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Tagless Staged Interpreters for Simpler Typed Languages
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Abstract

We have built the first family of tagless interpretations for a higher-order typed object language in
a typed metalanguage (Haskell or ML) that require no dependent types, generalized algebraic data
types, or postprocessing to eliminate tags. The statically type-preserving interpretations include an
evaluator, a compiler (or staged evaluator), a partial evaluator, and call-by-name and call-by-value
CPS transformers.

Our principal technique is to encode de Bruijn or higher-order abstract syntax using combinator
functions rather than data constructors. In other words, we represent object terms not in an initial
algebra but using the coalgebraic structure of the λ -calculus. Our representation also simulates induc-
tive maps from types to types, which are required for typed partial evaluation and CPS transforma-
tions. Our encoding of an object term abstracts uniformly over the family of ways to interpret it, yet
statically assures that the interpreters never get stuck. This family of interpreters thus demonstrates
again that it is useful to abstract over higher-kinded types.

It should also be possible to define languages with a highly refined syntactic type structure.
Ideally, such a treatment should be metacircular, in the sense that the type structure

used in the defined language should be adequate for the defining language.
(Reynolds 1972)

1 Introduction

A popular way to define and implement a language is to embed it in another (Landin 1966).
Embedding means to represent terms and values of the object language as terms and values
in the metalanguage, so as to interpret the former in the latter (Reynolds 1972). Embedding
is especially appropriate for domain-specific languages (DSLs) because it supports rapid
prototyping and integration with the host environment (Hudak 1996).

Most interpreters suffer from various kinds of overhead, making it less efficient to run
object programs via the metalanguage than to implement the object language directly on
the machine running the metalanguage (Jones et al. 1993). Two major sources of overhead
are dispatching on the syntax of object terms and tagging the types of object values.
If the metalanguage supports code generation (Bawden 1999; Gomard and Jones 1991;
Nielson and Nielson 1988, 1992; Taha 1999), then the embedding can avoid the dispatching
overhead by compiling object programs, that is, by specializing an interpreter to object
programs (Futamura 1971). Specializing an interpreter is thus a promising way to build
a DSL. However, the tagging overhead remains, especially if the object language and
the metalanguage both have a sound type system. The quest to remove all interpretive
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[x : t1]···
e : t2

λx.e : t1→ t2

[ f : t1→ t2]···
e : t1→ t2

fix f .e : t1→ t2

e0 : t1→ t e1 : t1
e0e1 : t

n is an integer
n : Z

b is a boolean
b : B

e : B e1 : t e2 : t
if e then e1 else e2 : t

e1 : Z e2 : Z
e1 + e2 : Z

e1 : Z e2 : Z
e1× e2 : Z

e1 : Z e2 : Z
e1 ≤ e2 : B

Fig. 1. Our typed object language

overhead, in particular by specializing the interpreter using a Jones-optimal partial evalu-
ator (Jones et al. 1993), has motivated much work on typed specialization (Birkedal and
Welinder 1993; Danvy 1998; Danvy and López 2003; Hughes 1998; Makholm 2000; Taha
et al. 2001) and type systems (see §1.2).

This paper shows how to eliminate tagging overhead, whether in the context of code
generation and whether in the presence of dispatching overhead. We use metalanguage
types, without such fancy features as generalized algebraic data types (GADTs) or de-
pendent types, to rule out ill-typed object terms statically, thus speeding up interpretation
and assuring that our interpreters do not get stuck. We illustrate the problem of tagging
overhead in this section using a simple evaluator as example. We apply our solution first to
evaluation, then to code-generation tasks such as partial evaluation.

1.1 The tag problem

To be concrete, we use the typed object language in Figure 1 throughout this paper. It is
straightforward to create an algebraic data type, say in OCaml, to represent object terms
such as those in Figure 1. For brevity, we elide treating integers, conditionals, and fixpoint
in this section.

type var = VZ | VS of var

type exp = V of var | B of bool | L of exp | A of exp * exp

We represent each variable using a unary de Bruijn index.1 For example, we represent the
object term (λx.x) true as

let test1 = A (L (V VZ), B true)

Let us try to implement an interpreter function eval0. It takes an object term such as test1
above and gives us its value. The first argument to eval0 is the environment, initially
empty, which is the list of values bound to free variables in the interpreted code.

let rec lookup (x::env) = function VZ -> x | VS v -> lookup env v

let rec eval0 env = function

| V v -> lookup env v

| B b -> b

| L e -> fun x -> eval0 (x::env) e

| A (e1,e2) -> (eval0 env e1) (eval0 env e2)

1 We use de Bruijn indices to simplify the comparison with Pašalić et al.’s work (2002).
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If our OCaml-like metalanguage were untyped, the code above would be acceptable. The
L e line exhibits interpretive overhead: eval0 traverses the function body e every time (the
result of evaluating) L e is applied. Code generation can be used to remove this interpretive
overhead (Futamura 1971; Jones et al. 1993; Pašalić et al. 2002).

However, the function eval0 is ill-typed if we use OCaml or some other typed language
as the metalanguage. The line B b says that eval0 returns a boolean, whereas the next line
L e says the result is a function, but all branches of a pattern-match form must yield values
of the same type. A related problem is the type of the environment env: a regular OCaml
list cannot hold both boolean and function values.

The usual solution is to introduce a universal type containing booleans and functions.

type u = UB of bool | UA of (u -> u)

We can then write a typed interpreter

let rec eval env = function

| V v -> lookup env v

| B b -> UB b

| L e -> UA (fun x -> eval (x::env) e)

| A (e1,e2) -> match eval env e1 with UA f -> f (eval env e2)

whose inferred type is u list -> exp -> u. Now we can evaluate

let test1r = eval [] test1

val test1r : u = UB true

The unfortunate tag UB in the result reflects that eval is a partial function. First, the pattern
match with UA f in the line A (e1,e2) is not exhaustive, so eval can fail if we apply a
boolean, as in the ill-typed term A (B true, B false).

let test2 = A (B true, B false)

let test2r = eval [] test2

Exception: Match_failure in eval

Second, the lookup function assumes a nonempty environment, so eval can fail if we
evaluate an open term

let test3 = A (L (V (VS VZ)), B true)

let test3r = eval [] test3

Exception: Match_failure in lookup

After all, the type exp represents object terms both well-typed and ill-typed, both open and
closed.

Although eval never fails on well-typed closed terms, this soundness is not obvious to
the metalanguage, whose type system we must still appease with the nonexhaustive pattern
matching in lookup and eval and the tags UB and UA. In other words, the algebraic data
types above fail to express in the metalanguage that the object program is well-typed.
This failure necessitates tagging and nonexhaustive pattern-matching operations that incur
a performance penalty in interpretation and impair optimality in partial evaluation (Jones
et al. 1993; Taha et al. 2001). In short, the universal-type solution is unsatisfactory because
it does not preserve the type of the encoded term.
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1.2 Solutions using fancier types

It is commonly thought that the type-preserving interpretation of a typed object language
in a typed metalanguage is difficult and requires GADTs or dependent types (Taha et al.
2001). In fact, this problem motivated much work on GADTs (Peyton Jones et al. 2006; Xi
et al. 2003) and on dependent types (Fogarty et al. 2007; Pašalić et al. 2002), in order for the
metalanguage’s type system to allow the well-typed object term test1 but disallow the ill-
typed object term test2. Yet other fancy type systems have been proposed to distinguish
closed terms like test1 from open terms like test3 (Davies and Pfenning 2001; Nanevski
2002; Nanevski and Pfenning 2005; Nanevski et al. 2007; Taha and Nielsen 2003), so that
lookup never receives an empty environment.

1.3 Our final proposal

Following an old idea of Reynolds (1975), we represent object programs using ordinary
functions rather than data constructors. These functions comprise the entire interpreter:

let varZ env = fst env

let varS vp env = vp (snd env)

let b (bv:bool) env = bv

let lam e env = fun x -> e (x,env)

let app e1 e2 env = (e1 env) (e2 env)

We now represent our sample term (λx.x) true as

let testf1 = app (lam varZ) (b true)

This representation is almost the same as in §1.1, only written with lowercase identifiers.
To evaluate an object term is to apply its representation to the empty environment.

let testf1r = testf1 ()

val testf1r : bool = true

The result has no tags: the interpreter patently uses no tags and no pattern matching. The
term b true evaluates to a boolean and the term lam varZ evaluates to a function, both
untagged. The app function applies lam varZ without pattern matching. What is more,
evaluating an open term such as testf3 below gives a type error rather than a run-time
error.

let testf3 = app (lam (varS varZ)) (b true)

let testf3r = testf3 ()

This expression has type unit but is here used with type ’a * ’b

The type error correctly complains that the initial environment should be a tuple rather
than (). In other words, the term is open.

