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Traditional first-class continuation mechanisms allow a cap-

turedcontinuation to reinvoked multiple times. Many con-

tinuations, however, are invoked only once. This paper in-
troduces one-shot continuations, shows how they interact

with traditional multi-shot continuations, and describes a

stack-based implementation of control that handles ‘both

one-shot and multi-shot continuations. The implement ation

eliminates the copying overhead for one-shot continuations
that is inherent in multi-shot continuations.

1 Introduction

Scheme [5] and some implementations of ML [17] provide
continuations as first-class data objects. Continuations
can be used to implement, at the source level, a number

of interesting control features, such as loops, nonlocal ex-
its, nonblind backtracking [22], nondeterministic computa-

tions [10, 14], and coroutines [7]. Source-level implementa-

tions of thread systems [9, 15, 21], especially in the area of
graphical user interfaces (GUIS) [12, 13, 20, 23], are an im-

portant and rapidly growing application area for first-class
cent inuations.

Continuations represent the remainder of a computation

from a given point in the computation. When a continua-

tion is invoked, control returns to the point in the program

at which the continuation was captured. Traditional con-

tinuation mechanisms allow a continuation to be invoked

multiple times. In our experience, however, most continu-
ations are, in fact, invoked only once. In particular, this

is true for continuations used to implement threads. This
observation motivated us to develop one-shot continuations,
continuations that can be invoked only once, and to inves-

tigate whether the copying costs associated with traditional

multi-shot continuations could be avoided for one-shot con-
tinuations.

In this paper, we introduce one-shot continuations and

explain how they interact with traditional multi-shot contin-

uations. We describe an implementation of one-shot contin-
uations that eliminates the copying overhead associated with
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multi-shot continuations. We present performance measure-

ments that demonstrate that one-shot continuations are in-

deed more efficient than multi-shot continuations for certain

applications, such as thread systems.

The remainder of this paper is organized aa follows.

Sections 2 and 3 describe one-shot continuations and the
changes required to adapt our stack-baaed Scheme imple-

mentation to support them. Section 4 discusses the perfor-

mance characteristics of our implementation. Finally, Sec-

tion 5 summarizes the paper and compares our approach to
related approaches.

2 One-shot continuations

Continuations in Scheme are procedural objects that rep-
resent the remainder of a computation from a given point

in the computation. The procedure call-with-cuwent-

continuation, commonly abbreviated call/cc, allows a pro-
gram to obtain the current continuation. call/cc must be

passed a procedure p of one argument. call/cc obtains the

current continuation and paases it to p. The continuation

itself is represented by a procedure k. Each time k is ap-
plied to a value, it returns the value to the continuation of

the caU/cc application. This value is, in essence, the value

of the application of call/cc. If p returns without invoking
k, the value returned by the procedure is the value of the

application of caU/cc.

If control has not otherwise passed out of the call to

call/cc, invoking the continuation merely results in a non-

local exit with the specified value. If control has already

passed out of the call to call/cc, the continuation can still

be invoked, but the result is to restart the computation at
a point from which the system has already returned.

The continuation of a procedure call is essentially the

control stack of procedure activation records. If con-

tinuations were used only for nonlocal exits, as for C’s

set jmpilongjmp, then the essence of a continuation object

would be a pointer into the control stack. Because continua-

tions can outlive the context of their capture, however, con-
tinuation objects must have indefinite extent and a pointer

into the stack is not sufficient. If this simple representation

were used and control passed out of the context where the
continuation was created, the stack might be overwritten
by other procedure activation records, and the information
required upon return to the continuation would be lost.

One-shot continuations are obtained with call/lcc and
differ from multi-shot continuations only in that it is an er-
ror to invoke a one-shot continuation more than once. Note
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that a continuation can be invoked either implicitly, by re-

turning from the procedure passed to call/cc or call/1 cc, or

explicitly, by invoking the continuation procedure obtained

from the call/cc or call/l cc.

One-shot continuations can be used in most contexts
where multi-shot continuations are currently used, e.g., to

implement non-local exits, non-blind backtracking [22], and

coroutines [7]. One-shot continuations can also be- used to

implement thread systems in user code.

