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1. Introduction
Probability distributions are a popular way to model and handle
uncertainty. In particular, the typical Bayesian reasoner begins with
a prior probability distribution on all possible worlds, observes
the actual world, then conditions the prior distribution to obtain
a posterior distribution on those possible worlds that match the
observations. It is common and convenient to specify a distribution
by composing a generative story, which is a procedure that picks a
world randomly, usually by modeling the relevant aspects of how
the world comes to be.

TODO our contributions

1.1 Background example
We illustrate the starting point of this paper with an example. Sup-
pose we observed the players of a one-on-one game, perhaps to
match them up to make future games more fun. For simplicity,
suppose we saw just one game, in which the player Alice beat the
player Bob. This outcome may be due to Alice’s skill level (what-
ever it means) being higher than Bob’s, or due to Alice being lucky
in this particular game (whatever it means). Regardless, we can ask
how Alice’s skill level compares to Bob’s, given that Alice beat
Bob. To model the situation, we can write the following generative
story:

do {a  normal 10 3;
b  normal 10 3;
l  normal 0 2;
let true=(l < a − b);
return (a,b)}

(1)

The first line of this program means to pick a real number a from
the normal distribution with mean 10 and standard deviation 3.
The second line picks b from the same distribution. These numbers
model the skill levels of Alice and Bob. The third line picks l, which
models how much luck Bob has over Alice in this game. These
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Figure 1. An approximate prior distribution: 1000 random sam-
ples generated by the first three lines of (1) (one line for each di-
mension). The red triangles are samples rejected by the fourth line
of (1). The blue circles are samples accepted by that line.

three lines together define a prior distribution on R3, in which each
point (a,b, l) is a possible world. Figure 1 depicts this distribution
approximately, as a cloud of points (both red triangles and blue
circles). The fourth line performs a non-exhaustive pattern-match
to restrict the distribution to the part where l < a− b. This step
incorporates our observation that Alice beat Bob. The first four
lines together define the posterior distribution on R3, shown as blue
circles in Figure 1. The last line projects this distribution from R3

to R2.
A simple way to answer a question about the distribution is

to interpret this program as a sampler—that is, a probabilistic
algorithm that generates a random point. For instance, it is well-
studied how to generate a pseudorandom number from a normal
distribution. We run this sampler 1000 times, say (as shown in
Figure 1). These resulting points approximate our uncertainty about
Alice and Bob’s skill levels. For example, as shown in Figure 2, to
estimate the probability that Alice is more skilled than Bob, we can
compute the proportion of resulting points where a > b.

To make this estimation method more accurate, we can change
the program (1) to one that denotes the same distribution but makes
fewer random choices. For example, instead of picking l then test-
ing l < a − b, the following equivalent program generate samples
with uneven importance weights:

do {a  normal 10 3;
b  normal 10 3;

factor
1+ erf ((a − b)/(2 ×

√
2))

2
;

return (a,b)}

(2)
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Figure 2. A boolean query on an approximate posterior distribu-
tion: fewer than 1000 random samples generated by (1). The sam-
ples to the right of the diagonal line are where a > b.
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Figure 3. A boolean query on a better approximate posterior distri-
bution: 1000 weighted random samples generated by (2). The size
and darkness of each circle reflect its weight. As in Figure 2, the
samples to the right of the diagonal line are where a > b.

Interpreted as a sampler, this program does not pick any concrete l,
but rather attaches the weight 1+erf((a−b)/(2×

√
2))

2 (instead of the
default weight 1) to each generated point (a,b). This weight is the
probability that, had we chosen a concrete l as in (1), we would
have chosen an l that passes the test l < a − b. We can think of the
weight as softening the rejection due to a failed pattern-match. As
shown in Figure 3, to estimate the probability that Alice is more
skilled than Bob, we should divide the total weight of points where
a> b by the total weight of all points. This estimate varies less from
run to run than the estimate from (1) does, because this program
makes fewer random choices while denoting the same distribution.
That is good.

We wait until Section 3 to detail how expressions denote distri-
butions. The gist of the present example is that we turned a prior
distribution expressed as a program (namely the first three lines of
(1)) into a posterior distribution expressed as a more efficient pro-
gram (namely (2)), in two steps:

1. We expressed an observation as a non-exhaustive pattern-match
(the fourth line of (1)).

2. We justified an optimization by denotation equality (between
the third and fourth lines of (1) and the third line of (2)).

1.2 The need to generalize and mechanize conditioning
In general, just as it is useful to express any distribution as a
sampler program, it is useful to express a posterior distribution as a
sampler program such as (1) or (2). There are a variety of reasons:

1. A human can then read the code and understand the posterior as
a distribution in its own right, then reason about it equationally.

2. A larger program can include the posterior. Posteriors are an
essential part of many probabilistic inference algorithms (such
as Monte Carlo Markov chain methods [13]) as well as proba-
bilistic models (for reasoning about reasoning [17]).

3. A program transformation can generate the posterior from the
prior. For example, the fourth line of (1) could have been added
automatically.

