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1. Introduction

Scheme’s letrec is a recursive binding form that permits the definition of mutually
recursive procedures and, more generally, mutually recursive values that contain procedures.
It may also be used to bind variables to arbitrary nonrecursive values, and a single letrec
expression is often used for both purposes. This is especially common when letrec is
used as an intermediate-language representation for internal variable definitions and local
modules [14].

A letrec expression has the form

(letrec ([x1 e1] . . . [xn en]) body)

where each x is a variable and each e is an arbitrary expression, often but not always a
lambda expression.

The Revised5 Report on Scheme [7] defines letrec via the following transformation
into more primitive constructs, where t1 . . . tn are fresh temporaries.

∗A preliminary version of this article was presented at the 2002 Workshop on Scheme and Functional Program-
ming [15].
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(letrec ([x1 e1] . . . [xn en]) body)
→(let ([x1 undefined] . . . [xn undefined])

(let ([t1 e1] . . . [tn en])
(set! x1 t1)
. . .

(set! xn tn))
body)

This transformation effectively defines the meaning of letrec operationally; a letrec
expression (1) binds the variables x1 . . . xn to new locations, each holding an “undefined”
value, (2) evaluates the expressions e1 . . . en in some unspecified order, (3) assigns the
variables to the resulting values, and (4) evaluates the body. The expressions e1 . . . en

and body are all evaluated in an environment that contains the bindings of the variables,
allowing the values to be mutually recursive.

The revised report imposes an important restriction on the use of letrec: it must be
possible to evaluate each of the expressions e1 . . . en without evaluating a reference or
assignment to any of the variables x1 . . . xn . References and assignments to these variables
may appear in the expressions, but they must not be evaluated until after control has entered
the body of the letrec. We refer to this as the “letrec restriction.” The revised report
states that “it is an error” to violate this restriction. This means that the behavior is unspecified
if the restriction is violated. While implementations are not required to signal such errors,
doing so is desirable. The transformation given above does not directly detect violations
of the letrec restriction. It does, however, imply a mechanism whereby violations can
be detected, i.e., a check for the undefined value can be inserted before each reference
or assignment to any of the left-hand-side variables that occurs within a right-hand side
expression.

The revised report transformation of letrec faithfully implements the semantics of
letrec as described in the report, and it permits an implementation to detect violations
of the letrec restriction. Yet, many of the assignments introduced by the transformation
are unnecessary, and the obvious error detection mechanism inhibits copy propagation and
inlining for letrec-bound variables.

A theoretical solution to these problems is to restrict letrec so that its left-hand sides
are unassigned and right-hand sides are lambda expressions. We refer to this form of
letrec as fix, since it amounts to a generalized form of fixpoint operator. The compiler
can handle fix expressions efficiently, and there can be no violations of the letrec
restriction with fix. Unfortunately, restricting letrec in this manner is not an option
for the implementor and would in any case reduce the generality and convenience of the
construct.

This article presents an alternative to the revised report transformation of full letrec
that attempts to produce fix expressions covering as many letrec bindings as possible
while falling back to the use of assignments where necessary. In essence, the alternative
transformation “fixes”letrecwithout breaking it. This enables the compiler to generate
efficient code while preserving the semantics of the revised report transformation. The
transformation is shown to eliminate most of the introduced assignments and to improve



FIXING LETREC 301

run time dramatically. The transformation also incorporates a mechanism for detecting all
violations of the letrec restriction that, in practice, has virtually no overhead.

This article investigates as well the implementation of a variant of letrec, which we
call letrec*, that evaluates the right-hand sides from left to right and assigns each left-
hand side immediately to the value of the right-hand side. It is often assumed that this
would result in less efficient code; however, we show that this is not the case when our
transformation is used. While fixed evaluation order often results in overspecification and
is thus generally undesirable, letrec* would be a useful addition to the language and a
reasonable intermediate representation for internal variable definitions, where left-to-right
evaluation is often expected anyway.

The remainder of this article is organized as follows. Section 2 describes our transfor-
mation in three stages, starting with a basic version, adding an assimilation mechanism for
nested bindings, and adding validity checks to detect violations of the letrec restric-
tion. Section 3 introduces the letrec* form and describes its implementation. Section 4
presents an analysis of the effectiveness of the various transformations. Section 5 describes
related work. Section 6 summarizes the article and presents our conclusions. A formal
description of the basic letrec transformation with validity checks is presented in an
Appendix.

2. The transformation

The transformation of letrec is developed in three stages. Section 2.1 describes the basic
transformation. Section 2.2 describes a more elaborate transformation that assimilates let
and letrec bindings nested on the right-hand side of a letrec expression. Section 2.3
describes how violations of the letrec restriction are detected.

The transformation expects that bound variables in the input program are uniquely named.
It also assumes that an earlier pass of the compiler has recorded information about references
and assignments of the bound variables. In our implementation, these conditions are met by
running input programs through the syntax-case macro expander [4]. If this were not
the case, a simple flow-insensitive pass to perform alpha conversion and record reference
and assignment information could be run prior to the transformation algorithm. Variables
are considered referenced if the variable might be referenced and assigned if the variable
might be assigned. A straightforward conservative approximation is to consider a variable
referenced (assigned) if a reference (assignment) appears anywhere within its scope.

The transformation is implemented in two passes. The first introduces the code that detects
violations of the letrec restriction, and the second performs the basic transformation and
assimilation. The order of the two passes is important, since the second pass performs code
motion that may disguise or eliminate errors that the first pass is designed to catch. We
describe the basic transformation first.

2.1. Basic transformation

Each letrec expression (letrec ([x e] . . .) body) in the input program is con-
verted as follows.
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1. The expressions e . . . and body are converted to produce e′ . . . and body′.
2. The bindings [x e′] . . . are partitioned into several sets:

[xu eu] . . . unreferenced
[xs es] . . . simple
[xl el] . . . lambda
[xc ec] . . . complex

3. A set of nested let and fix expressions is formed from the partitioned bindings:

(let ([xs es] . . . [xc (void)] . . .)
(fix ([xl el] . . .)

eu . . .

