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ABSTRACT

Compilers structured as a small number of monolithic passes
are difficult to understand and difficult to maintain. Adding
new optimizations often requires major restructuring of ex-
isting passes that cannot be understood in isolation. The
steep learning curve is daunting, and even experienced de-
velopers find it hard to modify existing passes without in-
troducing subtle and tenacious bugs. These problems are
especially frustrating when the developer is a student in a
compiler class.

An attractive alternative is to structure a compiler as
a collection of many small passes, each of which performs
a single task. This “micropass” structure aligns the ac-
tual implementation of a compiler with its logical organiza-
tion, simplifying development, testing, and debugging. Un-
fortunately, writing many small passes duplicates code for
traversing and rewriting abstract syntax trees and can ob-
scure the meaningful transformations performed by individ-
ual passes.

To address these problems, we have developed a method-
ology and associated tools that simplify the task of build-
ing compilers composed of many fine-grained passes. We
describe these compilers as “nanopass” compilers to indi-
cate both the intended granularity of the passes and the
amount of source code required to implement each pass.
This paper describes the methodology and tools compris-
ing the nanopass framework.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, Translator writing systems and compiler generators

General Terms
Design, languages, reliability

Keywords
Compiler writing tools, nanopass compilers, domain-specific
languages, syntactic abstraction
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1. INTRODUCTION

Production compilers often exhibit a monolithic structure in
which each pass performs several analyses, transformations,
and optimizations, both related and unrelated. An attrac-
tive alternative, particularly in an educational setting, is to
structure a compiler as a collection of many small passes,
each of which performs a small part of the compilation pro-
cess. This separation of concerns aligns the actual imple-
mentation of a compiler with its logical organization, yield-
ing a more readable and maintainable compiler. Bugs that
arise are more easily isolated to a particular task. Writing
individual passes is easier since new code need not be grafted
onto existing passes nor wedged between two logical passes
that would be combined in a monolithic structure.

A few years ago we switched to this “micropass” structure
in our senior- and graduate-level compiler courses. Students
are supported in the writing of their compilers by several
tools: a pattern matcher with convenient notations for re-
cursion and mapping, a set of macros that can be used to
expand the output of each pass into executable code, a ref-
erence implementation of the compiler, a suite of (terminat-
ing) test programs, and a driver. The driver runs the com-
piler on each of the programs in the test suite and evaluates
the output of each pass to verify that it returns the same re-
sult as the reference implementation. Intermediate-language
programs are all represented as s-expressions, which simpli-
fies both the compiler passes and the driver.

The switch to the micropass methodology and the tools
that support it have enabled our students to write more
ambitious compilers. Each student in our one-semester com-
piler class builds a 50-pass compiler from the s-expression
level to Sparc assembly code for the subset of Scheme below.

expr −→ constant
| (quote datum)

| var
| (set! var expr)
| (if expr expr)
| (if expr expr expr)
| (begin expr expr*)
| (lambda (var*) expr expr*)
| (let ((var expr)*) expr expr*)
| (letrec ((var expr)*) expr expr*)
| (primitive expr*)
| (expr expr*)

The compiler includes several optimizations as well as a
graph-coloring register allocator. Students in the gradu-
ate course implement several additional optimizations. The
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Week 1: simplification
verify-scheme1

rename-var

remove-implicit-begin1

remove-unquoted-constant
remove-one-armed-if

verify-a1-output1

Week 2: assignment conversion
remove-not
mark-assigned

optimize-letrec2

remove-impure-letrec
convert-assigned

verify-a2-output1

Week 3: closure conversion
optimize-direct-call
remove-anonymous-lambda
sanitize-binding-forms
uncover-free
convert-closure

optimize-known-call3

uncover-well-known2

optimize-free2

optimize-self-reference2

analyze-closure-size1

lift-letrec

verify-a3-output1

Week 4: canonicalization
introduce-closure-primitives
remove-complex-constant
normalize-context

verify-a4-output1

Week 5: pointer encoding/allocation
specify-immediate-representation
specify-nonimmediate-representation

Week 6: start of UIL compiler
verify-uil

Week 7: introducing labels and temps
remove-complex-opera*
lift-letrec-body
introduce-return-point

verify-a7-output1

Week 8: virtual registerizing
remove-nonunary-let
uncover-local
the-return-of-set!
flatten-set!

verify-a8-output1

Week 9: brief digression
generate-C-code4

Week 10: register allocation setup
uncover-call-live2

optimize-save-placement2

eliminate-redundant-saves2

rewrite-saves/restores2

impose-calling-convention
reveal-allocation-pointer

verify-a10-output1

Week 11: start of register allocation
uncover-live-1
uncover-frame-conflict
strip-live-1
uncover-frame-move

verify-a11-output1

Week 12: setting up call frames
uncover-call-live-spills
assign-frame-1
assign-new-frame

optimize-fp-assignments2

verify-a12-output1

Week 13: introducing spill code
finalize-frame-locations
eliminate-frame-var
introduce-unspillables

verify-a13-output1

Week 14: register assignment
uncover-live-2
uncover-register-conflict

verify-unspillables1

strip-live-2
uncover-register-move
assign-registers
assign-frame-2
finalize-register-locations

analyze-frame-traffic1

verify-a14-output1

Week 15: generating assembly
flatten-program
generate-Sparc-code

Table 1: Passes assigned during a recent semester, given in running order and grouped roughly by week
and primary task. Notes: 1Passes supplied by the instructor. 2Challenge-assignment passes required only
of graduate students, not necessarily during the week shown. 3Actually written during Week 4. 4Pass not
included in the final compiler. During Week 6, students also had an opportunity to turn in updated versions
of earlier passes. Week 9 was a short week leading up to spring-break week. Most of the passes are run
exactly once; the passes that comprise the main part of the register and frame allocator are repeated until
all variables have been given register or frame homes.

passes included in the compiler are listed in Table 1. Due
to space limitations, we cannot go into the details of each
pass, but the pass names are suggestive of their roles in the
compilation process.

