
INFORMATION AND COMPUTATION 85, 76-134 (1990)

The Semantics of Second-Order Lambda Calculus

KIM B. BRUCE*

Department of Computer Science, Williams College,
Williamstown, Massachusetts 01267

ALBERT R. MEYER+

Laboratory for Computer Science, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139

AND

JOHN C. MITCHELL*

Department of Computer Science, Stanford University,
Stanford, Califarnia 94306

In the second-order (polymorphic) typed lambda calculus, lambda abstraction
over type variables leads to terms denoting polymorphic functions. Straightforward

cardinality considerations show that a naive set-theoretic interpretation of the
calculus is impossible. We give two definitions of semantic models for this language

and prove them equivalent. Our syntactical “environment model” definition and a
more algebraic “combinatory model” definition for the polymorphic calculus

correspond to analogous model definitions for untyped lambda calculus. Soundness

and completeness theorems are proved using the environment model delinition. We
verify that some specific interpretations of the calculus proposed in the literature
indeed yield models in our sense. 0 1990 Academic Press, Inc.

1. INTRODUCTION

The second-order lambda calculus, formulated independently by Girard
(1972) and Reynolds (1974), is an extension of the usual typed lambda
calculus. Like other kinds of lambda calculus, the ordinary parameter-
binding mechanism of this language corresponds closely to parameter

*Partially supported by NSF Grants DCR-8402700, DCR-8603890, and a grant from
Williams College.

+ Partially supported by NSF Grant MCS80-10707.
1 Partially supported by an NSF Presidential Young Investigator Award.

76
0890-5401/90 $3.00
Copyright 0 1990 by Academic Press, Inc.
All rights of reproduction in any lorm reserved.

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 77

binding in many programming languages (cf. Landin, 1965; Reynolds,
1981; Trakhtenbrot, Halpern, and Meyer, 1983). The particular type
structure of the second-order system corresponds to the type structures of
programming languages with polymorphism and data abstraction (Fortune
et al., 1983, Mitchell and Plotkin, 1988). Like Ada generics and
parameterized modules in CLU (U.S. Department of Defense, 1980, Liskov
et al. 1981), polymorphic functions in the second-order lambda calculus are
formed by explicit lambda abstraction over types.’ Since the calculus is
composed of only a few constructs, second-order lambda calculus is a
useful tool for studying and giving semantics to programming languages
where types appear explicitly as parameters. In this paper, we examine the
mathematical semantics of second-order lambda calculus, proving a
completeness theorem and providing two characterizations of models.

The syntax of second-order lambda calculus, which is defined precisely in
Sections 2 and 3, may be separated into three parts. The first is the set of
second-order lambda expressions, or terms. Intuitively, terms are the
“ordnary expressions” that describe computable functions and results of
computation. The second syntactic class contains the type expressions.
Expressions of the third class, the kinds, are used to describe the func-
tionality of subexpressions of type expressions. For example, if t is any
type, then the term

1.x: t.x

denotes the identity function on type E. The type of this term is t + t, the
type of functions from t to t. Given any argument y of type t, the value of
the function application (Ax: t.x) y = y may be computed by substituting y
for the bound variable (formal parameter) x in the body of the term.
Second-order lambda calculus allows us to lambda abstract over types,
which produces polymorphic functions. Since we made no assumptions
about the type t in writing ix: t.x, we may regard t as a free type variable.
(We will use Y, s, t, for type variables and X, y, 2, . . . for ordinary
variables.) The polymorphic identity function

I ::= ls.~“x: t.x

is formed by lambda abstracting the type variable t. We may apply (or
“instantiate”) the polymorphic identity I to any type 6, computing the
value of the application Jo by substituting CJ for t in the body 1,x: t..u. Thus

IO = ix: CJ . x.

’ An alternative to second-order lambda calculus is to introduce polymorphism “implicitly”
by assignment of more than one type to a single expression. The reader is referred to Baren-

dregt, Coppo, and Dezani (1983), Leivant (1983a), Mimer (1978), MacQueen, Plotkin, and
Sethi (1986). Mitchell (1984a), Mitchell (1988) for further discussion of this alternative.

78 BRUCE, MEYER, AND MITCHELL

The polymorphic function Z has a polymorphic type. Intuitively, the
domain of I is the collection of all types, and the range of Z is the union
of all types of the form t -+ t. We can express the type of I more specifically
using the mapping 2t.t -+ t from types to types. Given an argument 0, we
can compute the type of Zc by applying the function it. t -+ t to (r. Thus we
expect the type of the polymorphic identity to be derived from the function
At. t --, t in some way. We use the operator ‘4 to produce a type from any
function mapping types to types, and write V(lt. t -+ t) for the type of the
polymorphic identity I, In general, if M has type V(Lt.7) then the type of
the application MO is (%t.z)a. We usually abbreviate V(lt.t + t) to
Vt. t + t. The difference between At. t -+t and Vt.t-+t is that lt.t-+t is a
function from types to types, while Vt.t -+ t is a type.

In second-order lambda calculus, each term has a type, and types are
written using higher-order symbols (type constructors), -+ and V. The
function-type constructor -+ is an infix binary operator on types. The
polymorphic-type constructor V takes a function from types to types and
produces a type. If we wish to expand the language to allow product types
(ordered pairs or records), sum types, and SC on, then we will need to add
new type constructors. Anticipating these and other extensions to the
language, we will define second-order lambda terms with respect to any set
of type construcltors. Therefore, in addition to terms and type expressions,
we will also have a general class of constructor expressions. To keep the
syntax of constructor expressions straight, we use “kinds,” which were
called “orders” in Girard (1972). Kinds were introduced independently in
McCracken (1979) and used subsequently in MacQueen and Sethi (1982),
MacQueen, Plotkin, and Sethi (1986). Essentially, kinds are the “types” of
things that appear in type expressions.

Subexpressions of type expressions may denote types, functions from
types to types, functions from type functions to types, and so on. We will
use T to denote the kind consisting of all types and xi +-x2 for the kind
consisting of functions from kind k’, to K~. Thus we regard a function like
It. t -+ t from types to types as a constructor expression of kind T=E- T.
Similarly the constructor expression “4” is of kind T * (T = T) and V has
kind (T * T) * T. In effect, we use the ordinary typed lambda calculus in
the syntax of type expressions. However, to reduce confusion between types
and kinds, we use = instead of + and call the types of this language kinds.
Thus we have a hierarchy from lambda expressions to constructor expres-
sions (which include the type expressions) to kind expressions. Lambda
expressions have types and constructor expressions have kinds. While our
main focus is on terms and their types, kinds play an important role in
organizing the subexpressions of type expressions.