(let ([xt ec] . . .)
(set! xc xt)
. . .)

body′))

where xt . . . is a set of fresh temporaries, one per xc. The innermost let is produced
only if [xc ec] . . . is nonempty. The expressions eu . . . are retained for their effects.

4. Because the bindings for unreferenced letrec-bound variables are dropped, assign-
ments to unreferenced variables are also dropped wherever they appear.

(set! xu e)→e

During the partitioning phase, a binding [x e′] is considered

unreferenced if x is unreferenced, else
simple if x is unassigned and e′ is a simple expression, else
lambda if x is unassigned and e′ is a lambda expression, and
complex if it does not fall into any of the other categories.

A simple expression contains no occurrences of the variables bound by the letrec ex-
pression and must not be able to obtain its continuation via call/cc, either directly or
indirectly. The former restriction is necessary because simple expressions are placed out-
side the scope of the bound variables. Without the latter restriction, it would be possible to
detect the fact that the bindings are created after the evaluation of a simple right-hand-side
expression rather than before. To enforce the latter restriction, our implementation simply
rules out all procedure calls except those to certain primitives (not including call/cc)
when primitive calls can be recognized as such by the compiler. In fact, our implementation
actually considers simple only literals, quote expressions, references to bound variables
other than the left-hand-side variables, if expressions with simple subexpressions, begin
expressions with simple subexpressions, and calls to effect-free primitives with simple ar-
gument expressions. We rule out effects for reasons to be discussed later, and although we
could work harder to uncover more simple expressions, these cases appear to catch nearly
all simple expressions in practice without much compile-time overhead.

The transformation converts letrec expressions into an equivalent mix of let, set!,
and fix expressions. A fix expression is a variant of letrec that binds only unassigned
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variables to lambda expressions. It represents a subset of letrec expressions that can be
handled easily by later passes of a compiler. In particular, no assignments through external
variables are necessary to implement mutually recursive procedures bound by fix. Instead,
the closures produced by a fix expression can be block allocated and “wired” directly
together. This leaves the fix-bound variables unassigned, thus simplifying optimizations
such as inlining and loop recognition. fix is identical to the labels construct handled
by Steele’s Rabbit compiler [13] and the Y operator of Kranz’s Orbit compiler [8, 9] and
Rozas’ Liar compiler [11, 12].

The output expression also includes calls to void, a primitive that evaluates to some
“unspecified” value. It may be defined as follows.

(define void (lambda () (if #f #f)))

We do not use a special “undefined” value; instead, we use a different mechanism for
detecting violations of the letrec restriction, as described in Section 2.3.

An unreferenced right-hand side e′ may be dropped if e′ is a lambda expression or is
simple and effect-free. This does not affect the code produced by our compiler since a later
pass already eliminates such expressions when they are used only for effect.

2.2. Assimilating nested binding forms

When aletrec right-hand side is alet orletrec expression, the partitioning described
above treats it as complex. For example,

(letrec ([f (letrec ([g (let ([x 5])
(lambda () . . .))])

(lambda () . . . g . . .))])
f)

is translated into

(let ([f (void)])
(let ([ ft (let ([g (void)])

(let ([gt (let ([x 5])
(lambda () . . .))])

(set! g gt))
(lambda () . . . g . . .))])

(set! f ft))
f)

This is unfortunate, since it penalizes programmers who use nested let and letrec
expressions in this manner to express scoping relationships more tightly.

We would prefer a translation into the following equivalent expression.

(let ([x 5])
(fix ([f (lambda () . . . g . . . )]

[g (lambda () . . . )])
f))
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(Since we expect variables to be uniquely named, moving the binding of x out causes no
scoping problems.)

Therefore, the actual partitioning used is a bit more complicated. When a binding [x e′]
fits immediately into one of the first three categories, the rules above suffice. The exception
to these rules occurs when x is unassigned and e′ is a let or fix binding, in which case the
transformer attempts to fold the nested bindings into the partitioned sets. This leads to fewer
introduced assignments and more direct-call optimizations in later passes of the compiler.

When e′ is a fix expression (fix ([x̂l êl] . . .) b̂ody), the bindings [x̂l êl] . . .

are simply added to the lambda partition, and the binding [x b̂ody] is added to the set of
bindings to be partitioned. Essentially, this transformation treats the nested bindings as if
they had originally appeared in the enclosing letrec. For example,

(letrec ([f e f ] [g (letrec ([a ea]) eg)] [h eh]) body)

is effectively treated as the following.

(letrec ([f e f ] [g eg] [a ea] [h eh]) body)

When e′ is a let expression (let ([x̂ ê] . . .) b̂ody) and the set of bindings
[x̂ ê] . . . can be fully partitioned into a set of simple bindings [x̂s ês] . . . (which
must reference neither x̂ . . . nor the left-hand-side variables of the enclosing letrec)
and a set of lambda bindings [x̂l êl]. . . , we add [x̂s ês] . . . to the simple partition,
[x̂l êl] . . . to the lambda partition, and [x b̂ody] to the set of bindings to be parti-
tioned.

For example, when ea is a lambda or simple expression,

(letrec ([f e f ] [g (let ([a ea]) eg)] [h eh]) body)

is treated as the following.

(letrec ([f e f ] [g eg] [a ea] [h eh]) body)

If, during this process, we encounter a binding [x̂ ê]where x̂ is unassigned and ê is a let
or fix expression, or if we find that the body is a let or fix expression, we simply fold
the bindings in and continue with the assimilation attempt.

While Scheme allows the right-hand sides of a binding construct to be evaluated in
any order, the order used must not involve (detectable) interleaving of evaluation. For
possibly assimilated bindings, the definition of simple must therefore be modified to preclude
effects. Otherwise, the effects caused by the bindings and body of an assimilated let could
be separated, producing a detectable interleaving of the assimilated let with the other
expressions bound by the outer letrec.