The micropass methodology and tools are not without
problems, however. The repetitive code for traversing and
rewriting abstract syntax trees can obscure the meaningful
transformations performed by individual passes. In essence,
the sheer volume of code for each pass can cause the stu-
dents to lose the forest for the trees. Also, although we have
learned the importance of writing out grammars describing
the output of each pass, as documentation, the grammars
are not enforced, and it is easy for an unhandled specific
case to fall through to a more general case, resulting in ei-
ther confusing errors or malformed output to trip up later
passes. Finally, the resulting compiler is slow, which leaves

students with a mistaken impression about the speed of a
compiler and the importance thereof.

To address these problems, we have developed a “nanopass”
methodology and a domain-specific language for writing
nanopass compilers. A nanopass compiler differs from a mi-
cropass compiler in three ways: the intermediate-language
grammars are formally specified and enforced, each pass
needs to contain traversal code only for forms that undergo
meaningful transformation, and the intermediate code is
represented more efficiently as records, although all interac-
tion with the programmer is still via the s-expression syntax.
We use the word “nanopass” to indicate both the intended
granularity of passes and the amount of source code required
to implement each pass.

The remainder of this paper describes the nanopass
methodology and supporting tools. Section 2 introduces
our methodology for building nanopass compilers. Section 3
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describes tools for building nanopass compilers. Section 4
highlights the different features of the framework and their
underlying implementation, with the help of some exam-
ple language and pass definitions. Section 5 surveys related
work. Section 6 concludes with a discussion of future work.

2. NANOPASS METHODOLOGY

In the nanopass framework, a compiler is composed of many
fine-grained passes, each operating on programs in a well-
specified input language and producing programs in a well-
specified output language. A discipline we find helpful in
maintaining this fine granularity is to require that each pass
perform a single specific task to simplify, verify, convert,
analyze, or improve the code.

A simplification pass reduces the complexity of subsequent
passes by translating its input into a simpler intermediate
language, e.g., removing the primitive not from the lan-
guage. A verification pass checks compiler invariants that
are not easily expressed within the grammar, e.g., that all
bound variables are unique. A conversion pass makes ex-
plicit an abstraction that is not directly supported by the
low-level target language, e.g., converting basic blocks to a
linear instruction stream by inserting branches. An anal-
ysis pass collects information from the input program and
records that information by annotating the output program,
e.g., annotating each lambda expression with its set of free
variables. An improvement pass attempts to optimize the
run time or resource utilization of the program.

We require a verification or improvement pass (or group
of related analysis and improvement passes) to produce a
program in the same intermediate language as its input pro-
gram so that we may selectively enable or disable individ-
ual checks or optimizations. Enabling verification passes
can help to identify bugs during the development of up-
stream passes. Verification passes may be disabled to im-
prove compiler speed. The ability to disable or enable indi-
vidual optimizations at will simplifies development of tools
that automate regression testing with various permutations
of compiler switches. Such testing may uncover cases where
a routine optimization masks bugs in seldom-executed por-
tions of another pass. Bugs of this kind are otherwise es-
pecially difficult to locate since they typically surface only
in programs sufficiently complex to defeat the compensating
optimizations. Selectively disabling optimizations is also an
easy way to support a range of compiler switches that trade
compile-time speed for code quality.

We find it helpful to codify the transformation performed
by each pass using formal grammars to describe the input
and output languages of the pass. Care is taken to make
these grammars precise. For example, a pass may transform
the input program so that particular forms are eliminated
or appear in more limited contexts. Although the output
of the pass is still a valid program in the input language,
we define a new output-language grammar that explicitly
deletes or restricts the affected form.

Intermediate-language grammars are specified formally
via language definitions (Section 3.1). Language definitions
play an important role when defining passes, and precise
grammars are also useful documentation. The transforma-
tion performed by a pass can often be understood by com-
paring the grammars of the input and output languages of
the pass.

It may appear that much of the compiler complexity has
been pushed into the intermediate-language definitions, par-
ticularly given our emphasis on precise grammars. Since
each pass performs one, well-specified transformation, how-
ever, changes in the intermediate language from one pass to
the next are usually slight. Often we can define new lan-
guages via inheritance, described in Section 3.2, expressing
the differences between the languages more concisely. More-
over, many passes, including improvement and verification
passes, operate on the same source and output languages.
So, although we write many passes and emphasize precise
grammars, we write fewer language definitions than passes,
and many of the ones we do write are concisely specified in
terms of an earlier language.

In addition, the compilation system compares the re-
sults obtained by evaluating the output of each pass against
the results produced by a reference implementation. This
practice helps to isolate correctness-preservation failures to
a particular pass. Having isolated an offending pass, we
can view intermediate-language programs in a readable s-
expression form when tracing through the output of the pass
searching for the cause of the failure.

3. NANOPASS TOOLS

This section describes tools for defining new intermediate
languages and compiler passes. These tools comprise a
domain-specific language for writing nanopass compilers and
are implemented as extensions to the host language, Scheme,
via the syntax-case macro system [6]. This language-
embedding approach provides access to the full host lan-
guage for defining auxiliary procedures and data structures,
which are particularly useful when writing involved passes,
such as a register allocation pass. The host language also
provides the evaluator that we use to evaluate the output of
each compiler pass during development.

3.1 Defining intermediate languages
Intermediate language definitions take the following form.

(define-language name { over tspec+ }
where production+)

The optional tspec declarations specify the terminals of the
language and introduce metavariables ranging over the var-
ious terminals. Each tspec is of the form

(metavariable+ in terminal)

where the terminal categories are declared externally. A
metavariable declaration for x implicitly specifies metavari-
ables of the form xn, where n is a numeric suffix. Each
production corresponds to a production in the grammar of
the intermediate language.

