
Submitted to ICFP 2015

Deriving a probability density calculator (functional pearl)

Wazim Mohammed Ismail Chung-chieh Shan
Indiana University

{wazimoha,ccshan}@indiana.edu

Abstract
Given an expression that denotes a probability distribution, often
we want a corresponding density function, to use in probabilistic
inference. Fortunately, the task of finding a density has been auto-
mated. It turns out that we can derive a compositional procedure for
finding a density, by equational reasoning about integrals, starting
with the mathematical specification of what a density is. Moreover,
the output of our procedure can be run as an estimation algorithm,
as well as simplified as an exact formula to improve the estimate.

Categories and Subject Descriptors G.3 [Probability and Statis-
tics]: distribution functions; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs—
specification techniques; D.1.1 [Programming Techniques]: Ap-
plicative (Functional) Programming

Keywords probability density functions, probability measures,
continuations, program calculation, equational reasoning

1. Introduction
A popular way to handle uncertainty in AI, statistics, and science
is to compute with probability distributions. Typically in this ap-
proach, we define a probability distribution, then answer questions
about it such as “what is its expected value?” and “what does its
histogram look like?”. Over the course of a century, practitioners
of this approach have identified many patterns in how to define dis-
tributions (that is, modeling) and how to answer questions about
them (called inference). These patterns of modeling and inference
constitute the beginning of a combinator library [6].

Unfortunately, models and inference procedures do not com-
pose in tandem: as illustrated in Sections 3.1 and 6.2, often we re-
joice that a big distribution we are interested in can be expressed
naturally by composing little distributions, but then despair that
many questions we want to pose about the big distribution cannot
be answered using answers to corresponding questions about the
little distributions. In other words, the natural compositional struc-
ture of models and inference procedures are not the same. This mis-
match is disappointing because it makes it harder for us to automate
the labor-intensive process of turning a distribution that models the
world into a program that answers relevant questions about it. This
difficulty is the bane of declarative programming. It is like trying to

[Copyright notice will appear here once ’preprint’ option is removed.]

StdRandom : Real

x ∈ R

Lit x : Real

e : a

Var v : a···
e′ : b

Let v e e′ : b

e : Real

Neg e : Real

e : Real

Inv e : Real

e : Real

Exp e : Real

e : Real

Log e : Real

e : Bool

Not e : Bool

e1 : Real e2 : Real

Add e1 e2 : Real

e1 : Real e2 : Real

Less e1 e2 : Bool

e : Bool e1 : a e2 : a

If e e1 e2 : a

Figure 1. The syntax and type system of our language of distribu-
tions

build a compiler that generates an executable for a compound ex-
pression “e1;e2;” by combining the executables generated for the
subexpressions “e1;” and “e2;”.

Still, there is hope to answer more inference questions while
following the natural compositional structure of models, if only we
could figure out how to generalize the questions as if strengthening
an induction hypothesis or adding an accumulator argument. This
paper tells one such success story. We answer the questions

1. “What is the expected value of this distribution?”

2. “What is a density function of this distribution?”

by generalizing them to compositional interpreters. We define those
interpreters by equational reasoning from a semantic specification.
Our derivation demonstrates the power of combining λ -calculus
with integral calculus.

2. A language of generative stories
To be concrete, we define a small language of distributions. To keep
things simple, we include only two types in this language, Real and
Bool. Figure 1 shows the syntax of our language. It defines a typing
judgment e : a, which means as usual that the expression e has the
type a.

Each expression says how to generate a random outcome. For
example, the atomic expression StdRandom says to choose a ran-
dom real number uniformly between 0 and 1. That is why its type
is Real. To take another example, the compound expression

Add StdRandom StdRandom

says to choose two random real numbers independently, each uni-
formly between 0 and 1, then add them to yield the final outcome.
That final outcome is again a real number, so this expression’s type
is also Real. These descriptions of how to generate a random out-
come are called generative stories. The intuitive meaning of a gen-
erative story is a distribution over its outcomes, such as over reals.
Because generative stories are intuitive to tell, and because they

Deriving a probability density calculator (functional pearl) 1 2015/2/27

make it easy to detect dependencies among random choices [8], it
is popular to express probability distributions by composing gener-
ative stories—such as using Add. The syntax of our language thus
embodies the “natural compositional structure of models” referred
to in the introduction above.

Note that the generative story of

Add StdRandom StdRandom

is different from the generative story of

Let "x" StdRandom (Add (Var "x") (Var "x"))

even though both expressions have the type Real. The latter expres-
sion means to choose just one random real number uniformly be-
tween 0 and 1, then add the chosen number to itself (in other words,
double it) to yield the final outcome. In general, Let means to make
a random choice once then use its outcome any number of times.
Thus, we can understand this language as a call-by-value language
whose side effect is random choice. In Let v e e′, the bound vari-
able v takes scope over e′ and not e.

In Haskell, we can define a data type Expr to represent the
expressions of our language. Actually, using the GADT (general-
ized algebraic data type) extension, let us define two Haskell types
Expr Real and Expr Bool at the same time, to distinguish our types
Real and Bool.

data Expr a where
StdRandom :: Expr Real
Lit :: Rational→ Expr Real
Var :: Var a→ Expr a
Let :: Var a→ Expr a→ Expr b→ Expr b
Neg, Inv,

Exp,Log :: Expr Real→ Expr Real
Not :: Expr Bool→ Expr Bool
Add :: Expr Real→ Expr Real→ Expr Real
Less :: Expr Real→ Expr Real→ Expr Bool
If :: Expr Bool→ Expr a→ Expr a→ Expr a

We also define the GADT Var to represent variable names of
each type.

data Var a where
Real :: String→ Var Real
Bool :: String→ Var Bool

To fit Haskell’s type system better, we treat two variables whose
types are different but whose names are the same String as different.
For example, Real "x" and Bool "x" are different variables and
do not shadow each other’s bindings. In other words, Real and
Bool variables in our language reside in separate namespaces. We
express this separation in our definition of the jmEq function, which
checks if two Vars are equal, whether they have the same type.

jmEq :: Var a→ Var b→ Bool
jmEq (Real v) (Real w) = v≡ w
jmEq (Bool v) (Bool w) = v≡ w
jmEq = False

Hence jmEq (Real "x") (Bool "x") = False. For brevity, though,
we elide applying Real and Bool to literal strings in examples.

As explained above, expressions in our language can be inter-
preted as generative stories. We can write an interpreter function
to express this fact. This function sample takes an expression and
an environment as input and returns an IO action. To express that
the type of the expression matches the outcome of the action, let us
take the convenient shortcut of defining Real as a type synonym for
Double, so that the Haskell type IO Real makes sense. The code for
sample is straightforward:

0 1 2

0
50

10
0

Outcome

Fr
eq

ue
nc

y

0 1 2

0
50

10
0

Outcome

Fr
eq

ue
nc

y

Add StdRandom StdRandom Let "x" StdRandom
(Add (Var "x") (Var "x"))

Figure 2. Histograms of two distributions over real numbers. Each
histogram is produced by generating 1000 samples (as shown at the
end of Section 2) and putting them into 20 equally spaced bins.

type Real = Double
sample :: Expr a→ Env→ IO a
sample StdRandom = getStdRandom random
sample (Lit x) = return (fromRational x)
sample (Var v) ρ = return (lookupEnv ρ v)
sample (Let v e e′) ρ = do x← sample e ρ

sample e′ (extendEnv v x ρ)
sample (Neg e) ρ = liftM negate (sample e ρ)
sample (Inv e) ρ = liftM recip (sample e ρ)
sample (Exp e) ρ = liftM exp (sample e ρ)
sample (Log e) ρ = liftM log (sample e ρ)
sample (Not e) ρ = liftM not (sample e ρ)
sample (Add e1 e2) ρ = liftM2 (+) (sample e1 ρ)

(sample e2 ρ)
sample (Less e1 e2) ρ = liftM2 (<) (sample e1 ρ)