One situation not handled by the transformation just described is the following, in which
a local binding is used to hold a counter or other similar piece of state.

(letrec ([f (let ([n 0])
(lambda ()
(set! n (+ n 1))
n))])

body)
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We must not assimilate in such cases if doing so would detectably separate the creation of
the (mutable) binding from the evaluation of the nested let body. In the example above,
however, the separation cannot be detected, since the body of the nested let is a lambda
expression, and assimilated bindings of lambda expressions are evaluated only once.

To avoid penalizing such uses of local state, we refine the partitioning algorithm. When e′

is a let expression (let ([x̂ ê] . . .) b̂ody) and the set of bindings [x̂ ê] . . . can
be fully partitioned into a set of simple bindings [x̂s ês] . . . and a set of lambda bindings
[x̂l êl] . . . , except that one or more of the variables x̂s . . . is assigned, and b̂ody is
a lambda expression, we add [x̂s ês] . . . to the simple partition, [x̂l êl] . . . to the
lambda partition, and [x b̂ody] to the set of bindings to be partitioned.

The let and fix expressions produced by recursive transformation of a letrec ex-
pression can always be assimilated if they have no complex bindings. In particular, the
assimilation of fix expressions in the intermediate language effectively implements the
assimilation of pure letrec expressions in the source language.

2.3. Validity checks

According to the Revised5 Report, it must be possible to evaluate each of the expressions
e1 . . . en in

(letrec ([x1 e1] . . . [xn en]) body)

without evaluating a reference or assignment to any of the variables x1 . . . xn . This is the
letrec restriction first mentioned in Section 1.

The revised report states that “it is an error” to violate this restriction. Implementations
are not required to signal such errors; the behavior is left unspecified. An implementation
may instead assign a meaning to the erroneous program. Older versions of our system
“corrected” erroneous programs such as the following.

(letrec ([x 1] [y (+ x 1)]) (list x y))⇒(1 2)
(letrec ([y (+ x 1)] [x 1]) (list x y))⇒(1 2)

While this may seem appealing at first, we believe an implementation should detect and
report language violations rather than giving meaning to technically meaningless programs,
since any meaning we assign may not be the one intended. Reporting language violations
also helps users create more portable programs. Fortunately, violations of the letrec
restriction can be detected with practically no overhead, as we describe in this section.

It is possible to detect violations of theletrec restriction by binding each left-hand-side
variable initially to a special “undefined” value and checking for this value at each reference
and assignment to the variable within the right-hand-side expressions. This approach results
in many more checks than are actually necessary. More importantly, it makes all bindings
complex, nullifying the advantages of the transformations described in Sections 2.1 and 2.2.
This in turn may inhibit later passes from performing various optimizations such as inlining
and copy propagation.

It is possible to analyze the right-hand sides to determine the set of variables refer-
enced or to perform an interprocedural flow analysis to determine the set of variables that
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might be undefined when referenced or assigned, by monitoring the flow of the undefined
values. With this information, we could perform the transformations described in Sec-
tions 2.1 and 2.2 for all but those variables that might be undefined when referenced or
assigned.

We use a different approach that never inhibits our transformations and thus does not
inhibit optimization of letrec-bound variables merely because they may be undefined
when referenced or assigned. Our approach is based on two observations: (1) a separate
boolean variable may be used to indicate the validity of a letrec variable, and (2) we
need just one such variable per letrec. The latter observation holds since if evaluating
a reference or assignment to one of the left-hand-side variables is invalid at a given point,
evaluating a reference or assignment to any of the left-hand-side variables is invalid at that
point. With a separate valid flag, the transformation algorithm can do as it pleases with the
original bindings.

This flag is introduced as a binding of a fresh variable, valid?, wrapped around the
letrec expression. The flag is set initially to false, meaning that references to left-hand-
side variables are not allowed, and changed to true just before control enters the body of the
letrec, since each reference and assignment from that point on is valid, whether executed
directly by the body, via a call to one of the letrec-bound variables, or via a continuation
throw that returns control to one of the right-hand-side expressions.

(let ([valid? #f])
(letrec ([x e] . . .)
(set! valid? #t)
body))

A validity check simply tests valid? and signals an error if valid? is false.

(unless valid? (error 'x "undefined"))

Validity checks are inserted wherever the implementation deems them to be necessary. If
no validity checks are deemed to be necessary, the valid-flag binding and assignment are
suppressed. This is important even if a later pass of the compiler eliminates useless bindings
and assignments, since the presence of the assigned valid flag could inhibit assimilation by
the second pass of the transformation.

In a naive implementation, validity checks would be inserted at each reference and
assignment to one of the left-hand-side variables within the right-hand-side expressions. No
checks need to be inserted in the body of the letrec, since the bindings are necessarily
valid once control enters the body.

We can improve upon this by suppressing checks within a right-hand-side expression if
that expression is a lambda expression. Control cannot enter the body of the lambda
expression before the valid flag is set to true except by way of a (checked) reference to the
corresponding left-hand-side variable. One implication of this is that no valid flag or checks
are necessary if all right-hand-side expressions are lambda expressions.

More generally, validity checks need not be inserted into the body of alambda expression
appearing in one of the right-hand-side expressions if we can prove that the resulting
procedure cannot be invoked before control enters the body of the letrec. To handle the
general case, we introduce the notion of protected and unprotected references. A reference
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(or assignment) to a variable is protected if it is contained within a lambda expression
that cannot be evaluated and invoked during the evaluation of an expression. Otherwise, it
is unprotected.

Valid flags and checks are introduced during the first pass of the transformation algorithm,
which operates on the original source program, i.e., before the transformation into fix,
let, and set! forms as described earlier.