In sum, using ordinary functions rather than data constructors to represent well-typed
terms, we achieve a tagless evaluator for a typed object language in a metalanguage with a
simple type system (Hindley 1969; Milner 1978). We call this approach final (in contrast
to initial), because we represent each object term not by its abstract syntax but by its deno-
tation in a semantic algebra. This representation makes it trivial to implement a primitive
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recursive function over object terms, such as an evaluator. Or, as a referee puts it aptly, our
proposal is “a way to write a typed fold function over a typed term.”

We emphasize “typed” and “fold” in the previous sentence. We use a typed version of
Mogensen’s (1995) encoding of the recursive type of terms (Böhm and Berarducci 1985),
which makes it much easier to write folds over terms than term functions that are not
primitive recursive (or, compositional). In contrast, Mogensen’s earlier encoding of the
sum type of terms (1992) does not privilege folds. In exchange, we statically express
object types in the metalanguage and prevent both kinds of run-time errors in §1.1, due
to evaluating ill-typed or open terms. Because the new interpreter uses no universal type or
pattern matching, it never gives a run-time error, and is in fact total. Because this safety is
obvious not just to us but also to the metalanguage implementation, we avoid the serious
performance penalty (Pašalić et al. 2002) that arises from error checking at run time.

Our solution does not involve Church-encoding the universal type. The Church encoding
of the type u in §1.1 requires two continuations; the function app in the interpreter above
would have to provide both to the encoding of e1. The continuation corresponding to the
UB case of u must either raise an error or loop. For a well-typed object term, that error
continuation is never invoked, yet it must be supplied. In contrast, our interpreter has no
error continuation at all.

The evaluator above is wired directly into functions such as b, lam, and app, whose
names appear free in testf1 above. In the rest of this paper, we explain how to abstract
over these functions’ definitions and apply different folds to the same object language, so
as to process the same term using many other interpreters: we can

• evaluate the term to a value in the metalanguage;
• measure the length of the term;
• compile the term, with staging support such as in MetaOCaml;
• partially evaluate the term, online; and
• transform the term to continuation-passing style (CPS), even call-by-name (CBN)

CPS in a call-by-value (CBV) metalanguage, so as to isolate the evaluation order of
the object language from that of the metalanguage.

We have programmed all our interpreters and examples in OCaml (and, for staging, Meta-
OCaml) and standard Haskell. The complete code is available at http://okmij.org/
ftp/tagless-final/ to supplement the paper. Except for the basic definitions in §2.1,
we show our examples in (Meta)OCaml even though some of our claims are more obvious
in Haskell, for consistency and because MetaOCaml provides convenient, typed staging
facilities.

1.4 Contributions

We attack the problem of tagless (staged) type-preserving interpretation exactly as it was
posed by Pašalić et al. (2002) and Xi et al. (2003). We use their running examples and
achieve the result they call desirable. Our contributions are as follows.

1. We build the first family of interpreters, each instantiating the same signature, that
evaluate (§2), compile (§3), and partially evaluate (§4) a typed higher-order object
language in a typed metalanguage, in direct and continuation-passing styles (§5).
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2. These interpreters use no type tags and need no advanced type-system features such
as GADTs, dependent types, or intensional type analysis. Yet the type system of the
metalanguage assures statically that each object program is well-typed and closed,
and that each interpreter preserves types and never gets stuck. In particular, our (on-
line) partial evaluator and CPS transformers avoid GADTs in their implementation
and stay portable across Haskell 98 and ML, by expressing in their interface an
inductive map from input types to output types.

3. Our clean, comparable implementations using OCaml modules and Haskell type
classes show how to parametrize our final representation of object terms over multi-
ple ways to assign them meanings.

4. We point a clear way to extend the object language with more features such as
state (§5.4). Our term encoding is contravariant in the object language, so extending
the language does not invalidate terms already encoded.

5. We show how to use higher-kinded abstraction to build embedded DSLs.

Our code is surprisingly simple and obvious in hindsight, but it has been cited as a dif-
ficult problem (Sumii and Kobayashi (2001) and Thiemann (1999) notwithstanding) to
interpret a typed object language in a typed metalanguage without tagging or type-system
extensions. For example, Taha et al. (2001) say that “expressing such an interpreter in a
statically typed programming language is a rather subtle matter. In fact, it is only recently
that some work on programming type-indexed values in ML (Yang 2004) has given a hint
of how such a function can be expressed.” We discuss related work in §6.

To reiterate, we do not propose any new language feature or even any new programming
technique. Rather, we solve a problem that was stated in the published record as open
and likely unsolvable in ML or Haskell 98 without extensions, by a novel combination of
simple types and techniques already described in the literature that use features present
in mainstream functional languages. In particular, we follow Yang’s (2004) encoding of
type-indexed values, Sperber’s (1996) and Asai’s (2001) construction of dynamic terms
alongside static terms, and Thiemann’s (1999) deforestation of syntax constructors. These
techniques require just a Hindley-Milner type system with either module functors or con-
structor classes, as realized in all variants of ML and Haskell. The simplicity of our solution
and its use of only mainstream features are virtues that make it more practical to build
typed, embedded DSLs.

However we represent an object term, the representation can be created either by hand
(for example, by entering object terms at a metalanguage interpreter’s prompt) or by pars-
ing and type-checking text. It is known how to write such a type checker for a higher-
order object language such as ours, whether using fancy types (Guillemette and Mon-
nier 2006; Pašalić et al. 2002) or not (Baars and Swierstra 2002). We have ourselves
implemented a type checker for our object language (in the accompanying source file
IncopeTypecheck.hs), which maps an ordinary syntax tree to (either a type error or) a
finally encoded object term that can then be interpreted in multiple ways without repeated
type-checking. We leave this problem aside in the rest of this paper.
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2 The object language and its tagless interpreters

Figure 1 shows our object language, a simply-typed λ -calculus with fixpoint, integers,
booleans, and comparison. The language is similar to Plotkin’s PCF (1977). It is also close
to Xi et al.’s (2003), without their polymorphic lift but with more constants so as to more
conveniently express examples. In contrast to §1, in the rest of the paper we use higher-
order abstract syntax (HOAS) (Miller and Nadathur 1987; Pfenning and Elliott 1988) rather
than de Bruijn indices to encode binding and ensure that our object programs are closed.
We find HOAS to be more convenient, but we have also implemented our approach using
de Bruijn indices (in §2.3 and the accompanying source file incope-dB.ml).

2.1 How to make encoding flexible: abstract the interpreter

We embed our language in (Meta)OCaml and Haskell. In Haskell, the functions that con-
struct object terms are methods in a type class Symantics (with a parameter repr of kind
* -> *). The class is so named because its interface gives the syntax of the object language
and its instances give the semantics.

class Symantics repr where

int :: Int -> repr Int

bool :: Bool -> repr Bool

lam :: (repr a -> repr b) -> repr (a -> b)

app :: repr (a -> b) -> repr a -> repr b

fix :: (repr a -> repr a) -> repr a

add :: repr Int -> repr Int -> repr Int

mul :: repr Int -> repr Int -> repr Int

leq :: repr Int -> repr Int -> repr Bool

if_ :: repr Bool -> repr a -> repr a -> repr a

For example, we encode the term test1, or (λx.x) true, from §1.1 above as app (lam

(\x -> x)) (bool True), whose inferred type is Symantics repr => repr Bool.
For another example, the classical power function is

testpowfix () = lam (\x -> fix (\self -> lam (\n ->

if_ (leq n (int 0)) (int 1)

(mul x (app self (add n (int (-1))))))))

and the partial application λx.power x 7 is

testpowfix7 () = lam (\x -> app (app (testpowfix ()) x) (int 7))

The dummy argument () above is to avoid the monomorphism restriction, to keep the type
of testpowfix and testpowfix7 polymorphic in repr. Instead of supplying this dummy
argument, we could have given the terms explicit polymorphic signatures. We however
prefer for Haskell to infer the object types for us. We could also avoid the dummy argument
by switching off the monomorphism restriction with a compiler flag. The methods add,
mul, and leq are quite similar, and so are int and bool. Therefore, we often elide all but
one method of each group. The accompanying code has the complete implementations.
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module type Symantics = sig type (’c, ’dv) repr

val int : int -> (’c, int) repr

val bool: bool -> (’c, bool) repr

val lam : ((’c, ’da) repr -> (’c, ’db) repr) -> (’c, ’da -> ’db) repr

val app : (’c, ’da -> ’db) repr -> (’c, ’da) repr -> (’c, ’db) repr

val fix : (’x -> ’x) -> ((’c, ’da -> ’db) repr as ’x)

val add : (’c, int) repr -> (’c, int) repr -> (’c, int) repr

val mul : (’c, int) repr -> (’c, int) repr -> (’c, int) repr

val leq : (’c, int) repr -> (’c, int) repr -> (’c, bool) repr

val if_ : (’c, bool) repr

-> (unit -> ’x) -> (unit -> ’x) -> ((’c, ’da) repr as ’x)

end

Fig. 2. A simple (Meta)OCaml embedding of our object language

module EX(S: Symantics) = struct open S

let test1 () = app (lam (fun x -> x)) (bool true)

let testpowfix () =

lam (fun x -> fix (fun self -> lam (fun n ->

if_ (leq n (int 0)) (fun () -> int 1)

(fun () -> mul x (app self (add n (int (-1))))))))

let testpowfix7 = lam (fun x -> app (app (testpowfix ()) x) (int 7))

end

Fig. 3. Examples using the embedding in Figure 2 of our object language

To embed the same object language in (Meta)OCaml, we replace the Symantics type
class and its instances by a module signature Symantics and its implementations. Figure 2
shows a simple signature that suffices until §4. The two differences are: the additional type
parameter ’c, an environment classifier (Taha and Nielsen 2003) required by MetaOCaml
for code generation in §3; and the η-expanded type for fix and thunk types in if_ since
OCaml is a call-by-value language. We shorten some of the types using OCaml’s as syntax.

