
We Need More Than One
Why students need a sophisticated understanding of programming languages

Kathleen Fisher
AT&T Labs Research

kfisher@research.att.com

Some believed we lacked the programming language
to describe your perfect world.

— Agent Smith, The Matrix

In the fall of 1995, when I was almost finished with my
Ph.D., another graduate student asked what I was doing for
my thesis. When I explained I was working in programming
languages, he was taken aback, asking why anyone needed
any language besides C++. His reaction was not unusual. At
the time, there was a wide-spread sense that C++ was the
last language, and students need only master it and be done
with studying programming languages for the rest of their
careers. The following year, JAVA burst on the scene, and
shortly thereafter, new voices claimed that JAVA was the only
language that a student really needed. This pattern echoed
earlier claims made about FORTRAN, and COBOL, and C.

Why the desire, reflected in those voices, to have only one
language? Perhaps because, like natural language, it is hard
to learn a new programming language, and people would
prefer to have everyone use the language they themselves
are already comfortable with.

But we will never have just one programming language.
Like natural languages, programming languages affect

how we think. In particular, how we think when we commu-
nicate with computers. Each language comes with a natural
domain of discourse. Ideas within or close to that domain
are easy to express, while ideas further afield are harder. For
example, the machine model that C provides matches the un-
derlying hardware of today’s machines very closely, making
it a good language in which to write low-level code such as
device drivers. In contrast, the pattern-matching, parametric
polymorphism, and higher-order functions of ML make it a
good language for writing compilers. The abstractions pro-
vided by object-oriented languages are well suited to pro-

[Copyright notice will appear here once ’preprint’ option is removed.]

gramming user interfaces. Apparently the machines in The
Matrix felt they could not build a world without suffering
because no language existed that suited such a task.

The domain of a language is determined by the model of
computation that it provides its programmers. It builds this
model through a combination of the constructs it provides
and the runtime services it makes available to programmers.
In C, the model closely reflects the underlying hardware, and
the language provides few runtime services. In SCHEME, the
model is the lambda calculus, and the language provides
runtime services to convert the underlying hardware into a
system that behaves, to the programmer, like the lambda
calculus.

A language is not just defined by what it includes, but
by what it leaves out as well. The underlying model asso-
ciated with SQL is that of relational algebra. The language
leaves out transitive closure to permit more efficient imple-
mentations. The CRYPTOL language is designed to express
cryptographic algorithms clearly and concisely [1]. Its de-
signers left out general recursion so that they could always
compile CRYPTOL programs directly to hardware to pro-
duce highly efficient encryption, sacrificing the ability to
write certain kinds of programs. C provides direct control
over pointers and memory allocation, which gives the pro-
grammer enormous freedom. But enormous responsibility
as well! The epidemic of security vulnerabilities caused by
buffer overflows in C code suggest that many programmers
are not up to the task of managing that responsibility. Lan-
guages like JAVA, ML, and HASKELL don’t let programmers
do low-level pointer manipulation and insist upon garbage
collection, reducing the freedom allowed to programmers.
But programs written in such languages are guaranteed to be
memory safe, avoiding a huge class of safety-critical bugs.
Such programs hide the underlying machine though, and in-
troduce run-time overhead, which is unacceptable for certain
kinds of applications.

As these examples illustrate, we will never have just one
language because a single language cannot be well-suited to
all programming tasks. It may be possible to solve a problem
in an ill-suited language, but it is harder. Trying to do so is
akin to hammering with a wrench: it may get the nail in,
but it would be better to use a hammer! Programmers who

1 2008/5/23



choose a well-suited language will accomplish their tasks
faster and more cheaply and will produce more maintainable
code. This reality has led to the proliferation of languages
that we see today. C++ and JAVA, yes. But also PERL, PHP,
PYTHON, RUBY, VISUAL BASIC, XQUERY, XSLT, etc.
Just within my center at AT&T, which includes roughly a
hundred people, my colleagues program in C, PERL, C++,
JAVA, AWK, LATEX, CYCLONE, PHP, XSLT, BASH, R,
MAKE, OCAML, and SML. And those are just the languages
I know they are using off the top of my head.