One-shot continuations cannot be used to implement
nondeterminism, as in Prolog [6], in which a continuation
is invoked multiple times to yield additional values [10, 14].

In these sorts of applications, multi-shot continuations must

still be used.

If a language supports both multi-shot and one-shot con-

tinuations, it is necessary handle cases in which programs

use both varieties of continuation. For example, a Prolog

interpreter might use multi-shot continuations to support
nondeterminism while employing a thread system baaed on

one-shot continuations at a lower level. One-shot continua-

tions must be promoted to multi-shot status when they are

captured as part of a multi-shot continuation. This allows

programmers to build abstractions based on one-shot con-

tinuations that can be composed with abstractions baaed on

multi-shot continuations in a consistent manner.

3 Implementation

A detailed description of our implementation of multi-shot
continuations is described elsewhere [16]. In this section, we
review the essential details and discuss the changes neces-

sary to implement one-shot continuations.

3.1 Segmented stack model

In our model, the control stack is represented as a linked list

of stack segments. Each stack segment is structured as a true

stack of frames (activation records), with one frame for each
procedure call. A stack record associated with each stack

segment contains information about the segment, including
a pointer to the base of the segment, a pointer to the next
stack record, the size of the segment, and the return address

associated with the topmost frame of the continuation. (See
Figure 1.)

Each frame consists of a sequence of machine words. The

first word at the base of the frame is the return address of the

current active procedure. The next n words contain the n
actual parameters of the procedural. The remaining words

in the frame contain the values of local variables, compiler
temporaries, and partial frames for procedure calls initiated

but not yet completed. A frame pointer register, fp, points
to the base of the current frame, which is always in the
topmost stack segment.

No separate stack pointer is maintained to point to the
topmost word on the stack, so there is often a gap between
the frame pointer and the topmost word. This does not cre-
ate any difficulties as long as the same stack is not used for

asynchronous interrupt handling. Using a frame pointer in-

stead of a stack pointer simplifies argument and local vari-
able access and eliminates register increments and decre-
ments used to support stack ‘(push” and ‘{pop” operations.

10ur compiler actually passes the return address and the first few
arguments in registers, where feasible [4]. Although this complicates
the implementation only slightly, we assume a more straightforward
model here to simplify our presentation,

No explicit links are formed between frames on the stack.

Some compilers place the current frame pointer into each
stack frame before adjusting the frame pointer to point to

the new frame. This saved pointer, or dynamic link, is used

by the called routine to reset the frame pointer and by vari-

ous tools, e.g., exception handlers and debuggers, to “walk”

the stack. In our model, the frame pointer is adjusted just

prior to a procedure call to point to the new frame and is

adjusted after the called routine returns to point back to the

old frame. In order for this to work, the frame pointer must

still (or again) point to the called routine’s frame on return.
The compiler generating code for the calling procedure must

keep track of the displacement between the start of the call-

ing procedure’s frame and the start of the called procedure’s
frame in order to adjust the frame pointer both before and

after the call. In both cases, the adjustment is performed

by a single instruction to add (subtract) the displacement
to (from) the frame pointer.

Exception handlers, debuggers, and other tools that need

to walk through the frames on the stack must have some
way to get from each frame to the preceding frame. Our

continuation mechanism also requires this ability in order

to find an appropriate place at which to split the stack (see

Section 3.2). In the place of an explicit dynamic link, the

compiler places a word in the code stream that contains the

size of the frame. This word is placed immediately before
the return point so stack walkers can use the return address

to find the size of the next stack frame. If the return ad-

dress is always placed in a known frame location, the frame
size effectively gives the offset from the return address of
the current frame to the return address of the preceding

frame [16].

3.2 Continuation operations

A large initial stack segment and an associated current stack
record are created in the heap at the beginning of a pro-

gram run. Each time a multi-shot continuation is captured,

the occupied portion of the current stack segment is sealed
and the current stack record is converted into a continua-

tion object. This involves setting the size field to the size of
the occupied portion, i.e., the relative position of the frame
pointer within the segment, and storing the current return

address in the return address field. (See Figure 2.) The re-

turn address in the current frame is replaced by the address

of an underflow handler that implicitly invokes the captured

continuation. A new stack record is allocated to serve as the

current stack record. Its base is the address of the first word
above the occupied portion of the old stack segment, its link

is the address of the old stack record (the continuation), and
its size is the number of words remaining in the old stack

sesrment.