The functor EX in Figure 3 encodes our running examples test1 and the power func-
tion (testpowfix). The dummy argument to test1 and testpowfix is an artifact of
MetaOCaml: in order for us to run a piece of generated code, it must be polymorphic in
its environment classifier (the type variable ’c in Figure 2), so we must define our object
terms as syntactic values to satisfy the value restriction. (Alternatively, we could have used
OCaml’s rank-2 record types to maintain the necessary polymorphism.)

Thus, we represent an object expression in OCaml as a functor from Symantics to a
semantic domain. This is essentially the same as the constraint Symantics repr => in
the Haskell embedding.

Comparing Symantics with Figure 1 shows how to represent every well-typed object
term in the metalanguage. We formalize this representation by defining H and M, two
inductive maps from terms and types in our object language to terms and types in Haskell
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and OCaml:

H(Z) = Int M(Z) = int

H(B) = Bool M(B) = bool

H(t1→ t2) = H(t1)->H(t2) M(t1→ t2) = M(t1)->M(t2) (1)

H(x) = x M(x) = x

H(λx.e) = lam (\x -> H(e)) M(λx.e) = lam (fun x -> M(e))

H(fix f .e) = fix (\x -> H(e)) M(fixx.e) = fix (fun x -> M(e))

H(e1e2) = app H(e1) H(e2) M(e1e2) = app M(e1) M(e2)

H(n) = int n M(n) = int n

H(true) = bool True M(true) = bool true

H(false) = bool False M(false) = bool false

H(if e then e1 else e2) = if_ H(e) H(e1) H(e2)

M(if e then e1 else e2) = if_ M(e) (fun () -> M(e1)) (fun () -> M(e2))

H(e1 + e2) = add H(e1) H(e2) M(e1 + e2) = add M(e1) M(e2)

H(e1× e2) = mul H(e1) H(e2) M(e1× e2) = mul M(e1) M(e2)

H(e1 ≤ e2) = leq H(e1) H(e2) M(e1 ≤ e2) = leq M(e1) M(e2) (2)

These definitions assume that our object language, Haskell, and OCaml use the same
variable names x and integer literals n. If Γ is a typing context x1 : t1, . . . ,xn : tn in the
object language, then we define the metalanguage contexts

repr H(Γ) = x1 :repr H(t1), . . . ,xn :repr H(tn), (3)

(’c, M(Γ)) repr = x1 :(’c, M(t1)) repr, . . . ,xn :(’c, M(tn)) repr. (4)

The following proposition states the trivial but fundamental fact that this representation
preserves types.

Proposition 1
If an object term e has the type t in the context Γ, then the Haskell term H(e) has the type
repr H(t) in the context

repr :?→?, Symantics repr, repr H(Γ),

and the OCaml term M(e) has the type (’c, M(t)) repr in the context

S:Symantics, open S, ’c :?, (’c, M(Γ)) repr.

Proof
By structural induction on the derivation in the object language that e has type t in Γ.

Corollary 2
If a closed object term e has the type t, then the Haskell term H(e) has the type

forall repr. Symantics repr => repr H(t)

and the OCaml functor

functor (S:Symantics) -> struct open S let term () = M(e) end
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has the signature

functor (S:Symantics) -> sig val term: unit -> (’c, M(t)) S.repr end.

Conversely, the type system of the metalanguage checks that the represented object term
is well-typed and closed. If we err, say replace int 7 with bool True in testpowfix7,
the type checker will complain there that the expected type Int does not match the inferred
Bool. Similarly, the object term λx.xx and its encoding lam (\x -> app x x) both fail
occurs-checks in type checking. Both Haskell’s and MetaOCaml’s type checkers also flag
syntactically invalid object terms, such as if we forget app somewhere above. Because our
encoding of terms and types are so straightforward and metacircular, these error messages
from the metalanguage implementation are just about as readable as those for “native” type
errors such as fun x -> x x.

2.2 Two tagless interpreters

Now that our term representation is independent of any particular interpreter, we are ready
to present a series of interpreters. Each interpreter is an instance of the Symantics class
in Haskell and a module implementing the Symantics signature in OCaml.

The first interpreter evaluates an object term to its value in the metalanguage. The
module R below is metacircular in that it runs each object-language operation by executing
the corresponding metalanguage operation.

module R = struct

type (’c,’dv) repr = ’dv (* no wrappers *)

let int (x:int) = x

let bool (b:bool) = b

let lam f = f

let app e1 e2 = e1 e2

let fix f = let rec self n = f self n in self

let add e1 e2 = e1 + e2

let mul e1 e2 = e1 * e2

let leq e1 e2 = e1 <= e2

let if_ eb et ee = if eb then et () else ee ()

end

As in §1.3, this interpreter is patently tagless, using neither a universal type nor any pattern
matching: the operation add is really OCaml’s addition, and app is OCaml’s application.
To run our examples, we instantiate the EX functor from §2.1 with R.

module EXR = EX(R)

Thus, EXR.test1 () evaluates to the untagged boolean value true. It is obvious to the
compiler that pattern matching cannot fail, because there is no pattern matching. Evalu-
ation can only fail to yield a value due to interpreting fix. The soundness of the object
language’s type system with respect to the dynamic semantics specified by a definitional
interpreter follows from the soundness of the metalanguage’s type system.
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Proposition 3
If a closed object term e has type t, and the OCaml module I implements the signature
Symantics, then under the OCaml module definition

module RESULT =

(functor (S:Symantics) -> struct open S let term () = M(e) end)

(I)

evaluating the expression RESULT.term () never gets stuck: it either does not terminate
or evaluates to a value of type (’c, M(t)) I.repr (polymorphic over ’c).

Proof
By Corollary 2 and the type soundness of (this fragment of) OCaml.

Corollary 4
If a closed object term e has type t, then under the OCaml module definition

module RESULT =

(functor (S:Symantics) -> struct open S let term () = M(e) end)

(R)

evaluating the expression RESULT.term () never gets stuck: it either does not terminate
or evaluates to a value of type M(t).

For variety, we show another interpreter L, which measures the length of each object term,
defined as the number of term constructors.

module L = struct

type (’c,’dv) repr = int

let int (x:int) = 1

let bool (b:bool) = 1

let lam f = f 0 + 1

let app e1 e2 = e1 + e2 + 1

let fix f = f 0 + 1

let add e1 e2 = e1 + e2 + 1

let mul e1 e2 = e1 + e2 + 1

let leq e1 e2 = e1 + e2 + 1

let if_ eb et ee = eb + et () + ee () + 1

end

Now the OCaml expression let module E = EX(L) in E.test1 () evaluates to 3.
This interpreter is not only tagless but also total. It “evaluates” even seemingly divergent
terms; for instance, app (fix (fun self -> self)) (int 1) evaluates to 3.

2.3 Higher-order abstract syntax versus de Bruijn indices

Because Haskell and ML allow case analysis on λ -bound variables, one might worry that
our HOAS representation of the object language allows exotic terms and is thus inadequate.
To the contrary, because the representation of an object term is parametrically polymorphic
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module type Symantics = sig

type (’c,’h,’dv) repr

type (’c,’dv) vr (* variable representation *)

val vz : (’c, (’c,’d) vr * ’h, ’d) repr

val vs : (’c, ’h, ’d) repr -> (’c, _ * ’h, ’d) repr

val int : int -> (’c,’h,int) repr

val bool: bool -> (’c,’h,bool) repr

val lam : (’c, (’c,’da) vr * ’h, ’db) repr -> (’c,’h,’da->’db) repr

val app : (’c,’h,’da->’db) repr -> (’c,’h,’da) repr -> (’c,’h,’db) repr

val fix : (’c, (’c,’da->’db) vr * ’h, ’da->’db) repr

-> (’c, ’h, ’da->’db) repr

val add : (’c,’h,int) repr -> (’c,’h,int) repr -> (’c,’h,int) repr

val mul : (’c,’h,int) repr -> (’c,’h,int) repr -> (’c,’h,int) repr

val leq : (’c,’h,int) repr -> (’c,’h,int) repr -> (’c,’h,bool) repr

val if_ : (’c,’h,bool) repr

-> (unit -> ’x) -> (unit -> ’x) -> ((’c,’h,’da) repr as ’x)

end

module R = struct

type (’c,’h,’dv) repr = ’h -> ’dv

type (’c,’d) vr = ’d

let vz (x,_) = x

let vs v (_,h) = v h

let int (x:int) h = x

let bool (b:bool) h = b

let lam f h = fun x -> f (x,h)

let app e1 e2 h = (e1 h) (e2 h)

let fix f h = let rec self n = f (self,h) n in self

let add e1 e2 h = e1 h + e2 h

let mul e1 e2 h = e1 h * e2 h

let leq e1 e2 h = e1 h <= e2 h

let if_ eb et ee h = if eb h then et () h else ee () h

end

Fig. 4. Embedding and evaluating our object language using de Bruijn indices

over the type constructor repr of the interpreter, λ -bound object variables cannot be case-
analyzed. We thus follow Washburn and Weirich (2008) in “enforcing term parametricity
with type parametricity” to represent and fold over abstract syntax.