(sample e2 ρ)
sample (If e e1 e2) ρ = do b← sample e ρ

sample (if b then e1 else e2) ρ

As is typical of an interpreter, this sample function uses a type
Env of environments (mapping variable names to values), along
with the functions lookupEnv and extendEnv for querying and ex-
tending environments. For concision, here we opt to represent en-
vironments as functions. All this code is standard:

type Env = ∀a.Var a→ a
lookupEnv :: Env→ Var a→ a
lookupEnv ρ = ρ

emptyEnv :: Env
emptyEnv v = error "Unbound"
extendEnv :: Var a→ a→ Env→ Env
extendEnv (Real v) x (Real v′) | v≡ v′ = x
extendEnv (Bool v) x (Bool v′) | v≡ v′ = x
extendEnv ρ v′ = ρ v′

We can now run our programs to get random outcomes:

> sample (Add StdRandom StdRandom) emptyEnv
0.8422448686660571
> sample (Add StdRandom StdRandom) emptyEnv
1.25881932199967
> sample (Let "x" StdRandom (Add (Var "x") (Var "x")))

emptyEnv
0.23258391029872305
> sample (Let "x" StdRandom (Add (Var "x") (Var "x")))

emptyEnv
1.1712041724765878

Deriving a probability density calculator (functional pearl) 2 2015/2/27

Your outcomes may vary, of course. For more of a bird’s-eye view
of the distributions, we can take many independent samples then
make a histogram out of each distribution. Two such histograms
are shown in Figure 2.

3. Composing expectation functionals
Although the sample interpreter is easy to write and intuitive to
use, we should not think that the IO action it returns is equal to an
expression’s meaning. By “meaning” here, we mean what inference
should preserve. The problem with treating sample e as the meaning
of e is that we often want to optimize e to another expression e′.
Usually, sample e′ makes different and fewer random choices than
sample e, so sample e′ is different from sample e.

For example, the expression Let "x"StdRandom (Lit 3) always
produces the outcome 3, so we should be allowed to optimize it
to just Lit 3, and an inference procedure should not be obliged
to consume any random seed before generating the 3. In other
words, inference should not be obliged to distinguish Lit 3 from
Let "x" StdRandom (Lit 3), so we should assign these expressions
the same meaning.

A less trivial example is that the definition of sample above
specifies that, in an expression of the form Add e1 e2 or Less e1 e2,
all the random choices in e1 must be made before any of the
random choices in e2, even though the order does not matter. Thus,
given that addition is commutative, we should assign Add e1 e2 and
Add e2 e1 the same meaning.

Thus, the meaning equivalence relation produced by the sample
semantics is too fine-grained. To make the equivalence coarser, let
us consider the expected values of distributions. Given an expres-
sion of type Real, its expected value is basically what the average
of many samples approaches as the number of samples approaches
infinity. For example, if we run

> sample (Add StdRandom StdRandom) emptyEnv

many times and average the results, the average will approach
1 as we take more samples. In the examples above, the expres-
sions Let "x" StdRandom (Lit 3) and Lit 3 both have the expected
value 3, and the expressions Add e1 e2 and Add e2 e1 always have
the same expected value.

3.1 The expectation interpreter
If the only question we ever ask about a distribution is “what is
its expected value?”, then it would be adequate for the meaning of
each expression to equal its expected value. Unfortunately, there
are other questions we ask whose answers differ on expressions
with the same expected value. For example, given an expression of
type Real, we might ask “what is the probability for its outcome to
be less than 1/2?”—perhaps to decide how to bet on it. The two
distributions sampled in Figure 2 both have expected value 1, but
the probability of being less than 1/2 is 1/8 for the first distribution
and 1/4 in the second distribution. Put differently, even though the
two distributions have the same expected value, plugging them into
the same context

If (Less . . . (Lit (1/2))) (Lit 1) (Lit 0)

gives two distributions with different expected values (1/8 6= 1/4).
Even if we know the expected value of an expression e, we do not
necessarily know the expected value of the larger expression

If (Less e (Lit (1/2))) (Lit 1) (Lit 0)

containing e.
Another way to phrase this complaint is to say that the expected-

value interpretation is not compositional—if we were to define a
Haskell function

expect :: Expr Real→ Env→ Real

then it would not be straightforward the way sample is. For exam-
ple, there is no way to define

expect (If (Less e (Lit (1/2))) (Lit 1) (Lit 0)) ρ = · · ·

in terms of expect e. People building a compiler for distributions,
including the present authors, want compositionality in order to
achieve separate compilation.

To make expect compositional, we add an argument to it to
represent the context [5, 6] that an expression is plugged into before
its expected value is observed. The type of expect is thus

expect :: Expr a→ Env→ (a→ Real)→ Real

where the third argument may or may not be the identity function.
In other words, the question that expect e ρ c asks is “what is the
expected value of the distribution e in the environment ρ after its
outcomes are transformed by the function c?”. This value is also
called the expectation of c with respect to the distribution. (We
assume c is measurable and non-negative, but do not worry if you
are not familiar with such assumptions.)

Thanks to this generalization of expect, it is now compositional:
we can define expect on an expression in terms of expect on its
subexpressions. Here is the definition:

expect StdRandom c =
∫ 1

0 λx.c x
expect (Lit x) c = c (fromRational x)
expect (Var v) ρ c = c (lookupEnv ρ v)
expect (Let v e e′) ρ c = expect e ρ (λx.

expect e′ (extendEnv v x ρ) c)
expect (Neg e) ρ c = expect e ρ (λx.c (negate x))
expect (Inv e) ρ c = expect e ρ (λx.c (recip x))
expect (Exp e) ρ c = expect e ρ (λx.c (exp x))
expect (Log e) ρ c = expect e ρ (λx.c (log x))
expect (Not e) ρ c = expect e ρ (λx.c (not x))
expect (Add e1 e2) ρ c = expect e1 ρ (λx.

expect e2 ρ (λy.c (x+ y)))
expect (Less e1 e2) ρ c = expect e1 ρ (λx.

expect e2 ρ (λy.c (x< y)))
expect (If e e1 e2) ρ c = expect e ρ (λb.

expect (if b then e1 else e2) ρ c)

3.2 Integrals denoted by random choices
To understand this definition, let us start at the top.

The expected value of StdRandom is 1/2, but that is not the
only question that expect StdRandom needs to answer. Given
any function c from reals to reals (and any environment ρ),
expect StdRandom ρ c is supposed to be the expected value of
choosing a random number uniformly between 0 and 1 then ap-
plying c to it. That expected value is the integral of c from 0
to 1, which in conventional mathematical notation is written as∫ 1

0 c(x)dx. (More precisely, we mean the Lebesgue integral of c
with respect to the Lebesgue measure from 0 to 1.) In this paper,
we try to blend Haskell and mathematical notation by writing this
integral as

∫ 1
0 λx.c x, as if there is a function∫ ·

· · :: Real→ Real→ (Real→ Real)→ Real

already defined. If we want to actually implement such a function, it
could perform numerical integration, symbolic integration, or mere
printing of mathematical formulas (by overloading the Num class).
(We also notate multiplication by ×, so c x always means applying
c to x, not multiplying c by x.)

So for example, the expected value of squaring a uniform ran-
dom number between 0 and 1 is

Deriving a probability density calculator (functional pearl) 3 2015/2/27

0 1

0
1

x

cx

0 1x 0 1x

c x = x c x = x× x c x = if x<1/2
then 1 else 0

Figure 3. The expectation of 3 different functions with respect to
the same distribution StdRandom, defined in terms of integration
from 0 to 1 (the shaded areas)

expect StdRandom emptyEnv (λx.x× x)
=
∫ 1

0 λx.x× x
= 1/3

which is less than 1/2 because squaring a number between 0 and 1
makes it smaller. And the probability that a uniform random num-
ber between 0 and 1 is less than 1/2 is

expect StdRandom emptyEnv (λx. if x<1/2 then 1 else 0)
=
∫ 1

0 λx. if x<1/2 then 1 else 0
= 1/2

Figure 3 depicts these integrals.
The rest of the definition of expect is in continuation-passing

style. The continuation c is the function whose expectation with
respect to the current distribution we want. The Lit and Var cases
are deterministic (that is, they do not make any random choices),
so the expectation of c with respect to those distributions simply
applies c to one value. The unary operators (Neg, Inv, Exp, Log,
Not) each compose the continuation with a mathematical function.

