be queried, transformed and displayed b
systems administrators, computational biologists, firdanalysts
and hosts of others on a regular basis. In this paper, we detnate
that it is possible to generate a suite of useful data prougssols,
including a semi-structured query engine, several format/ert-
ers, a statistical analyzer and data visualization rostitieectly
from the ad hoc data itself, without any human interventibine
key technical contribution of the work is a multi-phase aitjon
that automatically infers the structure of an ad hoc datacsoand
produces a format specification in thabs data description lan-
guage. Programmers wishing to implement custom data asalys
tools can use such descriptions to generate printing arsinpgli-
braries for the data. Alternatively, our software infrasture will
push these descriptions through teDs compiler and automati-
cally generate fully functional tools. We evaluate the parfance

of our inference algorithm, showing it scales linearly ie gize of
the training data — completing in seconds, as opposed todiesh
or days it takes to write a description by hand. We also etalthee
correctness of the algorithm, demonstrating that gemeyatccu-
rate descriptions often requires less than 5% of the avaitidia.

1. Introduction

An ad hoc data sourcés any semistructured data source for which
useful data analysis and transformation tools are not Ixeadail-
able. XML, HTML and CSV arenot ad hoc data sources as there
are numerous programming libraries, query languages, a&nu
and other resources dedicated to helping analysts matepddeaa

in these formats. However, despite the prevalence of stdrfde
mats, massive quantities of legacy ad hoc data persist dsfiahg-
ing from computational biology to finance to physics to netimng

to healtcare and systems administration. Moreover, eaginand
scientists are continuously producing new ad hoc formatsespite
the presence of existing standards— because it is ofterdexpd¢o

do so. Over time, these expedient formats become difficulictidk
with because of missing documentation, a lack of tools, awd c
ruption caused by repeated, poorly thought-through rgdeséuse
and extension.

The goal of thepADS project [5, 6, 14, 16] is to improve the
productivity of data analysts who need to cope with hew ardvev
ing ad hoc data sources on a daily basis. Our central teciy@o
a domain-specific language in which programmers can sptfy
structure and expected properties of ad hoc data sourcesherh
they be ASCII, binary, Cobol or a mixture of formats. Thesecp
fications, which resemble extended type declarations fromren-
tional programming languages, are compiled into a suiterof p
gramming libraries, such as parsers and printers, and cerdd
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data processing tools including an XML-translator, a queny
gine [4], a simple statistical analysis, and others. Hetitze most
important benefit of usingADsis that a single declarative descrip-
tion may be used to generate many useful data processing tool
completely automatically.

On the other hand, the most important impediment to using
PADS s the time and expertise needed to writead s description
for a new ad hoc data source. For data experts possessing clea
unambiguous documentation about a simple data sourcengvrit
a PADS description may take anywhere from a few minutes to a
few hours. However, it is relatively common to encounter ad h
data sources that contain valuable information, yet hatle tbr
no documentation. Understanding the structure of the dath a
creating descriptions for such sources can easily takeatayseks
depending upon the complexity and volume of the data in ¢urest
In one specific example, Fisher spent approximately thresksve
(off and on) attempting to understand and describe an irapbrt
data source used internally at AT&T. One of the stumblingnfsoin
this case was that the data source suddenly switched foaftats
approximately 1.5 million entries. Of course, if dealingthwihe
vagaries of ad hoc data sources is time-consuming and grooe
for experts, it is even worse for novice users.

To improve the productivity of experts and to make theds
toolkit accessible to new users with little time to learn gpec-
ification language, we have developed an automatic fornfat-in
ence engine. This format inference engine reads arbitr&¢IA
data sources and produces an accurate, human-reaetdaiede-
scription of the source. These machine-produced desmnptjive
experts a running start in any data analysis task as theikkrgen-
erated from these descriptions may be incorporated djréuth
an ordinary C program. The inference engine is also direxity
nected to the rest of theabps infrastructure, making it possible for
first-time users, with no knowledge of tlaDs domain-specific
language, to translate data into a form suitable for loadhg a
relational database, to load it into an Excel spreadsheeprivert
the data intoxmL, to query it in XQuery, to detect errors in ad-
ditional data from the same source, and to draw graphs obwsri
data components, all with just a “push of a button.”

To summarize, this paper makes three main contributions.

¢ \We have developed a new, multi-phase algorithm that infers t
format of complex, ad hoc data sources, producing compalkct an
accuratePADS descriptions.

e We have incorporated the inference algorithm into a modular
software system that uses sample data to generate a toolkit
of useful data processing tools, without requiring any hama
intervention.

¢ We have evaluated the correctness and performance of our sys
tem on a range of ASCII data sources. For many data sources,
training on 5% or less of the data results in accuracy rates



greater than 95% (often perfect). &l cases additional train- c = alils

(constants)

ing data elevates accuracy rates above 95% and gasesieed T (variables)

a user ever be unsure about the accuracy rate of generated de- ? clz (parameters)

scriptions — the automatically generated accumulatorrioz- Base tvped =

sures both overall accuracy and field-by-field accuracy ef th o€ Ypes = ' L

d L d in all frer fixi Pi nt (generic, unrefined integer)

escription on any new data source. In all cases, after fixing Pi nt Ranged (integer with min/max values)
a data source, the inference algorithm scales linearly thith Pi nt 32 (32-bit integer)
quantity of data. Pi nt 64 (64-bit integer)
. . . . | Pi nt Const (constant integer)

For readers m_terested in seeing our system operate livegreve | Pf I oat (floating point number)
currently creating an online demo to illustrate its manytdess Pal pha (alpha-numeric string)
(htt p://ww. padsproj . or g). Pstring (string; terminating character)

In the next section of this paper, we describe the internal re PstringFW (string; fixed width)
resentation used during the course of the inference ahgoriFor PstringConst  (constant string)
those readers familiar with theaps description language, this is Pot her (punctuation character) ‘
largely a review. Section 3 describes our format inferetgerahm Corpl exB (Cgrgpolgt‘eb"t‘isrfetgfsda'”ed by regexp;
in depth alnd |Ilustr:ates |fts action on té/vo sample dataft seuisec- | Pvoi d (parses no characters: fails immediately)
tion 4 evaluates the performance and correctness of olgrsysi | Penpt y (parses no characters: succeeds immediately)
15 different ad hoc data sources, drawn mostly from systerds a
networking domains. Section 5 discusses how users can dal W Types7 ::=
errors in generated descriptions and points out weaknesspkan b(p1,...pk) (parameterized base type)
to address in future work. Sections 6 and 7 present relatekl aval | z:b(p1,...0k) (parameterized base type;
conclude respectively. underlying value named x)

| struct {T1;...Tx:} (fixed sequence of items)
|array {T;} (array with unbounded repetitions)

2. The Internal Format Description Language

Our format inference algorithm is implemented as a series of
phases that generate and transform an internal formatigésor
language we refer to simply as the IR. The IR is very similahto
IPADSlanguage we developed and formalized in previous work [6].
Apart from syntax, the main differences are that the IR oneitsir-
sion and function declarations; the former being beyondstupe

of our current inference techniques and the latter beingcessary
during the course of the inference algorithm.