Although the rest of this paper continues to represent binding using HOAS, our approach
is compatible with de Bruijn indices. The accompanying source file incope-dB.ml im-
plements this alternative, starting with the Symantics signature and the R evaluator in
Figure 4. In this encoding of the object language, vz represents the innermost variable,
vs vz represents the second-to-innermost variable, and so on. The new type argument ’h
to repr tracks the type of the environment as a nested tuple, each of whose components is a
value of type (’c,’dv) vr representing a variable of type ’dv. The evaluator R interprets
each object term as a function from its environment to its value.
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3 A tagless compiler (or, a staged interpreter)

Besides immediate evaluation, we can compile our object language into OCaml code using
MetaOCaml’s staging facilities. MetaOCaml represents future-stage expressions of type t
as values of type (’c, t) code, where ’c is the environment classifier (Calcagno et al.
2004; Taha and Nielsen 2003). Code values are created by a bracket form .<e>., which
quotes the expression e for evaluation at a future stage. The escape .~e must occur within a
bracket and specifies that the expression e must be evaluated at the current stage; its result,
which must be a code value, is spliced into the code being built by the enclosing bracket.
The run form .!e evaluates the future-stage code value e by compiling and linking it at run
time. Bracket, escape, and run are akin (modulo hygiene) to quasi-quotation, unquotation,
and eval of Lisp.

To turn the evaluator R into a simple compiler, we bracket the computation on values to
be performed at run time, then escape the code generation from terms to be performed at
compile time. Adding these stage annotations yields the compiler C below.

module C = struct

type (’c,’dv) repr = (’c,’dv) code

let int (x:int) = .<x>.

let bool (b:bool) = .<b>.

let lam f = .<fun x -> .~(f .<x>.)>.

let app e1 e2 = .<.~e1 .~e2>.

let fix f = .<let rec self n = .~(f .<self>.) n in self>.

let add e1 e2 = .<.~e1 + .~e2>.

let mul e1 e2 = .<.~e1 * .~e2>.

let leq e1 e2 = .<.~e1 <= .~e2>.

let if_ eb et ee = .<if .~eb then .~(et ()) else .~(ee ())>.

end

This is a straightforward staging of module R. This compiler produces unoptimized code.
For example, interpreting our test1 with

let module E = EX(C) in E.test1 ()

gives the code value .<(fun x_6 -> x_6) true>. of inferred type (’c, bool) C.repr.
Interpreting testpowfix7 with

let module E = EX(C) in E.testpowfix7

gives a code value with many apparent β - and η-redexes:

.<fun x_1 -> (fun x_2 -> let rec self_3 = fun n_4 ->

(fun x_5 -> if x_5 <= 0 then 1 else x_2 * self_3 (x_5 + (-1)))

n_4 in self_3) x_1 7>.

This compiler does not incur any interpretive overhead: the code produced for λx.x is
simply fun x_6 -> x_6 and does not call the interpreter, unlike the recursive calls to eval0
and eval in the L e lines in §1.1. The resulting code obviously contains no tags and no
pattern matching. The environment classifiers here, like the tuple types in §1.3, make it a
type error to run an open expression.
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Proposition 5
If an object term e has the type t in the context x1 : t1, . . . ,xn : tn, then in a MetaOCaml
environment

open C, x1 7→ .<y1>., . . . , xn 7→ .<yn>.

where each yi is a future-stage variable of type M(ti), the MetaOCaml term M(e) evaluates
to a code value, of type (’c, M(t)) code (polymorphic over ’c), that contains no pattern-
matching operations.

Proof
By structural induction on the typing derivation of e.

Corollary 6
If a closed object term e has type t, then under the OCaml module definition

module RESULT =

(functor (S:Symantics) -> struct open S let term () = M(e) end)

(C)

the expression RESULT.term () evaluates to a code value, of type (’c, M(t)) code

(polymorphic over ’c), that contains no pattern-matching operations.

We have also implemented this compiler in Haskell. Since Haskell has no convenient
facility for typed staging, we emulate it by defining a data type ByteCode with constructors
such as Var, Lam, App, Fix, and INT. (Alternatively, we could use Template Haskell
(Sheard and Peyton Jones 2002) as our staging facility: ByteCode can be mapped to the
abstract syntax of Template Haskell. The output of our compiler would then be assuredly
type-correct Template Haskell.) Whereas our representation of object terms uses HOAS,
our bytecode uses integer-named variables to be realistic. We then define

newtype C t = C (Int -> (ByteCode t, Int))

where Int is the counter for creating fresh variable names. We define the compiler by mak-
ing C an instance of the class Symantics. The implementation is quite similar (but slightly
more verbose) than the MetaOCaml code above. (The implementation uses GADTs be-
cause we also wanted to write a typed interpreter for the ByteCode data type.) The accom-
panying code gives the full details.

4 A tagless partial evaluator

Surprisingly, this Symantics interface extends to encompass an online partial evaluator
that uses no universal type and no tags for object types. We present this partial evaluator
in a sequence of three attempts to express the types of residualization and binding-time
analysis. Our partial evaluator is a modular extension of the evaluator in §2.2 and the
compiler in §3, in that it uses the former to reduce static terms and the latter to build
dynamic terms.
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4.1 Avoiding polymorphic lift

Roughly, a partial evaluator interprets each object term to yield either a static (present-
stage) term (using the evaluator R) or a dynamic (future-stage) term (using the compiler C).
To distinguish between static and dynamic terms, we might try to define repr in the partial
evaluator as follows. In the phase tags S0 and D0, the digit zero indicates our initial attempt.

type (’c,’dv) repr = S0 of (’c,’dv) R.repr | D0 of (’c,’dv) C.repr

To extract a dynamic term from this type, we create the function

let abstrI0 (e : (’c,int) repr) : (’c,int) C.repr =

match e with S0 e -> C.int e | D0 e -> e

and a similar function abstrB0 for dynamic boolean terms. Here, C.int is used to convert
a static term (of type (’c,int) R.repr, which is just int) to a dynamic term. We can
now define the following components required by the Symantics signature:

let int (x:int) = S0 (R.int x)

let bool (x:bool) = S0 (R.bool x)

let add e1 e2 = match (e1,e2) with

| (S0 e1, S0 e2) -> S0 (R.add e1 e2)

| _ -> D0 (C.add (abstrI0 e1) (abstrI0 e2))

Integer and boolean literals are immediate, present-stage values. Addition yields a static
term (using R.add) if and only if both operands are static; otherwise we extract the dy-
namic terms from the operands and add them using C.add.

Whereas mul and leq are as easy to define as add, we encounter a problem with if_.
Suppose that the first argument to if_ is a dynamic term (of type (’c,bool) C.repr),
the second a static term (of type (’c,’a) R.repr), and the third a dynamic term (of type
(’c,’a) C.repr). We then need to convert the static term to dynamic, but there is no
polymorphic “lift” function, of type ’a -> (’c,’a) C.repr, to send a value to a future
stage (Taha and Nielsen 2003; Xi et al. 2003).

Our Symantics signature only includes separate lifting methods bool and int, not
a polymorphic lifting method, for good reason: When compiling to a first-order target
language such as machine code, booleans, integers, and functions may well be represented
differently. Compiling a polymorphic lift function thus requires intensional type analysis.
To avoid needing polymorphic lift, we turn to Sperber’s (1996) and Asai’s (2001) technique
of building a dynamic term alongside every static term (Sumii and Kobayashi 2001).