“The stack is thus shortened each time a continuation
is captured. Creating a multi-shot continuation, therefore,
does not entail copying the stack, but it does shorten the cur-
rent stack segment, which eventually results in stack over-
flow and the allocation of a new stack segment. The initial

stack segment is made large to reduce the frequency of stack
overflows for programs that create many continuations and
for deeply recursive programs.

Capturing a one-shot continuation is similar to capturing
a multi-shot continuation except that the entire current seg-
ment is encapsulated in the continuation and a fresh stack

segment is allocated to replace the current stack segment
(see Figure 2). Two size fields are required to record both
the total size of the segment and the current size. The cur-
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Figure 1. Thesegmented stwkmodel isasimple generalizationof thetraditional staA model. Alogical stack isrepresentedssa
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rent size is the size of the occupied portion of the stack, i.e.,

the relative position of the frame pointer within the stack
segment.

Since the total size of a multi-shot continuation is pre-

cisely the size of the occupied portion, the two size fields are
always equal in multi-shot continuations, Our system uses

this fact to distinguish between one-shot and multi-shot con-

tinuations.

If the current stack segment is empty when a continua-

tion is captured, no changes are made to the current stack
record and the link field of the current stack record serves

as the new continuation. This is necessary to implement tail

recursion properly.

Invoking continuations is more complex. For multi-shot

continuations, the current stack segment is overwritten with
the stack segment from the continuation, and the frame

pointer is adjusted to point to the top frame of the copied

segment (see Figure 3). If the current stack segment is not

large enough, a new one is allocated. Since the size of a

saved stack segment can be large, the cost of continuation

invocation would be bounded only by thhi large amount, if

the whole segment were copied at once. This is prevented

by placing an upper bound on the amount copied. If the
size of a saved stack segment is less than or equal to this

bound, the entire segment is copied. Otherwise, the seg-
ment is first split into two segments such that the size of the
top stack segment is less than the copy bound. Although
it would be sufficient to split off a single frame, it is more

efficient to split off aa much as possible without exceeding

the bound because of the overhead of splitting the continu-
ation and initiating the copy. See [16] for additional details
on splitting.

For one-shot continuations, there is no need to copy the

saved stack segment since the continuation will be involked

only once. Thus, the current stack segment is discarded and

control is simply returned to the saved stack segment. The

base, link, and size fields of the continuation are used to

reinitialize the current stack record and to reset the frame

pointer. (See Figure 4.) Since the contents of the stack

segment are not copied, there is no need to split the segment,
regardless of its size. To allow subsequent attempts to invoke
the continuation to be detected and prevented, it is marked

“shot” by setting the size and current size to –1.

A typical application involving one-shot continuations
obtains the current continuation using cdl/lee, saves the

continuation, and invokes a previously saved one-shot con-

tinuation. In this scenario, a new stack segment is allo-

cated by call/lcc and almost immediately discarded when

the saved one-shot continuation is invoked. This rapid al-

location and release of stack segments can overtax the stor-

age management system. A solution to this problem is to

use some type of stack segment cache, which can be rep-

resented se a simple internally linked free list of stack seg-

ments. When a one-shot continuation is invoked, the current

stack segment is added to the cache, and when call/1 cc re-

quires a new segment, the stack cache is checked before a

new segment is allocated. The stacks in this cache can be
discarded by the storage manager during garbage collection.

Without a stack segment cache, we found that many pro-
grams written in terms of call/lcc were unacceptably slow,

much slower than the equivalent programs written in terms
of call/cc.