4. A human or a machine such as a compiler pass can simplify
and optimize the posterior. For example, we are building a
probabilistic programming system Hakaru that can turn the
third and fourth lines of (1) into the third line of (2).

5. A robot that receives a stream of observations as the world
changes over time can update the posterior to reflect the evo-
lution and uncertainty of its knowledge [10].

Before we can express the posterior distribution as a program,
we need to specify what it is, so as to inform the design and
justify the correctness of each of the applications listed above. In
other words, we need to specify conditioning, the mathematical
operation that turns the prior into the posterior. Unfortunately, the
specification of conditioning in current probabilistic programming
languages assumes that the condition has non-zero probability. For
example, the probability of l < a − b in (1) and Figure 1 is 1/2. If
this probability were zero, then we would get the empty distribution
with no samples, which is unworthy of being called a posterior.

In practice, it is very common for the condition to have zero
probability. TODO: Motivating example of zero-probability condi-
tion from July 2014 talk.

1.3 Our contributions
We define a probabilistic language whose types are measurable
spaces that can be uncountable and whose terms can be interpreted
simultaneously as samplers, measures, and functionals.

We generalize the specification of conditioning to when the con-
dition has zero probability, by adapting to programming languages
the notion of disintegration advertised by Chang and Pollard [5].

We implement this specification as a program transformation
that generalizes both Bhat et al.’s density calculator [1, 2] and
Fischer et al.’s sharing-preserving lazy partial evaluator [8].

2. Samplers, measures, and functionals
For its motivation, intuition, and correctness, our work relies on a
three-way correspondence between samplers, measures, and func-
tionals. Thus, we introduce these concepts and detail the correspon-
dence in this section.

2.1 Samplers
A sampler is a program that uses randomness to produce a result.
We can think of each run of the program as an experiment, and the
result of the run is the outcome of the experiment. A typical sampler
is composed of building blocks that are primitive samplers. For
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example, one primitive sampler might be to choose a real number
uniformly at random between 0 and 1. In our language, we can
express this sampler by the primitive expression random. One
way to flip a fair coin (that is, to choose between two outcomes
with equal probability) is to perform random twice then see which
result is bigger. Because our language is monadic, we can express
this composed sampler by the expression

do {x  random; y  random; return (x < y)}. (3)

Here return is the monad unit operation (return in Haskell) and
do {x  · · · ; · · ·} is the monad bind operation (>>= in Haskell). The
type of random is MR (where M is the monad type constructor),
because random is not a real number but rather a sampler that
produces a real number. The type of (3) is M(1+1), because our
numeric comparison < returns the sum of unit types 1+ 1 (the
value inl () for true and the value inr () for false).

To optimize and reason about programs, we want to consider
many samplers equivalent that do not describe exactly the same
procedure. For example, the following are two other perfectly cor-
rect ways to flip a fair coin in our language:

do {y  random; x  random; return (x < y)} (4)
do {x  random; return (x < 1/2)} (5)

If we are running these programs using a pseudo-random number
generator, then we may well want to optimize the first two ways
to the third way, despite (or due to) the third way using less ran-
domness. Such an optimization is justified by the fact that the three
ways denote the same measure, even though not the same sampler
[15].

2.2 Measures
A measure is a mathematical function that maps sets to non-
negative real numbers. In the slightly unfortunate standard ter-
minology, the measure is said to measure sets and return their
measures.

1. For example, random in our language denotes the uniform
probability measure on (0,1): given an interval (a,b) of real
numbers, it returns the length of the intersection of the intervals
(0,1) and (a,b). Thus the measure of the interval (2/3,2) is
1/3. This matches the fact that, a third of the time, choosing a
real number uniformly at random between 0 and 1 produces a
number between 2/3 and 2.

A different measure may well give a different result from measur-
ing the same set.

2. For example, return x denotes the Dirac measure at x: given
the same set S to be measured, whether S is an interval (a,b),
it returns 1 if x ∈ S, and 0 otherwise. [TODO: Use x only for a
variable and a,b only for atomic terms?]

The general idea is that each sampler corresponds to the measure
that, given a set of outcomes, tells the probability that running the
sampler will produce an outcome in the given set. The deterministic
sampler return x always produces the same outcome x, so the
probability that the outcome is in the measured set is either 1 or 0.

To avoid pathological cases, a measure is not required to mea-
sure every set of real numbers. Rather, we introduce the notion of a
measurable space. A measurable space is a set A, equipped with a
notion of what subsets of A can be measured. The complement of a
measurable set and the union of a countable collection of measur-
able sets must be measurable. In particular, the empty set {} and
the full set A must both be measurable, because the empty set is the
nullary union and the full set is the complement of the empty set.

Each type in our language is a measurable space. For example,
the type 1 in our language is the singleton set {()}, equipped with

the notion that the empty set {} and the full set {()} are both
measurable as required. Another base type R in our language is the
set of real numbers, equipped with the notion that every interval can
be measured—so every set of real numbers made from intervals by
complement and countable union must also be measurable.