A number of proof-theoretic properties of second-order lambda calculus
have been studied. The class of functions that can be represented in the

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 79

calculus, the normalization theorem, and other proof theoretic results
are described in Girard (1972), Statman (1981), Fortune et d. (1983).
However, the semantics of second-order lambda calculus is not entirely
straightforward. The reason for this is illustrated by the fact that terms may
be applied to their own types. For example, the polymorphic identity I can
be applied to its own type Vt. t -+ t. If we think of a type as the set of all
objects having that type, we are led to a contradiction with classical mathe-
matics: the polymorphic identity I must denote a function whose domain
contains the set Vt. t --f t and, at the same time, the set Vt. t + t must con-
tain I. We will see that we can make mathematical sense of second-order
lambda calculus, but we must depart from the naive approach of letting
I-terms denote functions and types sets of functions.

Although general descriptions of models (essentially based on terms over
arbitrary sets of constant symbols) were already given in (Girard, 1972;
Martin-LGf, 1975; Stenlund, 1972), and a semantic model based on recur-
sive function application was presented in (Girard, 1972), this was not
known to many American computer scientists studying the system.
Reynolds (1974) attempted to construct a domain-theoretic model for the
language but ran into difficulties and later demonstrated that no model
in which the function-space constructor + behaves set-theoretically is
possible (Reynolds, 1984). Donahue (1979) attempted to construct a model
using retracts over complete lattices, but ran afoul at a rather technical step
where a retract of all retracts seemed to be necessary. McCracken (1979),
building on ideas from Scott (1976) and working independently of
Donahue, produced the first correct domain-theoretic model of the second-
order polymorphic lambda calculus. This model was constructed from
Scott’s universal domain Bw, using closures (a special kind of retract) to
represent types. In 9~0, the set of all closures is the range of a closure, so
that the problem encountered by Donahue may be avoided. McCracken
(1984a), following a suggestion of Scott (19XOb), has also shown that
finitary retracts over certain linitary complete partial orders can be used to
represent types. Bruce and Longo (Amadio et al., 1986), again using ideas
appearing in several papers by Scott, have also constructed a model using
finitary projections over complete partial orders. In a somewhat different
vein, Leivant (1983b) suggested a framework for the “structural semantics”
of the second-order polymorphic lambda calculus. Since the types are the
closed type expressions, Leivant’s general model definition is an amalgam
of a mathematical model for the elements and a syntactic model for the
types.

We will give two definitions of model, the environment model and the
more algebraic combinatory model. Our environment model definition first
appeared in Bruce and Meyer (1984) and the combinatory model definition
in Mitchell (1984b). In support of our definitions, we will prove soundness

80 BRUCE,MEYER, AND MITCHELL

and completeness theorems and show that the two definitions of model are
equivalent. (For simplicity, we assume in the soundness and completeness
theorems that no type is empty.) We also indicate how our general notion
of semantics relates to known examples of models such as Girard’s HEOz
based on recursive function application and the domain-theoretic models of
McCracken and others. As mentioned earlier, Girard, Stenlund, Martin-
Lof, and Leivant have also proposed general model definitions (Girard,
1972; Stenlund, 1972; Martin-Lof, 1975; Leivant, 1983b), and polymorphic
combinators were discussed in Stenlund (1972). Our semantics encom-
passes the earlier general descriptions of models (which use type expres-
sions and/or terms over arbitrary sets of constants) and was originally
formulated without knowledge of the earlier work of Girard, Stenlund, or
Martin-Lof.

In Section 2 we describe the syntax and typing rules and in Section 3 we
present the axiom system for proving equations between terms. The
relationship between the particular calculus we have chosen to use and
other similar systems presented in the literature is discussed at the end of
Section 2. In Section 4, .the definition of environment model and the
semantics of second-order lambda terms and constructor expressions are
presented. We prove soundness and completeness theorems in Section 5.
Section 6 introduces combinatory algebras and models and establishes the
equivalence of combinatory and environment model definitions. We explain
how the models of Girard, McCracken, and others lit our framework in
Section 7. In the concluding Section 8, we discuss some extensions of this
work as well as some open problems. It is worth repeating that we assume,
throughout the paper, that all types are nonempty. Empty types introduce
a number of complications which are considered in (Meyer, Mitchell,
Moggi, and Statman, 1987; Mitchell and Moggi, 1987).

2. SYNTAX

2.1. Constructors and Kinds

As described in the Introduction, every term has a type and every sub-
expression of a type expression has a kind. The subexpressions of type
expressions, which may be type expressions or operators like -+ and V, will
be called constructors. We will define the sets of kinds and constructor
expressions before introducing the syntax and type checking rules for
terms.

We will use the constant T to denote the kind consisting of all types. The
set of kind expressions is given by

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 81

Intuitively, the kind rci =E. ICY is the kind of functions from K, to Q. For
example, functions from types to types have kind T- T. We define the set
of constructor expressions, beginning with a set of constructor constants.
Let VCcst be a set of constant symbols cK, each with a specified kind (which
we write as a superscript when necessary) and let VCst be a set of variables
uK, each with a specified kind. We assume we have infinitely many variables
of each kind. The constructor expressions over %‘=,,, and VC^,,,, and their
kinds, are defined by the derivation system

For example, (IuT.uT)cT is a constructor expression with kind T. Free and
bound variables are defined as usual. Substitution {p/u} v of p for free
occurrences of u in v has the usual inductive definition, including renaming
bound variables in v to avoid capture of free variables in p.

A subset of the constructor expressions are the type expressions, the con-
structor expressions of kind T. Since we will often be concerned with type
expressions rather than arbitrary constructor expressions, it will be useful
to distinguish them by notational conventions. We adopt the conventions
that

r, s, t, . . . stand for arbitrary type variables

p, CJ, r, . . . stand for arbitrary type expressions.

As in the definition above, we will generally use p and v for constructor
expressions. We include the usual second-order types in the language by
assuming that G&, contains the function-type constructor constant

+: T=a(T*T)

and the polymorphic-type constructor constant

V:(T*T)*T.