The pass uses a top-down recursive-descent algorithm. While processing the right-hand
sides of a letrec, the left-hand-side variables of the letrec are considered to be in one
of three states: protected, protectable, or unprotected. A variable is protectable if references
and assignments found within alambda expression are safe, i.e., if thelambda expression
cannot be evaluated and invoked before control enters the body of the letrec. Each
variable starts out in the protectable state when processing of the right-hand-side expression
begins.

Upon entry into a lambda expression, all protectable variables are moved into the
protected state, since they cannot possibly require validity checks. Upon entry into an
unsafe context, i.e., one that might result in the evaluation and invocation of a lambda
expression, the protectable variables are moved into the unprotected state. This occurs, for
example, while processing the arguments to an unknown procedure, since that procedure
might invoke the procedure resulting from a lambda expression appearing in one of the
arguments.

For each variable reference and assignment, a validity check is inserted for the protectable
and unprotected variables but not for the protected variables.

This handles well situations such as

(letrec ([x 0]
[f (cons (lambda () x)

(lambda (v) (set! x v)))])
body)

in which f is a sort of locative [10] for x. Since cons does not invoke its arguments, the
references appearing within the lambda expressions are protected.

Handling situations such as the following is more challenging.

(letrec ([x 0]
[f (let ([g (lambda () x)])

(lambda () (g)))])
body)

In general, we must treat the right-hand side of a let binding as unsafe, since the left-hand-
side variable may be used to invoke procedures created by the right-hand-side expression.
In this case, however, the body of the let is a lambda expression, so there is no problem.
To handle this situation, we also record for each let- and letrec-bound variable whether
it is protectable or unprotected and treat the corresponding right-hand side as an unsafe or
safe context depending upon whether the variable is referenced or not. For letrec this
involves a demand-driven process, starting with the body of the letrec and proceeding
with the processing of any unsafe right-hand sides.
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1. Process the body of the letrec with the left-hand-side variables in the protectable
state. As the body is processed, mark unsafe the right-hand side of any binding whose
left-hand-side variable is referenced in a protectable or unprotected state.

2. If any right-hand side has been marked unsafe, process it with each of the outer protectable
variables, i.e., protectable variables bound by enclosing letrec expressions, in the
unprotected state and each of the left-hand-side variables in the protectable state. As each
right-hand side is processed, mark unsafe the right-hand side of any binding whose left-
hand-side variable is referenced, and insert valid checks for any left-hand-side variable
referenced in a protectable or unprotected state. Repeat this step until no unprocessed
unsafe right-hand sides remain.

3. Process the remaining right-hand sides with the left-hand-side variables in the protectable
state. As each right-hand side is processed, insert valid checks for any left-hand-side
variable referenced in a protectable or unprotected state.

3. Fixed evaluation order

The Revised5 Report translation of letrec is designed so that the right-hand-side ex-
pressions are all evaluated before the assignments to the left-hand-side variables are per-
formed. The transformation for letrec described in the preceding section loosens this
structure, but in a manner that cannot be detected, because an error is signaled for any
program that prematurely references one of the left-hand-side variables and because the
lifted bindings are immutable and cannot be (detectably) reset by a continuation
invocation.

From a software engineering perspective, the unspecified order of evaluation is valuable
because it allows the programmer to express lack of concern for the order of evaluation.
That is, when the order of evaluation of two expressions is unspecified, the programmer is,
in effect, saying that neither counts on the other being done first. From an implementation
standpoint, the freedom to determine evaluation order may allow the compiler to generate
more efficient code.

It is sometimes desirable, however, for the values of a set of letrec bindings to be
established in a particular order. This seems to occur most often in the translation of internal
variable definitions into letrec. For example, one might wish to define a procedure and
use it to produce the value of a variable defined further down in a sequence of definitions.

(define f (lambda . . .))
(define a (f . . .))

This would, however, violate theletrec restriction. One can nest binding contours to order
bindings, but nesting cannot be used for mutually recursive bindings and is inconvenient in
other cases.

It is therefore interesting to consider a variant of letrec that performs its bindings in a
left-to-right fashion. Scheme provides a variant of let, called let*, that sequences eval-
uation of let bindings; we therefore call our version of letrec that sequences letrec
bindings letrec*. The analogy to let* is imperfect, however, since let* also nests
scopes whereas letrec* maintains the mutually recursive scoping of letrec.
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letrec* can be transformed into more primitive constructs in a manner similar to
letrec using a variant of the Revised5 Report transformation of letrec.

(letrec* ([x1 e1] . . . [xn en]) body)
→ (let ([x1 undefined] . . . [xn undefined])

(set! x1 e1)
. . .

(set! xn en)
body)

This transformation is actually simpler, in that it does not include the inner let that binds a
set of temporaries to the right-hand-side expressions. This transformation would be incorrect
for letrec, since the assignments are not all in the continuation of each right-hand-side
expression, as in the revised report transformation. That is, call/cc could be used to
expose the difference between the two transformations.

The basic transformation given in Section 2.1 is also easily modified to implement the
semantics of letrec*. As before, the expressions e . . . and body are converted to pro-
duce e′ . . . and body′, and the bindings are partitioned into simple, lambda, unreferenced,
and complex sets. One difference comes in the structure of the output code. If there are no
unreferenced bindings, the output is as follows

(let ([xs es] . . . [xc (void)] . . .)
(fix ([xl el] . . .)
(set! xc ec)
. . .

body′))
where the assignments to xc are ordered as the bindings appeared in the original input.

If there are unreferenced bindings, the right-hand sides of these bindings are retained,
for effect only, among the assignments to the complex variables in the appropriate order.

The other differences involve simple bindings with effects. A right-hand-side expression
cannot be considered simple if it has effects and follows any complex or unreferenced right-
hand side with effects in the original letrec* expression. Furthermore, the original order
of simple bindings with effects must be preserved. This can be accomplished by producing
a set of nested let expressions in the output to preserve their ordering. Our implementation
currently takes an easier approach to solving both problems, which is to treat as complex
any otherwise simple binding whose right-hand side is not effect free.