Stack overflow can be treated as an implicit call/cc [16],
although since overflow occurs when the current stack seg-
ment has insufficient space, a new current segment must be
allocated. Improper overflow handling can result in bourtc-
ing, in which a program makes a call that overflows the
stack, underflows immediately by returning from the call,
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immediately makes another call that overflows the stack,

and so on. Treating overflow as an implicit call/cc avoids

the bouncing problem since the entire newly allocated stack
must be refilled before another overflow can occur.

tagless G-machine [19] to solve essentially the same prob-
lem [18]. We found that, without the hysteresis provided by

this mechanism, there was a noticeable performance degra-
dation in certain programs. With this mechanism in place,
deeply recursive programs run faster than with overflow
treated as an implicit call/cc, due to the decrease in copying.Stack overflow can be treated as an implicit call/lcc in-

stead. Doing so naively, however, can cause bouncing, since
an immediate underflow switches back to the saved (full)

stack, at which point a call is guaranteed to cause a stack
overflow. This problem can be reduced by copying up sev-
eral frames on overflow from the current stack segment into

tlw newly allocated stack segment. The overflow continua-
tion thus includes the portion of the stack segment that is
not copied. A similar mechanism is used in the spineless

3.3 Promotion

As discussed in Section 2, it is necessary to promote one-

shot continuations in the continuation of a call to call/cc to
multi-shot continuations. Promotion of a one-shot contin-
uation is trivial given our representations of one-shot and
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multi-shot continuations: promotion simply sets the size of

a one-shot continuation equal to its current size. Since the

current continuation at any point may include a chain of
one-shot continuations, it is necessary to iterate down the

chain until a multi-shot continuation is found, resetting all

one-shot continuations along the way. It is not necessnry
to iterate beyond a multi-shot continuation in the chain be-

cause the operation that created the multi-shot continuation
would have reset all one-shot continuations below it in the

chain. Although the linear traversal involved in the pro-

motion of one-shot continuations captured by caU/cc means

that there is no hard bound on the speed of call/cc opera-

tions, there is no quadratic time complexity problem because

a one-shot continuation can be promoted only once. One

solution that would allow call/cc to run in bounded time
(which we have not implemented) is to share a boxed flag

among all one-shot continuations in a chain. All of the one-
shot continuations could then be promoted simultaneously

by simply setting the shared flag.

Even if the system did not promote one-shot continu-

ations created explicitly by the program, it would still be
obligated to promote one-shot continuations created implic-
itly as the result of a stack overflow.

3.4 Stack segment fragmentation

Internal fragmentation can result from the inclusion of unoc-

cupied memory in the stack segments of one-shot continua-

tions. With a default stack size of 16KB, 100 threads created
using call/lcc occupy 1.6MB of memory. Unless each of the

threads is deeply recursive, most of this storage is wasted.

Multi-shot continuations, in contrast, do not cause fragmen-

tation because saved segments contain no unused storage.

One way to decrease fragmentation is to use a small de-
fault stack size. This would penalize deeply recursive pro-

grams and programs that create many multi-shot continu-
ations, however, because they would overflow more often.

Another solution, which we are currently using, is to limit

the amount of unused memory encapsulated in the stack
record of a one-shot continuation by sealing the current stack

segment at a fixed displacement above above the occupied
portion of the stack. We then use the remaining portion of

the stack segment as the new current stack segment rather

than allocating a fresh stack (possibly from the stack cache).

4 Performance

We have added one-shot continuations to the implementa-
tion of Chez Scheme while maintaining support for call/cc,
dynamic-wind [8], and multiple return values [3].

To determine the benefit of one-shot continuations for

programs in which call/cc can be replaced by call/1 cc, we
modified the call-intensive talc program [11] so that each call
captures and invokes a continuation, either with call/cc or
with call/l cc. The version using call/1 cc is 13% faster than

the version using call/cc and allocates 23% less memory.
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Figure 4. When a one-shotcontinuation is invoked, the current stack segmentis dkcarded, and the contentsof the stack record for
the one-shotcontinuation is usedto update the current stack record. The size and current size of the one-shot continuation are then set
to -1 to indicate that the continuation has been shot.

We also compared the performance of three versions of

a thread system, one implemented using call/cc, one using

call/lee, and one using continuation-passing style (CPS).
The continuation-passing style version simulates a heap-
based representation of control, although it does not in-

clude the additional overhead for supporting dynamic-wind.

Figure 5 compares run times for different context-switch
frequencies for 10, 100, and 1000 active threads. The fig-
ure shows that call/lcc threads are consistently faster than

calZ/cc threads, although the advantage is minimal for low

context switch frequencies, as is to be expected. The fig-
ure also shows that, although the CPS version is faster
than either of the other versions for extremely rapid context

switches (more often than once every four procedure calls),
it loses its advantage quickly as the number of procedure
calls between context switches increases.