The remaining cases of expect involve multiple subexpressions
and produce nested integrals if these subexpressions each yield
integrals. For example, it follows from the definition that

expect (Add StdRandom (Neg StdRandom)) emptyEnv c
= expect StdRandom emptyEnv (λx.

expect StdRandom emptyEnv (λy.c (x+negate y)))
=
∫ 1

0 λx.
∫ 1

0 λy.c (x− y)

The order of nesting on the last line does not matter, as Tonelli’s
theorem assures us that it is equal to

∫ 1
0 λy.

∫ 1
0 λx.c (x−y). In gen-

eral, Tonelli’s theorem lets us exchange nested integrals as long as
the integrand (here λx y.c (x− y)) is measurable and non-negative
(which we assume of c). Thus we could define equivalently

expect (Add e1 e2) ρ c = expect e2 ρ (λy.
expect e1 ρ (λx.c (x+ y)))

expect (Less e1 e2) ρ c = expect e2 ρ (λy.
expect e1 ρ (λx.c (x< y)))

Besides compositionality, another benefit of generalizing expect
is that it subsumes every question we can ask about a distribution.
For example, if e is a closed expression of type Real, then the
probability that the outcome of e is less than 1/2 is

expect e emptyEnv (λx. if x<1/2 then 1 else 0)

To take another example, the ideal height of each histogram bar in
Figure 2 is

expect e emptyEnv (λx. if lo< x 6 hi then n else 0)

where lo and hi are the bounds of the bin and n is the total number
of samples. (We abbreviate lo< x ∧ x 6 hi to lo< x 6 hi.)

0 1 2

0
1

t

d
t

0 1 2
t

d t =


t if 0 < t ≤ 1
2− t if 1 < t ≤ 2
0 otherwise

d t =

{
1/2 if 0 < t < 2
0 otherwise

Figure 4. Density functions of the two distributions in Figure 2

Mathematically speaking, every distribution corresponds to a
functional, which is a function—sort of a generalized integrator—
that takes as argument another function, namely the integrand c.
This correspondence is expressed by expect, and it is injective.
(In fact, it is bijective between measures and “increasing linear
functionals with the Monotone Convergence property” [11, page
27].) Therefore, if expect e ρ and expect e′ ρ are equal (in other
words, if expect e ρ c and expect e′ ρ c are equal for all c), then e
and e′ are equivalent and we can feel free to optimize e and e′ to
each other.

In short, we define the meaning of the expression e in the envi-
ronment ρ to be the functional expect e ρ . Returning to Figure 2, it
follows from this definition that the meaning of

Add StdRandom StdRandom

in the empty environment is

expect (Add StdRandom StdRandom) emptyEnv
= λc.

∫ 1
0 λx.

∫ 1
0 λy.c (x+ y)

and the meaning of

Let "x" StdRandom (Add (Var "x") (Var "x"))

in the empty environment is

expect (Let "x" StdRandom (Add (Var "x") (Var "x")))
emptyEnv

= λc.
∫ 1

0 λx.c (x+ x)

The two expressions are not equivalent, because the two functionals
are not equal: applied to the function λx. if x<1/2 then 1 else 0, the
first functional returns 1/8 whereas the second functional returns
1/4. In this way, expect defines the semantics of our distribution
language. Therefore, it is part of our specification of a probability
density calculator, which we present next.

4. Specifying probability densities
Some distributions enjoy the existence of a density function. If
the distribution is over the type a, then the density function maps
from a to reals. Without going into details, let us just say that den-
sity functions are very useful in probabilistic inference: they under-
pin many concepts and techniques, including maximum-likelihood
estimation, conditioning, and Monte Carlo sampling [7, 13].

Intuitively, a density function is the outline of a histogram as
the bin size approaches zero. For example, the two distributions in
Figure 2 have the respective density functions shown in Figure 4.
The shapes in the two figures are similar, but the histograms are
randomly generated as this paper is typeset, whereas each density
is a fixed mathematical function.

The precise definition of when a given function qualifies as a
density for a given distribution depends on a reference measure.

Deriving a probability density calculator (functional pearl) 4 2015/2/27

When the distribution is over reals, the reference measure is typi-
cally the Lebesgue measure over reals, and the definition amounts
to the following.

Definition 1. A function d :: Real→ Real is a density for a func-
tional m ::(Real→ Real)→ Real with respect to the Lebesgue mea-
sure if and only if

m c =
∫

∞

−∞ λ t.d t× c t

for all continuations c :: Real→ Real.

And when the distribution is over booleans, the reference measure
is typically the counting measure over booleans, and the definition
amounts to the following.

Definition 2. A function d :: Bool→ Real is a density for a func-
tional m :: (Bool→ Real)→ Real with respect to the counting mea-
sure if and only if

m c = sum [d t× c t | t← [True,False]]

for all continuations c :: Bool→ Real.

In these definitions, the functional m might equal expect e ρ

for some expression e and environment ρ . Given e and ρ , because
densities are useful, our goal is to find some function d that satisfies
the specification above. To illustrate these definitions, let us check
that the functions in Figure 4 are indeed densities of their respective
distributions. First let us consider the function on the right of
Figure 4, which is supposed to be a density for the functional

m = expect (Let "x" StdRandom (Add (Var "x") (Var "x")))
emptyEnv

= λc.
∫ 1

0 λx.c (x+ x)

Here comes some equational reasoning by univariate calculus. We
extend the domain of integration from the interval (0,1) to the
entire real line:

m = λc.
∫

∞

−∞ λx.(if 0< x<1 then 1 else 0)× c (x+ x)

Then we change the integration variable from x to t = x+ x:

m = λc.
∫

∞

−∞ λ t.(1/2)× (if 0< t/2<1 then 1 else 0)× c t

(The factor 1/2 is the (absolute value of the) derivative of x = t/2
with respect to t.) Matching this equation against Definition 1
shows that

λ t.(1/2)× (if 0< t/2<1 then 1 else 0)
= λ t. if 0< t<2 then 1/2 else 0

is a density for m, as desired. By the way, because changing the
value of the integrand at a few points does not affect the integral,
functions such as

λ t. if t ≡ 1 ∨ t ≡ 3 then 42 else if 0< t 6 2 then 1/2 else 0

are densities for the same m just as well.
Turning to the function on the left of Figure 4, we want to check

that it is a density for the functional

m = expect (Add StdRandom StdRandom) emptyEnv
= λc.

∫ 1
0 λx.

∫ 1
0 λy.c (x+ y)

It is again calculus time. We extend the inner domain of integration
from the interval (0,1) to the entire real line:

m = λc.
∫ 1

0 λx.
∫

∞

−∞ λy.(if 0< y<1 then 1 else 0)× c (x+ y)

Then we change the inner integration variable from y to t = x+ y:

m = λc.
∫ 1

0 λx.
∫

∞

−∞ λ t.(if 0< t− x<1 then 1 else 0)× c t

(No factor is required because the (partial) derivative of y = t− x
with respect to t is 1.) Tonelli’s theorem lets us exchange the nested
integrals:

m = λc.
∫

∞

−∞ λ t.
∫ 1

0 λx.(if 0< t− x<1 then 1 else 0)× c t

Finally, because the inner integration variable x does not appear in
the factor c t, we can pull c t out (in other words, we can use the
linearity of

∫
∞

−∞ ·):

m = λc.
∫

∞

−∞ λ t.(
∫ 1

0 λx. if 0< t− x<1 then 1 else 0)× c t

Matching this last equation against Definition 1 shows that

λ t.
∫ 1

0 λx. if 0< t− x<1 then 1 else 0

is a density for m. This formula can be further simplified to the
closed form in the lower-left corner of Figure 4 (as desired), either
by hand or using a computer algebra system.