The more elaborate partitioning of letrec expressions to implement assimilation of
nested bindings as described in Section 2.2 is compatible with the transformation above, so
the implementation of letrec* does not inhibit assimilation.

On the other hand, a substantial change to the introduction of valid flags is necessary to
handle the different semantics of letrec*. This change is to introduce (at most) one valid
flag for each letrec* binding, in contrast with (at most) one per letrec expression.
The valid flag for a given variable represents the validity of references and assignments to
that variable.

This may result in the introduction of more valid flags but should not result in the
introduction of any additional validity checks. Due to the nature of letrec*, in fact, there
may be fewer validity checks and possibly fewer actual valid-flag bindings.
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The processing of letrec* by the check-insertion pass is also more complicated,
because left-hand-side references within right-hand-side lambda expressions are
not necessarily safe. For example, the apparently valid reference to c in the right-hand
side of a is actually invalid because of the (valid) call to a on the right-hand side
of b.

(letrec* ([a (lambda () c)]
[b (a)]
[c 7])

b)

If this were letrec rather than letrec*, the reference to a on the right-hand side of
b would be checked so that control would never reach the reference to c. We therefore
process letrec* bindings as follows:

1. Each binding is processed in turn, with its left-hand-side variable and remaining left-
hand-side variables, i.e., those for later bindings, in the unprotected state and a fresh
dummy variable δ in the protectable state. Processing occurs as usual, except
that:

• References to left-hand-side variables are recorded (for Step 2).
• If a lambda expression is encountered while δ is still in the protectable state, the
lambda expression is marked deferred and not processed.

• Any expression containing a deferred expression is also marked deferred. (A deferred
expression may have both processed and deferred subexpressions.)

2. If the left-hand-side variable of any binding with deferred right-hand side has been
marked referenced, process the deferred portions of the right-hand side with the left-hand-
side variable and remaining left-hand-side variables in the unprotected state. Repeat this
step until no referenced left-hand-side variables with deferred right-hand sides remain.

3. Process the letrec* body and deferred portions of the remaining elements of the
deferred list in a manner analogous to the body and right-hand sides of a letrec
expression, as described at the end of Section 2.

4. Results

We have implemented the complete algorithm described in Section 2 and incorporated
it as two new passes into the Chez Scheme compiler. The first pass inserts the validity
checks described in Section 2.3, and the second performs the transformations described in
Sections 2.1 and 2.2. We have also implemented letrec* as described in Section 3 and a
compile-time parameter (compiler flag) that allows internal variable definitions (including
those within modules) to be expanded into letrec* rather than letrec.
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Figure 1. Benchmarks ordered by abstract syntax tree size, measured following macro expansion.

We measured the performance of the set of benchmark programs described in Figure 1
using versions of our compiler that perform the following transformations:

• the standard Revised5 Report (R5RS) transformation;
• a modified R5RS transformation (which we call “easy”) that treats “pure” (lambda only)
letrec expressions as fix expressions and reverts to the standard transformation for
the others;

• versions of R5RS and “easy” with naive validity checks;
• our transformation with and without assimilation and with and without validity checks;

and
• our transformation with and without assimilation and validity checks, treating allletrec

expressions as letrec* expressions.
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We have compared these systems along several dimensions, including numbers of intro-
duced assignments, indirect references, and validity checks performed at run time, as well
as run times, compile times, and code sizes. Indirect references are references to assigned
variables for which our compiler creates shared locations; introduced indirect references are
those that result when a transformation causes references to become indirect by converting
an unassigned variable into an assigned variable. We also compared the systems according
to the numbers of bindings classified as lambda, complex, simple, and unreferenced.

With the exception of chezscheme, the code for each benchmark is wrapped in a
module form so that all definitions are internal, which gives the compiler more to work
with. A few that were originally written using top-level definitions and relied on left-to-
right evaluation of these definitions were edited slightly so that they could run successfully
in all of the systems. For the nucleic benchmarks we did the editing after macro ex-
pansion, replacing the resulting top-level letrec expression with a letrec* expression
(nucleic-star) or a set of nestedletrec expressions (nucleic-sorted). We used
a topological sort of the letrec bindings to help with the latter transformation.

Run times for each benchmark were determined by averaging three runs of n iterations,
where n was determined during a separate calibration run to be the minimum number of runs
necessary to push the run time over two seconds. Compile times were determined similarly.
Code size was determined by recording the size of the actual code objects written to compiled
files. The results are given in Figures 2–14. Programs in these figures are displayed in sorted
order, with larger programs (in terms of abstract syntax tree size) following smaller ones.

Figure 2 demonstrates that our transformation is successful in reducing run-time over-
head. Using the “easy” transformation to catch pure letrec expressions is also effective
but not as effective. Figures 3 and 4 indicate the reason why: programs produced by our
transformation execute far fewer introduced assignments and indirect references.

Figure 2. Run times of the code produced by the modified R5RS transformation (easy) and our transfor-
mation, both normalized to the R5RS run times.
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Figure 3. Numbers of introduced assignments executed dynamically by programs compiled using the R5RS
transformation, the modified R5RS transformation (easy), and our transformation. Zero is denoted by “ – ” for
readability.

Figure 4. Numbers of introduced indirect references executed dynamically by programs compiled using the
R5RS transformation, the modified R5RS transformation (easy), and our transformation.
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Figure 5. Run times of the code produced by the R5RS transformation with naive validity checks, the
modified R5RS transformation (easy) with naive validity checks, and � our transformation (with validity checks),
all normalized to the R5RS (no validity checks) run times.

Figure 6. Run times of the code produced by our transformation, and our transformation without validity
checks, both normalized to the R5RS run times.