4.2 Delaying binding-time analysis

We start building the partial evaluator anew and switch to the data type

type (’c,’dv) repr = P1 of (’c,’dv) R.repr option * (’c,’dv) C.repr

so that a partially evaluated term always contains a dynamic component and sometimes
contains a static component. The two alternative constructors of an option value, Some
and None, tag each partially evaluated term to indicate whether its value is known statically
at the present stage. This tag is not an object type tag: all pattern matching below is
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exhaustive. Now that the future-stage component is always available, we can define the
polymorphic function

let abstr1 (P1 (_,dyn) : (’c,’dv) repr) : (’c,’dv) C.repr = dyn

to extract it without needing polymorphic lift into C. We then try to define the term combi-
nators—and get as far as the first-order constructs of our object language, including if_.

let int (x:int) = P1 (Some (R.int x), C.int x)

let add e1 e2 = match (e1,e2) with

| (P1 (Some n1, _), P1 (Some n2, _)) -> int (R.add n1 n2)

| _ -> P1 (None, C.add (abstr1 e1) (abstr1 e2))

let if_ eb et ee = match eb with

| P1 (Some s, _) -> if s then et () else ee ()

| _ -> P1 (None, C.if_ (abstr1 eb) (fun () -> abstr1 (et ()))

(fun () -> abstr1 (ee ())))

However, we stumble on functions. Given how we just defined repr, a partially evalu-
ated object function, such as the identity λx.x (of type Z→Z) embedded in OCaml as
lam (fun x -> x) (of type (’c,int->int) repr), consists of a dynamic part (of type
(’c,int->int) C.repr) and optionally a static part (of type (’c,int->int) R.repr).
The dynamic part is useful when this function is passed to another function that is only
dynamically known, as in λk.k(λx.x). The static part is useful when this function is
applied to a static argument, as in (λx.x)1. Neither part, however, lets us partially evaluate
the function, that is, compute as much as possible statically when it is applied to a mix of
static and dynamic inputs. For example, the partial evaluator should turn λn.(λx.x)n into
λn.n by substituting n for x in the body of λx.x even though n is not statically known. The
same static function, applied to different static arguments, can give both static and dynamic
results: we want to simplify (λy.x× y)0 to 0 but (λy.x× y)1 to x.

To enable these simplifications, we delay binding-time analysis for a static function
until it is applied, that is, until lam f appears as the argument of app. To do so, we have
to incorporate f as is into lam f: the type (’c,’a->’b) repr should be one of

S1 of (’c,’a) repr -> (’c,’b) repr | E1 of (’c,’a->’b) C.repr

P1 of ((’c,’a) repr -> (’c,’b) repr) option * (’c,’a->’b) C.repr

unlike (’c,int) repr or (’c,bool) repr. That is, we need a nonparametric data type,
something akin to type-indexed functions and type-indexed types, which Oliveira and
Gibbons (2005) dub the typecase design pattern. Thus, typed partial evaluation, like typed
CPS transformation (see §5.1), inductively defines a map from source types to target types
that performs case distinction on the source type. In Haskell, typecase can be implemented
using either GADTs or type-class functional dependencies (Oliveira and Gibbons 2005).
The accompanying code shows both approaches (Incope.hs and incope1.hs), neither of
which is portable to OCaml. In addition, the problem of non-exhaustive pattern-matching
reappears in the GADT approach because GHC 6.8 and prior cannot see that a particular
type of GADT value precludes certain constructors. Although this is an implementation
issue of GHC, it indicates that assuring exhaustive pattern match with GADTs requires
non-trivial reasoning (beyond the abilities of GHC at the moment); certainly GADTs fail
to make it syntactically apparent that pattern matching is exhaustive.
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module type Symantics = sig

type (’c,’sv,’dv) repr

val int : int -> (’c,int,int) repr

val bool: bool -> (’c,bool,bool) repr

val lam : ((’c,’sa,’da) repr -> (’c,’sb,’db) repr as ’x)

-> (’c,’x,’da -> ’db) repr

val app : (’c,’x,’da -> ’db) repr

-> ((’c,’sa,’da) repr -> (’c,’sb,’db) repr as ’x)

val fix : (’x -> ’x) -> ((’c, (’c,’sa,’da) repr -> (’c,’sb,’db) repr,

’da -> ’db) repr as ’x)

val add : (’c,int,int) repr -> (’c,int,int) repr -> (’c,int,int) repr

val mul : (’c,int,int) repr -> (’c,int,int) repr -> (’c,int,int) repr

val leq : (’c,int,int) repr -> (’c,int,int) repr -> (’c,bool,bool) repr

val if_ : (’c,bool,bool) repr

-> (unit -> ’x) -> (unit -> ’x) -> ((’c,’sa,’da) repr as ’x)

end

Fig. 5. A (Meta)OCaml embedding of our object language that supports partial evaluation

4.3 The “final” solution

The problem in the last section is that we want to write

type (’c,’dv) repr = P1 of (’c,’dv) static option * (’c,’dv) C.repr

where static is the type function defined by

(’c,int) static = (’c,int) R.repr

(’c,bool) static = (’c,bool) R.repr

(’c,’a->’b) static = (’c,’a) repr -> (’c,’b) repr

Although we can use type classes to define this type function in Haskell, that is not portable
to OCaml. However, the three typecase alternatives of static are already present in
existing methods of Symantics. Thus emerges a simple and portable solution, if a long-
winded one: we bake static into the signature Symantics. In Figure 2, the repr type
constructor took two arguments (’c,’dv); in Figure 5, we add an argument ’sv for the
type (’c,’dv) static.

The interpreters R, L and C in §2.2 and §3 only use the old type arguments ’c and ’dv,
which are treated by the new signature in the same way. Hence, all that needs to change
in these interpreters to match the new signature is to add a phantom type argument ’sv
to repr. For example, the compiler C now begins

module C = struct

type (’c,’sv,’dv) repr = (’c,’dv) code

with the rest the same.
Figure 6 shows the partial evaluator P. Its type repr expresses the definition for static

given at the start of this section, with ’sv taking the crucial place of (’c,’dv) static.
The function abstr extracts a future-stage code value from the result of partial evaluation.
Conversely, the function pdyn injects a code value into the repr type. Thus, abstr and
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module P = struct

type (’c,’sv,’dv) repr = {st: ’sv option; dy: (’c,’dv) code}

let abstr {dy = x} = x

let pdyn x = {st = None; dy = x}

let int (x:int ) = {st = Some (R.int x); dy = C.int x}

let bool (x:bool) = {st = Some (R.bool x); dy = C.bool x}

let add e1 e2 = match e1, e2 with

| {st = Some 0}, e | e, {st = Some 0} -> e

| {st = Some m}, {st = Some n} -> int (R.add m n)

| _ -> pdyn (C.add (abstr e1) (abstr e2))

let if_ eb et ee = match eb with

| {st = Some b} -> if b then et () else ee ()

| _ -> pdyn (C.if_ (abstr eb) (fun () -> abstr (et ()))

(fun () -> abstr (ee ())))

let lam f = {st = Some f; dy = C.lam (fun x -> abstr (f (pdyn x)))}

let app ef ea = match ef with

| {st = Some f} -> f ea

| _ -> pdyn (C.app (abstr ef) (abstr ea))

let fix f = let fdyn = C.fix (fun x -> abstr (f (pdyn x)))

in let rec self = function

| {st = Some _} as e -> app (f (lam self)) e

| e -> pdyn (C.app fdyn (abstr e))

in {st = Some self; dy = fdyn}

end

Fig. 6. Our partial evaluator (mul and leq are elided)

pdyn are like the reify and reflect functions defined in normalization by evaluation (Danvy
1996), but as in §4.2, we build dynamic terms alongside any static ones to express how
the lift function is indexed by the dynamic type. Analogously, we now build a static type
alongside the dynamic type to express how the static type is indexed by the dynamic type.
Thus we establish a bijection static between static and dynamic types, without defining at
the type level the injection-projection pairs customarily used to establish such bijections for
interpreters (Benton 2005; Ramsey 2005), partial evaluation (Danvy 1996), and type-level
functions (Oliveira and Gibbons 2005). This emulation of type-indexed types is related to
intensional type analysis (Harper and Morrisett 1995; Hinze et al. 2004), but intensional
type analysis cannot handle our fix (Xi et al. 2003).

The static portion of the interpretation of lam f is Some f, which just wraps the HOAS
function f. The interpretation of app ef ea checks to see if ef is such a wrapped HOAS
function. If it is, we apply f to the concrete argument ea, so as to perform static computa-
tions (see the example below). If ef has only a dynamic part, we residualize.

To illustrate how to add optimizations, we improve add (and mul, elided) to simplify the
generated code using the monoid (and ring) structure of int: not only is addition performed
statically (using R) when both operands are statically known, but it is eliminated when one
operand is statically 0; similarly for multiplication by 0 or 1. Although our basic machinery
for partial evaluation is independent of such algebraic simplifications, it makes them easy
to add and to abstract over the specific domains (such as monoid or ring) where they apply.
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These simplifications and abstractions help a lot in a large language with more base types
and primitive operations. Incidentally, the accompanying code actually contains a more
general implementation mechanism for such features, inspired in part by previous work in
generative linear algebra (Carette and Kiselyov 2005).