As usual, we write + as an infix operator, as in the type expression o + r,
and write Vt.a for V(&.CJ). In extensions of the basic language with direct
products or disjoint sums, for example, we would include additional
constants x, +: T=> (T- T) in V&,,,.
primarily with + and V.

In this paper, we will be concerned

82 BRUCE, MEYER, AND MITCHELL

Since we have a “kinded” lambda calculus, there are many nontrivial
equations between types and constructors. While it would be more general
to allow non-logical axioms for constructor equality, this would complicate
the syntax nontrivially, as discussed briefly in the conclusion of the paper.
For simplicity, we will only consider the “pure” constructor equations that
follow from the logical axioms below. The axioms and inference rules for
constructors are essentially the familiar rules of the ordinary simple typed
lambda calculus.

Constructor Axioms.

(IX,) Iu”.p = lu”. {uK/uK)p, uK not free in g

(P,) (JuK.P)v= WKh
(qK) Au”.(~uK)=~,uKnotfreein~.

The inference rules are the usual congruence rules and are similar to the
inference rules (sym), (trans), (tong), and (5) given for terms in the next
section. If .D = v is provable from the axioms and rules for constructors, we
write hcp = v. The constructor axiom system will be used to assign types
to terms, since equal types will be associated with the same set of terms. It
is worth mentioning that since we will only consider the pure theory of
constructor equality, every constructor is provably equal to a unique
normal form constructor with no subexpression matching the left-hand side
of axiom (6) or (q). Consequently, we have the following lemma.

LEMMA 1. If +--c~I-+~1=~~-+z2, then F--~~~=G~ and F--~T,=~~.
Similarly, if t-cVp = V/v, then ccp = v.

2.2. Terms and Their Types

We follow Reynolds (1974) and write free variables without type labels.
However, we will always assign types to free variables using a technical
device we call a type assignment. Since a constant must name a specific
semantic value, we will require each constant to have a fixed type without
free constructor variables.

Let Ker, be an infinite collection of variables, which will remain fixed
throughout the paper. Let %&.,, be a set of constants, each with a fixed,
closed type. The set PreTerm(G&, %&,,) of pre-terms over variables from
G and “+‘L, and the indicated sets of constants is defined by

A4 ::= c (x (Ix: a.M 1 MN (2t.M (Ma,

where c E Y,,, , x E C,, , t is a type variable, and CJ is a type expression
over G& and “y^,,,. We will define the well-typed terms below. The usual
definitions of free and bound variables in lambda expressions may be stated

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 83

without reference to typing: 1 binds x in Rx: a.M and t in Ar.M. Substitu-
tions {N/x} M of N for x and {o/t) M of o for t are defined as usual to
include renaming of bound variables in M to avoid capture.

As in most typed programming languages, the type of a second-order
lambda term will depend on the context in which it occurs. We must know
the types of all free variables before assigning a type. A syntactic type
assignment B is a finite set

B= {x~:cJ~, xk:crk}

of associations of types to variableswith no variable x appearing twice in
B. If x does not occur in a syntactic type assignment B, then we write
B, X:CT for the type assignment

B, x:0= Bu {xx}.

If x occurs in B, then it is sometimes convenient to write B(x) for the
unique D with X:G E B.

The typing relation is a three-place relation between type assignments,
pre-terms, and type expressions. Let B be a syntactic type assigment, ME
PreTerm(G$,,, , %&,,), and (r : T a type expression. We define B + M: u,
which is read “M has type CJ with respect to B,” by the derivation system
below. The axioms about the typing relation are

The type derivation rules are

and x:u +x:u

(+E)
Br-M:o-+z, B+N:a

B+ MN:T

l-0
B,x:a+-M:z

BcAx:a.M:a-+r

(VI)
BI-M:z

B+-1t.M:Vt.r
t not free in B

and two rules that apply to terms of any form. A few comments are in
order before discussing the remaining two typing rules.

In rule (VE), we know that ,u must have kind T=z- T, since t/p is assumed
to be a type, and V has kind (T* T) G- T. Therefore, pr will be a well-
formed type expression. A related point about (VI) is that while we can

84 BRUCE, MEYER, AND MITCHELL

only introduce V-types of the form Vt .(T ::= V(Lt.a), we will be able to use
the type equality rule below to derive typings of the form B I- If.M:Vp,
where p is not of the form (Lt.a).

The restriction in the rule (VI) is basically a matter of scope. In

x:ttLy:l:t.yx:(t-+t)-rt,

for example, the type variable t refers to the same type on both sides of the
turnstile. Therefore, it would not make sense to bind the occurences on the
right-hand side without binding those on the left at the same time. If we
were to allow the variable t to be bound on the right only, giving us

then using (VE) we could derive x: t t- 1~:s + s.yx: (s + s) + s, which does
not make any sense at all. This pathology is also discussed in Section 5.2
of Fortune et al. (1983).

Since additional hypotheses about the types of variables do not effect the
type of a term, we have the rule

(addhyp) BeM’r
B, x:o +-M:z’

x not in B

for adding typing hypotheses. In addition, we have the type equality rule

(type eq)
BcM:a,+-,a=z

BtA4:z ’

We say M is a term if B t- M:a for some B and a. However, we will
seldom have occasion to write terms without also writing the relevant type
assignment and type as well. In writing B + M:a in the rest of the paper,
we will mean that the typing B + M:a is derivable, unless explicitly stated
otherwise.

A simple induction on type derivations shows that if a term M has two
types a and r, then these types are probably equal. Rule (type eq) guaran-
tees the converse, so that for any type assignment B and pre-term 44, either
M has no type with respect to B or else the type of M is unique, up to
equality. Furthermore, any derivation of a typing B I--- M:a only uses the
free variables of M and only depends on B(x) up to type equality. There-
fore, we have the following lemma.

LEMMA 2. Suppose B I- M:a is well typed and let A be any syntactic
type assignment such that tCA(x) = B(x) for all x free in M. Then
A+M:r iff +-?a=T.