Figure 5 shows that naive validity check insertion significantly reduces the performance of
the R5RS and “easy” transformations in some cases. On the other hand, Figure 6 shows that
run-times for our transformation are almost identical with and without validity checks, so
our transformation achieves strict enforcement of theletrec restriction with practically no
overhead. As indicated by Figure 7, naively enforcing theletrec restriction introduces far
more validity checks than necessary, even when pure letrec expressions are recognized.
Our transformation not only causes fewer validity checks to be performed (none in many
cases) but also permits optimizations based on letrec bindings to proceed uninhibited
with its use of separate valid flags.
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Figure 7. Numbers of validity checks executed dynamically by programs compiled using the R5RS transforma-
tion, the modified R5RS transformation (easy), and our transformation.

Figures 8 and 9 compare the performance of our algorithm with and without assimila-
tion. For our compiler, the most substantial program in our test suite, assimilating nested
bindings allows the transformation to decrease the number of introduced assignments and
indirect references significantly. Assimilation does not seem to benefit run times, however.
This is disappointing but may simply reflect the low overhead of the nonassimilating trans-
formation, as evidenced by the already small number of introduced bindings and indirect
references. Also, few of the benchmarks try to express scoping relationships more tightly,
perhaps partly because programmers believe that the resulting code would be less efficient.

Figure 10 shows why our transformation is able to eliminate more assignments than the
“easy” transformation. Our algorithm identifies “simple” bindings in many of the bench-
marks and avoids introducing assignments for these. Moreover, it avoids introducing as-
signments for pure lambda bindings that happen to be bound by the same letrec that
binds a simple binding. Figure 10 also shows that, in some cases, assimilating nested let
and letrec bindings allows the algorithm to assign more of the bindings to the lambda
or simple partitions.

Figures 11 and 12 show that fixing the order of evaluation has virtually no effect on
run time or the number of introduced assignments, introduced indirect references, and
validity checks, even though our compiler reorders expressions when possible to improve
the generated code. This is likely due in part to the relatively few cases where constraints
on the evaluation order remain following our translation of letrec*. We also measured
the effect of enabling or disabling assimilation when letrec is replaced by letrec*;
the results are virtually identical to those shown for letrec in Figures 8 and 9.
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Figure 8. Run times of the code produced by our transformation and our transformation without assimilation,
both normalized to the R5RS run times.

Figure 9. Numbers of introduced assignments and indirect references executed dynamically by programs com-
piled using our transformation with and without assimilation.
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Figure 10. Proportion of bindings classified as � complex, lambda, simple, and � unreferenced for the R5RS
transformation, the modified R5RS transformation (easy), our transformation without assimilation (oursNA), and
our transformation.

Comparing the performance of our algorithm on the two nucleic benchmarks
(nucleic-star, wrapped in a single letrec* expression, and nucleic-sorted,
wrapped in nested letrec expressions), we can see that fixing the evaluation order of
the formerly top-level definitions has little effect on run-time performance (Figure 2), even
though it has a slight effect on the number of introduced assignments and indirect references
(Figures 3 and 4) and a more substantial effect on validity checks (Figure 7).

Figure 13 shows that code size is mostly smaller with our transformation, with a few
exceptions. Code size and compile time (Figure 14) are affected directly by the transfor-
mation and indirectly by optimizations enabled by the transformation. In particular, our
transformation opens up more inlining opportunities, and inlining can either reduce or in-
crease code size and may reduce or increase compile time. Not surprisingly, compile time is
roughly correlated with code size; when code size goes down, so does compile time, since
the burden on the later stages of compilation is smaller.

5. Related work

Much has been written about generating efficient code for restricted recursive binding forms,
like our fix construct or the Y combinator, that bind only lambda expressions. Yet, little
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Figure 11. Run times of the code produced by our letrec transformation and our letrec* transfor-
mation, both normalized to the R5RS run times.

Figure 12. Numbers of introduced assignments, introduced indirect references, and validity checks executed
dynamically by programs compiled using the letrec and letrec* versions of our transformation. The results
are identical in each case, except for Similix (shown in bold).
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Figure 13. Size of the object code produced by the modified R5RS transformation (easy) and our transfor-
mation, both normalized to the R5RS code sizes.

Figure 14. Compile times with the modified R5RS transformation (easy) and our transformation, both
normalized to the R5RS compile times.

has been written explaining how to cope with the reality of arbitrary Scheme letrec
expressions, e.g., by transforming them into one of these restricted forms. Moreover, we
could find nothing in the literature describing efficient strategies for detecting violations of
the letrec restriction.

Steele [13] developed strategies for generating good code for mutually recursive proce-
dures bound by a labels form that is essentially our fix construct. Because labels
forms are present in the input language handled by his compiler, he does not describe the
translation of general letrec expressions into labels.
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Kranz [8, 9] also describes techniques for generating efficient code for mutually recursive
procedures expressed in terms of the Y operator. He describes a macro transformation
of letrec that introduces assignments for any right-hand side that is not a lambda
expression and uses Y to handle those that are lambda expressions. This transformation
introduces unnecessary assignments for bindings that our algorithm would deem simple. His
transformation does not attempt to assimilate nested binding constructs. The Y operator is a
primitive construct recognized by his compiler, much as fix is recognized by our compiler.

Rozas [11, 12] shows how to generate good code for mutually recursive procedures
expressed in terms of Y without recognizing Y as a primitive construct, that is, with Y itself
expressed at the source level. He does not discuss the process of converting letrec into
this form.

6. Conclusion

We have presented an algorithm for transforming letrec expressions into a form that
enables the generation of efficient code while preserving the semantics of the letrec
transformation given in the Revised5 Report on Scheme [7]. The transformation avoids
most of the assignments produced by the revised report transformation by converting many
of the letrec bindings into simple let bindings or into a “pure” form of letrec,
called fix, that binds only unassigned variables to lambda expressions. fix expressions
are the basis for several optimizations, including block allocation and internal wiring of
closures. We have shown the algorithm to be effective at reducing the number of introduced
assignments and improving run time with little compile-time overhead.