Any partial evaluator must decide how much to unfold recursion statically: unfolding
too little can degrade the residual code, whereas unfolding too much risks nontermination.
Our partial evaluator is no exception, because our object language includes fix. The code
in Figure 6 takes the naïve approach of “going all the way”, that is, whenever the argument
is static, we unfold fix rather than residualize it. A conservative alternative is to unfold
recursion only once, then residualize:

let fix f = f (pdyn (C.fix (fun x -> abstr (f (pdyn x)))))

Many sophisticated approaches have been developed to decide how much to unfold (Jones
et al. 1993, 1989), but this issue is orthogonal to our presentation. A separate concern in our
treatment of fix is possible code bloat in the residual program, which calls for let-insertion
(Bondorf and Danvy 1991).

Given this implementation of P, our running example

let module E = EX(P) in E.test1 ()

evaluates to

{P.st = Some true; P.dy = .<true>.}

of type (’a, bool, bool) P.repr. Unlike with C in §3, a β -reduction has been stati-
cally performed to yield true. More interestingly, whereas testpowfix7 compiles to a
code value with many β -redexes in §3, the partial evaluation

let module E = EX(P) in E.testpowfix7

gives the desired result

{P.st = Some <fun>;

P.dy = .<fun x -> x * (x * (x * (x * (x * (x * x)))))>.}

If the object program does not use fix, then the output of P is β -normal. Also, P is
correct in that, if interpreting an object term using P terminates, then the dy component
of the output is equivalent to the interpretation of the same object term using C, modulo α-
renaming, β -reduction, and algebraic simplification. To prove this correctness by structural
induction on the object term, we need to strengthen the induction hypothesis to assert that
the st component, if not None, is consistent with the dy component.

All pattern-matching in P is syntactically exhaustive, so it is patent to the metalanguage
implementation that P never gets stuck. Further, P uses pattern-matching only to check if a
value is known statically, never to check what type a value has dynamically. In other words,
our partial evaluator tags phases (with Some and None) but not object types, so it is patent
that the output of P never gets stuck.

Our partial evaluator owes much to Thiemann (1999) and Sumii and Kobayashi (2001),
who deforested the object term representation and expressed a partial evaluator as a collec-
tion of term combinators in a typed metalanguage. Like us, Sumii and Kobayashi follow
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Sperber (1996) and Asai (2001) in building static and dynamic terms in tandem, to combine
offline and online partial evaluation. Mogensen’s earlier self-reducers for the untyped λ -
calculus (1992, 1995) also build static and dynamic terms in tandem. However, they build a
static term for every object term, even a bound variable, so they move some work from app

to pdyn (in terms of Figure 6) and remain untyped. In contrast, we follow Sperber, Asai,
and Sumii and Kobayashi in leaving the static term optional, so as to perform lifting without
juggling explicit type indices in the encoding of an object term. The idea of generating
static and dynamic components alongside each other is part of the tradition that developed
partial evaluators such as Schism (Consel 1993; §5).

Our contribution to the literature on partial evaluation is to use mere Hindley-Milner
types in the metalanguage to assure statically and patently that partially evaluating a well-
typed object program not only never gets stuck but also, if it terminates, produces a well-
typed output program that never gets stuck. Moreover, thanks to the online binding-time
analysis performed by our partial evaluator (in contrast to Thiemann’s), these types form
an instance of a general Symantics signature that encompasses other interpreters such
as evaluation and compilation. This early and manifest assurance of type safety contrasts,
for example, with Birkedal and Welinder’s compiler generator (cogen) for ML (1993),
which transforms a program into its tagless generating extension. Because that cogen uses
a universal type, the fact that it never generates an ill-typed generating extension from a
well-typed input program is only manifest when each generating extension is type-checked,
and the fact that the generating extension never generates an ill-typed residual program
from well-typed static input is only manifest when each residual program is type-checked.
Similarly, the fact that the partial evaluator of Fiore (2002) and that of Balat et al. (2004),
both of which use delimited control operators, never turn well-typed code into ill-typed
code is not assured by the metalanguage, whether or not as part of a typed family of
interpreter modules.

Our partial evaluator reuses the compiler C and the evaluator R by composing them. This
situation is simpler than Sperber and Thiemann’s (1997) composition of a partial evaluator
and a compiler, but the general ideas are similar.

5 Continuation-passing style

Our approach accommodates several variants, including a call-by-name CPS interpreter
and a call-by-value CPS transformation. Of course, CPS is a well-studied topic, and Thie-
mann’s work on program generation (1999) already includes a CPS evaluator expressed
using combinator functions rather than data constructors. We focus here on expressing
CPS transformations as part of a larger, typed family of interpreters.

5.1 Call-by-name CPS interpreters

The object language generally inherits the evaluation strategy from the metalanguage—
call-by-value (CBV) in OCaml, call-by-name (CBN) in Haskell.2 To represent a CBN ob-

2 To be more precise, most Haskell implementations use call-by-need, which is observationally
equivalent to call-by-name because sharing is not observable (Ariola et al. 1995).
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ject language in a CBV metalanguage, Reynolds (1972, 1974) and Plotkin (1975) introduce
CPS to make the evaluation strategy of a definitional interpreter indifferent to that of the
metalanguage. To achieve the same indifference in the typed setting, we build a CBN CPS
interpreter for our object language in OCaml.

The interpretation of an object term is a function mapping a continuation k to the answer
returned by k.

let int (x:int) = fun k -> k x

let add e1 e2 = fun k -> e1 (fun v1 -> e2 (fun v2 -> k (v1 + v2)))

In both int and add, the interpretation has type (int -> ’w) -> ’w, where ’w is the
(polymorphic) answer type.

Unlike CBV CPS, the CBN CPS interprets abstraction and application as follows:

let lam f = fun k -> k f

let app e1 e2 = fun k -> e1 (fun f -> f e2 k)

Characteristic of CBN, app e1 e2 does not evaluate the argument e2 by applying it to the
continuation k. Rather, it passes e2 unevaluated to the abstraction. Interpreting λx.x + 1
yields type

((((int -> ’w1) -> ’w1) -> (int -> ’w1) -> ’w1) -> ’w2) -> ’w2

We would like to collect those interpretation functions into a module with signature
Symantics, to include the CBN CPS interpreter within our general framework. Alas, as
in §4.2, the type of an object term inductively determines the type of its interpretation:
the interpretation of an object term of type t may not have type (t->’w)->’w, because t
may be a function type. Again we simulate a type function with a typecase distinction, by
changing the type arguments to repr. Luckily, the type function static needed for the
partial evaluator in §4.3 is precisely the same type function we need for CBN CPS, so our
CBN interpreter can match the Symantics signature in §4.3, without even using the ’dv

argument to repr.

module RCN = struct

type (’c,’sv,’dv) repr = {ko: ’w. (’sv -> ’w) -> ’w}

let int (x:int) = {ko = fun k -> k x}

let add e1 e2 = {ko = fun k ->

e1.ko (fun v1 -> e2.ko (fun v2 -> k (v1 + v2)))}

let if_ eb et ee = {ko = fun k ->

eb.ko (fun vb -> if vb then (et ()).ko k else (ee ()).ko k)}

let lam f = {ko = fun k -> k f}

let app e1 e2 = {ko = fun k -> e1.ko (fun f -> (f e2).ko k)}

let fix f = let rec fx f n = app (f (lam (fx f))) n in lam (fx f)

let run x = x.ko (fun v -> v)

end

This interpreter RCN is fully polymorphic over the answer type, using higher-rank poly-
morphism through OCaml record types. To avoid this higher-rank polymorphism in the
core language, we could also define RCN as a functor parameterized over the answer type.
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module RCN(W: sig type w end) = struct

type (’c,’sv,’dv) repr = (’sv -> W.w) -> W.w ...

This alternative is more cumbersome to use because the functor needs to be applied once
for each answer type, but it translates to, for example, Standard ML, whose core language
does not support higher-rank polymorphism.

Because RCN has the signature Symantics, we can instantiate our previous examples
with it, and all works as expected. More interesting is the example (λx.1)

(
(fix f . f )2

)
,

which terminates under CBN but not CBV.

module EXS(S: Symantics) = struct open S

let diverg () = app (lam (fun x -> int 1))

(app (fix (fun f->f)) (int 2))

end

Interpreting EXS with the R interpreter of §2.2 does not terminate.

let module M = EXS(R) in M.diverg ()

In contrast, the CBN interpreter gives the result 1.

let module M = EXS(RCN) in RCN.run (M.diverg ())

5.2 CBV CPS transformers

Changing one definition turns our CBN CPS interpreter into CBV.

module RCV = struct include RCN

let lam f = {ko = fun k -> k

(fun e -> e.ko (fun v -> f {ko = fun k -> k v}))}

end

Now an applied abstraction evaluates its argument before proceeding. The interpreter RCV
is useful for CBV evaluation of the object language whether the metalanguage is CBV or
CBN. To match the same Symantics signature as RCN above, RCV uses Reynolds’s (1974)
CBV CPS transformation, in which variables denote computations (that is, functions from
continuations), rather than Plotkin’s (1975), in which variables denote values.