A production pairs a nonterminal with one or more alter-
natives, with an optional set of metavariables ranging over
the nonterminal.

({ metavariable+ in } nonterminal alternative+)

Productions may also specify elements that are common to
all alternatives using the following syntax.

({ metavariable+ in } (nonterminal common+)

alternative+)
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#[lambda.program.10 (x)

#[if.expr.10
#[x.expr.10 x]

#[anon.18.expr
#[x.expr.10 foo] (#[x.expr.10 x])]

#[anon.18.expr (lambda (x) (if x (foo x) (bar x)))

#[x.expr.10 bar] (#[x.expr.10 x])]]

Illustration 1: All compiler-writer interactions are via the s-expression syntax.

Common elements may be used to store annotations, e.g.,
source information or analysis byproducts, that are common
to all subforms of the intermediate language.

Each alternative is a metavariable or parenthesized form
declaring an intermediate language construct, followed by
an optional set of production properties property+. Paren-
thesized forms usually begin with a keyword and contain
substructure that usually includes metavariables specifying
the language category into which each subform falls. At
most one alternative of a production may be a parenthe-
sized form that does not begin with a keyword, allowing
the intermediate language to include applications using the
natural s-expression syntax. Each property is a key , value
pair. Properties are used to specify semantic, type, and flow
information for the associated alternative.

Figure 1 shows a simple language definition and the gram-
mar it implicitly defines. It defines metavariables x, b, and
n ranging over variables, booleans, and integers, and defines
three productions. The first production defines Program as
an Expr. The second defines metavariables e and body rang-
ing over Expr and declares that Expr is a boolean, integer,
variable reference, if expression, seq expression, lambda ex-
pression, or application. The third defines metavariable c

ranging over Command and declares that Command is a set!

command or seq command.
The semantics of each intermediate language form may be

specified implicitly via its natural translation into the host
language, if one exists. In Figure 1, this implicit translation
suffices for booleans, numbers, variable references, lambda,
set!, if, and applications. For seq expressions, the transla-
tion is specified explicitly using the => (translates-to) prop-
erty. Implicit and explicit translation rules establish the
meaning of an intermediate language program in terms of
the host language, which is an aid to understanding interme-
diate language programs and provides a mechanism whereby
the output of each pass can be verified to produce the same
results as the original input program while a compiler is be-
ing debugged. Explicit translations can become complex, in
which case we often express the translation in terms of a
syntactic abstraction (macro) defined in the host language.

From a compiler writer’s point of view, a language defi-

nition specifies the structure of an intermediate language in
terms of the familiar s-expression syntax (Illustration 1). All
of the compiler writer’s interactions with the intermediate
language occur via this syntax. Internally, however, inter-
mediate language programs are represented more securely
and efficiently as record structures.

Intermediate language programs are also evaluable in the
host language, using the translation properties attached to
production alternatives. To support these differing views
of intermediate language programs, a language defined via
define-language implicitly defines the following items:

1. a set of record types representing the abstract syntax
trees (ASTs) of intermediate-language programs,

2. a mapping from s-expressions to record structure,

3. a mapping from record structure to s-expressions, and

4. a mapping from s-expression patterns to record struc-
ture

These products are packaged within a module and may be
imported where they are needed. The remainder of this
section describes these products in more detail.

3.1.1 Record-type definitions

The language definition automatically generates a set of
record definitions as shown in Figure 2. A base record type
is constructed for the language along with a subtype for
each nonterminal. The subtype for each nonterminal de-
clares the common elements for that nonterminal. A new
record type is also created for each alternative as a subtype
of the corresponding nonterminal. The define-language
form given in Figure 1 defines a record type for L0, subtypes
of this type for Program, Expr, and Command, and subtypes
of these for each of their alternatives. For example, the
record type for (if e1 e2 e3) is a subtype of the record
type for Expr, which is in turn a subtype of the record type
for L0. The record type for if contains three Expr fields.
Where ellipses are used in the define-language syntax, the
field contains a list of elements. For example, an alternative
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(define-language L0 over
(x in variable)

(b in boolean)

(n in integer)

where
(Program

Expr)

(e body in Expr

b

n

x

(if e1 e2 e3)

(seq c1 e2) => (begin c1 e2)

(lambda (x ...) body)

(e0 e1 ...))
(c in Command

(set! x e)

(seq c1 c2) => (begin c1 c2)))

〈L0〉 −→ 〈Program〉
〈Program〉 −→ 〈Expr〉

〈Expr〉 −→ 〈boolean〉
| 〈integer〉
| 〈var〉
| (if 〈Expr〉 〈Expr〉 〈Expr〉)
| (seq 〈Command〉 〈Expr〉)
| (lambda (〈var〉*) 〈Expr〉)
| (〈Expr〉 〈Expr〉*)

〈Command〉 −→ (set! 〈var〉 〈Expr〉)
| (seq 〈Command〉 〈Command〉)

Figure 1: A simple language definition and the corresponding grammar

(define-record L0 ())

(define-record program L0 ())

(define-record expr L0 ())

(define-record command L0 ())

(define-record b.expr expr (b))

(define-record n.expr expr (n))

(define-record x.expr expr (x))

(define-record if.expr expr (e1 e2 e3))

(define-record seq.expr expr (c1 c2))

(define-record lambda.expr expr (xs body))

(define-record app.expr expr (e0 es))

(define-record set!.command command (x e))

(define-record seq.command command (c1 c2))

Figure 2: Record definitions generated for L0

(let ((x e) ...) body) would declare a record type with
two fields, the first of which contains a list of (x e) records
associating program variables with Expr records. Strong
typing of record constructors ensures that ASTs are well-
formed by construction.