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 85

Since we have chosen the pure theory of p, v]-conversion between con-
structor expressions, every equivalence class of constructor expressions has
a unique normal form. Therefore, for each syntactic type assignment B and
MEPreTerm(ce,,,,Ce,,,,), if BF--M:a and Bt-M:z then D and r may be
simplified to the same normal form. Assuming the types given in B are
in normal form,’ it is easy to write an efficient algorithm which computes
the normal form type of M with respect to B when it exists, and returns
error if it is not (cf. Leivant, 1983a). Typings have some natural sub-
stitution properties. For example, if B I- N:p and B, x :p I-- M:a, then
B + {N/x) M:a. In addition, if we define {o/t} B by substituting 0 for t in
every type occurring in B, then whenever B + M:p, we have (a/t > B F-
{a/t} M: {cr/t}p. In particular, if t is not free in B, then B +
(y/t} M: (y/t}p. Another useful substitution property is summarized by the
following lemma.

LEMMA 3. Let S be a substitution of constructor expressions for con-
structor variables and pre-terms for ordinary variables such that A t--- Sx: Sa
is derivable for every x :a E B. If B I-- M :z is derivable, then so is
A + SM:Sz.

2.3. Relationship to Other Systems

It is best to think of the second-order lambda calculus as a family of
related systems, rather than a single calculus. The particular calculus we
have chosen is a compromise between the most basic calculus presented in
Reynolds (1974) and the extensions considered in (Girard, 1972;
McCracken, 1979). The types used in the second-order lambda calculus of
Reynolds (1974), studied in (Donahue, 1979; Fortune et al., 1983; Leivant,
1983a, 1983b; Reynolds, 1984) are a subset of ours. Specifically, only
normal form type expressions are used, and no constructor symbols besides
type variables, type constants, + and V are allowed. It is possible to show
that our typing rules and equational proof rules are conservative over
Reynolds’, and so we consider the variables of higher kinds an essentially
benign extension. However, because of lambda abstraction in type expres-
sions, type equality in our system becomes more complicated.

One straightforward extension of Reynolds’ calculus is to add Cartesian
product types ax z. This system may be obtained from ours by adding a
type constructor x: T * (T* T) and constants for pairing and projection
functions. Girard also considers a system with existential types, a calculus
with type constructor 3 of kind (T=+ T) * T whjch is “dual” to V and
related to existential quantification in logical formulas (see Girard, 1972;

’ If types in B are not given in normal form, then they may have to be simplified, which

cannot necessarily be done efficiently (Statman, 1979).

86 BRUCE, MEYER, AND MITCHELL

Mitchell and Plotkin, 1988 for further discussion). One advantage of the
calculus we have chosen is that it is easy to extend the syntax to include
additional type constructors of any kind, and it will be quite easy to see
how to modify the model definitions accordingly.

A more significant extension of the basic secondrorder calculus, which
Girard called F2, is obtained be allowing lambda abstraction in terms over
variables of higher kinds. For example, iffT’ r is a variable of kind T* T,
then the system we have defined allows the term kc:ft.x:ft --f ft. It is quite
sensible to allow the variable f to be lambda bound, giving us the term
If ‘* T.IZx:ft.x. To type this term, we need a “higher order” V of kind
((T* T) * T) 3 T). Adding this constructor constant and allowing the
associated lambda abstraction leads to Girard’s “higher order” lambda
calculus F3. By adding type quantification over successively higher kinds,
we obtain the languages F4, F,, . . ; the union of all these languages is F,,.
(See Section I.9 of Girard, 1972 for further discussion.) We hope that by
including variables of higher kinds, we will provide enough information to
allow the reader to extend our model definition and completeness proof to
any of Girard’s higher order calculi or the calculus of the theory of species
discussed in Stenlund (1972).

In addition to the generality of considering constructor expressions of all
kinds, constructors will be used in the discussion of combinatory models to
write down the types of polymorphic combinators. Another subtle function
of variables of higher kind will be mentioned after the definition of environ-
ment models and summarized in Lemma 11.

3. EQUATIONS BETWEEN TERMS

Since we write terms with type assignments, it is natural to include type
assignments in equations as well. By equation, we will mean an expression

B+M= N:a,

where B + M:a and B + N:a. Intuitively, an equation {x1 :cr,,‘ck :bk}
+ M= N:a means, “if the variables x,, xk have types a,, ok
(respectively), then terms M and N denote the same element of type a.”
Since I- is considered an implication, an equation may hold vacuously if
it is impossible to assign the variables meaning of the correct types. This
may happen when types are empty, a complication we will avoid by
assuming that every type is nonempty. (Empty types are discussed in
Meyer et al., 1987; Mitchell and Moggi, 1987; see also the discussion
following inference rule (remove hyp) below.)

The axioms and inference rules for equations between second-order

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 87

lambda terms are similar to the axioms and rules of the ordinary typed
lambda calculus. The main difference is that we tend to have two versions
of each axiom or rule, one for ordinary function abstraction or application,
and another for type abstraction or application.

Axioms for Terms.

(a) B~~.~:o.M=~~::o.{y/x}M:a~z, ynotinB,
B+/U.M=Ls.{s/t} M:Vt.a,snotfreein2.M,

(0) Bi- (Ax:a.M) N= {N/x} M:a,
B+ (lt.M) z = {z/t} M:a,

(v) B+1x:a.Mx=M:a+t,xnotfreeinM,
B+-E.t.Mt=M:Vt.a, tnotfreeinM.

Although some authors prefer to omit it, we have included the exten-
sionality axiom (q). This axiom is used to prove that if Mx = Nx for a fresh
variable x not appearing in M or N, then M = N. Models satisfying (r~)
seem more natural, since (q) (in combination with the other axioms
and rules) implies that two elements of functional type a + r are equal
whenever they give equal results for all arguments of type a. In addition,
assuming extensionality will simplify much of the discussion of com-
binatory models in Section 6. Non-extensional models will be discussed
briefly in Section 6.5.

It is not necessary to include a reflexivity axiom because M = M follows
from (/I) by the symmetry and transitivity rules below. In (a) for ordinary
variables, the assumption that y is not declared in B may be weakened to
y not free in M. However, the axiom as stated is slightly easier to work
with (see the soundness proof in Section 5), and the alternative axiom is
easily derived using the inference rules below.

Inference Rules for Terms.

(sw)
B+M=N:a

B+N=M:a

(trans)
B+M=N:a, B+N=P:a

B+M=P:a

(cow),
B+M=N:a-+z,B+P=Q:a

B+MP=NQ:?