We turn to a more general approach to CBV CPS: a CPS transformer that turns any
implementation of Symantics into a CPS version of that evaluator. This functor on inter-
preters performs Plotkin’s (1975) textbook CPS transformation on the object language.

module CPST(S: Symantics) = struct

let int i = S.lam (fun k -> S.app k (S.int i))

let add e1 e2 = S.lam (fun k -> S.app e1 (S.lam (fun v1 ->

S.app e2 (S.lam (fun v2 ->

S.app k (S.add v1 v2))))))

let lam f = S.lam (fun k -> S.app k

(S.lam (fun x -> f (S.lam (fun k -> S.app k x)))))

let app e1 e2 = S.lam (fun k -> S.app e1 (S.lam (fun f ->

S.app e2 (S.lam (fun v ->
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S.app (S.app f v) k)))))

let fix = S.fix

end

This (abbreviated) code explicitly maps CPS interpretations to (direct) interpretations per-
formed by the base interpreter S.

The module returned by CPST does not define repr and thus does not have signature
Symantics. The reason is again the type of lam f. Whereas int and add return the
(abbreviated) type (’c, ..., (int -> ’w) -> ’w) S.repr, the type of lam (add

(int 1)) is

(’c, ..., ((int -> (int -> ’w1) -> ’w1) -> ’w2) -> ’w2) S.repr

Hence, to write the type equation defining CPST.repr we again need a type function
with a typecase distinction, similar to static in §4.3. Alas, the type function we need
is not identical to static, so again we need to change the type arguments to repr in the
Symantics signature. As in §4.3, the terms in previous implementations of Symantics
stay unchanged, but the repr type equations in those implementations have to take a new
(phantom) type argument. The verbosity of these types is the only difficulty in defining a
replacement signature for Symantics which captures that of CPST as well.

For brevity, we just use the module returned by CPST as is. Because it does not match
the signature Symantics, we cannot apply the EX functor to it. Nevertheless, we can write
the tests.

module T = struct

module M = CPST(C)

open M

let test1 () =

app (lam (fun x -> x)) (bool true) (* same as before *)

let testpowfix () = ... (* same as before *)

let testpowfix7 = (* same as before *)

lam (fun x -> app (app (testpowfix ()) x) (int 7))

end

We instantiate CPST with the desired base interpreter C, then use the result M to interpret
object terms. Those terms are exactly as before. Having to textually copy the terms is the
price we pay for this simplified treatment.

With CPST instantiated by the compiler C above, T.test1 gives

.<fun x_5 -> (fun x_2 -> x_2 (fun x_3 x_4 -> x_4 x_3))

(fun x_6 -> (fun x_1 -> x_1 true)

(fun x_7 -> x_6 x_7 x_5))>.

This output is a naïve CPS transformation of (λx.x) true, containing several apparent β -
redexes. To reduce these redexes, we just change T to instantiate CPST with P instead.

{P.st = Some <fun>; P.dy = .<fun x_5 -> x_5 true>.}
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module type Symantics1 = sig

type ’c dint

type ’c dbool

type (’c,’da,’db) darr

type (’c,’dv) repr

val int : int -> (’c, ’c dint) repr

val bool: bool -> (’c, ’c dbool) repr

val lam : ((’c,’da) repr -> (’c,’db) repr) -> (’c, (’c,’da,’db) darr) repr

val app : (’c, (’c,’da,’db) darr) repr -> (’c, ’da) repr -> (’c, ’db) repr

val fix : (’x -> ’x) -> ((’c, (’c,’da,’db) darr) repr as ’x)

val add : (’c, ’c dint) repr -> (’c, ’c dint) repr -> (’c, ’c dint) repr

val mul : (’c, ’c dint) repr -> (’c, ’c dint) repr -> (’c, ’c dint) repr

val leq : (’c, ’c dint) repr -> (’c, ’c dint) repr -> (’c, ’c dbool) repr

val if_ : (’c, ’c dbool) repr

-> (unit -> ’x) -> (unit -> ’x) -> ((’c, ’da) repr as ’x)

end

Fig. 7. A (Meta)OCaml embedding that abstracts over an inductive map on object types

5.3 Abstracting over an inductive map on object types

Having seen that each CPS interpreter above matches a differently modified Symantics

signature, one may wonder whether Symantics can be generalized to encompass them
all. The answer is yes: the Symantics1 signature in Figure 7 abstracts our representation
of object terms not only over the type constructor repr but also over the three branches
that make up an inductive map, such as static in §4.3, from object types to metalanguage
types. The first two branches (for the object types Z and B) become the abstract types dint
and dbool, whereas the third branch (for object types t1→ t2) becomes the new abstract
type constructor darr.

Almost every interpreter in this paper can be made to match the Symantics1 signature
without changing any terms, by defining dint, dbool, darr, and repr suitably. For
example, the types in the evaluator R and the CBV CPS transformer CPST should be
changed as follows.

module R = struct

type ’c dint = int

type ’c dbool = bool

type (’c,’da,’db) darr = ’da -> ’db

type (’c,’dv) repr = ’dv ...

module CPST(S: Symantics1)(W: sig type ’c dw end) = struct open W

type ’c dint = ’c S.dint

type ’c dbool = ’c S.dbool

type (’c,’da,’db) darr =

(’c, ’da, (’c, (’c, ’db, ’c dw) S.darr, ’c dw) S.darr) S.darr

type (’c,’dv) repr =

(’c, (’c, (’c, ’dv, ’c dw) S.darr, ’c dw) S.darr) S.repr ...
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!state : ts

e : ts
state← e : ts

e1 : t1

[x : t1]···
e2 : t2

case e1 of x.e2 : t2

Fig. 8. Extending our typed object language with mutable state of type ts

Modified thus, CPST produces modules that match Symantics1 and can be not only eval-
uated or compiled but also transformed using CPST again. The accompanying source file
inco.ml shows the details, including one-pass CPS transformations in the higher-order
style of Danvy and Filinski (1992).

The abstract type constructors in Figure 7 exemplify the amount of polymorphism that
our technique requires of the metalanguage in order to represent a given object language.
Generally, our technique represents term constructions (such as +) by applying abstract
functions (such as add) and represents type constructions (such as →) and typing judg-
ments (namely ‘:’) by applying abstract type constructors (such as darr and repr). There-
fore, it requires the metalanguage to support enough polymorphism to abstract over the
interpretation of each inference rule for well-typed terms and well-kinded types. For ex-
ample, to encode System F’s term generalization rule

[α :?]
···e : t

Λα.e :∀α. t,

the metalanguage must let terms (representing Λα.e) abstract over terms (interpreting Λ)
that are polymorphic both over type constructors of kind ?→ ? (representing t with α

free) and over polymorphic terms of type ∀α:?. . . (representing e with α free). These uses
of higher-rank and higher-kind polymorphism let us type-check and compile object terms
separately from interpreters. This observation is consistent with the role of polymorphism
in the separate compilation of modules (Shao 1998).

The only interpreter in this paper that does not fit Symantics1 is the partial evaluator P.
It does not fit because it uses two inductive maps on object types—both ’sv and ’dv in
Figure 5. We could define a Symantics2 signature to abstract over two inductive maps
over object types; it would include 4 abstract types and 2 abstract type constructors in
addition to repr. It would then be easy to turn P into a functor that returns a Symantics2
module, but the input to P can still only match Symantics1. This escalation points to a
need for either record-kind polymorphism (so that ’dv in Figure 7 may be more than just
one type) or type-indexed types (so that we do not need to emulate them in the first place).

5.4 State and imperative features

We can modify a CBN or CBV CPS transformation to pass a piece of state along with the
continuation. This technique lets us support mutable state (or more generally any monadic
effect) by representing it using continuations (Filinski 1994). As Figure 8 shows, we extend
our object language with three imperative features.

1. “!state” gets the current state;
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2. “state← e” sets the state to the value of e and returns the previous value of the state;
3. the let-form “case e1 of x.e2” evaluates e1 before e2 even if e2 does not use x and

even if evaluation is CBN.

The form “case e1 of x.e2” is equivalent to “let” in Moggi’s monadic metalanguage (1991).
If x does not appear in e2, then it is same as the more familiar sequencing form “e1;e2”. We
embed this extended object language into OCaml by extending the Symantics signature
in Figure 5.

module type SymSI = sig

include Symantics

type state

type ’c states (* static version of the state *)

val lapp : ((’c,’sa,’da) repr as ’x) -> (’x -> ’y)

-> ((’c,’sb,’db) repr as ’y)

val deref : unit -> (’c, ’c states, state) repr

val set : ((’c, ’c states, state) repr as ’x) -> ’x

end

In HOAS, we write the term “case e1 of x.e2” as lapp e1 (fun x -> e2); the type of
lapp is that of function application with the two arguments swapped. We can encode the
term “case !state of x.(state← 2; x+ !state)” as the OCaml functor

module EXSI_INT(S: SymSI

with type state = int and type ’c states = int) = struct open S

let test1 () = lapp (deref ()) (fun x ->

lapp (set (int 2)) (fun _ -> add x (deref ())))

end

The accompanying source code shows several more tests, including a test for higher-order
state and a power function that uses state as the accumulator.