3.1.2 Parser

Each language definition produces a parser capable of trans-
forming s-expressions to the corresponding record structure
representing the same abstract syntax tree. The parser for
the first input language serves as the first pass of the com-
piler (after lexical analysis and parsing) and provides the
record-structured input required by subsequent passes of the
compiler. Providing parsers for each intermediate language
aids debugging by allowing the compiler-writer to obtain
inputs suitable for arbitrary passes of the compiler.

Figure 3 shows part of the code for the parser that is gen-
erated by the language definition for L0 in Figure 1. The
code for the parser mirrors the language definition. The
language definition produces a set of mutually recursive pro-

(define (parser-lang.L0 s-exp)

(define (parse-program s-exp) ...)
(define (parse-expr s-exp)

(if (pair? s-exp)

(cond

...
[(and (eq? ’seq (car s-exp))

(= 3 (length s-exp)))

(make-seq.expr.L0.6
(parse-command (cadr s-exp))

(parse-expr (caddr s-exp)))]

...
[else

(make-anon.7
(parse-expr (car s-exp))

(map parse-expr (cdr s-exp)))])

(cond

[((boolean? s-exp)

(make-b.expr.L0.1 s-exp)]

...
[else (error ---)]))))

(define (parse-command s-exp) ...))

Figure 3: Parser for a language L0

cedures, parse-program, parse-expr and parse-command,
each handling all the alternatives of the corresponding non-
terminal. The nonterminal parsers operate by recursive de-
scent on list structured input following the grammar. For
example, the parse-expr case for seq first verifies whether
the list has three elements and begins with the keyword seq,
then calls directly to parse-command for first subform and
to parse-expr for the second subform. An error is signaled
if there is no match.

Since parenthesized forms are disambiguated by the be-
ginning keyword, at most one parenthesized form per non-
terminal can begin with a metavariable, i.e., a nonkeyword.
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3.1.3 Unparser

The unparser converts the AST records to their correspond-
ing host-language executable forms. Like the parser this also
serves as a good debugging aid by allowing the compiler-
writer to view the output of any pass in host-language form.
It enables the compiler-writer to trace and manually trans-
late programs, e.g., during the exploratory phase of the de-
velopment of a new optimization. Each record-type defi-
nition stores the parenthesized form and the host-language
form for the alternative. The host-language form, if different
from the parenthesized form, is expressed as the translates-
to production property in the language definition, as in the
case of (seq c1 e2) => (begin c1 e2) in Figure 1. Each
record type stores the information required to unparse in-
stances of itself. As a result, all languages share one unparse
procedure.

Since the record type stores both the parenthesized form
and the host-language form of the alternative, the unparser
can also translate the record structures into their parenthe-
sized forms, thus allowing the compiler writer to pretty-print
the output.

3.1.4 Partial Parser

The partial parser is used to support input pattern match-
ing and output construction, which are described in Sec-
tion 3.3.1 and Section 3.3.2.

The partial parser translates s-expression syntax repre-
senting an input pattern or output template into its cor-
responding record structure. The variable parts of the s-
expression syntax are converted to a special list representa-
tion that is later used to generate code for the pass.

For example, the partial parser parses the s-expression
syntax (let ((,x ,e) ...) (foo ,x ...)) into the fol-
lowing.

#[let-record

#[anon.1-record
(maplist (list (x variable)(e expr)))]

#[app-record

#[ref-record (foo variable)]

#[ref-record (x variable)]]]

The actual list representations generated are slightly more
elaborate than the ones shown above and will be discussed
later in Section 4.2. The structures produced by the partial
parser are not visible to the compiler-writer, but are used
to generate the code for matching the given pattern and
constructing the desired output.

3.2 Language inheritance
Consecutive intermediate languages are often closely related
due to the fine granularity of the intervening passes. To
permit more concise specification of these languages, the
define-language construct supports a simple form of in-
heritance via the extends keyword, which must be followed
by the name of a base language, already defined.

(define-language name extends base
{ over { mod tspec }+ }
{ where { mod production }+ })

The terminals and productions of the base language are
copied into the new language subject to modifications in the

over and where sections of the definition, either of which
may be omitted if no modifications to that section are nec-
essary. Each mod is either +, which adds a new terminal
or production, or -, which removes the corresponding ter-
minal or production(s). The example below defines a new
language L1 derived from L0 (Figure 1) by removing the
boolean terminal and Expr alternative and replacing the
Expr if alternative with an Expr case alternative.

(define-language L1 extends L0

over
- (b in boolean)

where
- (Expr b (if e1 e2 e3))

+ (default in Expr

(case x (n1 e1) ... default)))

Language L1 could serve as the output of a conversion pass
that makes language-specific details explicit en route to a
language-independent back end. For example, C treats zero
as false, while Scheme provides a distinct boolean constant
#f representing false. Conditional expressions of either lan-
guage could be translated into case expressions in L1 with
language-specific encodings of false made explicit.

Language inheritance is mainly a notational convenience.
A new language definition is generated from the definition
of the parent language and the implementation from that
point is the same as that for define-language. The parent
and child languages do not share any record definitions.

3.3 Defining passes
Passes are specified using a define-pass construct that
names the input and output languages and specifies transfor-
mation functions that map input-language forms to output-
language forms.

(define-pass name input-language -> output-language
transform ...)

Some passes are run purely for effect, e.g., to collect and
record information about variable usage. For such passes,
the special output language void is used. Similarly, the spe-
cial output language datum is used when a pass traverses an
AST to compute some more general result, e.g., an estimate
of object code size.

Each transform specifies the transformer’s name, a signa-
ture describing the transformer’s input and output types,
and a set of clauses implementing the transformation.

(name : nonterminal arg ... -> val val ...

[input-pattern { guard } output-expression] ...)