@wh
Bt-M=N:Vp,+-,a=7

Bt- Ma= Nz:,ua

(l),
B,x:at-M=N:p,+,a=r

B~E,.r::a.M=3.x:z.N:a-tp

88 BRUCE, MEYER, AND MITCHELL

(512
B+M=N:a

B+At.M=lt.N:Vt.a
t not free in B

(constr sub)
BI---M=N:a,p:lc

B+ {j.@“} M= {&K} N:{&“}a

vK not free in B and rcf T.

Since type assignments and types are included in the syntax of equations,
we need equational versions of the (add hyp) and (type eq) typing rules:

(add hw 1
Bt-M=N:a

B,x:a+M=N:a
x not in B

(type 4
B+M=N:a, t--,a=~

BF-M=N:2 ’

In addition, we will adopt an inference rule for removing typing
hypotheses. This rule allows us to eliminate assumptions about variables
that do not occur free in either term:

(remove hyp)
B,x:a+-M=N:z

Bt-M=N:r
x not free in M or N.

While the analogous typing rule is an admissible rule of the language
(Lemma 2), this equational rule is only sound if we assume that every type
is nonempty. For example, the equation

z:atilx:t.~yZy:t.x=~x:t.~yZy:t.y:t~t~l

may hold vacuously in some nontrivial model if ~7 is an empty type.
However, the equation

which follows by rule (remove hyp), only holds in trivial models with no
more than one element of each type.

It is easy to check that for each of the inference rules, if the antecedents
are well-typed equations, then the consequent is a well-typed equation. The
only slightly nontrivial cases are (tong), and (or, in which we must con-
sider type equality. In rule (tong),, if B t- M= N:Vp and i---,0 = r, then
I--~ po = pz and so B I- Ma : PO and B I- Nr :pr have probably equal
types. The verification of (t)r is similar, but uses Lemma 2 to show that if
B,x:acM=N:piswelltypedand~,a=~,thenwehaveB,x:r~N:p,
and so B+Ix:a.M=;lx:z.N:a-+p is well typed. The reason for

SECOND-ORDER LAMBDA CALCULUSSEMANTICS 89

including type equality in these two inference rules is so that term equality
respects constructor equality. More precisely, term equality has the
following substitution property.

LEMMA 4. Zf B F- M:o is weIl typed, I-< u = v, and N is obtained from
M by substituting v : K for one or more occurences of u : tc, then we can prove
B + M = N: CJ from the axioms and inference rules above.

This lemma is easily proved by induction on M, using Lemma 2 to show
that the equation B F M = N:o is well typed. Rule (constr sub) is used to
show that equality is closed under substitution. Since we have lambda
abstraction and application for type variables and ordinary variables, we
can prove substitution instances of equations using (/I). However, since we
cannot lambda-abstract constructor variables of kind K different from T,
we need rule (constr sub) to complete the proof of the following lemma.

LEMMA 5. Let S be a substitution of constructor expressions for con-
structor variables and pre-terms for ordinary variables such that A + Sx: So
for every x:a E B. Then from any well-typed equation B + M= N:T we can
prove A c SM = SN: Sz.

Lemma 3 may be used to show that the equation A + SM = SN:& in
the statement of Lemma 5 is well typed.

A second-order lambda theory r is a set of equations containing all
instances of the term axioms and closed under the inference rules. We will
not include equations between constructors in theories, since we will
always use the same constructor equations.

4. SECOND-ORDER ENVIRONMENT MODELS

4.1. Introduction

Models for second-order lambda calculus will have several parts: we use
“kind frames” to interpret kinds and constructors and additional sets
indexed by types to interpret terms. All of these parts will be collected
together in what we call a frame (after Henkin, 1950). We define models as
frames which satisfy an additional condition involving the meanings of
terms. This form of definition is similar to the “environment model”
definition for untyped lambda calculus given i

xl
(Meyer, 1982). Since the

definition of second-order model is fairly co plicated, we will try to
illustrate some of the underlying ideas using untyped lambda calculus.

Untyped lambda calculus has untyped applications MN and function
expressions 2x.M. If we think of M and N as denoting elements of some

90 BRUCE, MEYER, AND MITCHELL

“domain” D, then the application MN of M to N makes sense if we have
some way of turning M into a function. This is accomplished using an
element-to-function map @. Conversely, we can easily regard Ix.M as a
function from D to D, since M specifies a single function value for every
value of x. But in order to find a meaning for Ax.M in D, we need a
function-to-element3 map Y = Qp- I. An extensional applicative structure
(D, @) consists of a set D together with a mapping @ such that for some
set [D -+ D] of functions from D to D,

@:D -+ [D -+ D] is one-to-one and onto.

In other words, an extensional applicative structure (D, 0) consists of a
set D together with a bijection @ between D and a set [D + D] of
functions from D to D. In general, we will be a bit informal about @ and
abbreviate (@(d))(e) to de.

If q is an environment mapping untyped varibles to D, then the meaning
[m q of term h4 in environment q is defined by

wMnfl=@-‘(f), where f: D --t D satisfies f(d) = [A4j q[d/x].

Although this definition may look fine, there is a serious problem with the
meanings of terms. The meaning of a lambda term 1x.M is defined by
applying @- ’ to some function J The function f is well defined, but f may
not be in the domain [D + D] of @-‘. Consequently, the meaning of Jx.M
may not be defined. Thus we must distinguish models, structures in which
every term has a meaning, from arbitrary applicative structures. One
straightforward model definition is the environment model definition. We
say an applicative structure is an environment model if the meaning of every
term M in every environment ? is a well-defined element of D. Some equiv-
alent model definitions are discussed in (Barendregt, 1984; Koymans, 1982;
Meyer, 1982).

A similar definition can be given for the ordinary typed lambda calculus.
With typed application, we need an “element-to-function” map @o,b for
each pair of types a and b. The function @o.b maps the domain Doma’b
of elements of type a --) b to some set [Dom” + Domb] of functions from

3 Since we are only concerned with extensional models (see Section 6.5), we assume that
Y = @-I. In nonextensional models, there may be two elements d,, d, E D representing the
same function f = @(d,) = @(d,). In this case, @ has no inverse and we rely on a second
function Y to choose a particular d = Y(f) representing J See (Barendregt, 1984; Meyer,
1982) for further discussion.