2.1 The Language

Like all languages in theapsfamily, the IR is a collection of type
definitions. These “types” define both the external syntagaif
formatted on disk and the shape of the internal representathat
result from parsing. We rely upon both of these aspects of typ
definitions to generate stand-alone tools automaticailyurieé 1

| arrayFW{T:}[p]
| arrayST {T’;}[sep,term]
| uni on {Ty; ... Tx:}

| enum{ci; ...cx:}

| x:enum{ca; ... ck:}

(array; fixed length)

(array; separator and terminator)
(alternatives)
(enumeration of constants)
(parameterized enum type;

underlying value named x)
| option{T;} (type T or nothing)
| swi tch z of

{c1=>Th;...cx, =>Ty;} (dependent choice)
Representations of parsed ddta=

c (constant)

| in;(d) (injection into theit" alternative of a union)

| (di,....dx) (sequence of data items)

Figure 1. Selected elements of the IR.

URLSs, XML tags, dates, times and a variety of others. Findlfig

summarizes the syntax of the IR and of the generated internal typesPvoi d andPenpt y are two special base types that are in-

representations.

The building blocks of any IR data description are the base
typesb, which may be parameterized by some number of argu-
mentsp. Arguments may either be constantsvhich include char-
actersa, integersi and stringss, or variablesz bound earlier in
the description. These base types include a wide rangefefditt
sorts of integers and strings. In its initial phases, thererice al-
gorithm uses general integBr nt , alphanumeric stringPal pha
and punctuation charactd®ot her (a) types. In later phases,
these coarse-grained base types are analyzed, mergedfiaed,re
producing integers with range® nt Ranged( i n, max), in-
tegers with known sizé®i nt 32 or Pi nt 64, constant integers
(Pi nt Const () for some integer), or floating-point numbers
Pf | oat . Likewise, later stages of our algorithm transform al-
phanumeric strings into arbitrary strings with termingtitharac-
ters Pstring(a) wherea terminates the string), fixed width
strings Pstri ngFW ¢) where: is the length of the string) or
string constant®st r i ngConst ( s) . For brevity in our descrip-
tions, we normally just write the constant striagnline in a de-
scription instead oPst ri ngConst ( s) .

In addition to these simple base types, the IR includes a col-
lection of higher-level base types commonly found in ad haad
specified generally in Figure 1 &onpl exB. For example, we

troduced at various points in the inference process. Theféiils
immediately; the second succeeds immediately. Neitheswtoes
any characters while parsing.

Complex descriptions are built from simpler ones using a va-
riety of type constructors. Type constructors include dasiuct
typesst ruct {T4; ... Tkx;}, which indicate a data source should
contain a sequence of items matchifg ..., Ty, basic array types
array T, which indicate a data source should contain a sequence
of items of arbitrary length, each matchifig and union types
uni on {T4; ... Tx;}, which indicate a data source should match
one of T, ..., Tx. Once again, initial phases of the inference al-
gorithm restrict themselves to one of these three sorts pé ty
constructors. However, later phases of the algorithm refirerge
and process these simple types in a variety of ways. For eeamp
unions may be transformed into enumerations of constamtsn
{c1; ... ck;} or optionsopt i on {T';}. In addition, later phases of
the algorithm bind variables to the results of parsing bgsed and
enums. For example;:b(p1,...px) expresses the fact that variable
x is bound to the value parsed by base t§@8,...px). These vari-
ables express dependencies between different parts ofcames
tion.! For example, the length of a strifgt r i ngFWp) or an ar-

1For the purposes of inference, every bound variable is asgum be

have implemented base types for IP addresses, email aslresse distinct from every other that appears in a description. gdduspeaking,



Crashreporter.log:

Sat Jun 24 06:38:46 2006 crashdunp[2164]:
- crashreporterd[120]: mach_nsg() reply fail ed:

Sirius AT&T Phone Provisioning Data:

Started witing crash report to:
(i pc/ send)

/ Logs/ Crash/ Exit/ pro.crash.|og
invalid destination port

8152272| 8152272| 1| 6505551212| 6505551212 0] 0] | no_i i 152272 EKRS_6| 0] FREDL| DUQ 10| 1000295291
8152261| 8152261| 1| 0] 0| 0] O] | no_i i 752261| EKRS_1| 0] kf eosf 2| DUQ EKRS_6| 1001390400| EKRS_OS_10| 1001476801

Figure 2. Example ad hoc data sources.

ray Par r ay FWp) may depend upon either a constant or a variable dunpReport =
and likewise for any other parameterized base type. In iaddit uni on {
unions may be refined into dependent switch statenmesnitg ch str gf;ried writing crash report to:
xz of {c1 =>Ti; ... cp => Ty;}, where the data is described by file: Ppat h; 9 P '
T, ..., orT, depending on the value associated wittbe itc, ..., }:
or cg. L
The result of parsing according to a description is an irlern };
representation of the data. We let metavariablange over such
data representations. For the purposes of this paper, aefat reporterReport =
sentation may be a constantan injection into the*" variant of a struct { , . .
function: Ppath; reply failed: ");

unioni n;(d), or a sequence of data representatigfis . . . , dx).
The injections are used as the representations of any sartiof

failurensg: Pstring_('\n');

type, be it a union, an enumeration, an option or a switch. The b

sequences are used as the representations of any sort ehsequ  dat eOpti on =

type, whether it be a struct or one of the array variants. uni on {

2.2 Running Examples struct {

Figure 2 presents tiny fragments of two different ad hoc data day:  PDate; " "

files on which we have trained our inference algorithm. Thet,fir L e PTi me; cow o
. . . . year: Pi nt 32

Crashreporter.log, is a Macintosh system file that recorfigma- }: ' '

tion concerning process crasieBhe second, which we call Sirius, }: '

is an internal AT&T format used to record phone call provisng

information. We use the Crashreporter.log data source rasain source =

example throughout the paper; periodically we refer to thi$S arrayST {

data source to illustrate particular aspects of the infexesigo- struct { )

rithm. dat e: dat eOp.t.I on; }

Figure 3 presents a hand-writtern description of the Ceashr kind:  enum {,,Crasﬂd“”p t gy e
porter.log file in the IR syntax. This description is mostiyazad dunpi d: Pi nt 32; C.r.]a.s . eporterds IS
from the bottom, starting with the definition of tls®ur ce type. report ' ’

This definition specifies that the data source is an arrayro€tst switch kind of {

separated by newline characters and terminated by the efilé of "crashdunp” => dunpReport
marker. In other words, the data source is a sequence of \iits "crashreporterd" => reporterReport
the struct in question appearing on each line. The struelf iits- 3

dicates each line is a sequencedat eopt i on, ki nd, dunpi d M\ n, EOF];

andr eport fields. The description also specifies that the delimiter
"[" appears between ttké nd anddunpi d fields, and the delim-
iter"]: " appears between tlirinpi d andr eport fields.

Most of the variable names associated with fielelg.(dat e,

Figure 3. Hand-written IR Crashreporter.log description.

dunpi d, etc) merely serve as documentation for the reader. How- 3. The Inference Algorithm
ever, theki nd field is different — it is used later in the description
and hence illustratesdependencyTo be specific, the form of the
report field depends upon the contents of thiend field. If its

Figure 4 gives an overview of our automatic tool generation a
chitecture. The process begins with raw data, shown in kbue (

value is" cr ashdunp"”, then ther eport is adunpReport
type, while if the ki nd field is "crashreporterd", the
report isareporterReport type.

Figure 3 contains three other definitions aside freaur ce.
These definitions specify the structure of tdeinpReport,
reporter Report anddat eOpt i on types.

the scope of such variables extends as far as possible tgtiié¢hrough the
description. Understandng the fine details of the semaisticst important
for understanding the central material in this paper.