It is easy to add other measurable spaces as base types. For ex-
ample, we could add the measurable space of integers. Yet another
useful measurable space is [0,∞], the set of non-negative real num-
bers augmented with positive infinity, again equipped with the no-
tion that every interval can be measured. We don’t need this type in
our language, but it is an essential measurable space for semantics.

Mathematically speaking, then, a measurable space is a pair

α = (set(α),measurable(α)), (6)

where set(α) is a set and measurable(α) is a set of subsets of set(α)
that is closed under complement and countable union. A measure µ

on α is a function from measurable(α) to [0,∞], such that

µ(S1∪S2∪·· ·) = µ(S1)+µ(S2)+ · · · (7)

for every countable collection S1,S2, . . . ∈ measurable(α) of pair-
wise-disjoint measurable sets. (In particular, the empty collection
forces µ({}) to be 0.) We sometimes write a measurable space to
mean its underlying set. For example, we write 3 ∈ [0,∞] to mean
3 ∈ set([0,∞]).

There is a category of measurable spaces [9]. Its morphisms
are the measurable functions. A measurable function is a function
such that the inverse image of every measurable set is measurable.
Formally, given two measurable spaces α and β , a measurable
function f ∈ α → β is a function f ∈ set(α)→ set(β ) such that
f−1(T ) ∈ measurable(α) for every T ∈ measurable(β ). It is a
standard exercise to prove that, if S ∈ measurable(α), then the
indicator function S? ∈ α → [0,∞] defined by

S?(x) =

{
1 if x ∈ S

0 if x /∈ S
(8)

is in fact measurable. Another useful exercise is to prove that, if
c1,c2, . . . ∈ α → [0,∞] is a (countable) sequence of measurable
functions, and the sequence is increasing in the sense that ci(x) ≤
c j(x) for all x∈ α whenever i≤ j, then the pointwise limit function

λx. lim
n→∞

cn(x) ∈ α → [0,∞] (9)

is again measurable. [TODO: Don’t use the letter c for both inte-
grands and metalanguage continuations.]

Three type constructors ×, +, and M in our language build
bigger measurable spaces out of smaller ones, as follows.

Given two measurable spaces α and β , we can take their product
as well as disjoint union. The product α × β is the Cartesian
product of sets set(α)× set(β ), equipped with the notion that any
Cartesian product S×T of two measurable sets S ∈measurable(α)
and T ∈measurable(β ) can be measured (as is every set made from
those Cartesian products by complement and countable union).
Thus,

(x,y) ∈ α×β if x ∈ α and y ∈ β . (10)

The disjoint union α + β is the disjoint union of sets set(α) +
set(β ), equipped with the notion that any disjoint union S+ T of
two measurable sets S ∈ measurable(α) and T ∈ measurable(β )
can be measured. As alluded to above, we write

inl x ∈ α +β if x ∈ α , (11)
inr y ∈ α +β if y ∈ β ; (12)

and we abbreviate inl () as true and inr () as false.
Given a measurable space α , it turns out we can turn the set

of measures on it into a measurable space Mα . To do so, we
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equip the set with the notion that, for any two measurable sets
S∈measurable(α) and T ∈measurable([0,∞]), the set of measures

{µ | µ(S) ∈ T } (13)

is measurable. This construction M is a monad on the category of
measurable spaces [9]. A measurable function from α to Mβ (in
other words, a morphism from α to β in the Kleisli category) is
called a kernel from α to β .

2.3 Functionals
We have just described the measure built by the monad unit opera-
tion return, but not the monad bind operation. We need the monad
bind operation not only to define the denotational semantics of our
language, but also to define conditioning. To describe the monad
bind operation, we turn to a certain class of functionals that are in
one-to-one correspondence with measures.

A functional is just a higher-order function. Given a measure µ

on a measurable space α , let’s consider the functional µ? that takes
any function c from α and integrates it. As long as the integrand c is
a measurable function from α to [0,∞] (that is, c ∈ α→ [0,∞]), we
can define this integral µ?(c)∈ [0,∞]. This definition of integration
is called Lebesgue integration. Its basic idea is to slice the integrand
horizontally into sets measurable in α , then take the limit as the
height of each slice approaches zero and the total height of all slices
approaches infinity. [TODO: Slicing picture, from Wikipedia?]

Thus, to each measure µ ∈ Mα corresponds an integration
functional µ?, which is a function from α → [0,∞] to [0,∞]. This
functional µ? enjoys three important properties:

1. It extends µ , in that µ?(S?) = µ(S) for all S ∈measurable(α).

2. It is linear, in that

µ
?(λx.r× c(x)) = r×µ

?(c) (14)

µ
?(λx.c(x)+ c′(x)) = µ

?(c)+µ
?(c′) (15)

for all c,c′ ∈ α → [0,∞] and r ∈ [0,∞].

3. It satisfies monotone convergence, in that

µ
?(λx. lim

n→∞
cn(x)) = lim

n→∞
µ
?(cn) (16)

for all increasing c1,c2, . . . ∈ α → [0,∞].