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 91

Dom” to Domb, and we use @ii to give meaning to typed lambda abstrac-
tions Ix : 0. M: u -+ z. Since constructor expressions are a notational variant
of simple typed lambda terms, we will interpret constructor expressions in
structures like this.

4.2. Semantics of Constructor Expressions

Constructor expressions are interpreted using kind frames, which are
essentially frames for the simple typed lambda calculus. A kindframe, Kind,
for a set %&, of constructor constants is a tuple

Kind= ((Kind” 1 K a kind}, (GJ~,,~? 1 K,, ti2 kinds}, 9),

where

Qx,, Xz: Kind”““2 -+ [Kind”’ + Kind”21

is a bijection between Kind”““* and some set [Kind”’ + KindK2] of
functions from Kind”’ to Kind”‘, and

preserves kinds, i.e., -O(P) E Kind”. Since constructor expressions include
all typed lambda expressions, we will be interested in kind frames which
are models of the simple typed lambda calculus.

Let 9 be an environment mapping constructor variables to U, Kind”
such that for each ux, we have ME Kind”. The meaning [pa g of a
constructor expression p in environment 9 is defined as follows (see
Barendregt, 1984; Friedman, 1975; Henkin, 1950; Statman, 1985):

We say Kind is a kind enuironment model for ‘&, if every constructor
expression over %&, has a meaning in every environment for Kind. We will
give an equivalent algebraic definition in Section 6.

Note that we have not had to distinguish + and V from other construc-
tor constants. It is implicit in the definition of kind frame that Kind’ must
be closed under -P (viewed as a binary operation) and that the result of
applying V to any function in KindT’ ’ is also an element of Kind7 The
advantage of working with constructors and kinds is that our definition

643:RSil-7

92 BRUCE, MEYER, AND MITCHELL

applies to any set of type constructors. If we also have a “product-type”
constructor

among our constants G$‘,,,, then the definition of kind frame also requires
that Kind’ be closed under x (viewed as a binary operation).

Since it is a very convenient way of making definitions more readable, we
will often use V, +, and other constants for their denotations in Kind when
there is no danger of confusion. For example, if fE KindT’ r, we write Vf
rather than (S(V))f: It is worth mentioning that we could dispense with
the mappings QX,, K2 in kind frames by letting Kind”’ *Q be a set of
functions from Kind”’ to KindQ. However, the slightly more involved
setting described above provides more motivation for the interpretation of
terms below. (In interpreting polymorphic terms, we cannot eliminate the
@ functions.) In addition, the functions Q,,,,, and @;.‘lc2 simplify the
completeness proof slightly.

4.3. Frames and Environment Models

As in the definition of untyped environment model, we first define a
structure, called a frame, and then define models by distinguishing frames
which interpret all terms from those that do not. Second-order frames will
include typed versions of @, plus an additional collection of O’s for
polymorphic types. Intuitively, a polymorphic term It. M denotes a func-
tion from the set of types to elements of types. More precisely, we will be
able to regard the meaning of At. M as an element of the Cartesian product
II aE klnd~.Domf’“’ for some function f: Kindr’ ’ determined from the
typing of M. Therefore, for every function f E Kindr” ‘, a second-order
model will have a function @,. mapping DomVf to some subset
[Z7,,xindT.DomfCa)] of Z7,..,,,,.Domrcu).

A second-order frame 9 for terms over constants from $&, and $&,, is
a tuple

P=(Kind,Dom, (~,.,Ia,b~Kind~),(~/I fEKind”‘j)

satisfying conditions (i) through (iv):

(i) Kind= ({Kind”}, { QKlr KZ}, 9) is a kind frame for G$‘,,,

(ii) Dom = ((Dam” (a E Kind=}, ,a,,,,,) is a family of nonempty sets
Dom” indexed by elements a E KindT, together with a function

Y Dom . . Gf&,, + u Dom” with 9;,,,(c’) E Dom rTn for all cT in V,,,,m,

(iii) For each a, b E KindT, we have a set [Dom” + Domb] of func-

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 93

tions from Dom” to Domb with bijection Ou.h: Dornll+’ --t [Dom” +
Domb].

(iv) For every f E KindCT’ T1, we have a subset [Z7,E klndrDomfCa)]
E Z7, E KindrDom.f(a’ with bijection @./ : Dam”/ + [ZZ, t kindTDomfCO)].

Essentially, condition (iii) states that DomU+’ must “represent” some set
[Dom” -+ Domb] of functions from Domu to Dam’. Similarly, condition
(iv) specifies that Domv’fmust represent some subset [ZZ,, kindrDomfCAa’] of
the product Z7,, KindrDom.f(n).

Terms are interpreted using Q’s for application and @ ~ “s for abstrac-
tion. Since different @ and @-’ functions are used, depending on the types
of terms, the type of a term will be used to define its meaning. If B is a type
assignment and q an environment mapping 9&, to elements of the
appropriate kinds and $&, to elements of l., Dom, we say that v] satisfies
B, written q + B, if

for every x: a E B.
Let 9 be a second-order frame. For any well-typed term B + M: CJ and

environment q k B, we will define the meaning [B + M:aJ q inductively
below. Although it may seem unnecessarily complicated, the simplest way
to define meanings seems to be by induction on the derivation of typings,
rather that the structure of terms. This is simply a technical device. Since
any derivation of B + M:a must follow the structure of M fairly closely,
there is not much difference between the two forms of induction. However,
since there is some flexibility in where rules (add hyp) and (type eq) might
be used, there is a little more structure in the derivation of a typing of
B t M:a than in the expression B+ h4:a itself. In particular, a derivation
gives specific typings to each of the subterms, while the fact that B + M: CJ
is derivable only determines the types of subterms of M up to type equality.