The input portion of the signature lists a nonterminal of the
input language followed optionally by the types of any addi-
tional arguments expected by the transformer. The output
portion lists one or more result types. Unless void or datum
is specified in place of the output language, the first result
type is expected to be an output-language nonterminal.

Each clause pairs an input-pattern with a host-language
output-expression that together describe the transformation
of a particular input-language form. Input patterns are
specified using an s-expression syntax that extends the syn-
tax of alternatives in the production for the corresponding
input-language nonterminal as described in Section 3.3.1.
Output expressions may contain templates for constructing
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output-language forms using syntax which extends that of
alternatives in the production for the corresponding output-
language nonterminal. The extended syntax of input pat-
terns and output templates is described in sections 3.3.1
and 3.3.2. The optional guard , if present, is a host-language
expression that imposes additional constraints on matching.

Often, a pass performs nontrivial transformation for just
a few forms of the input language. In such cases, the two
intermediate languages are closely related and the new lan-
guage can be expressed using language inheritance. When
two intermediate languages can be related by inheritance,
a pass definition can specify transformers for only those
forms that have undergone change, leaving the implemen-
tation of other transformers to a pass expander. The pass
expander completes the implementation of a pass by con-
sulting the definitions of the input and output languages.
Strong typing of passes, transformers, and intermediate lan-
guages helps the pass expander to automate these simple
transformations. The pass expander is an important tool
for keeping pass specifications concise.

3.3.1 Matching input

When invoked, a transformer matches its first argument,
which must be an AST, against the input pattern of each
clause until a match is found. Clauses are examined in
order, with user-specified clauses preceding any clauses in-
serted by the pass expander. This process continues until
the input pattern of some clause is found to match the AST
and the additional constraints imposed by guard expressions
and pattern variables, described below, are satisfied. When
a match is found, the corresponding output expression is
evaluated to produce a value of the expected result type.
An error is signaled if no clause matches the input.

Input patterns are specified using an s-expression syntax
that extends the syntax of alternatives for the correspond-
ing nonterminal with support for pattern variables. Subpat-
terns are introduced by commas, which indicate, by analogy
to quasiquote and unquote [5], portions of the input form
that are not fixed. For example, (seq (set! ,x ,n) ,e2)

introduces three subpatterns binding pattern variables x, n,
and e2. Metavariables appearing within patterns impose
further constraints on the matching process. Thus the pre-
ceding pattern matches only those inputs consisting of a seq

form whose first subform is a set! form that assigns a num-
ber to a variable, and whose second subform is an Expr.

Pattern variables are used within input patterns to con-
strain the matching of subforms of the input AST. Within
subpatterns, pattern variables are used to bind matching
subforms of the input to program variables that may be ref-
erenced within output expressions and to match the results
of structural recursion on subforms of the input. The var-
ious forms that subpatterns may take are summarized be-
low, where the metavariable a ranges over alternate forms
of an input-language nonterminal A, and the metavariable
b ranges over alternate forms of an output-language nonter-
minal B .

1. The subpattern ,a matches if the corresponding input
subform is a form of A, and binds the pattern variable
a to the matching subform.

2. The subpattern ,[f : a -> b] matches if the corre-
sponding input subform is a form of A, and the result

obtained by invoking the transformer f on that sub-
form is a form of B . If the match succeeds, the pattern
variable a is bound to the matching input subform,
and b is bound to the result that is obtained by invok-
ing f .

3. The subpattern ,[a -> b] is equivalent to the subpat-
tern ,[f : a -> b] if f is the sole transformer map-
ping A → B.

4. The subpattern ,[b] is equivalent to the subpattern
,[a -> b] if the corresponding input subform is a
form of A.

Transformers may accept multiple arguments and return
multiple values. To support these transformers, the syn-
tax ,[f : a x ... -> b y ...] may be used to supply
additional arguments x . . . to f and bind program variables
y . . . to the additional values returned by f . The first argu-
ment must be an AST as must the first return value, unless
void or datum is specified as the output type. Subpatterns 3
and 4 are extended in the same way to support the gen-
eral forms ,[a x ... -> b y ...] and ,[b y ...]. Pat-
tern variables bound to input subforms may be referenced
among the extra arguments x . . . within structural-recursion
patterns 2 and 3 above. Metavariables are used within pat-
terns to guide the selection of appropriate transformers for
structural recursion.

When present, the optional guard expression imposes ad-
ditional constraints on the matching of the input subform
prior to any structural recursion specified by the subpat-
tern. Pattern variables bound to input forms are visible
within guard expressions. The mechanism just described
is consistent with the behavior of transformers, although,
in fact, transformers locate candidate clauses using efficient
type dispatch supported by the AST record structures. To
avoid duplicate evaluation, the pass expander commonizes
cases that scrutinize the results of structural recursion.

3.3.2 Constructing output

When the input to a transformer matches the input pat-
tern of one of the clauses, the corresponding output expres-
sion is evaluated in an environment that binds the subforms
matched by pattern variables to like-named program vari-
ables. For example, if an input language record represent-
ing (set! y (f 4)) matches the pattern (set! ,x ,e), the
corresponding output expression is evaluated in an environ-
ment that binds the program variables x and e to the records
representing y and (f 4). When a pattern variable is fol-
lowed by an ellipsis (...) in the input pattern, the corre-
sponding program variable is bound to a matching list of
records.

New abstract syntax trees are constructed via output
templates specified using an overloaded quasiquote syntax
that constructs record instances rather than list structure.
Where commas (i.e., unquote forms) do not appear within
an output template, the resulting AST has a fixed struc-
ture. An expression prefixed by a comma within an output
template is a host-language expression that must be eval-
uated to obtain an AST to be inserted as the correspond-
ing subform of the new AST being produced. For example,
‘(if (not ,e1) ,e2 ,e3) constructs a record representing
an if expression with an application of the primitive not as
its test and the values of program variables e1, e2, and e3
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inserted where indicated. The constructor applications im-
plied by this output template are essentially the following.