Not only is the set of languages in use today large, but
it is not fixed. The collection of languages evolves over
time in response to changing circumstances. For example,
garbage collection was too expensive for the benefits it pro-
vided when it was first invented because CPUs were slow,
memory was expensive, and programs were relatively sim-
ple. But as the field evolved, CPUs sped up, memory became
much cheaper, and programs became extraordinarily com-
plex. And so garbage collection became not just viable, but
necessary for a large collection of tasks. Other changes come
about because programming language researchers figure out
better ways to do things, and those ideas eventually make it
into mainstream languages. Parametric polymorphism is an
example of a concept that has recently made such a jump.
Multi-core machines are likely to stir things up still further,
as finding easier ways to leverage the power of parallelism
will become increasingly important.

Consequently, it is unreasonable to expect that teaching
students to program well in a single language is sufficient to
prepare them for all the programming tasks they are likely to
face during their careers. One language can embody only one
domain, and such limited exposure will not prepare students
for the many other domains they will encounter. And en-
counter them they will, because the languages will change,
the problems will change, and the underlying assumptions
will change.

So, we need to give students to ability to learn new lan-
guages, which means we need to teach them more than one
language. Just as learning a foreign language is difficult, so
is learning a programming language. But the second foreign
language is easier than the first, and the third is easier still.
So too with programming languages. As a computer scientist
becomes more comfortable with a range of languages, learn-
ing the next becomes easier. When students begin to see the
range of possible domains and the variety of programming
language features, they develop the ability to learn new lan-
guages independently and much more quickly. Of course,
giving students this ability is not a simple matter. Like learn-
ing a foreign language, simply reading a text book is not suf-
ficient. Students need to actually use a language to be able
to really understand it, and such use takes time.

As part of learning about programming languages, it is
important that students learn to identify the domain sup-
ported by each language, so that when faced with a pro-

gramming task, they know which languages are well-suited
to solving the problem. Considerations include intrinsic fea-
tures of the language such as the abstractions it provides and
the resource assumptions it makes as well as extrinsic fea-
tures such as the availability of useful tools and libraries, the
availability of knowledgeable programmers, and the need to
interoperate with existing systems and code bases.

The languages I have mentioned so far are mostly exam-
ples of general purpose languages, which strive to make it
possible to express many ideas reasonably well. There are
also domain-specific languages, which attempt to make it
very easy to solve a narrower range of problems. Such lan-
guages are somewhat akin to the specialized vocabularies
that exist in natural language, such as legal or medical jar-
gon. Domain-specific languages include widely-used exam-
ples, such as SQL for querying relational databases, MAKE
for expressing how to build programs from sources, YACC
for describing grammars, POSTSCRIPT for describing how
to print documents, LATEX for typesetting, XSLT for trans-
forming XML and XQUERY for querying it, formulae in
Excel spreadsheets, etc. But there are many more domain-
specific languages for even more specialized purposes.

Such languages can be powerful tools for solving prob-
lems for a number of reasons. They can dramatically in-
crease productivity while expanding the range of people who
can program by providing tailored abstractions that facilitate
thinking about programming tasks in the domain of the lan-
guage. When one of my colleagues saw for the first time a
signature program for tracking usage profiles written in the
domain-specific language HANCOCK [5], he was amazed,
commenting “You can talk about what is really going on!”
— in contrast to the earlier versions of the program, writ-
ten in C, where the meaning of the program was obscured
by all the code necessary to implement it. Programs written
in domain-specific languages tend to be significantly shorter
than corresponding code in general-purpose languages be-
cause the domain-specific language already knows about the
kind of problem being solved and so can generate or pro-
vide in the runtime system a lot more of the code. Also,
by leaving unnecessary things out of the language, the com-
piler can do a better job of optimization or code generation,
as we saw earlier with SQL and CRYPTOL. Finally, if the
domain-specific language is declarative, meaning programs
in the language describe the problem rather than telling the
computer how to solve it, the system can generate multiple
artifacts from a single description. In PADS [7], a language
for describing ad hoc data formats, the system generates not
just a parser for the data, but also a printer. And a statistical
analyzer. And a format translator, etc. As another example,
the ESP language [8] for coding device drivers generates not
just code to manage the device, but also input to the SPIN
model checker to verify that the implementation is correct.