The lambda abstraction case illustrates some of the advantages of induc-
tion on typing derivations. If we define the meaning of B F-- 1x:a.M: p
using induction on the structure of terms, we must argue that tC p = CJ + 5
for some T and that it does not matter which r we pick. We need p = c + 7

so that we know the domain and range types, and we need to show that
the chaise of t is inessential so that it is clear that the meaning of each term
is uniquely determined. These arguments are not entirely trivial since rule
(type eq) allows the syntactic type of the lambda abstraction to have
almost any form. In addition, we need to find some type assignment A with
A + M:T so that we may apply the induct& hypothesis and argue that
the choice of A is inessential. However, using induction on typing deriva-
tions, the inductive assumption for rule (+I) is that B I- Lx :a.M:a -+ T
follows from typing B, .Y:CJ k M: 5 and that the meaning of B, X:CJ + M:T

94 BRUCE, MEYER, AND MITCHELL

is defined for any environment satisfying B, x:0. This gives us specific
domain and range types for the lambda term and also guarantees that x
does not occur in B, so that B, X:CJ is a well-formed type assignment. Some
similar points apply in the (VI) case, and will be mentioned below. Once
we have given the definition of meaning, it will be easy to prove that the
meaning of a well-typed term B F- M:o does not depend on the way this
typing is derived.

The inductive clauses of the meaning function are given in the same
order as the typing rules in Section 2.2, with rules (-+E), (+I), (VE), and
(VI) preceding rules (add hyp) and (type eq) which do not rely on the
forms of terms:

[B I-- x:aD iy = q(x),

[B+Ix:a.A4:a+~Jq=@;, g, where

g(d)=[B,x:cri-M:zl q[d/x] for all de DomU,

a= bn v and b= bh
~B~Mr:~~n9=(~rO[~M:v~nr?)c7n?, where f = 5 PI 9,
[B + At.M:Vt.a]q = G;’ g, where

g(u) = [Bt- khlj q[a/t] for all a E Kind ‘, and

fe KindTs7 is the function [Lt.oJ 7

[B,x:a~M:T]FJ= [B+-kf:,jJq, where the left-hand typing

follows by the rule (add hyp)

[BtM:rl]q= [Bt--M:o~~, where the left-hand typing follows

by rule (type eq).

It is relatively easy to see that the environments mentioned on the right-
hand sides of these clauses all satisfy the appropriate syntactic type
assignments. One nontrivial case is type abstraction by rule (VZ). Since we
assume that B I- 2t.M:Vr.o follows from B + M:a, we know that t does
not occur free in B. Therefore, if q l= B, then any q[u/t] satisfies B as well.

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 95

In the inductive definition of meaning, there is no guarantee that
[B + M:o] q exists for every well-typed term. For example, g in the
ix: a.M case may not be in the domain of @$, and similarly for g in the
It. M case. Therefore, we make the following definition. A second-order
frame

9= (Kind, Dom, {@u,b 1 a, bEKindT), {Qf (fEKindT”))

is an environment model if (i) Kind is a kind environment model and (ii) for
every term B + M:a and every environment ‘1 + B, the meaning
[B + M: a] v] exists as defined above.

It is easy to check that the meanings of terms have the appropriate
semantic types:

LEMMA 6. Let r] be an environment for a model (Kind, Dom, { @a.6),
(~0~)). Ifq + B, then [B+M:a]qEDomlunV.

In addition, we can show that the meaning of a well-typed term
B +-- M:a does not depend on the derivation of the typing. This is the
intent of the following two lemmas. It will be helpful to name typing
derivations and write, e.g., A, A, for the derivation d followed by deriva-
tion A,. An easy induction on typing derivations shows that rules
(add hyp) and (type eq) do not effect the meaning of terms.

LEMMA 7. Suppose A is a derivation of A k M:a and A, A, is a deriva-
tion of B + M:? such that only rules (add hyp) and (type eq) appear in A,.
Then for any q + B, we have

where the meanings are taken with respect to derivations A and A, A,.

Using induction on the structure of terms, and Lemmas 1, 2, and 7, we
can now show that the meanings of “compatible” typings of a term are
equal.

LEMMA 8. Suppose A and A, are derivations of typings A +- M:a and
B I- M:T, respectively, and that t-c A(x) = B(x) for ever-v x free in M. Then

where the meanings are defined using A and A,, respectively.

96 BRUCE, MEYER, AND MITCHELL

It follows that the meaning of any well-typed term is independent of the
typing derivation.

COROLLARY 9. Suppose A and A, are derivations of a typing B + M:G.
Then for any environment q k B, the meaning [B I---- M:oJ ye defined using
induction on A is the same as the meaning defined using A,.

This corollary allows us to regard an equation B + M = N:a as an
equation between M and N, rather than derivations of typings Bt- M:CJ
and B t- N:o. In addition to the corollary, Lemma 8 shows that meaning
is a congruence with respect to type equality, which will be useful in
showing the soundness of the equational proof rules for terms.

A very useful fact is the following substitution lemma.

LEMMA 10 (Substitution). (i) Suppose B, X:CJ +- M:t and B + N:cr. Zf
v] t= B then

(ii) If B I- M:o and t is not free in B, then

[Bt- {t/t} M:(t/t} aJq= [Bt-M:on q[[zl] r//t].

(iii) If p, v are constructor expressions with V:K and v E Vi,, a uariabie
of kind K, then

Parts (i) and (ii) of the lemma are easily proved by induction on terms.
Part (iii) is a well-known property of the simple typed lambda calculus. It
is also easy to prove that the meaning [B +- M: o] r] does not depend on
q(x) or q(t) for x or t not free in M.

An important lemma about the environment model condition is that it
does not depend on the set of constants of the language.

LEMMA 11. Let B be an environment model for terms over constants %$,,

and %,,. If we expand %ZCSt and G&,,,, to W&, and %?,&,, and interpret the
fresh constants as any elements of F of the appropriate kinds or types, then
we obtain an environment model for terms over constants from %‘&, and %‘&,,,

This lemma, which will be used in the proof of the combinatory model
theorem (Theorem 18), is easily proved using the fact that every constant
is equal to some variable in some environment. More specifically, if we
want to know that a term B + M:a with constants has a meaning in some
environment q + B for frame 9, then we begin by replacing the constants

SECOND-ORDER LAMBDA CALCULUSSEMANTICS 97

with fresh variables. Then, we choose some environment vi which is identi-
cal to q on the free variables of B + M:o, and which gives the new
variables the values of the constants they replace. If 9 is an environment
model, then the new term must have a meaning in the chosen environment,
and so it is easy to show that B F- M:o must have a meaning in 4.
However, this argument applies only if we have variables of all kinds;
without this, the hypothesis that 9 is an environment model for constants
Y,, and Ye,, is not enough. In particular, the lemma fails if our frames
include an arbitrary set of functions in KindT’ ‘, but do not have variables
of kind T=> T. This was overlooked in (Bruce and Meyer, 1984).