2For expository purposes we have made a minor alterationet€thshre-
porter.log format to allow us to explain more concepts witiragle exam-
ple. The evaluation section reports results on both the teteip unmodi-
fied Crashreporter.log and the modified version.

grey) at the top left, which we pipe into the format infererce
gine (circumscribed by dotted lines in the picture). Thigiae pro-
duces a syntactically correeabds description for the data through
a series of phases: chunking and tokenization, structseodery,
information-theoretic scoring, and structure refinemdiie sys-
tem then feeds the generateabs description into theeADS com-
piler. The compiler generates libraries, which the systeen tinks
to generic programs for various tasks including a data aisatgol
(a.k.a.,theaccumulatoy and an ad-hoc-teML translator. At this
point, users can apply these generated tools to their atigaw
data or to other data with the same format. The following eabs
tions describe the main components of the inference algorih
more detail. We illustrate the effect of each phase on ouningn
examples and present the output of some of the generated tool
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Figure 4. Architecture of the automatic tool-generation engine

3.1 Chunking and Tokenization

The learning system first divides the input data, which werréed
as thetraining sef into chunksas specified by the user. Intuitively,
a chunk is a unit of repetition in the data source. It is prifpdny
analyzing sequences of such chunks for commonalities taatres
able to infer data descriptions. Our tool currently supgpohiunking
on a line-by-line basis as well as on a file-by-file basis.

We use a lexer to break each chunk into a serisfgple tokens
which are intuitively atomic pieces of data such as numlsates,
times, alpha-strings, or punctuation symbols. Every sémpken
has a corresponding base type in the IR, though the comsens i
true — there are base types that are not used as tokens. iNdess!,
since simple tokens have a very close correspondence wit ba
types, we often use the wotdkeninterchangeably withase type

Parenthetical syntax, including quotation marks, curlgces,
square brackets, parentheses aml tags, often provides very
important hints about the structure of an ad hoc data filer&he
fore, whenever the lexer encounters such parenthesegatiesra
meta-tokenwhich is a compound token that represents the pair of
parentheses and all the tokens withiRor example, in Crashre-
porter.log, the syntak2164] will yield the meta-toker *] in-
stead of the sequence of three simple toenBi nt , and] . The
structure-discovery algorithm eliminates all meta-takdaring its
analysis; whenever it encounters a context consisting ae¢mrzg
meta-tokens, it cracks open the meta-tokens so it can anéthgz
underlying structure.

Our learning system has a default tokenization scheme skewe
toward systems data, but users may specify a different setiem
their own domain through a configuration file. For examplen<co
putational biologists may want to add DNA strinG8TTGITT. . .
to the default tokenization scheme. The configuration fikesien-
tially a list of name, regular expressions pairs. The sysises the
configuration file to generate part of the system’s lexer, lleco
tion of new IR base types, and a series of type definitionsatet
incorporated into the fin@ADS specification.

3|f parenthetical elements are not well-nested, the métar® are dis-
carded and replaced with ordinary sequences of simple soken

3.2 Structure Discovery

Given a collection of tokenized chunks, the goal of the stnee

discovery phase is to quickly find a candidate descriptidosg’

to a good final solution. The rewriting phase then analyzfses
and tranforms this candidate to produce the final descripfitie

high-level form of our structure-discovery algorithm waspired
by the work of Arasu and Garcia-Molina on information extiac

from web pages [1]; however, the context, goals and algoiith
details of our work are entirely different.

StructureDiscovery Basics.  Our algorithm operates by analyzing
the collection of tokenized chunks and guessing what théeog
type constructor should be. Based on this guess, it parsittbe
chunks and recursively analyze each partition to deterthiaéest
description for that partition. Figure 5 outlines the oViepaoce-
dure in Pseudo-ML. Ther acl e function, whose implementation
we hide for now, does most of the hard work by conjuring one of
four different sorts of prophecies.

The BasePr ophecy simply reports that the top-level type
constructor is a particular base type.

TheSt r uct Pr ophecy specifies that the top-level description
is a struct withk fields. It also specifies a list, call @tss, with &
elements. The'" element ircss is the list of chunks correspond-
ing to thei*® field of the struct. The oracle derives these chunk
lists from its original input. More specifically, if the orleacguesses
there will bek fields, then each original chunk is partitioned ito
pieces. The™® piece of each original chunk is used to recursively
infer the type of the'" field of the struct.

TheAr r ayPr ophecy specifies that the top-level structure in-
volves an array. However, predicting exactly where an aoemgins
and ends is difficult, even for the magical oracle. Consetlyehe
algorithm actually generates a three-field struct, whezditkt field
allows for slop prior to the array, the middle field is the gritaelf,
and the last field allows for slop after the array. If the slom$ out
to be unnecessary, the rewriting rules will clean up the riretize
next phase.

Finally, theUni onPr ophecy specifies that the top-level struc-
ture is a union type witlk branches. Like &t r uct Pr ophecy,
the Uni onPr ophecy carries a chunks list, with one element for
each branch of the union. The algorithm uses each element to r
cursively infer a description for the corresponding bran€hhe
union. Intuitively, the oracle produces the union chungsldiy “hor-
izontally” partitioning the input chunks, whereas it paoins struct
chunks “vertically” along field boundaries.

As an example, recall the Crashreporter.log data from Eigur
Assuming a chunk is a line of data, the two chunks in the exampl
consist of the token sequences (redalll] and (*) are meta-
tokens):

Pdate ’

Ptime ’ Pint ’
Pal pha [*] ":" '’

Pal pha [ *]
Pal pha (*) '’

Given these token sequences, the oracle will predict tleatap-
level type constructor is a struct with three fields: one ffiertokens
before the tokerf ], one for the[ *] tokens themselves, and
one for the tokens after the tokér] . We explain how the oracle
makes this prediction in the next section. The oracle theitlels
the original chunks into three sets as follows.

Pdate °’ Ptime ' Pint ’ Pal pha (set 1)
- ' ' Pal pha
[*] (set 2)
[+]

(set 3)
‘" Palpha (*) '



On recursive analysis of set 1, the oracle again suggestad st
the top-level type, generating two more sets of chunks:

Pdate °’ Ptime ’ Pi nt (set 4)
Pal pha (set 5)
Pal pha

Now, since every chunk in set 5 contains exactly one base type |

token, the recursion bottoms out with the oracle claimingas
found the base typ®al pha. When analyzing set 4, the ora-
cle detects insufficient commonality between chunks andbddsc
the top-most type constructor is a union. It partitions sentd

two more sets, with each group containing only 1 chunk (eithe fun di scover (cs: chunks)

{Pdate ' ' ...} or {"-" ' '1}). The algorithm analyzes
the first set to determine the type of the first branch of themni

and the second set to determine the second branch of the. union

With no variation in either branch, the algorithm quickiyscvers
an accurate type for each.

Having completely discovered the type of the data in set 1, we

turn our attention to set 2. To analyze this set, the algorithacks

open the[ *] meta-tokens to recursively analyze the underlying

data, a process which yields ruct {'['; Pint;
Analysis of Set 3 proceeds in a similar fashion.

1)

As a second example, consider the Sirius data from Figure 2.