The state-passing interpreter extends the CBN CPS interpreter RCN of §5.1.

module RCPS(ST: sig

type state

type ’c states

type (’c,’sv,’dv) repr =

{ko: ’w. (’sv -> ’c states -> ’w) -> ’c states -> ’w}

end) = struct include ST ...

let lapp e2 e1 = {ko = fun k ->

e2.ko (fun v -> (app (lam e1) {ko = fun k -> k v}).ko k)}

let deref () = {ko = fun k s -> k s s}

let set e = {ko = fun k -> e.ko (fun v s -> k s v)}

let get_res x = fun s0 -> x.ko (fun v s -> v) s0

end

The implementations of int, app, lam, and so on are identical to those of RCN and elided.
New are the extended type repr, which now includes the state, and the functions lapp,
deref, and set representing imperative features. The interpreter is still CBN, so evaluating
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app ef ea might not evaluate ea, but evaluating lapp ea ef always does. For first-order
state, such as of type Z, we instantiate the interpreter as

module RCPSI = RCPS(struct

type state = int

type ’c states = int

type (’c,’sv,’dv) repr =

{ko: ’w. (’sv -> ’c states -> ’w) -> ’c states -> ’w}

end)

If the state has a higher-order type, then the types state and ’c states are no longer
the same, and ’s states is mutually recursive with the type (’c,’sv,’dv) repr, as
demonstrated in the accompanying source code.

Because the SymSI signature extends Symantics, any encoding of a term in the pure
object language (that is, any functor that takes a Symantics module as argument) can also
be used as a term in the extended object language (for example, applied to an implementa-
tion of SymSI). In particular, RCPSI matches the Symantics signature and implements the
unextended object language: we can pass RCPSI to the functor EX (Figure 2) and run the
example test1 from there. The main use for RCPSI is to interpret the extended language.

module EXPSI_INT = EXSI_INT(RCPSI)

let cpsitesti1 = RCPSI.get_res (EXPSI_INT.test1 ()) 100

val cpsitesti1 : int = 102

We reiterate that this implementation adding state and imperative features is very close
to the CPS interpreter and uses no new techniques. We can also add mutable references
to the object language using mutable references of the metalanguage, as shown in the
accompanying code. Yet another way to add side effects to the object language is to write
a monadic interpreter (for a specific monad or a general class of monads), which can be
structured as a module matching the Symantics1 signature in Figure 7.

6 Related work

Our initial motivation came from several papers that justify advanced type systems, in
particular GADTs, by embedded interpreters (Pašalić et al. 2002; Peyton Jones et al. 2006;
Taha et al. 2001; Xi et al. 2003) and CPS transformations (Chen and Xi 2003; Guillemette
and Monnier 2006; Shao et al. 2005). We admire all this technical machinery, but these
motivating examples do not need it. Although GADTs may indeed be simpler and more
flexible, they are unavailable in mainstream ML, and their implementation in GHC 6.8
fails to detect exhaustive pattern matching. We also wanted to find the minimal set of
widespread language features needed for tagless type-preserving interpretation.

The simply typed λ -calculus can interpret itself, provided we use universal types (Taha
et al. 2001). The ensuing tagging overhead motivated Makholm (2000); Taha et al. (2001)
to propose tag elimination, which however does not statically guarantee that all tags will
be removed (Pašalić et al. 2002).

Pašalić et al. (2002), Taha et al. (2001), Xi et al. (2003), and Peyton Jones et al. (2006)
seem to argue that a typed interpreter of a typed language cannot be tagless without
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advanced types, based on the premise that the only way to encode a typed language in
a typed language is to use a sum type (at some level of the hierarchy). While the logic is
sound, we (following Yang (2004)) showed that the premise is not valid.

Danvy and López (2003) discuss Jones optimality at length and apply HOAS to typed
self-interpretation. However, their source language is untyped. Therefore, their object-term
encoding has tags, and their interpreter can raise run-time errors. Nevertheless, HOAS lets
the partial evaluator remove all the tags. In contrast, our object encoding and interpreters
do not have tags to start with and obviously cannot raise run-time errors.

Our separation between the Symantics interface and its many implementations codifies
the common practice of implementing an embedded DSL by specifying an abstract syntax
of object-language pervasives, such as addition and application, then providing multiple
interpretations of them. The techniques we use to form such a family of interpreters find
their origins in Holst’s language triplets (1988), though in an untyped setting. Jones and
Nielson (1994) also prefigured this separation when they decomposed a denotational defi-
nition of an untyped object language into a core semantics (which we call abstract syntax)
and multiple interpretations.

In the typed setting, Nielson (1988) expressed families of program analyses on typed
object languages using a typed λ -calculus as a metalanguage; however, the embeddings
of the object language and the analyses are not type-checked in the metalanguage, unlike
with our Symantics signature. When implementing a typed, embedded DSL, it is also
common practice to use phantom types to rule out ill-typed object terms, as done in Lava
(Bjesse et al. 1998) and by Rhiger (2001). However, these two approaches are not tagless
because they still use universal types, such as Lava’s Bit and NumSig, and Rhiger’s Raw
(his Figure 2.2) and Term (his Chap. 3), which incur the attendant overhead of pattern
matching. The universal type also greatly complicates the soundness and completeness
proofs of embedding (Rhiger 2001), whereas our proofs are trivial. Rhiger’s approach does
not support typed CPS transformation (his §3.3.4).

Thiemann and Sperber (1997) implemented a set of binding-time polymorphic combi-
nators in Gofer, using many constructor classes. By merging all their classes into one and
dropping polymorphic lift, they could have invented Symantics.

We are not the first to implement a typed interpreter for a typed language. Läufer and
Odersky (1993) use type classes to implement a metacircular interpreter of a typed version
of the SK language, which is quite different from our object language. Their interpreter
appears to be tagless, but they could not have implemented a compiler or partial evaluator
in the same way, since they rely heavily on injection-projection pairs.

Using Haskell, Guillemette and Monnier (2006) implement a CPS transformation for
HOAS terms and statically assure that it preserves object types. They represent proofs
of type preservation as terms of a GADT, which is not sound (as they admit in §4.2)
without a separate totality check because any type is trivially inhabited by a nonterminating
term in Haskell. In contrast, our CPS transformations use simpler types than GADTs and
assure type preservation at the (terminating) type level rather than the term level of the
metalanguage. Guillemette and Monnier review other type-preserving CPS transformations
(mainly in the context of typed intermediate languages), in particular Shao et al.’s (2005)
and Chen and Xi’s (2003). These approaches use de Bruijn indices and fancier type systems
with type-level functions, GADTs, or type-equality proofs.
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We encode terms in elimination form, as a coalgebraic structure. Pfenning and Lee
(1991) first described this basic idea and applied it to metacircular interpretation. Our
approach, however, can be implemented in mainstream ML and supports type inference,
typed CPS transformation and partial evaluation. In contrast, Pfenning and Lee conclude
that partial evaluation and program transformations “do not seem to be expressible” even
using their extension to Fω , perhaps because their avoidance of general recursive types
compels them to include the polymorphic lift that we avoid in §4.1.

We could not find work that establishes that the typed λ -calculus has a final coalgebra
structure. Honsell and Lenisa (1995, 1999) investigate the untyped λ -calculus along this
line. Honsell and Lenisa’s bibliography (1999) refers to the foundational work in this
important area. Particularly intriguing is the link to the coinductive aspects of Böhm trees,
as pointed out by Berarducci (1996) and Jacobs (2007; Example 4.3.4).

Other researchers have very recently realized that it is useful to abstract over higher-
kinded types, like our repr. Moors et al. (2008) put the same power to work in Scala.
Hofer et al. (2008) also use Scala and note that they are influenced by our work (Carette
et al. 2007). Where we have concentrated on multiple efficient interpretations of the same
language, they have concentrated on composing the languages and interpretations.

7 Conclusions

We solve the problem of embedding a typed object language in a typed metalanguage
without using GADTs, dependent types, or a universal type. Our family of interpreters
includes an evaluator, a compiler, a partial evaluator, and CPS transformers. It is patent
that they never get stuck, because we represent object types as metalanguage types. This
work improves the safety and reduces the overhead of embedding DSLs in practical meta-
languages such as Haskell and ML.

Our main idea is to represent object programs not in an initial algebra but using the
existing coalgebraic structure of the λ -calculus. More generally, to squeeze more invariants
out of a type system as simple as Hindley-Milner, we shift the burden of representation and
computation from consumers to producers: encoding object terms as calls to metalanguage
functions (§1.3); build dynamic terms alongside static ones (§4.1); simulating type func-
tions for partial evaluation (§4.3) and CPS transformation (§5.1). This shift also underlies
fusion, functionalization, and amortized complexity analysis. When the metalanguage does
provide higher-rank and higher-kind polymorphism, we can type-check and compile an
object term separately from any interpreters it may be plugged into.
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