Because density functions are useful, we want a program that
automatically computes density functions from distribution expres-
sions. Two such programs have been built before, but they “com-
pute functions” in two different senses of the phrase. Pfeffer’s [10,
§5.2] density calculator is a random algorithm that produces a num-
ber. By running the algorithm many times and averaging the results,
we can approximate the density of a distribution at a given point.
In contrast, Bhat et al.’s [1, 2] density calculator deterministically
produces an exact mathematical formula (which may contain inte-
grals). We can then feed the formula to a computer algebra system
or inference procedure to be analyzed or executed.

In the rest of this paper, we use equational reasoning to derive
a patently compositional density calculator. It produces a density
function that can be treated both as an exact formula and as an
approximation algorithm. We use

∫ ·
· · to integrate over reals, and

perform usual operations on real numbers such as negate and exp
(basically, the members of the Haskell type class Floating and its
superclasses).

5. Calculating probability densities
To recap, our goal in the rest of this paper to write a program that,
given e and ρ , finds a function d that satisfies Definitions 1 and 2
for m = expect e ρ .

Actually, such a function d does not always exist. For example,
when e = Lit 3, we want a function d such that

c 3 =
∫

∞

−∞ λ t.d t× c t

for all c ::Real→ Real. But if c = λ t. if t≡ 3 then 1 else 0, then the
left-hand-side is 1 whereas the right-hand-side is∫

∞

−∞ λ t. if t ≡ 3 then d t else 0

which is 0 no matter what d ::Real→ Real is. So there is no such d.
Thus, not every distribution has a density. Moreover, not every

density can be represented using the operations on Real available
to us. So we have to relax our goal: let us write a program

density :: Expr a→ [Env→ a→ Real]

that maps each distribution expression e to a list of successes [14].
For every element δ of the list, and for every environment ρ that
binds all the free variables in e, we require that the function δ ρ be
a density for the functional expect e ρ . In other words (expanding
Definitions 1 and 2), for all δ , ρ , and c, the equation

expect e ρ c =
∫

∞

−∞ λ t.δ ρ t× c t

(if e :: Expr Real) or the equation

expect e ρ c = sum [δ ρ t× c t | t← [True,False]]

(if e :: Expr Bool) should hold.

Deriving a probability density calculator (functional pearl) 5 2015/2/27

The list returned by density might be empty, but we will
do our best to keep it non-empty. For example, we regret that
density (Lit 3) must be the empty list, but

density (Let "x" StdRandom (Add (Var "x") (Var "x")))

can be the non-empty list

[λ t. if 0< t<2 then 1/2 else 0]

as shown in Section 4.
The fact that not every distribution has a density holds another

lesson for us. It turns out that density is not compositional. In
other words, density on an expression cannot be defined in terms
of density on its subexpressions, for the following reason. On
one hand, Lit 3 and Lit 4 have no density, so density must map
them both to the empty list. On the other hand, the larger ex-
pressions Add (Lit 3) StdRandom and Add (Lit 4) StdRandom
have densities but different ones, so we want density to map them
to different non-empty lists. Thus, density e does not determine
density (Add e StdRandom). Instead, it will be in terms of expect e
that we define density (Add e StdRandom). That is, although
density is not compositional, the interpreter λe.(density e,expect e)
is compositional (but see Section 6.2).

We define density e by structural induction on e.

5.1 Real base cases
An important base case is when e = StdRandom: we define

density StdRandom= [λρ t. if 0< t ∧ t<1 then 1 else 0]

This clause satisfies Definition 1 because

expect StdRandom ρ c
= -- definition of expect∫ 1

0 λ t.c t
= -- extending the domain of integration∫

∞

−∞ λ t.(if 0< t ∧ t<1 then 1 else 0)× c t

For the other base cases of type Real, we must regrettably fail,
as just discussed.

density (Lit) = []
density (Var (Real)) = []

5.2 Boolean cases
In a countable type such as Bool (in contrast to Real), every distri-
bution has a density (with respect to the counting measure). In other
words, there always exists a function d that satisfies Definition 2.
We can derive it as follows:

m c
= -- η-expansion

m (λx.c x)
= -- case analysis on x

m (λx.sum [(if t ≡ x then 1 else 0)× c t | t← [True,False]])
= -- Tonelli’s theorem, or just linearity of m

sum [m (λx. if t ≡ x then 1 else 0)× c t | t← [True,False]]

Matching the right-hand-side against Definition 2 shows that

λ t.m (λx. if t ≡ x then 1 else 0)

is a density for m. Accordingly, we define

densityBool :: Expr Bool→ Env→ Bool→ Real
densityBool e ρ t = expect e ρ (λx. if t ≡ x then 1 else 0)
density (Var (Bool v)) = [densityBool (Var (Bool v))]
density (Not e) = [densityBool (Not e)]
density (Less e1 e2) = [densityBool (Less e1 e2)]

5.3 Unary cases
Things get more interesting in the other recursive cases. Take the
case density (Neg e) for example. Suppose that the recursive call
density e returns the successful result δ , so the induction hypothesis
is that the equation

expect e ρ c =
∫

∞

−∞ λ t.δ ρ t× c t

holds for all ρ and c. We seek some δ ′ such that the equation

expect (Neg e) ρ c =
∫

∞

−∞ λ t.δ ′ ρ t× c t

holds for all ρ and c. Starting with the left-hand-side, we calculate

expect (Neg e) ρ c
= -- definition of expect

expect e ρ (λx.c (−x))
= -- induction hypothesis, substituting λx.c (−x) for c∫

∞

−∞ λx.δ ρ x× c (−x)
= -- changing the integration variable from x to t =−x∫

∞

−∞ λ t.δ ρ (−t)× c t

Therefore, to match the goal, we define

density (Neg e) = [λρ t.δ ρ (−t) | δ ← density e]

A slightly more advanced case is density (Inv e). Again, we
assume the induction hypothesis

expect e ρ c =
∫

∞

−∞ λ t.δ ρ t× c t

and seek some δ ′ satisfying

expect (Inv e) ρ c =
∫

∞

−∞ λ t.δ ′ ρ t× c t

Starting with the left-hand-side, we calculate

expect (Inv e) ρ c
= -- definition of expect

expect e ρ (λx.c (1/x))
= -- induction hypothesis, substituting λx.c (1/x) for c∫

∞

−∞ λx.δ ρ x× c (1/x)
= -- changing the integration variable from x to t = 1/x∫

∞

−∞ λ t.(δ ρ (1/t)/t/t)× c t

(At the last step, the factor 1/t/t is the absolute value of the
derivative of x = 1/t with respect to t.) Therefore, to match the
goal, we define

density (Inv e) = [λρ t.δ ρ (1/t)/t/t | δ ← density e]

The case density (Exp e) illustrates another slight complication:
because the result of exponentiation is never negative, our deriva-
tion prompts us to take the domain of integration into account. We
seek δ ′ such that

expect (Exp e) ρ c =
∫

∞

−∞ λ t.δ ′ ρ t× c t

so we calculate

expect (Exp e) ρ c
= -- definition of expect

expect e ρ (λx.c (exp x))
= -- induction hypothesis, substituting λx.c (exp x) for c∫

∞

−∞ λx.δ ρ x× c (exp x)
= -- changing the integration variable from x to t = exp x∫

∞

0 λ t.(δ ρ (log t)/t)× c t
= -- extending the domain of integration∫

∞

−∞ λ t.(if 0< t then δ ρ (log t)/t else 0)× c t

(At the second-to-last step, the factor 1/t is the absolute value of
the derivative of x = log t with respect to t.) Therefore, to match the
goal, we define

Deriving a probability density calculator (functional pearl) 6 2015/2/27

density (Exp e) = [λρ t. if 0< t then δ ρ (log t)/t else 0
| δ ← density e]

The case density (Log e) can be handled similarly, so we omit
the derivation:

density (Log e) = [λρ t.δ ρ (exp t)× exp t | δ ← density e]

5.4 Conditional
For the case density (If e e1 e2), suppose that the recursive calls
density e1 and density e2 return the successful results δ1 and δ2. (It
turns out that we do not need a density for the subexpression e.) We
seek some δ ′ such that the equation

expect (If e e1 e2) ρ c =
∫

λ t.δ ′ ρ t× c t

holds for all ρ and c. Here the linear functional
∫
· is either

∫
∞

−∞ ·
(if e1 and e2 have type Expr Real) or λc.sum (map c [True,False])
(if e1 and e2 have type Expr Bool). Starting with the left-hand-side,
we calculate

expect (If e e1 e2) ρ c
= -- definition of expect

expect e ρ (λb.expect (if b then e1 else e2) ρ c)
= -- induction hypotheses

expect e ρ (λb.
∫

λ t.(if b then δ1 else δ2) ρ t× c t)
= -- Tonelli’s theorem, exchanging the integrals

-- expect e ρ (λb. . . .) and
∫

λ t. . . .× c t∫
λ t.expect e ρ (λb.(if b then δ1 else δ2) ρ t)× c t

Therefore, to match the goal, we define

density (If e e1 e2) = [λρ t.expect e ρ (λb.
(if b then δ1 else δ2) ρ t)

| δ1← density e1,δ2← density e2]

5.5 Binary operators
Binary operators bring a new twist to our derivation, namely that
our density calculator can be nondeterministic: it can try multiple
strategies for finding a density, and if multiple strategies succeed,
the results are equivalent.