Here the chunks have the following structure:

Pint '|" Pint "|’ | Pint '|’ Pint
Pint '|" Pint "|’ "|' Pal pha Pint '|’

The oracle prophecies that the top-level structure inwarearray
and partitions the data into sets of chunks for the arrayrpbés,
the array itself, and the array postamble. It does this tpaming
to cope with “fence-post” problems in which the first or thetla
entry in an array may have slightly different structure.Histcase,
the preamble chunks all have the fofRi nt ' |’ } while the
postamble chunks all have the forffPi nt }, so the algorithm
easily determines their types. The algorithm discoversype of
the array elements by analyzing the residual list of chunks

Pi nt

Pint '|’

Pint |’
Pint |’

béipha Pint '|

The oracle constructs this chunk list by removing the prdamb
and postamble tokens from all input chunks, concatenatieg t

remaining tokens, and then splitting the resulting list iome chunk
per array element. It does this splitting by assuming thatctiunk
for each array element ends with ' token.

type description (* an IR description x)
type chunk (* a tokeni zed chunk x)
type chunks = chunk |i st

(* A top-level description guess *)
dat at ype prophecy =
BasePr ophecy of

| StructProphecy of
| ArrayProphecy of
Uni onProphecy of

description
chunks 1i st
chunks * chunks * chunks
chunks i st

(*» Cuesses the best top-level description x)
fun oracle : chunks -> prophecy

(* I'nplements a generic inference algorithm x)
description =
case (oracle cs) of

BaseProphecy b => b

| StructProphecy css =>
let Ts = map discover css in
struct { Ts }

| ArrayProphecy (csfirst, csbody, cslast) =>
let Tfirst = discover csfirst in
| et Thody = discover cshody in
let Tlast = discover cslast in
struct { Tfirst; array { Tbhody }; Tlast; }
| Uni onProphecy css =>
let Ts = map discover css in
union { Ts }

Figure 5. A generic structure-discovery algorithm in Pseudo-ML.

Intuitively, tokens associated with histograms with higiver-
age meaning the token appears in almost every chunk panew
distribution, meaning the variation in the number of timasken
appears in different chunks is low, are good candidatesefinitig
structs. Similarly, histograms with high coverage amde distri-
bution are good candidates for defining arrays. Finallyolgiams
with low coverge or intermediate width represent tokens fibiam
part of a union.

Concretely, consider histogram (a) from Figure 6. It is a per
fect struct candidate— it has a single column that cover€6160
the records. Indeed, this histogram corresponds tptfetoken in
Crashreporter.log. Whenever the oracle detects suchaghésh, it
will always prophecy a struct and partition the input chua&sord-
ing to the associated token. All of the other top-level hasamns for
Crashreporter.log contain variation and hence are lessicéndi-
cators of data source structure.

As a second example, consider the top-level histogramébif),
and (g) for token®al pha, Pi nt andPwhi t e, respectively, and

So far so good, but how does the guessing work? Why does thecompare them with the corresponding histograms (h), (i) @nd

algorithm decide the Sirius data is basically an array bais@re-
porter.log is a struct? After all, the Sirius chunks all hawi nt ,

just as all the Crashreporter.log chunks have a bracket-tokém

[ *] . Likewise, Crashreporter.log contains many occurrentteeo
'’ token, which might serve as an array separator as ftheto-

ken does in the Sirius data.

The Magic.
of chunks, the oracle computes a histogram of the frequsrafie
all tokens appearing the input. More specifically, the fjsam
for tokent plots the number of chunks (on theaxis) having a
certain number of occurrences of the token (omteis). Figure 6
presents a number of histograms computed during analysrseof
Crashreporter.log and Sirius chunk lists.

computed for the same tokens from chunk set 1, defined in the
previous subsection. The histograms for chunk set 1 haviesar
variation than the corresponding top-level histogramgpalrticular,
notice that histogram (h) for tokdPal pha is a perfect struct his-
togram whereas histogram (f) for tok@®al pha contains a great
deal of variation. This example illustrates the source eftbwer of
our divide-and-conquer algorithm- if the oracle can idgnéven

To generate the required prophecy for a given list one tokerat a given level as defining a good partition for the data,

the histograms for the next level down become substanshbyper
and more amenable to analysis.

As a third example, consider histogram (k). This histogram
illustrates the classic pattern for tokens involved in ysrait has
a very long tail. And indeed, thie token in the Sirius data does act
like a separator for fields of an array.
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Figure 6. Histograms (a), (b), (c), (d), (e), (f) and (g) are generdterh top-level analysis of Crashreporter.log tokens. Toveasponding
tokens are (a) ], (b) Pi nt, (c) PDat e, (d) PTi ne, (e)-, (f) Pal pha and (g)Pwhi t e. Histograms (h)Pal pha, (i) Pi nt, and (j)
Pwhi t e are generated from analysis of Crashreporter.log from ggtelsecond level of recursion). Histogram (k) is generétesh top-
level analysis of th¢ token from the Sirius data. Note that several of these hiatag have many bars of very small height, including (f)

with 7, (g) with 8, and (k) with 17.

To make the intuitions discussed above precise, we mustedefin 1. Prophecy a base type when each chunk contains the same

a number of properties of histograms. First, a histograffior a
tokent is a list of pairs of natural numbefs;, y) wherex denotes
the token frequency angdenotes the number of chunks with that
frequency. All first elements of pairs in the list must be weig
The width of a histogram \{idth(%)) is the number of elements in
the list excluding the zero-colummg. excluding element0, y)).
A histogramh is in our normal form when the first element of the
list is the zero column and all subsequent elements aredsirte
descending order by the component. For example, if; is the
histogram[(0, 5), (1, 10), (2, 25), (3, 15)] thenwidth(h:) is 3 and
its normal formh; is (0, 5), (2, 25), (3, 15), (1, 10)].

We often refer tq; as themassof the elementz, y), and given
a histogramh, we refer to the mass of thé" element of the list
using the notatiotk[¢]. For instanceh,[3] = 15 andh;[3] = 10.
Theresidual masgrm) of a columni in a normalized histograrh
is the mass of all the columns to the rightigflus the mass of the

zero-column. Mathematicallym(h, i) = h[0] + 34" A[j].
For exampleym(hi,1) = 5 4 15 4 10 = 30. The residual mass
characterizes the “narrowness” of a histogram. Those dniatos
with low residual mass of the first columid, rm(h1, 1) is small)
are good candidates for structs because the corresporakagst
occur exactly the same number of times in almost all records.

To distinguish between structs, arrays and unions, we &esd n
to define thecoverageof a histogram, which intuitively is the
number of chunks containing the corresponding token. Matte
ically, it is simply the sum of the non-zero histogram eletsen
coveragéh) = Y° V"™ ).

Finally, our algorithm works better when the oracle consid-
ers groups of tokens with similar distributions togethecawese
with very high probability such tokens form part of the saryyet
constructor. To determine when two histograms sirailar, we
use a symmetric form ofelative entropy[13]. The (plain) rel-
ative entropy of two normalized histogramhs and hz, written
R(h1 || hz), is defined as follows.

width(hy)

R(hy || he) = > Halj] *log(halj]/helj])

j=1

To create a symmetric form, we first find the average of the tiao h
tograms in question (writteh; @ hz) by summing corresponding
columns and dividing by two. This technique prevents theoden
inator from being zero in the final relative entropy compiotat
Using this definition, the symmetric relative entropy is:

o 1 - 1
S(h1 || ha) = §R(h1 || h1 & h2) + E’R(}m [| h1 @ ha)

Now that we have defined the relevant properties of histogram
we can explain how the oracle prophecies given a list of chunk

simple token. If each chunk contains the same meta-token,
prophecy a struct with three fields: one for the left parerg on
for the body, and one for the right paren.