Moreover, it turns out that µ? is the unique functional with these
properties. In other words, there is a one-to-one correspondence be-
tween measures µ and linear functionals satisfying monotone con-
vergence µ?. In fact, many useful measures are most easily defined
by specifying their corresponding functionals—for example,

1. The uniform probability measure on (0,1) is the measure µ ∈
MR such that µ?(c) =

∫ 1
0 c(x)dx.

2. Given an element x ∈ α , the Dirac measure at x is the measure
µ ∈Mα such that µ?(c) = c(x).

3. Given a measure µ ∈ Mα and a kernel ν ∈ α → Mβ , the
monad bind operation produces the measure ξ ∈Mβ such that
ξ ?(c) = µ?(λx.(νx)?(c)).

Therefore, de Finetti [7] and Pollard [16] advocate omitting the
stars altogether. In other words, they advocate identifying each set
S ∈ measurable(α) with its indicator function S? ∈ α → [0,∞],
and each measure µ ∈ Mα with its integration functional µ? ∈
(α → [0,∞])→ [0,∞]. Under this proposal, the monad operations
are exactly those of the continuation monad.

Without going that far, we introduce two pieces of notation that
make applying the correspondence more concise. First, just as we
already abbreviate “the function f such that f (x) = · · ·” to “λx.”,
we abbreviate “the measure µ such that µ?(c) = · · ·” to “λ

?c.”.
Second [TODO: drop this notation?], we write µ?(c) as µ ? c, so

that we can write µ?(λx. . . .) as µ ? λx. . . . without parentheses.
This way, we can write that

1. the uniform probability measure on (0,1) is λ
?c.
∫ 1

0 c(x)dx,

2. monad unit produces the measure λ
?c.c(x), and

3. monad bind produces the measure λ
?c.µ ?λx.νx? c.

2.4
For conditioning and density, it’s useful to generalize from prob-
ability measures to all measures (actually, to sigma-finite mea-
sures/kernels), and from samplers to importance samplers.

Return to motivating examples.
State precisely the three sets, notions of equivalence, and corre-

spondences preserving said notions of equivalence.

2.5 What is disintegration?
Given µ ∈Mα and ξ ∈M(α×β ), we say that a kernel ν ∈ α →
Mβ is a disintegration of ξ with respect to µ iff

ξ = λ
?c.µ ?λ t.νt ?λy.c(t,y). (17)

Often, as in the few examples below, µ is the Lebesgue measure

Λ = λ
?c.
∫

∞

−∞

c(t)dt. (18)

For example [as discussed on 2015-04-15], suppose α is R, µ

is the Lebesgue measure Λ, and ξ is the measure

ξ = λ
?c.
∫ 7

4

c(siny,y)
3

dy, (19)

which by the way is the denotation of the program

do {y  uniform 4 7; return (sin y,y)}. (20)

We let t = siny and change the integration variable from y to t. We
have |dt/dy| = |cosy| =

√
1− t2. Solving for y in terms of t gives

the countably infinite number of solutions

y = 2×π×n+ arcsin t or y = 2×π×n+π− arcsin t (21)

where n ∈ Z. Hence

ξ = λ
?c. ∑

n∈Z

∫ 1

−1
∑

y∈{2×π×n+arcsin t,
2×π×n+π−arcsin t},

4<y<7

c(t,y)

3×
√

1− t2
dt (22)

so by Tonelli’s theorem

ξ = λ
?c.
∫ 1

−1
∑

n∈Z
∑

y∈{2×π×n+arcsin t,
2×π×n+π−arcsin t},

4<y<7

c(t,y)

3×
√

1− t2
dt. (23)

Comparing this against (17) shows that the kernel

ν = λ t.λ?c′. if −1 < t < 1

then ∑
n∈Z

∑
y∈{2×π×n+arcsin t,

2×π×n+π−arcsin t},
4<y<7

c′(y)

3×
√

1− t2

else 0

(24)

is a disintegration of ξ (with respect to Λ).
To take another example [as discussed on 2015-04-14], suppose

α is R, µ is the Lebesgue measure Λ, and ξ is some measure of the
form

ξ = λ
?c.
∫∫

w(x,y)× c(h1(x,y)+h2(x),x,y)dydx

∈M(R×β1×β2) (25)
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in which the integrals over x and y are some measures on β1 and β2,
so β = β1 × β2. In the expression h1(x,y) + h2(x), note that the
second term does not depend on y. Suppose now that we have found
a family of kernels νx ∈ R→Mβ2 ranging over x ∈ β1, such that
for each x, the kernel νx is a disintegration of

ξx = λ
?cx.