Take Add e1 e2 for example. The distribution denoted by
Add e1 e2 is the convolution of the distributions denoted by e1
and e2. What we seek is some δ ′ such that the equation

expect (Add e1 e2) ρ c =
∫

∞

−∞ λ t.δ ′ ρ t× c t

holds for all ρ and c.
Again starting with the left-hand-side, we calculate

expect (Add e1 e2) ρ c
= -- definition of expect

expect e1 ρ (λx.expect e2 ρ (λy.c (x+ y)))

If the recursive call density e2 returns the successful result δ2, then
the induction hypothesis lets us continue calculating as follows:

= -- induction hypothesis
expect e1 ρ (λx.

∫
∞

−∞ λy.δ2 ρ y× c (x+ y))
= -- changing the integration variable from y to t = x+ y

expect e1 ρ (λx.
∫

∞

−∞ λ t.δ2 ρ (t− x)× c t)
= -- Tonelli’s theorem∫

∞

−∞ λ t.expect e1 ρ (λx.δ2 ρ (t− x))× c t

Therefore, we can define

density (Add e1 e2) = [λρ t.expect e1 ρ (λx.δ2 ρ (t− x))
| δ2← density e2]

By analogous reasoning, we can also define

density (Add e1 e2) = [λρ t.expect e2 ρ (λy.δ1 ρ (t− y))
| δ1← density e1]

Although these two lists can overlap (for example when e1 and
e2 are both StdRandom), they do not subsume each other. For
example, because Lit 3 has no density, only the first definition
handles Add (Lit 3) StdRandom and only the second definition
handles Add StdRandom (Lit 3). In the end, we define

density (Add e1 e2) = [λρ t.expect e1 ρ (λx.δ2 ρ (t− x))
| δ2← density e2]

++[λρ t.expect e2 ρ (λy.δ1 ρ (t− y))
| δ1← density e1]

We can add other binary operators, such as multiplication, to our
language and handle them similarly. (Alternatively, we can express
multiplication in terms of Exp, Add, and Log, just like in the good
old slide-rule days.)

5.6 Variable binding and sharing
As with Add, an expression Let v e e′ may have a density even if
one of its subexpressions e and e′ does not. We call v the bound
variable, e the right-hand-side, and e′ the body of the Let. There
are two basic strategies for handling Let.

First, if the body e′ has a density, then a density of the Let is the
expectation of the body’s density with respect to the right-hand-
side e. That is, if the recursive call density e′ returns the successful
result δ ′, then we calculate

expect (Let v e e′) ρ c
= -- definition of expect

expect e ρ (λx.expect e′ (extendEnv v x ρ) c)
= -- induction hypothesis

expect e ρ (λx.
∫

λ t.δ ′ (extendEnv v x ρ) t× c t)
= -- Tonelli’s theorem∫

λ t.(expect e ρ (λx.δ ′ (extendEnv v x ρ) t))× c t

Therefore, we can define

density (Let v e e′)
= [λρ t.expect e ρ (λx.δ ′ (extendEnv v x ρ) t)

| δ ′← density e′]

This strategy handles Let expressions that use the bound vari-
able as a parameter. The right-hand-side can be deterministic, as in

Let "x" (Lit 3)
(Add (Add (Var "x") (Var "x")) StdRandom)

or random, as in

Let "x" StdRandom
(Add (Add (Var "x") (Var "x")) StdRandom)

However, this strategy fails on Let expressions whose bodies are
deterministic, such as

Let "x" (Neg StdRandom)
(Exp (Var "x"))

These Let expressions have densities only because their right-hand-
sides are random. Hence we introduce another strategy for handling
Let: check if the body of the Let uses the bound variable at most
once. If so, we can inline the right-hand-side into the body. That
is, we can replace Let v e e′ by the result of substituting e for v
in e′, which we write as e′{v 7→ e}. (This substitution operation
sometimes needs to rename variables in e′ to avoid capture.) This
replacement preserves the meaning of the Let expression even if
the body is random. For example, we can handle the expression

e1 = Let "x" (Neg StdRandom)
(Add StdRandom (Exp (Var "x")))

Deriving a probability density calculator (functional pearl) 7 2015/2/27

by turning it into the equivalent expression

e2 = Add StdRandom (Exp (Neg StdRandom))

To see this equivalence, apply the definition of expect to e1 and e2:

expect e1 ρ c =
∫ 1

0 λx.
∫ 1

0 λ t.c (t+ exp (−x))
expect e2 ρ c =

∫ 1
0 λ t.

∫ 1
0 λx.c (t+ exp (−x))

Then use Tonelli’s theorem to move inward the outer integral
∫ 1

0 λx
in expect e1 ρ c, which corresponds to the random choice made in
Neg StdRandom. If we think of random choice as a side effect,
then Tonelli’s theorem lets us delay evaluating the right-hand-side
Neg StdRandom until the body Add StdRandom (Exp (Var "x"))
actually uses the bound variable "x".

In general, Tonelli’s theorem tells us that delayed evaluation
preserves the expectation semantics of the expression Let v e e′
when the body e′ uses the bound variable v exactly once. Moreover,
in the case where e′ never uses v, delayed evaluation also preserves
the expectation semantics, but for a different reason: if e′ never
uses v, then expect e′ (extendEnv v x ρ) c = expect e′ ρ c, so

expect (Let v e e′) ρ c
= -- definition of expect

expect e ρ (λx.expect e′ (extendEnv v x ρ) c)
= -- e′ never uses v

expect e ρ (λx.expect e′ ρ c)
= -- pull the scalar factor expect e′ ρ c

-- out of the integral expect e ρ (λx. . . .)
expect e ρ (λx.1)× expect e′ ρ c

and a simple induction on e shows that expect e ρ (λx.1) is always
equal to 1 in our language.

Backed by this reasoning, we put the two strategies together to
define

density (Let v e e′)
= [λρ t.expect e ρ (λx.δ ′ (extendEnv v x ρ) t)

| δ ′← density e′] -- first strategy
++[δ ′ | usage e′ v 6 AtMostOnce

, δ ′← density (e′{v 7→ e})] -- second strategy

5.6.1 Usage testing
The condition usage e′ v 6 AtMostOnce above tests conservatively
whether the expression e′ uses the variable v at most once. (This
test serves the purpose of Bhat et al.’s [1] active variables and
independence test.) The rest of this section describes how we define
this test. You can skip to the next section, but then you would miss
a nice example of an order and a monoid used to define an abstract
interpretation.

The type of usage is

usage :: Expr a→ Var b→ Usage

The return type Usage represents our knowledge about how many
times the expression e′ uses the variable v.

data Usage = Never | AtMostOnce | Unknown
deriving (Eq,Ord)

The type Usage has two useful algebraic structures. First, some
Usage values entail others as propositions. For example, if v is
never used, then v is used at most once. This entailment relation
just happens to be a total order, so we define the operator 6 to
mean entailment, by deriving Ord above.