. Otherwise, compute normalized histograms for the inpat a

group related ones into clusters using agglomerative erust
ing: A histogramh; belongs to group’ provided there ex-
ists another histograni, in G such thatS(h: || h2) <
ClusterTolerance. whereClusterTolerance is a parameter of
the algorithm. We do not require all histograms in a cluster t
have precisely the same histogram to allow for errors in #ta.d
A histogram dissimilar to all others will form its own growve
have found &lusterTolerance of 0.01 is effective.

. Determine if a struct exists by first ranking the groups ty t

minimum residual mass of all the histograms in each group.
Find the first group in this ordering with histogramsatisfying
the following criteria:

e rm(h) < MaxMass
e coverage(h) > MinCoverage

where constantdlaxMass and MinCoverage are parameters

of the algorithm. This process favors groups of histogravitis w
high coverage and narrow distribution. If histogralms. .. , ks,
from groupG satisfy the struct criteria, the oracle will prophecy
some form of struct. It uses the histograms ..., h, and

the associated tokens, ..., t, to calculate the number of
fields and the corresponding chunk lists. We ¢all... ., t,, the
identifiedtokens for the input. Intuitively, for each input chunk,
the oracle puts all tokens upto but not including the firsetok

t from the set of identifed tokens into the chunk list for thetfir
field. It putst in the chunk list for the second field. It puts all
tokens upto the next identified token into the chunk list far t
third field and so on. Of course, the identified tokens need not
appear in the same order in all input chunks, nor in fact must
they all appear at all. To handle this variation when it os¢thre
oracle prophecies a union instead of a struct, with one lranc
per token ordering and one branch for all input chunks that do
not have the full set of identified tokens.

. Identify an array by sorting all groups in descending otue

coverage of the highest coverage histogram in the groupl Fin
the first group in this ordering with any histograms thatsfsti
the following minimum criteria:

o width(h) > 3
e coverage(h) > MinCoverage

This process favors histograms with wide distribution aighh
coverage. If histogram., ..., h, with corresponding tokens
t1, ..., tn Satisfy the array critera, the oracle will prophecy an
array. It will partition each input chunk into (1) a preamble
subsequence that contains the first occurrence of eachi-ident



fied token, (2) a set of element subsequences, with each-subseCost of encoding all training data relative to a type:

guence containing one occurrence of the identified tokerts, a
(3) a postamble subsequence that contains any remainieggok
from the input chunk.

5. If no other prophecy applies, identify a union. Partitioa input
chunks according to the first token in each chunk.

3.3 Information-Theoretic Scoring

We use an information theoretic scoring function to asshes t
quality of our inferred descriptions and to decide whetbeaiply
rewriting rules to refine candidate descriptions. Inteityy a good
description is one that is botbompactand precise There are
trivial descriptions of any data source that are highly cantie.g,
the description that says the data source is a string teteuna
by end of file) or perfectly precisee(g, the data itself abstracts
nothing and therefore serves as its own description). A goodng
function balances these opposing goals. As is common inimach
learning, we have defined a scoring function based oiihénum
Description Length PrinciplgMDL), which states that a good
description is one that minimizes the cost (in bits) of traitsng
the data [8]. Mathematically, if" is a description and;, .. ., dx
are representations of the chunks in our training set, parsed
according tdl", then the total cost in bits is:

CosT(T,ds,...,dy) = CT(T) + CD(ds, . .., dy | T)

where CTT) is the number of bits to transmit the description and
CD(d1,...,dy | T') is the number of bits to transmit the dafiaen
the description

Intuitively, the cost in bits of transmitting a descriptida
the cost of transmitting the sort of descriptione( struct,
uni on, enum etc) plus the cost of transmitting all of its sub-
components. For example, the cost of transmitting a sty t
CT(struct{Ti;...;Tx;}) is CARD + Z,’;:l CT(T;) where
CARD is the log of the number of different sorts of type construc-
tors (24 of them in the IR presented in this paper). We havaeefi
the recursive cost function mathematically in full, butepéimita-
tions preclude giving that definition here.

The cost of encoding data relative to selected types is slown
Figure 7. The top of the figure defines the cost of encodingadd d
chunks relative to the typE; it is simply the sum of encoding each
individual chunk relative td".

In the middle of the figure, we define the cost of encoding a
chunk relative to one of the integer base types; other bgsesty
are handled similarly. Notice that the cost of encoding ae-in
ger relative to the constant tyg nt Const is zero because the
type itself contains all information necessary to recartthe
integer— no data need be transmitted. The cost of encoditeg da
relative toPi nt 32 or Pi nt 64 types is simply 32 or 64 bits,
respectively. Finally, we artificially set the cost of radgegpes
Pi nt Ranged(pmin, Pmaez) to be infinity because our experi-
ments reveal that attempting to define integer types withrmim
and maximum values usually leads to overfitting of the data.

CD(d1,...,dy | T) k  CD'(d; | T)
Cost of encoding a single chunk relative to selected basestyp

CD’(i | PintConst(p))

CD’(i | Pint32)

CD’(i | Pint64)

CD’ (Z I PintRanged(pmi'mpmaw))

g Rge

Cost of encoding a single chunk relative to selected types:

CD'((d1,...,dg) | struct{Ty;...Tk; })
=31, CD'(d: | Ty)

CD’(in;(d) | union{T1;...Tk;})
= log(k) +CD'(d | T;)

CD’(in;(c) | enum{ci;...ck; })
= log(k)

CD’(in;(d) | switch @ of{c1=>T1;...cp=>Tk; })
—CD'(d|T))

Figure 7. Cost of transmitting data relative to a type, selected rules

of encoding its tag only — given the tag, the underlying datde-
termined by the type. The cost of encodingw t ch is the cost

of encoding the branch only — the tag need not be encoded $&cau
it is determined by the type and earlier data.

3.4 Structure Refinement

The goal of the structure-refinement phase is to improvettoe-s
ture produced by the structure-discovery phase. We fore e
structure-refinement problem as a generalized searchghrihe
description space starting with the candidate producedrbgtsre
discovery. The objective of the search is to find the dedorighat
minimizes the information-theoretic scoring function.

Rewriting rules. To move around in the description space, we
define a number of rewriting rules, the general form of whch i

T = T', if some constraint p(T') is satisfied,

whereT is a type in the candidate description afd is its re-
placement after the rewriting. Some rules are unconditiana
thus free of constraints. There are two kinds of rewritingsu(1)
data-independent rules which transform a type based exelysn
the syntax of the description; and (2) data-dependent mikesh
transform a type based both on the syntax of the description a
on properties of the training data parsed by typdn general, the
data-independent rules try to rearrange and merge portibtise
description while the data dependent rules seek to idenbfy
stant fields and enumerations, and to establish data depeede
between different parts of the description.