(make-if (make-primapp ’not e1) e2 e3)

The record constructors available within output templates
are determined by the output language specified in the pass
definition. Instantiating the output template must produce
an AST representing a form of the output nonterminal for
the transformer containing the clause.

A subtle point arises when writing a pass that maps pro-
grams in one language to programs in another closely re-
lated language. When the input and output languages are
different, a clause [,x x] would produce a record of the
wrong type, since it matches and returns an input-language
record. The clause must instead be written [,x ‘,x] so that
the output-language constructors are invoked to produce an
AST of the expected type. Fortunately, the pass expander
automates such trivial transformations. By nature, more
substantial transformations virtually always employ output
templates and so are seldom affected by this distinction.

Where ellipses follow an unquote form in an output tem-
plate, the host-language expression must evaluate to a list
of objects. For example, ‘(begin ,e ... ,c) requires that
e be bound to a list of Expr forms. Lists of records are of-
ten convenient when interfacing with common subroutines,
e.g., to partition a set of expressions according to specific
properties. Because quasiquote is overloaded to construct
record structures of the output language, an expression
‘(,e ...) may return a record representing a procedure
application, rather than a list of e records. Thus it is con-
venient that an input pattern (let ((,x ,e) ...) ,body)

binds the program variables x and e to lists of variable

and Expr records. When more complex list structures are
desired, list-processing tools of the host language are conve-
nient. For example, within an output expression associated
with the preceding let pattern, (map list x e) could be
used to build a list structure that could not otherwise be
constructed via the overloaded quasiquote.

4. EXAMPLES

This section shows a few sample languages and compiler
passes defined via define-language and define-pass. It
also shows portions of the code generated by the pass ex-
pander for representative passes and briefly discusses how
they are generated. For clarity, the following examples use
fully qualified names of the form name .language.

4.1 Removing a primitive
Language L2 defined in Figure 4 is a simple language of
expressions. The objective of the pass remove-not in Fig-
ure 5 is to eliminate the primitive not from programs in this
language. When not is used as the test part of an if ex-
pression, we express the inversion in flow of control simply
by swapping the consequent and alternative expressions. In
all other contexts, we replace calls to not with an equivalent
if expression that does the conversion explicitly. This pass
operates as a source-to-source transformation. The pass def-
inition deals with only those language forms that undergo
transformation and relies upon the pass expander to sup-
ply code for the remaining cases. In particular, the pass
expander supplies code for the case where the test part of

(define-language L2 over
(x in variable)

(b in boolean)

(n in integer)

(pr in primitive)

where
(Program

Expr)

(e body in Expr

b

n

x

(if e1 e2 e3)

(lambda (x ...) body)

(primapp e0 e1 ...)
(e0 e1 ...)))

Figure 4: A simple language of expressions

(define-pass remove-not L2 -> L2

(process-expr : Expr () -> Expr ()

[(if (not ,[e1]) ,[e2] ,[e3])

‘(if ,e1 ,e3 ,e2)]

[(primapp ,pr ,[e])

(eq? ’not pr)

‘(if ,e #f #t)]))

Figure 5: A pass that performs source-to-source
transformation

an if expression is not a primapp or is an application of a
primitive other than not.

As mentioned in Section 3.1.4, we generate the pattern-
matching code by first parsing the input pattern with the
partial parser of the input language in order to identify
the input and output constraints that govern the pattern-
matching process. For example, when given the input pat-
tern

(if (not ,[e1]) ,[e2] ,[e3])

the partial parser generates the following record.

#[if.L2
#[primapp.L2

#[var.L2 ’not]

(e1 #f expr.L2 process-expr)]

(e2 #f expr.L2 process-expr)

(e3 #f expr.L2 process-expr)]

By comparing this record with the if alternative in the
definition of L2, we see that the first subpattern imposes
a constraint on the input, since primapp is a subtype of
expr. The list structures contained within this record im-
pose additional constraints on the matching of the results
from implicit recursion, and they specify the targets of these
recursive calls, as well as the names of the pattern vari-
ables to which the results are to be bound. For example,
the pattern variable e2 is to be bound to the result of call-
ing process-expr on (primapp.L2-e (if.L2-e1 ir)), pro-
vided that the result satisfies the expr.L2? predicate. Here
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ir is the input to the pass and record-fieldname is the syntax
for field accessors. Normally, the input to a pass is generated
by either a parser or another pass and is thus well-formed
by construction. Therefore, the individual fields of the in-
put record need not be checked unless they indicate a type
or pattern more specific than what is expected according to
the input-language definition.

A guard expression, if present, is evaluated only if the
input record satisfies the input constraints of the pattern. If
the guard condition is satisfied, pattern matching continues
with the input and output pattern variables bound to the
corresponding pieces of the input or results from implicit
recursion. Input pattern variables can be referenced within
guard expressions, as shown below.

[(primapp ,pr ,[e] ...)
(eq? pr ’not)

‘(if ,e #f #t)]

The guard expression, (eq? pr ’not) is evaluated in an en-
vironment where pr is bound to (primapp.L2-pr ir).

To generate the code that is responsible for constructing
the output record, we parse the output template with the
partial parser of the output language and examine the re-
sulting record structure to identify the record-constructors
that need to be called. For the pattern in the output tem-
plate (if ,e1 ,e3 ,e2), the partial parser generates the
following record.

#[if.L2 e1 e3 e2]

Since output templates impose no constraints, the partial
parser suppresses that information for the pattern variables
e1, e2, and e3.

The following excerpt shows the expansion of the if clause
specified by the programmer in Figure 5.