Second, when two subexpressions together produce a final out-
come, the counts of how many times they use v add up, and our
knowledge of the counts forms a commutative monoid. For exam-
ple, suppose e′ = Add e′1 e′2, and we know that e′1 never uses v and

e′2 uses v at most once. Then we know that e′ uses v at most once. If
instead we only know that e′1 and e′2 each use v at most once, then
all we know about e′ is it uses v at most twice. That is not useful
knowledge about e′, so we might as well represent it as Unknown.
We define the operator ⊕ to add up our knowledge in this way:

instance Monoid Usage where
mempty = Never
Never⊕u = u
u ⊕Never = u

⊕ = Unknown

Armed with these two instances, we can define the usage function:

usage StdRandom = Never
usage (Lit) = Never
usage (Var v) v′ = if jmEq v v′ then AtMostOnce

else Never
usage (Let v e e′) v′ = usage e v′⊕ if jmEq v v′ then Never

else usage e′ v′

usage (Neg e) v = usage e v
usage (Inv e) v = usage e v
usage (Exp e) v = usage e v
usage (Log e) v = usage e v
usage (Not e) v = usage e v
usage (Add e1 e2) v = usage e1 v⊕usage e2 v
usage (Less e1 e2) v = usage e1 v⊕usage e2 v
usage (If e e1 e2) v = usage e v⊕max (usage e1 v)

(usage e2 v)

5.6.2 Monad laws
Every monad is supposed to obey the three laws [15]

return a>>= k = k a -- Left unit
m>>= return = m -- Right unit
m>>=λa.(k a>>=h) = (m>>= k)>>=h -- Associativity

if only up to observation [5]. Our language has random choice as
an implicit side effect, so there are no explicit constructs return and
>>=, but as in a typical call-by-value language, the meaning of our
Let is the >>= operation of the underlying probability monad [12].
Accordingly, we want the following three laws to hold, if only up
to observation:

Let v (Var v) e = e
Let v e (Var v) = e
Let v2 (Let v1 e1 e2) e = Let v1 e1 (Let v2 e2 e)

-- if usage e v1 ≡ Never

It is easy to check that these equations hold under the observation
functions sample and expect. For example, it is easy to check that

expect (Let v e (Var v))
= -- definition of expect

λρ c.expect e ρ (λx.expect (Var v) (extendEnv v x ρ) c)
= -- definition of expect, lookupEnv, and extendEnv

λρ c.expect e ρ (λx.c x)
= -- η-reductions

expect e

A more interesting exercise is to check that the same equations hold
under the observation functions density, as long as we treat the list
of successes returned by density as a set. We leave this to the reader.

6. Properties of our density calculator
As explained at the beginning of Section 5, we want our density
calculator to be compositional and return a successful result as

Deriving a probability density calculator (functional pearl) 8 2015/2/27

often as possible. Unfortunately, density does not succeed as often
as we want. However, it can be made compositional.

6.1 Incompleteness
As shown in Section 4, the distribution

Let "x" StdRandom (Add (Var "x") (Var "x"))

has a density function. In particular, it would be correct if

density (Let "x" StdRandom (Add (Var "x") (Var "x")))

were to return the non-empty list

[λ t. if 0< t<2 then 1/2 else 0]

Nevertheless, our density function returns the empty list, because

usage (Add (Var "x") (Var "x")) "x"= Unknown
density [Add (Var "x") (Var "x")] = []

and our code does not know x+ x = 2× x. This example shows
there is room for our code to improve by succeeding more often.

6.2 Compositionality
As promised above Section 5.1, our definition of density e not only
uses the density of the subexpressions of e, but also uses expect. Af-
ter all, we have seen that density itself is not compositional. But to
handle Let, we strayed even further from perfect compositionality:
our definition depends on substitution and usage, two more func-
tions defined by structural induction on expressions. Can we still
express density as a special case of a compositional and more gen-
eral function, just as the expected value of a distribution is a special
case of the compositional and more general function expect? The
answer turns out to be yes—we just need to rearrange the code al-
ready derived above. This is good news for people building a com-
piler from distributions to densities, including the present authors,
because compositionality enables separate compilation.

If we had only used expect and usage to define density, it would
have been straightforward to generalize density to a compositional
function: just specify

data GeneralDensity a = GD {
gdExpect :: Env→ (a→ Real)→ Real,
gdUsage ::∀b.Var b→ Usage,
gdDensity :: [Env→ a→ Real]}

generalDensity :: Expr a→ GeneralDensity a
generalDensity e = GD {

gdExpect = expect e,
gdUsage = usage e,
gdDensity = density e}

and fuse it with our clauses defining expect, usage, and density,
so as to define generalDensity e purely by structural induction
on e. For example, the new clause defining generalDensity on Add
expressions would read

generalDensity (Add e1 e2) = GD {
gdExpect = λρ c.gdExpect gd1 ρ (λx.

gdExpect gd2 ρ (λy.c (x+ y))),
gdUsage = λv.gdUsage gd1 v⊕gdUsage gd2 v,
gdDensity = [λρ t.gdExpect gd1 ρ (λx.δ2 ρ (t− x))

| δ2← gdDensity gd2]
++[λρ t.gdExpect gd2 ρ (λy.δ1 ρ (t− y))
| δ1← gdDensity gd1]}

where gd1 = generalDensity e1
gd2 = generalDensity e2

collecting the definition of expect (Add e1 e2) in Section 3.1, the
definition of usage (Add e1 e2) in Section 5.6.1, and the definition

of density (Add e1 e2) in Section 5.5. This is the tupling transfor-
mation [3, 9] applied to the pattern of dependent interpretations
discussed by Gibbons and Wu [4, §4.2].

The use of density (e′{v 7→ e}) to define density (Let v e e′)
complicates our quest for compositionality, because the recursive
argument e′{v 7→ e} is not necessarily a subexpression of Let v e e′.
Instead of substituting e for v, we need the semantic analogue: some
map, which we call SEnv for “static environment”, that associates
the variable v to the expect and density interpretations of e. We
group these interpretations into a record type General. And instead
of storing values in Env and renaming variables to avoid capture, we
need the semantic analogue: storing values in lists, which we call
DEnv for “dynamic environment”, and allocating a fresh position
in the lists for each variable.

data SEnv = SEnv {
freshReal :: Int,
freshBool :: Int,
lookupSEnv ::∀a.Var a→ General a}

data General a = General {
gExpect :: DEnv→ (a→ Real)→ Real,
gDensity :: [DEnv→ a→ Real]}

data DEnv = DEnv {
lookupReal :: [Real],
lookupBool :: [Bool]}

At the top-level scope where the processing of a closed distribution
expression commences, the static environment maps every variable
name to an error and begins allocation at list position 0, matching
the initially empty dynamic environment.

emptySEnv :: SEnv
emptySEnv = SEnv {freshReal = 0,

freshBool = 0,
lookupSEnv = λv.error "Unbound"}

emptyDEnv :: DEnv
emptyDEnv = DEnv {lookupReal = [],

lookupBool = []}
We call our omnibus interpretation general. It maps each distribu-
tion expression to its usage alongside a function from static envi-
ronments to expect and density interpretations. The definition of
general is mostly rearranging the code in Sections 3.1 and 5, so we
relegate it to the appendix.

general :: Expr a→ (∀b.Var b→ Usage,
SEnv→ General a)

We can finally define our density calculator as a special case of the
patently compositional function general:

runDensity :: Expr a→ [a→ Real]
runDensity e = [δ emptyDEnv

| δ ← gDensity (snd (general e) emptySEnv)]

7. Approximating probability densities
The density calculator derived in Section 5 produces output rife
with integrals. The definition of density itself does not contain
integrals, but expect StdRandom contains an integral, and density
is defined in terms of expect in the boolean, If, Add, and Let cases.
For example, here is one success of our density calculator:

density (Add StdRandom StdRandom)
= [λρ t.expect StdRandom ρ (λx.δ2 ρ (t− x))
| δ2← density StdRandom] ++ · · ·

= [λρ t.
∫ 1

0 λx. if 0< t− x<1 then 1 else 0]++ · · ·

Deriving a probability density calculator (functional pearl) 9 2015/2/27

One way to use density is to feed its output to a computer
algebra system for simplification. If we are lucky, we might get a
closed form that can be run as an exact deterministic algorithm. For
example, Maxima, Maple, and Mathematica can each simplify the
successful result above to the closed form in the lower-left corner
of Figure 4.