Because of these advantages, sometimes the best way
to solve a programming task is to first invent a new lan-

2 2008/5/23



guage in which to solve the problem. It is this reality that
leads to the many domain-specific languages described in
van Deursen, Klint, and Visser’s annotated bibliography of
domain-specific languages [9] and the USENIX conferences
on Domain-Specific Languages. Within my center at AT&T,
people have designed languages to describe graphs for visual
layout [2], process massive transaction streams to build time-
varying profiles [5], describe ad hoc data formats [7], query
high-volume data streams [6], describe how to load data into
a relational database, construct software for monitoring web
hosting infrastructure [3], and build user interfaces [4].

The ubiquity of domain-specific languages means that
students are even more likely to need to know more than a
single language or two to have successful careers as com-
puter scientists. The utility of domain-specific languages
as a technique for solving particular problems means that
many more computer scientists actually build languages
than might be obvious from listing high-visibility general-
purpose languages.

In sum, it is important for computer scientists to know
how to wield programming languages effectively, as pro-
gramming languages are the most powerful and flexible
mechanism by which people communicate with comput-
ers. To acquire this skill, it is important that students study
and use a range of programming languages, acquiring in the
process the ability to assess the strengths and weaknesses of
those languages. With this knowledge, students can assess
programming tasks and choose the existing languages that
are best suited to the tasks facing them. Or they can conclude
that the best approach is to design a new, domain-specific
language.

As computer science evolves, new languages will be in-
vented and released into the wild regularly. Historically, this
pattern has repeated for as long as computers have existed,
and there is no reason to think it will change anytime soon.
In fact, the expanding scope of computer science, the intro-
duction of multi-cores, the ubiquity of the Internet, and the
proliferation of diverse hardware platforms all suggest that
new languages will appear and thrive with increasing fre-
quency. Consequently, the challenges of programming com-
puters will not be solved by one language, but rather by
many, and so it behooves us to train our students to thrive
with the many rather than pining for the one.

Acknowledgments
John Launchbury provided inspiration for this essay and
useful comments during its drafting.

References
[1] Cryptol. http://www.cryptol.net.

[2] Dot graph description language. http://graphviz.org.

[3] Vizgems. http://www.research.att.com/areas/

visualization/projects_software/visualdiscovery.

php.

[4] Yoix scripting language. http://www.yoix.org.

[5] C. Cortes, K. Fisher, D. Pregibon, A. Rogers, and F. Smith.
Hancock: A language for analyzing transactional data streams.
TOPLAS, 26(2):301–338, 2004.

[6] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and
O. Spatscheck. Gigascope: High performance network moni-
toring with an SQL interface. In SIGMOD, 2002.

[7] K. Fisher and R. Gruber. PADS: A domain specific language
for processing ad hoc data. In PLDI, pages 295–304, June
2005.

[8] S. Kumar, Y. Mandelbaum, X. Yu, and K. Li. ESP: A language
for programmable devices. In PLDI, pages 309–320, New
York, NY, USA, 2001. ACM.

[9] A. van Deursen, P. Klint, and J. Visser. Domain-specific
languages: An annotated bibliography. http://homepages.
cwi.nl/~arie/papers/dslbib.

3 2008/5/23