Figure 8 presents a selection of the rewriting rules useten t
refinement phase. We have omitted many rules and have sigdplifi
others for succinctness. Whér[X] appears in a pattern on the

The last section of Figure 7 presents the cost of encoding left-hand side of a rewriting ruleX is bound to the set of data

data relative to selected type constructors. The cost abding
astruct isthe sum of the costs of encoding its component parts.
The cost of encoding ani on is the cost of encoding the branch
number {og(k) if the union hask branches) plus the cost of en-
coding the branch itself. The cost of encodingearumis the cost

4We nevertheless retaPi nt Ranged types in our IR to encode the range
of values found during the value-space analysis. Duringeiiting phase,
we use this range information to rewrii nt Ranged into other integer
types. Since the cost of encodiRgnt Ranged is so high, the appropriate
rewriting is guaranteed to be applied. In the future, we nmait ¢his range
information as comments in the generated descriptions.

representations resulting from usitiggo parse the appropriate part
of each chunk from the training set. Furthermore cletd(X) be

the cardinality of the seX, and letX (i) be the data representation
resulting from parsing the!” chunk in the training set. Finally,

given a union valuen; (v), we definelag(in;(v)) to bej.

The Search. The core of the rewriting system is a recursive,
depth-first, greedy search procedure. By “depth-first,” weam
the algorithm considers the children of each structured hgfore
considering the structure itself. When refining a type, igerithm
selects the rule that wouldinimizethe information-theoretic score
of the resulting type and applies this rule. This processaepuntil



Data independent rules
1. Singleton structs and unions
struct{T} =T union{T} =T

struct{} = Pempty

2. Struct and union clean-up
struct{pre_types; Pvoid; post_types} = Pvoid

union{} = Pvoid

struct{pre_types; Pempty; post_types} =
struct{pre_types; post_types}

union{pre_types; Pvoid; post_types} =
union{pre_types; post_types}
3. Uniform struct to fixed-length array
struct{T1;...;Tn} = arrayFW{T }[n]
if n>3andVvi € [1, n], j € [1, n]: T; =Tj.
4. Common postfix in union branches
union{struct{pre_typesi;T};
struct{pre_typesz; T}} =
struct{union{struct{pre_typesi};
struct{pre_typesa}}; T}

union{struct{pre_types; T};T} =
struct{option{struct{pre_types}}; T}
5. Combine adjacent constant strings
struct{pre_types; PstringConst(cy);
PstringConst(cz); post_types} =
struct{pre_types; PstringConst(c1Qcy); post_types}

Data dependent rules
1. Base type with unique values to constant

. Refine enums and ranges

. Union to switch

Pint[X] = PintConst(c)
fvxreX:z=c

Palpha[X] = PstringConst(c)
fVee X: z=c

Pstring[X] = PstringConst(c)
fVee X: z=c

Pother[X] = PstringConst(c)
fVee X: z=c

Pstring[X] = enum{si;...; sk}
if Vee X: z €{s1,...,8}

Pint[X] = Pint32
ifVee X:0<z <22

struct{pre_types; enum{c1;...; cn }[X]; mid_types;
union{Ty;...; Tn}[Y]; post_types}

=

struct{pre_types, z : enum{c1;...;cn}; mid_types;
switch(z){c1 = Ti(1);---;¢n = Tii(n)}; pPost_types}

where z is a fresh variable, and there exists a permutafibns.t.

Vi € [1, card(X)], I(tag(X(i))) = tag(Y ()).

Figure 8. Selected and simplified rewriting rules

(» rewiting rules «)
type rule : description -> description
val rules : rule list

(* measure the score for a type *)
fun score : description -> float

(» find the type with best score froma list x)
fun best: description list -> description

(* inprove the given type by one rewiting rule *)
fun oneStep (T:description) description =

let all = map (fnrule =>rule T) rules in

let top = best all in

if (score top) < (score T) then oneStep top

else T

(* main function to refine an IR description x)
fun refine (T:description) description =
let T" = case T of
base b => b
| struct { Ts } => struct { map refine Ts }
| union { Ts } => union { map refine Ts }
| switch x of { vTs } =>
switch x of
{ mp (fn (v, t) => (v, refinet)) vTs }
| array { T} =>
array { refine T}
| option { T} =>option{ refine T} in
oneStep T

Figure 9. Generic local optimization algorithm in Pseudo-ML

no further reduction in the score is possible, at which poiatsay
the resulting typd is stable

base types to constant values and enumeratitnsand to intro-
duce dependencies such as switched unions. This stageezqui
the value-space analysis described next. The third tineealtpo-
rithm reapplies the data-independent rules because sage tsto
rewritings (such as converting a base type to a constanijena-
ther data-independent rewritings.

Value-space analysis. We perform a value-space analysis prior
to applying the data-dependent rules. This analysis finséigdes
a set of relational tables from the input data. Each row inbéeta
corresponds to an input chunk and each column corresponds to
either a particular base type from the inferred descriptamto
a piece of metadata from the description. Examples of mata-d
include the tag number from union branches and the length of
arrays. We generatesgtof relational tables as opposed to a single
table as the elements of each array occupy their own sepatdée
(a description with no arrays will have only one associatduxi).

We analyze every column of every table to determine progerti
of the data in that column such as constancy and value ramge. T
find inter-column properties, we have implemented a singulifi
variant of the TANE algorithm [11], which identifies functial
dependencies between columns in relational data. Becalise f
TANE is too expensive (possibly exponential in the number of
columns), and produces many false positives when invokeld wi
insufficient data, our simplified algorithm computes onlydry
dependencies. We use the result of this dependency anatysis
identify switched unions and fixed-size arrays.

Running example. To illustrate the refinement process, we walk
through a few of the steps taken to rewrite the Crashreplager
description. The first part of the candidate descriptioregated by
the structure-discovery algorithm appears below.

The rewriting phase applies the algorithm given in Figure 9 ¢, ¢t {

three times in succession. The first time, the algorithmidyisim-

plifies the initial candidate description usingly data-independent
rules. The second time, it uses the data-dependent ruleite r

uni on {
struct {
Pdate; Pwhite; Ptinme; Pwhite; Pint;



Pwhi t e; (%) Tiny fragment of XML output from crashreporter.log:

b
struct { <St<\r/;::t 7i14>
YR <var_6>
) Puhi t e; () <var_0><val >Sat Jun 24</val ></var _0>
} ' <var _2><val >06: 38: 46</ val ></ var _2>
wpw. ; TR O < >< > < >< >
Pa! pha: "[": Pint; "]"; o v\;?rgi val >2006</ val ></var _4
union { ... }; <var 75
b <var_Il><vaI >cr ashdunp</val ></var_11>
In the first data-independent stage of rewriting, the comtregting <var_l4><val >2164</ val ></var _14>

white space marke(l*) is pulled out of the union branches into
the surrounding struct using the “common postfix in uniorféru

This transformation leaves behind the single-elementsinarked Graph generated from ai.3000 web transaction volume arelift

(*+) in the result below; rewriting rules in stage three will san  tjmes of the day (00:00-8:55 and 19:00-24:00):
form this verbose form into the more compact constant striiy.