∫
w(x,y)× cx(h1(x,y),y)dy ∈M(R×β2) (26)

with respect to Λ. In other words, suppose now we have∫
w(x,y)× cx(h1(x,y),y)dy =

∫
∞

−∞

νxt1 ?λy.cx(t1,y)dt1 (27)

for each x∈ β1 and cx ∈ (R×β2)→ [0,∞]. Then for any x∈ β1 and
c ∈ (R×β1×β2)→ [0,∞], we can let

cx = λ (t1,y).c(t1 +h2(x),x,y), (28)

so by (27) we have∫
w(x,y)× c(h1(x,y)+h2(x),x,y)dy

=
∫

∞

−∞

νxt1 ?λy.c(t1 +h2(x),x,y)dt1. (29)

Applying this equation in (25) gives

ξ ? c =
∫ ∫

∞

−∞

νxt1 ?λy.c(t1 +h2(x),x,y)dt1 dx. (30)

We let t = t1+h2(x) and change the inner integration variable from
t1 to t:

ξ ? c =
∫ ∫

∞

−∞

νx(t−h2(x))?λy.c(t,x,y)dt dx. (31)

If we could apply Tonelli’s theorem (in particular, if we knew the
measure on β1 to be σ -finite), then we would have

ξ ? c =
∫

∞

−∞

∫
νx(t−h2(x))?λy.c(t,x,y)dxdt (32)

and so would be able to set

ν = λ t.λ?c′.
∫

νx(t−h2(x))?λy.c′(x,y)dx. (33)

3. Syntax and semantics
Figure 4 defines the syntax and type system of our language.

If Γ ` e : β , where Γ is the type environment x1:α1, . . . ,xn:αn,
then the denotation [e] of e is a measurable function [TODO: Em-
phasize measurability. What about σ -finiteness?] from the measur-
able space ∏Γ = α1×·· ·×αn to the measurable space β . Figure 5
specifies this denotation [e] by induction on e. We treat each el-
ement of ∏Γ as a function that maps each variable name xi to an
element of the corresponding space αi. [TODO: Explain syntax and
semantics in tandem?]

(If Γ` h : ∆, where ∆ is the sequence of types of variables bound
by the heap h, then the denotation [h] of h is a measurable function
from the measurable space ∏Γ to the measurable space ∏∆. Again
we treat each element of these product spaces as a function from
variable names.) Extend do-notation to a binary operation that turns
a heap and an expression into an expression:

do {[]; e}= e (34)
do {h; g; e}= do {h; do {g; e}} (35)

4. Partial evaluation
Our binding-time analysis is online: the metalanguage is static/
earlier-stage evaluation (Lazy s repr in the Haskell code); the object
language is dynamic/later-stage evaluation (repr in the Haskell
code).

By convention, we write the names of term constructors in bold.
For example, fst and inl are term constructors, so fst (x,y) and x are
two different terms in our language. In contrast, we write the names
of metalanguage functions in italic. For example, the following
equations define the metalanguage function fst, which projects a
head normal form of type α×β to a term of type α:

fst (e1,e2) = e1

fst a = fst a

(The metavariable a stands for an atomic term.) Informally, we
write the signature

fst: bΓ;∆ ` α×βc → dΓ,∆ ` αe
in which bΓ;∆ ` α ×βc means head normal forms of type α ×β

in type environment Γ,∆ (but only variables in Γ are considered
atomic because the variables in ∆ are bound in the heap), and
dΓ,∆ ` αe means terms of type α in type environment Γ,∆. Hence
fst (x,y) equals the term x. Analogously, we define the metalan-
guage function snd:

snd: bΓ;∆ ` α×βc → dΓ,∆ ` βe
snd (e1,e2) = e2

snd a = snd a

The metalanguage functions fst and snd are thus partially evaluat-
ing counterparts to the term constructors fst and snd.

Following this convention, the term constructors that we write
in bold include arithmetic operations. For example, exp and + and −
are term constructors, so exp 0 and 3 + (−2) and 1 are two different
terms in our language. In contrast, when we want to exponentiate
the number 0 or add the number 3 to the negation of the number 2
in the metalanguage, we write non-bold exp0 or 3+(−2), which
equals the number 1. Informally, we write the signatures

+ : R→ R→ R,
− : R→ R,

exp : R→ R.

Moreover, we extend these metalanguage functions from operating
on concrete numbers to operating on head normal forms (which
include concrete numbers). That is, we define

+ : bΓ;∆ ` Rc → bΓ;∆ ` Rc → bΓ;∆ ` Rc,
− : bΓ;∆ ` Rc → bΓ;∆ ` Rc,

exp : bΓ;∆ ` Rc → bΓ;∆ ` Rc
by extending the usual operations with the fallback cases

n1 +n2 = n1 + n2 if n1 or n2 is atomic,
−a = −a given a is atomic,

expa = exp a given a is atomic.

(It is straightforward to add algebraic simplifications such as n+
0 = n.) Similarly, we define the metalanguage function

<: bΓ;∆ ` Rc → bΓ;∆ ` Rc → bΓ;∆ ` 1+1c
by extending the usual comparison on concrete numbers

r1 < r2 = inl () if r1 is less than r2,
r1 < r2 = inr () if r1 is greater than or equal to r2

(where r1,r2 ∈ R) with the fallback case

n1 < n2 = n1 < n2 if n1 or n2 is atomic.