To determine the benefit derived from using one-shot

continuations rather than multi-shot continuations for han-
dling overflows, we compared the performance of a program

that repeatedly recurs deeply (one million calls) while doing
very little work between calls. In thk extreme case over-

flow handling using one-shot continuations is 300% faster
and allocates much less. In fact, after the first recursion,
the one-shot version always finds fresh stack segments in
the stack cache and so allocates very little additional mem-

ory. For real programs the difference is typically much less
dramatic.

5 Conclusions

In this paper, we have introduced one-shot continuations,
shown how they interact with traditional multi-shot con-
tinuations, and described a stack-baaed implementation of

control that handles both multi-shot and one-shot contin-

uations, includlng the promotion of one-shot continuations
to multi-shot continuations when captured by a multi-shot

continuation. We have described how the copying overhead
incurred by multi-shot continuations can be eliminated for
one-shot continuations.

Our performance analysis shows that two important
classes of applications benefit from the use of one-shot con-
tinuations: deeply recursive programs and continuation-
intensive applications such as thread systems with rapid
context switching, In other cases, the copying overhead

associated with multi-shot continuations appears to be in-
significant. For example, one-shot continuations are only

a few percent faster than multi-shot continuations in our
thread benchmarks when context switches occur less fre-
quently than once every 128 function calls.

Others have proposed using a heap-baaed representation
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of control, in which control stacks arerepresented as linked

lists of frames rather than as true stacks. This approaches

used by Appel and MacQueen [1] in a compiler for ML [17].
Appel and Shao [2] have compared their heap-baaed ap-
proach to a simulated stack-baaed approach and found them

to have approximately the same per-frame overhead (an av-

erage of 7.5 and 7.4 instructions per frame, respectively)

when potential negative cache effects associated with the

heap-based approach are factored out. They attribute 3.4

instructions of the 7.4 instruction per frame overhead for

stack-based implementations to closure creation costs. We

have analyzed a large set of benchmark programs and have
found, however, that the overhead in our system is actu-

ally much lower, on the order of 0.1 instructions per frame.
In particular, they report a closure creation cost overhead

of 5.75 instructions per frame for the Boyer benchmark,
whereas our implementation allocates no closures at all. One

possible explanation for this discrepancy is that Appel and

Shao’s simulated stack model uses a CPS-baaed compiler
with stack-allocated continuations that inhibits the sharing

among frames that derives automatically from a direct-style

compiler employing a true stack-baaed representation of con-
trol. For example, a variable live across several calls must

be copied into each continuation frame in their model; the

same variable in our stack-based implementation can remain
in the same stack location across all calls without incurring

any overhead.

In spite of the performance advantages of a stack-based

approach for most programs, it is tempting to conclude that

a heap-based approach is a better choice for thread sys-
tems implemented using continuations because of the copy-
ing overhead incurred by multi-shot continuations and the

relatively more complex implementation of stack-baaed con-

tinuations. We have shown, however, that a simple heap-

based implementation is superior only if context switches

occur more frequently than once every eight procedure calls
(about once every four for call/lee). While various com-

piler optimizations can be introduced to make the heap
model more competitive, the complexity of these optimiza-
tion more than compensates for the difference in represen-

tation complexity without fully eliminating the performance
differential.

With stack overflow treated as an implicit call to call/lee,
deeply recursive programs that do not use multi-shot con-

tinuations do not incur any copying overhead on stack un-

derflow. Since this can result in significant savings, a stack-

based implementation should use one-shot continuations in-

ternally to handle stack overflow, even if the implementation
does not otherwise support calt\l cc. The same mechanism
is also applicable in the context of thread packages for lan-

guages such as C and Fortran that do not support first-class
continuations. In this context, the segmented stack permits
the use of large numbers of threads while supporting arbi-
trary recursion, since it is possible to allocate threads with

relatively small stacks that grow on demand. This fact was
observed by Peyton-Jones and %.lkild in the context of the
Spineless Tagless G-machine [19].
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