(and (if.L2? ir)

(primapp.L2? (if.L2-e1 ir))

(let ([e1 (process-expr

(primapp.L2-e (if.L2-e1 ir)))]

[e2 (process-expr (if.L2-e2 ir))]

[e3 (process-expr (if.L2-e3 ir))])

(or (and (expr.L2? e1)

(expr.L2? e2)

(expr.L2? e3)

(make-if.L2 e1 e3 e2))

(error ---))))

The following shows the expansion of the primapp clause in
Figure 5.

(and (primapp.L2? ir)

(let ([pr (primapp.L2-pr ir)])

(and (primitive? pr)

(eq? ’not pr)

(let ([e (process-expr

(primapp.L2-e ir))])

(or (and (expr.L2? e)

(make-if.L2 e ’#f ’#t))

(error ---))))))

4.2 Beta reduction
The objective of the optimize-direct-call pass in Figure 7
is to replace what would otherwise be a call to an anony-

(define-language L3 extends L2

where
+ (Expr (let ((x e) ...) body)))

Figure 6: A language derived from another language

(define-pass optimize-direct-call L2 -> L3

(process-expr : Expr () -> Expr ()

[((lambda (,x ...) ,[body]) ,[e] ...)
‘(let ((,x ,e) ...) ,body)]))

Figure 7: A pass that performs beta reduction.

mous lambda with a simple let expression. In practical
terms, this transformation avoids an unnecessary heap allo-
cation, an indirect jump, and, when there are free variables
in the body, some additional indirect memory references. If
the expression is evaluated frequently, the savings can be
significant. This pass translates expressions in language L2

to expressions in language L3, which differs from L2 only
by the addition of a let form. L3 is concisely defined in
Figure 6 by extending the previously defined language L2.

The input and output constraints and the output con-
structors in this example are generated from partially parsed
records in the same way as described in Section 4.1. How-
ever, the patterns in this case are more involved. Consider
the following clause from Figure 7.

[((lambda (,x ...) ,[body]) ,[e] ...)
‘(let ((,x ,e) ...) ,body)]

For the input pattern, the partial parser produces the fol-
lowing record.

#[app.L2
#[lambda.L2

(maplist-of (x variable.L2 #f #f))

(body expr.L2 expr.L3 process-expr)]

(maplist-of

(e expr.L2 expr.L3 process-expr))]

(maplist-of (x variable #f #f)) indicates that the pat-
tern is to be matched against an input list containing an
arbitrary number of items, where each item is a variable

record that needs no implicit recursion and imposes no out-
put type constraints. From this record, we generate code
like the following to bind the pattern variables to the appro-
priate portions of the input and to the results of processing
the input.

(let ([x (lambda.L2-x (app.L2-e0 ir))])

...

(let ([e (map process-expr (app.L2-e1 ir))]

[body (process-expr

(lambda.L2-body ir))])

...))

For the output template, the partial parser produces the
following record.

#[let.L3 (maplist-of (list-of x e)) body]

The list (maplist-of (list-of x e)) representing the pat-
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tern ((,x ,e) ...) is also processed to generate code to
reconstruct the list from the instantiated pattern variables
x and e as shown below.

(let ([opfield.1
(map (lambda (g0 g1)

(cons g0 (cons g1 ’())))

x e)]

[opfield.2 body])

(make-let.L3 opfield1 opfield2))

4.3 Assignment conversion
The process of assignment conversion involves two passes.
The first pass, mark-assigned, locates assigned variables
i.e., those appearing on the left-hand side of an assign-
ment, and marks them by setting a flag in one of the
fields of the variable record structure. A second pass,
convert-assigned, rewrites references and assignments to
assigned variables as explicit structure accesses or muta-
tions.

The mark-assigned pass runs for effect only on an input
in language L4, which is may be derived from L0 by adding
the forms let, primapp, and the terminal primitive, as
shown below.

(define-language L4 extends L0

over
+ (pr in primitive)

where
+ (Expr

(let ((x e) ...) body)

(primapp pr e ...))
+ (Command

(primapp pr e ...)))

Only one language form, set!, need be handled explicitly by
this pass. If the input is a set! expression, the pass simply
sets the assigned flag in the record structure representing
the assigned variable.

(define-pass mark-assigned L4 -> void

(process-command : Command -> void

[(set! ,x ,[e])

(set-variable-assigned! x #t)]))

Since convert-assigned removes the set! form, its output
language, L5, is derived from its input language L4.

(define-language L5 extends L4

where
- (Command (set! x e)))

As shown in Figure 8, the convert-assigned pass intro-
duces a let expression binding each assigned variable to
a pair whose car is the original value of the variable, re-
places each reference to an assigned variable with a call to
car, and replaces each assignment with a call to set-car!.
split-vars is an auxiliary procedure that introduces tem-
poraries for assigned variables. This pass converts the L4

program

(lambda (a b)

(seq

(set! a b)

a))

into the following L5 program

(lambda (t b)

(let ((a (cons t #f)))

(seq

(set-car! a b)

(car a))))

5. RELATED WORK

The Zephyr Abstract Syntax Description Language (ASDL)
describes tree-like intermediate languages in a format that
can be used to generate language-specific data structure dec-
larations as well as language-specific functions that read and
write these structures [16]. These functions provide func-
tionality similar to the parsers and unparsers generated by
our language definitions. ASDL focuses solely on intermedi-
ate representation and therefore does not integrate support
for defining passes. We have introduced our own language
for describing intermediate representations so that the pass
expander can refer to these descriptions when filling in the
details of passes.