This first rewriting stage also pulls colon and whitespa@atiers 40000 T T T T T am
out of the trailing union (not shown in the candidate degiop. sso0 |- |
struct {
uni on { soovor |
struct { Pdate; Pwhite; Ptine; Pwhite; Pint; }; 25000 |- ]
struct { "-" }; (**)
} 5 20000 b
Pwhi t e; (*) &
Pal pha; "["; Pint; "]"; ":"; Pwhite; 15000 1
union { ... };
} ; 10000 9
In the second rewriting stage, data-dependent rules 1 and 2 5000
convert appropriate base types into constants and enunmeovir, |‘
TANE discovers a data dependency between the neWIy intemtluc 00:00 0200 0400 06:00 0800 10‘00 12‘-00 1Aioo 16"00 18"00 20:00 22-‘00 00:00
enumeration involving' cr ashdunp" and " nmach_nsg", and B2
the structure of the following message. Hence, we introdaice Figure 10. End products of automatically generated tools.

switched union. Notice that the switched union branches on a

different enum than the hand-written IR in Figure 3 becatlnge t ; ; "
. . . . complexity of 416156 bits. The absolute values of these tifies
inference algorithm found a different way of structuring tata. are relatively unimportant, but the fact that the final cosmty is

Nonetheless, both of these descriptions are accurate. substantially smaller than the original suggests that earch pro-

struct { cedure optimized the description effectively.
uni on {
struct { Pdate; " "; Ptime; " "; 2006; }; 3.5 End Products

. struct { "-" }; The previous subsections outline the central technicahefs

enum {"crashreporterd”, "crashdunp}; of our algorithms. The main tasks remaining include corngrt

“["% PintRanged [120...29874]: "]"; ":"; " the_ m_ternal representation into a syn_ta(;tlcally correebs qe-

x19: enum {" crashdunp”, "mach_nsg", "Fini shed", scription, feeding the generated description to khes compiler
"Started", "Unable", "Failed"}; and producing a collection of scripts that conveniently keae

switch x19 of { ... }; the freshly-generated libraries with tRaDs run-time system and

}; tools. At the end of this process, users have a number of amogr
ming libraries and many powerful tools at their disposakh@ps
the most powerful tools are thiaDX query engine [4] and themL
converter, which allow users to write arbitrary XQueriegiothe

data source or to convert the datadtaL for use by other software.

In the third and final stage, data independent rule 5 combines
constants and rule 1 flattens the singleton struct, reguitirthe
final IR descrption:

struct { Other useful tools include the accumulator tool, mentioaadier,
uni on { converters to translate data into a form suitable for logdito a re-
struct { Pdate; " "; Ptime; " "; 2006; }; lational database or Excel spreadsheet, and a custom gegjaiul
- that pushes data intgnupl ot for data visualization. Figure 10
} gives snhapshots of the output of a couple of these tools.
"; enum{"crashreporterd", "crashdunp"};
"["; Pint32; "]1: "; . .
x19: enum {"crashdunmp”, "mach_nsg", "Fini shed", 4. Experimental Evaluation
svi tch ftlgr g]?d{ ' U”?_bl e", "Failed"}; We conducted a series of experiments to study the correctres
T b performance of our format inference algorithm. Table 1sligte
¥ ' data sources we used in the experiments; they range fromnsyst
' logs to application outputs to government statistics. pkéer sir-
The information-theoretic complexity of the final desdapt ius.1000, which is a proprietary format, the files are allilatde

relative to the data in our training set is 304538 bits. Thedca fromwww. padspr oj . or g/ | ear ni ng. ht m . The size of the
date discription produced by the structure-discovery ehasd a benchmarks varies from a few thousand lines to just a fewrdoze



Data source [| KB/Chunks | Description | 45

T T T
1967Transactions.short —+—

1967Transactions.short]| 70/999 | transaction records wl MR L A
MER_TOL01.cvs 22/491 | comma-sep records e 018 - «
ai.3000 293/3000 | webserver log 35 crashreporterlog.mod - -o- - . E
asl.log 279/1500 | log file of Mac ASL netesa X =

boot.log 16/262 Mac OS boot log T ererypersoriis®d 77T i i
crashreporter.log 50/441 | original crash log 2| scrollcebper 69 — o - ; ]

windowserver_last.log ---*--

crashreporter.log.mod 49/441 modified crash log g yum.xt - -o- - °
sirius.1000 1427999 | AT&T phone ER " o]
provision data i ° e |
IS-T.Ixt 2735 Stdout from Unix - e
command Is -| e
netstat-an 14/202 output from netstat
pagelog 28/354 printer logs
quarterlypersonalincomg 10/62 spread sheet ==
railroad.txt 6/67 US rail road info Training size (%)
scrollkeeper.log 66/671 application log - — —
windowserverast.jog 52/680 log from Figure 11. Execution times of training sets
LoginWindow ) o
server on Mac overhead, all measured in seconds. For accurate timingureeas
yum.ixt 18/328 log from pkg install ments, we ran the algorithm 10 times, and found the averdge af
removing the best and the worst times.
Table 1. Benchmark profile including filename, size in KB, num- There are two main lessons to take away from this initial et o
ber of chunks and brief description. benchmarks. First, the overall time to infer the structdrany our
example files was less than a minute, and was less than 10dsecon
[Data source [ SD(S) [ Ref(s) | Tok(s) [ AW() | except on a couple of t.he. Igrger files. H.ence,. although we have
= spent very little time optimizing our algorithm, it alreadppears
1967 Transactions.short] 0.20 | 2.32 | 2.56 4.0 perfectly capable of being used in real time by a programmer
MER_T0101.csv 011 | 280 | 2.92 0.5 wishing to understand and process small ad hoc data filesen8gec
ai.3000 197 | 2635 2864 10 discovery of an initial format is usually very fast, takirgss than
asl.log 290 | 52.07 ] 5526 | 1.0 3 seconds in all cases. Most of the algorithm’s time is spent i
boot.log 011 | 240 | 2.53 1.0 format rewriting, which often takes a factor of 10 or moredithan
crashreport.log 012 | 3.58 | 3.73 2.0 structure discovery. Moreover, most of the rewriting tiragdken
crashreport.log.mod 0.15 | 3.83 | 4.00 2.0 in the data analysis phase (numbers not shown). Conseguiéntl
sirius.1000 224 | 569 | 8.00 15 format rewriting (particularly the data analysis phase}aking
Is-I.txt 0.01 0.10 | 0.11 1.0 too long, the user may abort it to produce a slightly less eefin
netstat-an 0.07 0.74 | 0.82 1.0 description that may nevertheless be perfectly sufficient.
pagelog 0.08 0.55 0.65 0.5 To give a very rough idea of how using the inference system
quarterlypersonalincom¢l 0.07 5.11 5.18 48 compares with programming descriptions by hand, we also mea
railroad.txt 0.06 269 276 20 sured the time it took for a person to write descriptions bbtthe
scrollkeeper.log 0.13 3.24 3.40 1.0 data sources (See Table 2 again). Initially, our progran{enBh.D.
windowserverast.log 037 | 965 | 10.07 15 in computer science) knew very little about how #vDs system
yum.ixt 011 | 191 | 2.03 5.0 worked in practice, having only read a few of our conferenae p

pers. Consequently, writing the first description took agldime,
Table 2. Execution times. SD: time for structure-discovery phase; approximately 48 hours (two days of working at an “ordinary”
Ref: time for scoring and refinement; Tot: end-to-end time fo pace) for quarterlypersonalincome. While different peapith dif-
complete inference algorithm; HW: time takenhoursto hand- ferent backgrounds will clearly learn at different rategre is little
write the corresponding description. doubt that the format inference algorithm is a tremendoustigto
novices, particularly to those data analysts without a PimBom-
puter science, who could not care less about learning somve ne
data description language. After some practice, our progrer
was able to write most descriptions in 1 to 2 hours, so geimgrat
descriptions in a few seconds still has great benefit, evergerts.
To understand the scaling behavior of our algorithm, we ran-
domly selected 5%, 10%, 15%, ..., 80% of the chunks in evety da
source and measured the performance of the algorithm orse&eh
set of the data that was selected. Figure 11 plots the eredirtne
against the percentage of each data source selected. TipEge e
Performance. Our first set of experiments measures the time re- iments suggest that once a format is fixed, the cost of inféeren
quired to infer a description from example data. In all oupexx grows linearly with the amount of data. However, it is alseatl
ments, we used an Apple PowerBook G4 with a 1.67 GHz Proces- that the raw size of the data is not the only factor deterngimiar-
sor and 512 MB DDR RAM running on Mac OSX 10.4 Tiger. Ta- formance. The nature and complexity of the format is alsgrifsi
ble 2 presents the execution times for the structure-desygehase cant factor. For instance, widowservest.log is only one third the
(SD), the refinement phase (Ref) and the total (Tot) endatbtiene size of sirius.1000, but takes substantially longer forittierence
of the algorithm including printingPADS descriptions and other  algorithm to process.