Moreover, even if some integrals cannot be simplified away, we
can execute the function produced by density as a randomized al-
gorithm whose expected output is the density at the given point.
All it takes is interpreting each call from density to expect as sam-
pling randomly from a distribution. For example, we can interpret
the successful result above, as is, as the following randomized (and
embarrassingly parallel) algorithm:

Algorithm 1. Given t, choose a random real number x uniformly
between 0 and 1, then compute if 0< t− x<1 then 1 else 0.

When time is about to run out, we average the results from repeated
independent runs of this algorithm.

A more substantial example is the distribution

Add StdRandom (Exp (Neg StdRandom))

This input exercises the nondeterminism in the Add case of density:

density (Add StdRandom (Exp (Neg StdRandom)))
= [λρ t.expect StdRandom ρ (λx.δ2 ρ (t− x))
| δ2← density (Exp (Neg StdRandom))]

++[λρ t.expect (Exp (Neg StdRandom)) ρ (λy.δ1 ρ (t− y))
| δ1← density StdRandom]

= [λρ t.
∫ 1

0 λx. if 0< t− x
then (if 0<−log (t− x)<1 then 1 else 0)

/(t− x)
else 0,

λρ t.
∫ 1

0 λ z. if 0< t− exp (−z)<1 then 1 else 0]

Suppose we can simplify these two results no further. Nevertheless,
they can be interpreted as two randomized algorithms:

Algorithm 2. Given t, choose x between 0 and 1, then compute

if 0< t− x
then (if 0<−log (t− x)<1 then 1 else 0)

/(t− x)
else 0

In short, sample x from the first summand StdRandom, then com-
pute the density of the second summand Exp (Neg StdRandom) at
t− x.

Algorithm 3. Given t, choose z between 0 and 1, then compute

if 0< t− exp (−z)<1 then 1 else 0

In other words, sample y = exp (−z) from the second summand
Exp (Neg StdRandom), then compute the density of the first sum-
mand StdRandom at t− y.

Both algorithms are correct, in the sense that the expected out-
put from each algorithm is an actual density at t. Therefore, we can
estimate a density by running the algorithms many times and av-
eraging the results when time is about to run out. In general, it is
correct in this sense to interpret each call from density to expect e
as sampling randomly from e. In particular, it is correct to interpret∫ 1

0 λx as choosing x uniformly between 0 and 1, because the result
of the density formula is always affine in the result of the integral.
That is, integrals appear only in positions such as∫
· · ·
. . .

and
1
2
+
∫
· · · , but not

. . .∫
· · ·

or
(∫
· · ·
)2

.

In fact, we can randomly choose between the two algorithms
on each iteration, and this probabilistic mixture of the two algo-
rithms is also correct. That is what Pfeffer’s [10, §5.2] approximate
algorithm for density estimation does: each time it encounters an
expression of the form Add e1 e2, it randomly chooses whether to
sample from e1 then attempt to compute the density of e2, or to
sample from e2 then attempt to compute the density of e1. If the
attempt fails, then the algorithm just produces no density estimate
on that particular iteration (which is different from estimating 0).
Although possibly less accurate, this randomization brings several
potential advantages:

1. It does not spend time trying symbolic integration.

2. It does not need to analyze the entire input expression before
starting to generate density estimates. This is especially suitable
for a pipelined setting, where the input expression may be
generated or unrolled on the fly.

3. It may succeed on some input expressions containing unreached
subexpressions that stymie the exact algorithm.

8. Making density approximation more accurate
We have seen that the formula produced by our density calcula-
tor not only denotes an exact mathematical function but also can
be interpreted as an approximation algorithm. Sometimes we can
simplify the integrals in the formula away and get a closed form
that runs in constant time. But even if we cannot eliminate all inte-
grals, simplifying the density formula can make the corresponding
approximation algorithm run faster and produce results that vary
less from run to run, and so yield a more accurate density estimate
given the same amount of time.

For example, our density calculator succeeds on the expression

If (Less StdRandom (Lit (1/2)))
(Add StdRandom StdRandom)
(Add StdRandom (Exp (Neg StdRandom)))

in two ways. In other words, it produces two approximate algo-
rithms for this expression’s density. Both algorithms are easy to
describe in terms of the building blocks in Section 7.

A. Flip a fair coin to choose between Algorithms 1 and 2.

B. Flip a fair coin to choose between Algorithms 1 and 3.

The experimental probabilistic programming system Hakaru sim-
plifies these algorithms to

A simplified. Flip a fair coin to choose between

if 0< t 6 1 then t else if 1< t 6 2 then 2− t else 0

and Algorithm 2.

B simplified. Flip a fair coin to choose between

if 0< t 6 1 then t else if 1< t 6 2 then 2− t else 0

and Algorithm 3.

Hence the variance in Algorithms 2 and 3 remains, but the variance
in Algorithm 1 is gone.

Using Hakaru, we ran these 4 algorithms (A and B, unsimplified
and simplified) on a typical compute node. For each value of t in
[0,0.02 . .2], we ran each algorithm 100 times, each time using
5 milliseconds of unparallelized CPU time and achieving several
hundred iterations.

Figure 5 plots the standard deviation of the density estimates
produced by each algorithm. Given that all 4 algorithms have the
same correct expected value, lower in the plot is better because it
means the algorithm’s estimate is less variable and more accurate.

Deriving a probability density calculator (functional pearl) 10 2015/2/27

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

t

St
an

da
rd

de
vi

at
io

n
of

de
ns

ity
es

tim
at

es

Unsimplified A
Simplified A
Unsimplified B
Simplified B

Figure 5. Standard deviation of the 100 density estimates pro-
duced by each of 4 different algorithms for each input value t

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

t

D
en

si
ty

Figure 6. True density of the example distribution in Section 8

0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8
0.55

0.6

0.65

0.7

0.75

0.8

0.85

t

D
en

si
ty

es
tim

at
e

Figure 7. Scatter plot of density estimates for a typical region of
input values. Each group of 4 vertical clusters represents the 100
density estimates produced by each algorithm for one input value t.
Each cluster in the group of 4 represents a different algorithm
(ordered and colored as in Figure 5). In each cluster, the box shows
the mean and standard deviation, and the horizontal location of a
point is not meaningful. The diagonal curve is the true density.

The plot shows that Algorithm B is better than Algorithm A, and
more importantly, simplification improves both algorithms.

For reference, Figure 6 shows the true density of our example
distribution. Figure 7 zooms into a typical region of the distribution
(t ∈ [0.68,0.7 . .0.78]) and plots each density estimate as a point.
The more tightly the points are clustered together, the better the
algorithm. We see that, in this region of the distribution, the algo-
rithms from best to worst are Algorithm B simplified, Algorithm B
unsimplified, Algorithm A simplified, Algorithm A unsimplified.

In sum, simplifying the output of our density calculator can
make it more accurate even if some integrals remain. This hybrid
between exact and approximate density computation is possible
thanks to the mathematical semantics of both kinds of computation.

9. Conclusion
We have turned a specification of density functions in terms of
expectation functionals into a syntax-directed implementation that
supports separate compilation. Our equational derivation draws
from algebra, integral calculus, and λ -calculus. It suggests that pro-
gram calculation and transformation may be powerful ways to turn
expressive probabilistic models into effective inference procedures.
We are investigating this hypothesis in ongoing work.

Acknowledgments
This research was supported by DARPA grant FA8750-14-2-0007,
NSF grant CNS-0723054, Lilly Endowment, Inc. (through its sup-
port for the Indiana University Pervasive Technology Institute), and
the Indiana METACyt Initiative. The Indiana METACyt Initiative
at IU is also supported in part by Lilly Endowment, Inc.

References
[1] S. Bhat, A. Agarwal, R. Vuduc, and A. Gray. A type theory for

probability density functions. In Proceedings of POPL 2012, pages
545–556. ACM Press, 2012.