For pattern matching on sum types, our language includes the
projection constructs do {let inl x=e; e′} and do {let inr x=e; e′}.
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Types α,β ,γ ::= R
∣∣ 1
∣∣ α×β

∣∣ α +β
∣∣Mα Terms e

Type environments Γ,∆ ::= []
∣∣ Γ,x:α Variables x,y

Type judgments Γ ` e : α Real numbers r ∈ R

Γ,x:α,∆ ` x : α

r ∈ R

Γ ` r : R

Γ ` e : R

Γ ` −e : R

Γ ` e : R

Γ ` e−1 : R

Γ ` e : R

Γ ` exp e : R

Γ ` e : R

Γ ` log e : R

Γ ` e1 : R Γ ` e2 : R

Γ ` e1 + e2 : R

Γ ` e1 : R Γ ` e2 : R

Γ ` e1 × e2 : R

Γ ` e1 : R Γ ` e2 : R

Γ ` e1 < e2 : 1+1 Γ ` () : 1

Γ ` e1 : α Γ ` e2 : β

Γ ` (e1,e2) : α×β

Γ ` e : α×β

Γ ` fst e : α

Γ ` e : α×β

Γ ` snd e : β

Γ ` e : α

Γ ` inl e : α +β

Γ ` e : β

Γ ` inr e : α +β

Γ ` lebesgue : MR

Γ ` e : α

Γ ` return e : Mα

Γ ` e : α +β Γ,x:α ` e′ : Mγ

Γ ` do {let inl x= e; e′} : Mγ

Γ ` e : α +β Γ,x:β ` e′ : Mγ

Γ ` do {let inr x= e; e′} : Mγ

Γ ` e : Mα Γ,x:α ` e′ : Mβ

Γ ` do {x  e; e′} : Mβ

Γ ` e : R Γ ` e′ : Mα

Γ ` do {factor e; e′} : Mα Γ `mzero : Mα

Γ ` e1 : Mα Γ ` e2 : Mα

Γ `mplus e1 e2 : Mα

Bindings (guards) g ::= let inl x= e
∣∣ let inr x= e

∣∣ x  e
∣∣ factor e

Heaps h ::= []
∣∣ h; g

Head normal forms n,m ::= a
∣∣ r
∣∣ () ∣∣ (e1,e2)

∣∣ inl e
∣∣ inr e

∣∣ lebesgue
∣∣ return e

∣∣ do {g; e}
∣∣mzero

∣∣mplus e1 e2

Atomic terms a ::= x (not bound in the heap)
∣∣ −a

∣∣ a−1 ∣∣ exp a
∣∣ log a

∣∣ a + n
∣∣ n + a

∣∣ a × n
∣∣ n × a

∣∣ a < n
∣∣ n < a

∣∣ fst a
∣∣ snd a

Figure 4. The syntax and type system of our language

In these constructs, the body expression e′ must be of measure
type. Given e : α +β , these constructs test whether the result of e
is an inl value or an inr value. If e is an inl value, say, then
do {let inl x=e; e′} binds x : α in e′, whereas do {let inr x=e; e′}
simply fails. In measure-theoretic terms, this construct converts a
measure on α into a measure on α +β , via the inclusion map inl.

To project from sum types in our partial evaluator, we define
a pair of metalanguage functions outl and outr. Conceptually, outl
projects a head normal form of type α +β to a term of type α . But
because it is not known whether an atomic term is inl, we need to
define outl in continuation-passing style [4, 6, 12]:

outl: bΓ;∆ ` α +βc → (dΓ,∆ ` αe → 〈Γ ` ∆〉 → bΓ; `Mγc)
→ 〈Γ ` ∆〉 → bΓ; `Mγc

outl a c h = do {let inl x=a; c x h}
outl (inl e) c h = c e h
outl (inr e) c h = mzero

In the type above, 〈Γ ` ∆〉 means heaps that bind the variables in ∆

using the variables in Γ. The definition of

outr: bΓ;∆ ` α +βc → (dΓ,∆ ` βe → 〈Γ ` ∆〉 → bΓ; `Mγc)
→ 〈Γ ` ∆〉 → bΓ; `Mγc

is analogous.

Prove by mutual induction: a head normal form of type R does
not use any variable bound in the heap; an atomic term of any type
does not use any variable bound in the heap. So those terms can be
strengthened (i.e., have variables bound in the heap removed from
their type environments: bΓ;∆ ` Rc → bΓ; ` Rc).

Weakening is admissible (i.e., any term can have variables
added to its type environment: ∀Γ′≥Γ.∀∆′≥∆.(bΓ;∆ ` αc →
bΓ′;∆′ ` αc,dΓ,∆ ` αe → dΓ′,∆′ ` αe).

abs: bΓ;∆ ` Rc → (∀Γ′≥Γ.bΓ′;∆ ` Rc → 〈Γ′ ` ∆〉 → bΓ′; `Mγc)
→ 〈Γ ` ∆〉 → bΓ; `Mγc

abs r c h = c |r| h given r ∈ R
abs a c h = do {x  mplus (do {let inl _=a < 0; return (−a)})

(do {let inr _=a < 0; return a});
c x h} given a is atomic

Call-by-need PE/supercompilation [3, 11, 14] though our side
effect is commutative yet non-idempotent.