The algorithm also inserts validity checks to implement the letrec restriction that
no reference or assignment to a left-hand-side variable can be evaluated in the process
of evaluating the right-hand-side expressions. It inserts few checks in practice and adds
practically no overhead to the evaluation of programs that use letrec. More importantly,
it does not inhibit the optimizations performed by subsequent passes. We are unaware of
any other Scheme implementation that performs such checks, but this article shows that
validity checks can be introduced without compromising performance even in compilers
that are geared toward high-performance applications.

We have also introduced a variant of letrec, called letrec*, that establishes the
values of each variable in sequence from left-to-right. letrec* may be implemented
with a straightforward modification of the algorithm for implementing letrec. We have
shown that, in practice, our implementation of letrec* is as efficient as letrec, even
though later passes of our compiler take advantage of the ability to reorder right-hand-side
expressions. This is presumably due to the relatively few cases where constraints on the
evaluation order remain following our translation ofletrec*, but in any case, debunks the
commonly held notion that fixing the order of evaluation hampers production of efficient
code for letrec.

While treating letrec expressions as letrec* clearly violates the Revised5 Report
semantics for letrec, we wonder if future versions of the standard should require that
internal variable definitions be treated as letrec* rather than letrec. Left-to-right
evaluation order of definitions is often what programmers expect and would make the
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semantics of internal variable definitions more consistent with top-level variable definitions.
We have shown that there would be no significant performance penalty for this in practice.

We have noticed that some expressions treated as complex involve only data constructors,
especially cons and vector, and lambda expressions. Of the cases we have seen, the
most common are vectors of procedures used to implement dispatch tables. It may be worth
generalizing fix to handle data constructors as well as lambda expressions. This would
be a straightforward addition to later passes of the compiler, which could just as easily
wire together groups of pairs, vectors, and procedures as procedures alone, and it would
cut down on the number of expressions treated as complex by the letrec transformation.
While the impact on most programs would be insignificant, programs that rely heavily on
dispatch tables and similar structures might benefit substantially.

Appendix

This appendix contains a formal description of the basic letrec transformation and validity
check insertion algorithms presented in Sections 2.1 and 2.3. The structure of the formal
description mirrors the actual compiler structure, with two passes. The first pass, C, is
a source-to-source transformation that inserts validity flags and checks. The second, T ,
partitions letrec bindings and transforms letrec into simpler forms.

Assimilation and fixed evaluation order (letrec*) can be handled within the structure
presented below with straightforward modifications of the two passes. Handling letrec*
involves adding a letrec* case to each pass as described in Section 3. Handling assimi-
lation requires no changes to the first pass and changes only in the partitioning phase of the
second pass as described in Section 2.2.

The language of expressions handled by C consists of a set of standard core forms.

x ∈ Vars ; e, body ∈ Input Expressions ::=
(quote datum) constants
x variable references
(set! x e) assignments
(begin e1 . . . en) sequencing
(if e1 e2 e3) conditionals
(lambda (x1 . . . xn) body) abstractions
(pureprim e1 . . . en) pure prim app.
(e0 e1 . . . en) applications
(letrec ([x1 e1] . . . [xn en]) body) recursive binding

In addition to the input expression, C takes as input the sets of unprotectable and protectable
variables and a mapping fromletrec variables to valid flags. The set of protected variables
is implicit. In addition to the output expression, which is in the same language as the
input expression, C returns the set of variables referenced unsafely (while unprotected or
protectable) and the set of all variables referenced.

C : Input Expressions × Unprotectable × Protectable × Flags →
Input Expressions × Unsafe × Referenced
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u ∈ Unprotectable = P(Vars)
p ∈ Protectable = P(Vars)

v ∈ Flags = P(Vars × Vars)
d ∈ Unsafe = P(Vars)

r ∈ Referenced = P(Vars)

C[[(quote datum)]]upv → 〈[[(quote datum)]], φ, φ〉
C[[x]]upv →

if x ∈ (u ∪ p) then
if 〈x, x f 〉 ∈ v then

〈check[[x]]x f , {x}, {x, x f }〉
else

〈[[x]], {x}, {x}〉
else

〈[[x]], φ, {x}〉
C[[(set! x e)]]upv →

let 〈e′, d, r〉 = C[[e]]upv in
if x ∈ (u ∪ p) ∧ 〈x, x f 〉 ∈ v then

〈check[[(set! x e′)]]x f , d, (r ∪ {x f })〉
else

〈[[(set! x e′)]], d, r〉
C[[(begin e1 . . . en)]]upv →

let 〈e1
′, d1, r1〉 = C[[e1]]upv

...
〈en

′, dn , rn〉 = C[[en]]upv
in 〈

[[(begin e1
′ . . . en

′)]],
n⋃

i=1
di ,

n⋃
i=1

ri

〉

C[[(if e1 e2 e3)]]upv →
let 〈e1

′, d1, r1〉 = C[[e1]]upv
〈e2

′, d2, r2〉 = C[[e2]]upv
〈e3

′, d3, r3〉 = C[[e3]]upv
in

〈[[(if e1
′ e2

′ e3
′)]], (d1 ∪ d2 ∪ d3), (r1 ∪ r2 ∪ r3)〉

C[[(lambda (x1 . . . xn) body)]]upv →
let 〈body′, d, r〉 = C[[body]]uφv in

〈[[(lambda (x1. . . xn) body′)]], d, r〉
C[[(pureprim e1 . . . en)]]upv →

let 〈e1
′, d1, r1〉 = C[[e1]]upv

...
〈en

′, dn , rn〉 = C[[en]]upv
in
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〈
[[(pureprim e1