[2] S. Bhat, J. Borgström, A. D. Gordon, and C. V. Russo. Deriving
probability density functions from probabilistic functional programs.
In N. Piterman and S. A. Smolka, editors, Proceedings of TACAS
2013: 19th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, number 7795 in Lecture Notes
in Computer Science, pages 508–522. Springer, 2013.

[3] R. S. Bird. Tabulation techniques for recursive programs. ACM
Computing Surveys, 12(4):403–417, 1980.

[4] J. Gibbons and N. Wu. Folding domain-specific languages: Deep and
shallow embeddings (functional pearl). In J. Jeuring and M. M. T.
Chakravarty, editors, Proceedings of ICFP 2014, pages 339–347.
ACM Press, 2014.

[5] R. Hinze. Deriving backtracking monad transformers. In Proceedings
of ICFP 2000, pages 186–197. ACM Press, 2000.

[6] J. Hughes. The design of a pretty-printing library. In J. Jeuring
and E. Meijer, editors, Advanced Functional Programming: 1st Inter-
national Spring School on Advanced Functional Programming Tech-
niques, number 925 in Lecture Notes in Computer Science, pages 53–
96. Springer, 1995.

[7] D. J. C. MacKay. Introduction to Monte Carlo methods. In M. I.
Jordan, editor, Learning and Inference in Graphical Models. Kluwer,
1998. Paperback: Learning in Graphical Models, MIT Press.

[8] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988. Revised 2nd printing,
1998.

[9] A. Pettorossi. A powerful strategy for deriving efficient programs by
transformation. In Proceedings of the 1984 ACM Symposium on Lisp
and Functional Programming, pages 273–281. ACM Press, 1984.

[10] A. Pfeffer. CTPPL: A continuous time probabilistic programming
language. In C. Boutilier, editor, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, pages 1943–1950, 2009.

Deriving a probability density calculator (functional pearl) 11 2015/2/27

[11] D. Pollard. A User’s Guide to Measure Theoretic Probability. Cam-
bridge University Press, 2001.

[12] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In Proceedings of POPL 2002, pages 154–
165. ACM Press, 2002.

[13] L. Tierney. A note on Metropolis-Hastings kernels for general state
spaces. The Annals of Applied Probability, 8(1):1–9, 1998.

[14] P. L. Wadler. How to replace failure by a list of successes: A method
for exception handling, backtracking, and pattern matching in lazy
functional languages. In J.-P. Jouannaud, editor, Functional Program-
ming Languages and Computer Architecture, number 201 in Lecture
Notes in Computer Science, pages 113–128. Springer, 1985.

[15] P. L. Wadler. The essence of functional programming. In Proceedings
of POPL 1992, pages 1–14. ACM Press, 1992.

A. Compositional density calculator

extendSEnv :: Var a→ General a→ SEnv→ SEnv
extendSEnv v x σ = σ {

lookupSEnv = extendSEnv′ v x (lookupSEnv σ)}
extendSEnv′ :: Var a→ General a→ (∀b.Var b→ General b)

→ (∀b.Var b→ General b)
extendSEnv′ (Real v) x (Real v′) | v≡ v′ = x
extendSEnv′ (Bool v) x (Bool v′) | v≡ v′ = x
extendSEnv′ σ v′ = σ v′

extendList :: Int→ a→ [a]→ [a]
extendList i x xs
| i≡ length xs = xs++[x]
| otherwise = error ("Expected length "++ show i++

", got "++ show (length xs))

generalReal :: (DEnv→ Real)→ General Real
generalReal f = General {

gExpect = λρ c.c (f ρ),
gDensity = []}

generalBool :: (DEnv→ (Bool→ Real)→ Real)→ General Bool
generalBool e = General {

gExpect = e,
gDensity = [λρ t.e ρ (λx. if t ≡ x then 1 else 0)]}

allocate :: Var a→ SEnv→ (SEnv,a→ DEnv→ DEnv)
allocate v@(Real) σ =

let i = freshReal σ

in (extendSEnv v (generalReal (λρ. lookupReal ρ !! i))
σ {freshReal = i+1},

λx ρ.ρ {lookupReal = extendList i x (lookupReal ρ)})
allocate v@(Bool) σ =

let i = freshBool σ

in (extendSEnv v (generalBool (λρ c.c (lookupBool ρ !! i)))
σ {freshBool = i+1},

λx ρ.ρ {lookupBool = extendList i x (lookupBool ρ)})

general StdRandom= (λ .Never,
λ .General {
gExpect = λ c.

∫ 1
0 λx.c x,

gDensity = [λ t. if 0< t ∧ t<1 then 1 else 0]})
general (Lit x) = (λ .Never,

λ .generalReal (λ . fromRational x))

general (Var v) = (λv′. if jmEq v v′ then AtMostOnce else Never,
λσ . lookupSEnv σ v)

general (Let v e e′) = (λv′.u v′⊕ if jmEq v v′ then Never else u′ v′,
λσ . let (σ ′,ε) = allocate v σ

σ ′′ = extendSEnv v (g σ) σ in General {
gExpect = λρ c.gExpect (g σ) ρ (λx.

gExpect (g′ σ ′) (ε x ρ) c),
gDensity = [λρ t.gExpect (g σ) ρ (λx.δ ′ (ε x ρ) t)

| δ ′← gDensity (g′ σ ′)]
++[δ ′ | u′ v 6 AtMostOnce

, δ ′← gDensity (g′ σ ′′)]})
where (u ,g) = general e

(u′ ,g′) = general e′

general (Neg e) = (u,
λσ .General {
gExpect = λρ c.gExpect (g σ) ρ (λx.c (−x)),
gDensity = [λρ t.δ ρ (−t) | δ ← gDensity (g σ)]})
where (u,g) = general e

general (Inv e) = (u,
λσ .General {
gExpect = λρ c.gExpect (g σ) ρ (λx.c (1/x)),
gDensity = [λρ t.δ ρ (1/t)/t/t | δ ← gDensity (g σ)]})
where (u,g) = general e

general (Exp e) = (u,
λσ .General {
gExpect = λρ c.gExpect (g σ) ρ (λx.c (exp x)),
gDensity = [λρ t. if 0< t then δ ρ (log t)/t else 0

| δ ← gDensity (g σ)]})
where (u,g) = general e

general (Log e) = (u,
λσ .General {
gExpect = λρ c.gExpect (g σ) ρ (λx.c (log x)),
gDensity = [λρ t.δ ρ (exp t)× exp t | δ ← gDensity (g σ)]})
where (u,g) = general e

general (Not e) = (u,
λσ .generalBool (λρ c.gExpect (g σ) ρ (λx.c (not x))))
where (u,g) = general e

general (Add e1 e2) = (λv.u1 v⊕u2 v,
λσ .General {
gExpect = λρ c.gExpect (g1 σ) ρ (λx.

gExpect (g2 σ) ρ (λy.c (x+ y))),
gDensity = [λρ t.gExpect (g1 σ) ρ (λx.δ2 ρ (t− x))

| δ2← gDensity (g2 σ)]
++[λρ t.gExpect (g2 σ) ρ (λy.δ1 ρ (t− y))
| δ1← gDensity (g1 σ)]})

where (u1,g1) = general e1
(u2,g2) = general e2

general (Less e1 e2) = (λv.u1 v⊕u2 v,
λσ .generalBool (λρ c.gExpect (g1 σ) ρ (λx.

gExpect (g2 σ) ρ (λy.c (x< y)))))
where (u1,g1) = general e1

(u2,g2) = general e2

general (If e e1 e2) = (λv.u v⊕max (u1 v) (u2 v),
λσ .General {
gExpect = λρ c.gExpect (g σ) ρ (λb.

gExpect ((if b then g1 else g2) σ) ρ c),
gDensity = [λρ t.gExpect (g σ) ρ (λb.

(if b then δ1 else δ2) ρ t)
| δ1← gDensity (g1 σ),δ2← gDensity (g2 σ)]})

where (u ,g) = general e
(u1,g1) = general e1
(u2,g2) = general e2

Deriving a probability density calculator (functional pearl) 12 2015/2/27