To preserve sharing in lazy evaluation, use a heap; for partial
evaluation, the heap leaves some locations unbound [8].

Example—uniform distribution on [0,1]:

random = do {x  lebesgue;
let inl _=0 < x;
let inl _= x < 1;
return x}

(36)

For disintegration to succeed on this simple example, it is essential
that our constructs for discriminating inl from inr do not force
evaluation of the scrutinee! Follow-up example: sum of uniform
distributions on [0,1] and [2,3], to show how we handle mplus,
which is where one invocation of partial evaluation turns into two.
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[x]ρ = ρ(x)

[r]ρ = r

[−e]ρ =−[e]ρ

[e−1]ρ = ([e]ρ)−1

[exp e]ρ = exp([e]ρ)

[log e]ρ = log([e]ρ)

[e1 + e2]ρ = [e1]ρ + [e2]ρ

[e1 × e2]ρ = [e1]ρ× [e2]ρ

[e1 < e2]ρ = true if [e1]ρ < [e2]ρ

[e1 < e2]ρ = false if [e1]ρ ≥ [e2]ρ

[()]ρ = ()

[(e1,e2)]ρ = ([e1]ρ,[e2]ρ)

[fst e]ρ = x if [e]ρ = (x,y)

[snd e]ρ = y if [e]ρ = (x,y)

[inl e]ρ = inl ([e]ρ)

[inr e]ρ = inr ([e]ρ)

[lebesgue]ρ = λ
?c.
∫

∞

−∞
c(x)dx

[return e]ρ = λ
?c.c([e]ρ)

[do {let inl x= e; e′}]ρ = [e′](ρ{x 7→ a}) if [e]ρ = inl a

[do {let inl x= e; e′}]ρ = λ
?c.0 if [e]ρ = inr b

[do {let inr x= e; e′}]ρ = [e′](ρ{x 7→ b}) if [e]ρ = inr b

[do {let inr x= e; e′}]ρ = λ
?c.0 if [e]ρ = inl a

[do {x  e; e′}]ρ = λ
?c.[e]ρ ?λa.[e′](ρ{x 7→ a})? c

[do {factor e; e′}]ρ = λ
?c.([e]ρ)× ([e′]ρ ? c)

[mzero]ρ = λ
?c.0

[mplus e1 e2]ρ = λ
?c.([e1]ρ ? c)+([e2]ρ ? c)

Figure 5. The denotational semantics of our language
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For all h : 〈Γ ` ∆〉, m : bΓ;∆ `Mαc, e′ : dΓ,∆,x:α `Mγe, [fwdExec m (λn.λh′.do {h′; e′{x 7→ n}}) h] = [do {h; x  m; e′}].
For all h : 〈Γ ` ∆〉, e : dΓ,∆ ` αe, e′ : dΓ,∆,x:α `Mγe, [fwdEval e (λn.λh′.do {h′; e′{x 7→ n}}) h] = [do {h; e′{x 7→ e}}].
For all h : 〈Γ ` ∆〉, m : bΓ;∆ `MRc, e′ : dΓ,∆,x:R `Mγe, [do {x  lebesgue; bwdExec m x (λh′.do {h′; e′}) h}] = [do {h; x  m; e′}]
and for all n : bΓ;∆ ` Rc, [(bwdExec m x (λh′.do {h′; e′}) h){x 7→ n}] = [bwdExec m n (λh′.do {h′; e′}) h].
For all h : 〈Γ ` ∆〉, e : dΓ,∆ ` Re, e′ : dΓ,∆,x:R `Mγe, [do {x  lebesgue; bwdEval e x (λh′.do {h′; e′}) h}] = [do {h; e′{x 7→ e}}]
and for all n : bΓ;∆ ` Rc, [(bwdEval e x (λh′.do {h′; e′}) h){x 7→ n}] = [bwdEval e n (λh′.do {h′; e′}) h].

Figure 6. The specification of our lazy partial evaluator and disintegrator
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Lazy partial evaluation to head normal form

fwdExec: bΓ;∆ `Mαc → (∀Γ′≥Γ.∀∆′≥∆.bΓ′;∆′ ` αc → 〈Γ′ ` ∆′〉 → bΓ′; `Mγc)→ 〈Γ ` ∆〉 → bΓ; `Mγc
fwdExec a c h = do {x  a; c x h} given a is atomic
fwdExec lebesgue c h = do {x  lebesgue; c x h}
fwdExec (return e) c h = fwdEval e c h
fwdExec (do {g; e}) c h = fwdEval e (λm. fwdExec m c) (h; g)
fwdExec mzero c h = mzero
fwdExec (mplus e1 e2) c h = mplus (fwdEval e1 (λm. fwdExec m c) h) (fwdEval e2 (λm. fwdExec m c) h)