The TIL compiler performs all optimizations on typed
intermediate languages [11]. Tarditi, et. al, found that
type-checking the output of each optimization pass helped
to identify and eliminate bugs in the compiler. In our
framework, type information could be encoded via proper-
ties in the language definition, and a verification pass could
be inserted after each pass to typecheck its output. Our
language definitions produce expanders that translate in-
termediate representations to semantically equivalent host-
language programs. During development we often use this
mechanism to evaluate the output of each pass and com-
pare the results with those produced by a reference imple-
mentation. We could instead compare the results of static
analysis, including type information, on the input and out-
put programs after each pass. We already use verification
passes during development to check other static properties.

Polyglot simplifies construction of compilers for source-
level language extensions of Java [9]. A key design goal of
Polyglot is to ensure that the work required to add new
passes or new AST node types is proportional to the num-
ber of node types or passes affected. This goal is achieved
through the use of some fairly involved OOP syntax and
mechanisms. Our pass expander and our support for lan-
guage inheritance approach the same goal with less syntactic
and conceptual overhead.

Tm is a macro processor in the spirit of m4 that takes
a source code template and a set of data structure defini-
tions and generates source code [12]. Tree-walker and ana-
lyzer templates that resemble define-pass have been gener-
ated using Tm [13]. These templates are low-level relatives
of define-pass, which provides convenient input pattern
syntax for matching nested record structures and output
template syntax constructing nested record structures. Tm
data-structure definitions do not support extensible proper-
ties described in Section 3.1.

Some similarities also exist between the nanopass ap-
proach and approaches taken in the PFC and SUIF com-
pilers. Like the Nanopass compiler, the PFC compiler [3]
uses macro expansion to fill in boilerplate transformations.
The SUIF system [1, 2] provides object-oriented tools for
specifying intermediate language programs, including tools
that allow compiler passes to focus on different aspects of
an intermediate language program. The SUIF compiler has
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(define-pass convert-assigned L4 -> L5

(process-expr : Expr -> Expr

[,x (variable-assigned x) ‘(primapp car ,x)]

[(lambda (,x ...) ,[body])

(let-values ([(xi xa xr) (split-vars x)])

‘(lambda (,xi ...)
(let ((,xa (primapp cons ,xr #f)) ...)

,body)))])

(process-command : Command -> Command

[(set! ,x ,[e]) ‘(primapp set-car! ,x ,e)]))

(define split-vars

(lambda (vars)

(if (null? vars)

(values ’() ’() ’())

(let-values ([(ys xas xrs) (split-vars (cdr vars))])

(if (variable-assigned (car vars))

(let ([tmp (make-variable ’tmp)])

(values (cons tmp ys) (cons (car vars) xas) (cons tmp xrs))

(values (cons (car vars) ys) xas xrs)))))))

Figure 8: Assignment conversion

one intermediate language format as opposed to the many
intermediate languages encouraged by the Nanopass com-
piler. The nanopass approach achieves effects similar to
these systems but extends them by formalizing the language
definitions, including sufficient information in the language
definitions to allow automated conversion to and from the
host language, and separating traversal algorithms from in-
termediate language and pass definitions.

6. CONCLUSIONS

The nanopass methodology supports the decomposition of
a compiler into many small pieces. This decomposition sim-
plifies the task of understanding each piece and, therefore,
the compiler as a whole. Adding new optimizations is eas-
ier; there is no need to “shoe-horn” an analysis or transfor-
mation into an existing monolithic pass. The methodology
also simplifies the testing and debugging of a compiler, since
each task can be tested independently, and bugs are easily
isolated to an individual task.

The nanopass tools enable a compiler student to focus on
concepts rather than implementation details while having
the experience of writing a complete and substantial com-
piler. While it is useful to have students write out all traver-
sal and rewriting code for the first few passes to understand
the process, the ability to focus only on meaningful transfor-
mations in later passes reduces the amount of tedium and
repetitive code. The code savings is significant for many
passes, including the passes shown in Section 4. With our
old tools, remove-not was the smallest pass at 25 lines; it is
now 7 lines. Similarly, convert-assigned was 55 lines and
is now 20 lines. On the other hand, the sizes of a few passes
cannot be reduced. The code generator, for example, must
explicitly handle every grammar element.

At present, the pass expander can fill in missing details
only for passes implementing algorithms that are insensitive
to the order in which the pass recurs on subforms. This
is suitable for most passes, but not for passes that perform
a flow-sensitive analysis or transformation, such as a live

analysis. Such passes must presently be written out in full.
A focus of our future research will be to extend language
definitions to allow flow information to be incorporated and
to extend pass definitions to allow a forward or backward
flow-sensitive traversal algorithm to be specified.

Our experience indicates that fine-grained passes work ex-
tremely well in an educational setting. We are also inter-
ested in using the nanopass technology to construct pro-
duction compilers, where the overhead of so many repeated
traversals of the code may be unacceptable. Another focus
of our future research will be to develop a pass combiner
that can, when directed, fuse together a set of passes into a
single pass, using deforestation techniques [15] to eliminate
rewriting overhead.

The fine-grained nature of the passes may also tend to ex-
acerbate phase ordering problems [7, 18]. A phase ordering
problem occurs when no ordering of a set of improvement
passes takes advantage of all optimization opportunities, be-
cause each optimization may lead to opportunities for some
of the others. This problem can often be solved by iterating
individual improvement passes until a fixed point is reached,
but this solution may result in significant compile-time over-
head. A more efficient solution is to combine many optimiza-
tions, or the analyses that enable them, into a single “super
optimizer” that produces the same or better residual code in
fewer iterations due to the synergy among optimizations at
the subexpression level [4, 8, 10, 14, 17]. Unfortunately, su-
per optimizers exhibit the undesirable monolithic structure
that the nanopass framework is designed to avoid, and, in
our experience, adding new optimizations to an existing su-
per optimizer requires considerably more effort than writing
them individually. The pass combiner hypothesized above
may be able to exploit this synergy and allow improvement
passes to be developed independently yet run as a single
super optimizer.
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