Most of the data files are “line based,” meaning that every bia-
comes a chunk for the purposes of learning the format. One ex-
ception is netstat-an, in which chunks comprise multipiedi We
include two versions of crashreporter.log: the originala&hre-
porter.log” and the slightly modified “crashreporter.logd” that

we used as an example in this paper. We include both to demon-
strate that our minor modifications were simply for expasitour-
poses.
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Figure 12. Success rates of training sets

Correctness. To evaluate the correctness of our algorithm, we
again selected random subsets of each data source, traineigjo-
rithm on those subsets and measured the error rate of threcidfe
parser on the remaining data. Figure 12 graphs the peraenfag
successfully parsed records versus the percentage of theiskzd
in training. Note that accuracy does not uniformly improVeis
variation is caused by the randomness in our data seleatidtha
fact that in some cases, we have very small absolute quentfi
data relative to the underlying complexity of the formater -
stance, at 5% training size, Is-l.txt is just one line of data

To understand the correctness properties of our algoritbm f
a different angle, we record the minimum training sizes ircpnt-
ages required to achieve 90% and 95% accuracy for all thenbenc
marks in Table 3. This table also reports the normalized abat
description (NCT), which we compute by dividing the first quon
nent of the information-thereotic score in Section 3.3 ®rthmber
of bits in the data. NCT gives a rough indication of the comipje
of the data source. The higher the normalized score, the coone
plicated the data, and the greater the fraction of data idatb&
learn an accurate description. The rows of of Table 3 aredant
ascending NS score. From the table, one can see that Ishekt
railroad.txt have high NS scores. This is because they ate qu
small data sources (2KB and 6KB respectively), yet haveivelst
complicated formats. Consequently, it takes a substaptietion
of the data to learn an accurate parser. For most of the otitar d
sources, a substantially smaller percentage of the daggusred to
achieve high accuracy. Overall, for 11 of 16 benchmarks, tlean
15% of the data is needed to achieve 95% accuracy or more.

5. Discussion

Dealing with errors. In 1967, Gold [7] proved that learning a
grammar for any remotely sophisticated class of languagesh

as the regular languages, is impossible if one is only giasitipe
example datd.Given this negative theoretical result, and the prac-
tical fact that it is hard to be sure that training data is sidfitly
rich to witness all possible variation in the data, errorsference
are inevitable. Fortunately, however, detecting and redng from

5A positive example is a data source known to be in the grammaet
learned. A negative example is one knomat to be in the target grammar.
Learning with positive examples and negative examplesssipte. Unfor-
tunately, given that data analysts are unlikely to haveset@ad hoc data
that they knowdoes notsatisfy the format they are interested in learning,
we are forced to tackle the more difficult problem of learriran positive
examples only.

| Data source [ NCT [ 90% [ 95% |
sirius.1000 0.0001| 5 10
1967Transactions.short|| 0.0003| 5 5
ai.3000 0.0004| 5 10
asl.log 0.0012| 5 10
scrollkeeper.log 0.0020| 5 5
pagelog 0.0032| 5 5
MER_T01.01.csv 0.0037| 5 5
crashreporter.log 0.0052| 10 15
crashreporter.log.mod || 0.0053| 5 15
windowserverlast.log 0.0084| 5 15
netstat-an 0.0118| 25 35
yum.txt 0.0124| 30 45
quarterlypersonalincom¢ 0.0170 | 10 10
boot.log 0.0213| 45 60
Is-L.txt 0.0461| 50 65
railroad.txt 0.0485| 60 75

Table 3. Correctness measures. NCT: normalized cost of descrip-
tion; Min Training size (%) to obtain required accuracy

errors in ad hoc data is one of the primary strengths ofrkes
system.

To determine exactly how accurate an inferred descripsami
any new data source, a user may run the accumulator tooltddiis
catalogs exactly how many deviations from the descriptfmre
were overall in the data source as well as the error rate iryeve
individual field. Hence, using this tool, a programmer camigali-
ately and reliably determine the effectiveness of infeegfioc their
data. If there is a serious problem, the user can easily leeligén-
erated description by hand — identification of a problem field
minor edit and recompilation of tools might just take 5 masut
Hence, even imperfectly-generated descriptions have gaéze in
terms of improving programmer productivity. Moreover, RADs-
generated parsers and tools have error detection, repaiserand
recovery techniques. For instance, when converting datavio,
errors encountered are represented explicitly irxthe document,
allowing users to query the data for errors if they choosdoige
graphing ad hoc data, an analyst may use the accumulatototool
check if any errors occur in the fields to be graphed. If narehs
no reason to edit the description at all — graphing the cofields
may proceed immediately.

Futurework. Perhaps the most significant weakness of our cur-
rent system is that its relative effectiveness is somewtitligwith
respect to exactly how we perform token processing. Distoge
tokens like “IP address” and “date” is highly beneficial asytlact

as compact, highly descriptive abstractions, but unfately, they
are also often mutually ambiguous. For instance, an IP addee
file name, a floating point number, the version number for & sof
ware product, and a phone number can all be represented & som
number of digits separated by periods. At the moment, wardisa
biguate between them in the same way that lex does, by takieng t
first, longest match. To improve tokenization in the futuve,plan

to look at learning probabilistic models of a broad rangeoékn
types. We also intend to explore finding new tokens from tha da
itself, possibly by identifying abrupt changes in entropg]f

6. Related Work

Researchers have been studygrgmmar induction the process
of learning the structure of a data source, since the 19664,
Higuera surveys some recent trends [9]. However, our system
unique in two important ways. First, our inference algarittoes
not stand alone; it is part of the more generabs programming



environment. The fusion of theabs system, including its auto-
matic data representation generation, its error detec#ioitities,
its generic programming environment, and its powerful ggte,
together with grammar induction is one of our key contribns.

other standard programming libraries and systems. Systdmm-
istrators, computational scientists, financial analysthystrial data
management teams and everyday programmers will all benéfit s
stantially from this new capability to translate dirt intseful shov-

Second, many researchers have focused either on grammuar ind  els for ad hoc data processing.

tion for natural language processing or for informatiorrastion
fromxmL or HTML documents. In contrast, we focus on ad hoc data
sources such as system logs and scientific data sets. Ad teoisda
substantially less structured syntactically tham_ , and yet, unlike
natural language, it is possible to assign our data sourmsate,
compact descriptions. After searching the literature ambalting
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