fwdEval: dΓ,∆ ` αe → (∀Γ′≥Γ.∀∆′≥∆.bΓ′;∆′ ` αc → 〈Γ′ ` ∆′〉 → bΓ′; `Mγc)→ 〈Γ ` ∆〉 → bΓ; `Mγc
fwdEval n c h = c n h given n is in head normal form
fwdEval (fst e0) c h = fwdEval e0 (λn0. fwdEval (fst n0) c) h unless e0 is atomic
fwdEval (snd e0) c h = fwdEval e0 (λn0. fwdEval (snd n0) c) h unless e0 is atomic
fwdEval (−e0) c h = fwdEval e0 (λn0.c (−n0)) h

fwdEval (e−1
0 ) c h = fwdEval e0 (λn0.c (n−1

0 )) h
fwdEval (exp e0) c h = fwdEval e0 (λn0.c (expn0)) h
fwdEval (log e0) c h = fwdEval e0 (λn0.c (logn0)) h
fwdEval (e1 + e2) c h = fwdEval e1 (λn1. fwdEval e2 (λn2.c (n1 +n2))) h
fwdEval (e1 × e2) c h = fwdEval e1 (λn1. fwdEval e2 (λn2.c (n1×n2))) h
fwdEval (e1 < e2) c h = fwdEval e1 (λn1. fwdEval e2 (λn2.c (n1 < n2))) h
fwdEval x c (h1; x  e; h2) = fwdEval e (λm. fwdExec m (λn.λh′1.c n (h′1; x  return n; h2))) h1

fwdEval x c (h1; let inl x= e0; h2) = fwdEval e0 (λn0.outl n0 (λe. fwdEval e (λn.λh′1.c n (h′1; x  return n; h2)))) h1

fwdEval x c (h1; let inr x= e0; h2) = fwdEval e0 (λn0.outr n0 (λe. fwdEval e (λn.λh′1.c n (h′1; x  return n; h2)))) h1

Disintegration from head normal form

bwdExec: bΓ;∆ `MRc → bΓ;∆ ` Rc → (∀Γ′≥Γ.∀∆′≥∆.〈Γ′ ` ∆′〉 → bΓ′; `Mγc)→ 〈Γ ` ∆〉 → bΓ; `Mγc
bwdExec lebesgue n c h = c h
bwdExec (return e) n c h = bwdEval e n c h
bwdExec (do {g; e}) n c h = fwdEval e (λm.bwdExec m n c) (h; g)
bwdExec mzero n c h = mzero
bwdExec (mplus e1 e2) n c h = mplus (fwdEval e1 (λm.bwdExec m n c) h) (fwdEval e2 (λm.bwdExec m n c) h)

bwdEval: dΓ,∆ ` Re → bΓ;∆ ` Rc → (∀Γ′≥Γ.∀∆′≥∆.〈Γ′ ` ∆′〉 → bΓ′; `Mγc)→ 〈Γ ` ∆〉 → bΓ; `Mγc
bwdEval (fst e0) n c h = fwdEval e0 (λn0.bwdEval (fst n0) n c) h unless e0 is atomic
bwdEval (snd e0) n c h = fwdEval e0 (λn0.bwdEval (snd n0) n c) h unless e0 is atomic
bwdEval (−e0) n c h = bwdEval e0 (−n) c h

bwdEval (e−1
0 ) n c h = do {factor (n×n)−1; bwdEval e0 n−1 c h}

bwdEval (exp e0) n c h = outl (0 < n) (λ_.λh′.do {factor n−1; bwdEval e0 (logn) c h′}) h
bwdEval (log e0) n c h = do {factor (expn); bwdEval e0 (expn) c h}
bwdEval (e1 + e2) n c h = fwdEval e1 (λn1.bwdEval e2 (n+(−n1)) c) h

t fwdEval e2 (λn2.bwdEval e1 (n+(−n2)) c) h

bwdEval (e1 × e2) n c h = fwdEval e1 (λn1.abs n1 (λn′1.λh′.do {factor n′−1
1 ; bwdEval e2 (n×n−1

1 ) c h′})) h

t fwdEval e2 (λn2.abs n2 (λn′2.λh′.do {factor n′−1
2 ; bwdEval e1 (n×n−1

2 ) c h′})) h
bwdEval x n c (h1; x  e; h2) = fwdEval e (λm.bwdExec m n (λh′1.c (h

′
1; x  return n; h2))) h1

bwdEval x n c (h1; let inl x= e0; h2) = fwdEval e0 (λn0.outl n0 (λe.bwdEval e n (λh′1.c (h
′
1; x  return n; h2)))) h1

bwdEval x n c (h1; let inr x= e0; h2) = fwdEval e0 (λn0.outr n0 (λe.bwdEval e n (λh′1.c (h
′
1; x  return n; h2)))) h1

[TODO: uncurry heap argument?]
Figure 7. The implementation of our lazy partial evaluator and disintegrator
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