′. . . en
′)]],

n⋃
i=1

di ,
n⋃

i=1
ri

〉

C[[(e0 e1 . . . en)]]upv →
let 〈e0

′, d0, r0〉 = C[[e0]](u ∪ p)φv
〈e1

′, d1, r1〉 = C[[e1]](u ∪ p)φv
...
〈en

′, dn , rn〉 = C[[en]](u ∪ p)φv
in 〈

[[(e0
′ e1

′ . . . en
′)]],

n⋃
i=0

di ,
n⋃

i=0
ri

〉

C[[(letrec ((x1 e1) . . . (xn en)) body)]]upv →
let 〈body′, d0, r0〉 = C[[body]]u(p ∪ {x1, . . . , xn})v

x f = fresh(·)
v′ = v ∪ {〈x1, x f 〉, . . . , 〈xn , x f 〉}

in
a ← {x1, . . . , xn}
w ← d0 ∩ a
for xi ∈ w do

〈ei
′, di , ri 〉 ← C[[ei ]](u ∪ p){x1, . . . , xn}v′

a ← a − {xi }
w ← (w ∪ ri ) ∩ a

end
for xi ∈ a do

〈ei
′, di , ri 〉 ← C[[ei ]]u(p ∪ {x1, . . . , xn})v′

a ← a − {xi }
end
if x f ∈ r then

〈[[(let ((x f #f))
(letrec ((x1 e1

′). . .(xn en
′))

(set! x f #t)

body′))]],
n⋃

i=0
di ,

n⋃
i=0

ri

〉

else〈
[[(letrec ((x1 e1

′) . . . (xn en
′)) body′)]],

n⋃
i=0

di ,
n⋃

i=0
ri

〉

The check function called in the variable reference and assignment cases inserts a conditional
expression that signals an error if the value of the flag variable (x f ) is false.

check[[e]]x f → [[(begin (if (not x f ) (error "undefined")) e)]]

where (if e1 e2) is syntactic sugar for (if e1 e2 (void)). We do not use the more
obvious transformation

check[[e]]x f → [[(if x f e (error "undefined"))]]
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since this would complicate inlining when e is a variable naming a procedure.
The second pass, T , transforms its input into an output language that is nearly identical

to the input language. The only difference is that letrec is replaced with fix, which
binds only lambda expressions.

e′, body′ ∈ Output Expressions ::=
(quote datum) constants
x variable references
(set! x e′) assignments
(begin e1

′ . . . en
′) sequencing

(if e1
′ e2

′ e3
′) conditionals

λ′ abstractions
(pureprim e1

′ . . . en
′) pure prim app.

(e0
′ e1

′ . . . en
′) applications

(fix ([x1 λ′
1] . . . [xn λ′

n]) body′) recursive binding
λ′ ∈ Output Lambda Expressions ::= (lambda (x1 . . . xn) body′)

The input expression is the only input to T , and the output expression is the only output.

T : Input Expressions → Output Expressions

T [[(quote datum)]] → [[(quote datum)]]
T [[x]] → [[x]]
T [[(set! x e)]] →

let e′ = T [[e]] in
[[(set! x e′)]]

T [[(begin e1 . . . en)]] →
let e1

′ = T [[e1]], . . . , en
′ = T [[en]] in

[[(begin e1
′ . . . en

′)]]

T [[(if e1 e2 e3)]] →
let e1

′ = T [[e1]], e2
′ = T [[e2]], e3

′ = T [[e3]] in
[[(if e1

′ e2
′ e3

′)]]

T [[(lambda (x1 . . . xn) body)]] →
let body′ = T [[body]] in

[[(lambda (x1 . . . xn) body′)]]
T [[(pureprim e1. . . en)]] →

let e1
′ = T [[e1]], . . . , en

′ = T [[en]] in
[[(pureprim e1

′ . . . en
′)]]

T [[(e0 e1 . . . en)]] →
let e0

′ = T [[e0]], e1
′ = T [[e1]], . . . , en

′ = T [[en]] in
[[(e0

′ e1
′. . . en

′)]]

T [[(letrec ((x1 e1) . . . (xn en)) body)]] →
partition 〈x1, T [[e1]]〉 . . . 〈xn , T [[en]]〉 into
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〈xu , eu
′〉 . . . if unreferenced?(xu)

〈xs , es
′〉 . . . if unassigned?(xs) and simple?(e′

s ,{x1, . . ., xn})
〈xl , el

′〉 . . . if unassigned?(xl) and lambda?(e′
l)

〈xc, ec
′〉 . . . otherwise

in
let body′ = T [[body]], 〈xt , . . . 〉 = 〈fresh(xc), . . . 〉 in

[[(let ((xs es
′) . . . (xc (void)). . .)

(fix ((xl el
′). . .)

(begin
eu

′. . .
(let ((xt ec

′). . .) (set! xc xt). . .)
body′)))]]

Partitioning involves a set of tests on the left-hand-side variables and right-hand-side ex-
pressions. The unreferenced? and unassigned? checks inspect flags incorporated into the
representation of variables by an earlier pass. The lambda? check is trivial, and simple? is
given below.

simple? : Output Expressions × LHS Vars → boolean

v ∈ LHS Vars = P(Vars)

simple?([[(quote datum)]], v) → true
simple?([[x]], v) → if x ∈ v then false else true
simple?([[(set! x e′)]], v) → false
simple?([[(begin e1

′ . . . en
′)]], v) → ∧n

i=1simple?([[ei
′]], v)

simple?([[(if e1
′ e2

′ e3
′)]], v) →

simple?([[e1
′]], v) ∧ simple?([[e2

′]], v) ∧ simple?([[e3
′]], v)

simple?([[(lambda (x1 . . . xn) body′)]], v) → false
simple?([[(pureprim e1

′ . . . en
′)]], v) → ∧n

i=1simple?([[ei
′]], v)

simple?([[(e0
′ e1

′ . . . en
′)]], v) → false

simple?([[(fix ((x1 e1
′) . . . (xn en

′)) body′)]], v) → false
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