5. COMPLETENESS

In this section, we show that the axioms and inference rules are sound
and complete for deducing equations between terms. We need the usual
definitions of satisfaction and semantic implication to state the soundness
and completeness theorems. An environment 17 /= B for model 9 satisfies
an equation B t M = N: 0, written

B,r/ k BI-M=N:a.

if [B I--- M: a] q = [B + N: a] n. A model 9 satisfies an equation B I- M =
N: 0, written

if F and r] satisfy B I- M = N: CJ for all 9 k B. Similarly, a model F
satisfies a set r of equations if F satisfies every equation in r. A set r of
equations semantically implies an equation B t- M = N: C, written

I-+ BI-M=N:a,

if 5F k B+M=N:a whenever 9 + f.
It is easy to verify that the axioms and inference rules are sound for

models without empty types.

LEMMA 12. (Soundness). Let r be a set of equations and let
B+M=N:a be an equation. If r proves B+M=N:a, then
Z-k BI--M=N:a.

Proof: The proof is entirely straightforward. We yill show that two
axioms, (CL) and (b), are valid, leaving the details for remainmg axioms and
inference rules to the reader. Suppose B I- Lx:@. M:a -+ r is well typed and

98 BRUCE,MEYER, AND MITCHELL

assume the variable y does not occur in B. Let 4 k B. For a = [a] q and
b = 171 q, we have

The second equation follows from the substitution lemma 10(i). The sound-
ness of (a) for type variables is proved similarly using Lemma lO(ii).

For (p), consider any term B t- (Ily : a.M) N:T with types a, b E Kindr
the meanings of [T and 7 as above. We have

using Lemma 10(i). The soundness of (p) for types is proved similarly. The
extensionality axioms (pl) depend on the fact that @G.h and @f are bijec-
tions. It is easy to prove that semantic equality is an equivalence relation.
The only subtlety in the (tong) and (0 rules are in (tong), and (0,) where
we must use Lemma 8 to account for the typing differences. As mentioned
earlier, rule (remove hyp) relies on our assumption that no Domn is empty.
The remaining rules are straightforward. 1

We now show that the axioms and inference rules are complete for
environment models without empty types.

THEOREM 13 (Completeness). Let r be a second-order theory over terms
with constants from SfC,, and %&,, . There is an environment model F for G$,,
and Ye,, such that F /= (BF-M=N:a) iff BcM=N:crEr.

Prooj The proof uses a term model construction as in (Barendregt,
1984; Friedman, 1975; Meyer, 1982). We begin by defining a kind frame
Kind= ((Kind”}, { @ K,. .,}, 9) for G$,, . Let Kind be the “term model” for
y,, built from equivalence classes of constructors as in (Friedman, 1975).
Thus Kind7 is the set of equivalence classes of type expressions. We will
use (P) to denote the equivalence class of the constructor P. As usual, the
interpretation of a constant c E$&~ is its equivalence class (c). In par-
ticular Y(V) = (V) and Y(-+) = (-+). An inductive argument, sketched in

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 99

the proof of the Claim below, shows that Kind is a kind environment
model.

We will define Dom using equivalence classes of terms. We will start with
infinitely many variables of each type, since this will make it possible to
prove extensionality of Dom quite easily. Let A be an infinite “type assign-
ment” A = {xl :cri, . . . } assigning each variable a single type and providing
infinitely many variables of each type. Although the infinite set A is not a
syntactic type assignment, we will abuse notation slightly and write
A +- M:o to mean that A i +- M:a for some linite subset A, c A.

We now define Dam(“) for each equivalence class (a), using sets
of terms proved equal by ZY For any A E- M:a, let (M) denote the
equivalence class

and for each (cs) E Kind ‘, let

Dom(“> = {(M) (A + M:a}.

Note that by choice of A, no Dom CO> is empty. In addition, by Lemma 2,
Dam<“) depends only on the equivalence class (a), not the type
expression 6. We define 9 by interpreting each constant CEG&, as its
equivalence class -OoO,(c) = (c). It remains to define the families of
functions {@a,b} and {Qr}.

For each (cJ), (z)~Kind=, define cP<~>,<~> by

(@<,>.<,,(M))(N) = (MN),

for all A4 and N of the appropriate types. Let [Dom(“’ -+ Dom(‘>] be the
range of @<O>,<r>. The function @C,,j,Cr> is well defined by (tong) and can
be shown to be one-to-one using ([), and (q).

For each (p) E Kind=” define QCr> by

for every A+-M:Vp and (z)EKind? We take [n,,,E,i,,rDom’Pg’g)]C
n<p> E Kind rDomCPg> to be the range of QCPj and note that DC,,> is one-to-
one by (02 and (q). Thus we have a frame LF = (Kind, Dom, {@Pa,h},
{@jr}) for terms over constants from %$,,, and %&.,, .

It remains to show that 9r is an environment model and that F satisfies
precisely the equations belonging to r. We will show that 9 is a model by
giving an explicit description of the meaning of every constructor and term.
If q is any environment for 8, we let {q} be any substitution of construc-

100 BRUCE, MEYER, AND MITCHELL

tor expressions for constructor variables and terms for ordinary variables
such that

{‘I)UEYI(U) and blJX-l(X)

for every constructor variable u and ordinary variable x. Although the
value of (q}x is not uniquely determined, the equivalence class ((9)x) is
uniquely determined by 9. This is sufficient, since we will only be concerned
with the effect of (ye} up to provable equivalence from K It is easy to verify
that if (M) = (N), then ({q>M)= ((q)N). The proof that 9 is a
model satisfying precisely the equations in r rests on the following claim.

CLAIM. For any constructor p, term B I- M:o, and any environment
4 k B, we have

bIlyI= <WP) and [BI-M:a]q= ((q}M).

If we can verify the claim, then it is clear that 9 is an environment
model; i.e., every constructor and term has a meaning in 9. We can also
use the claim to show that 9 satisfies precisely the equations in r, as
follows. First, suppose B + M = N: CT E I- and ye + B. Since q /= B, we have
A + bl+:~yI~ f r or every X:T E B, and so by Lemma 3, it follows that
‘4 + {VI M: kd (T, and similarly for N. By Lemma 5, it follows that

A~(~}M=(~}N:{~}aisprovablefromB+M=N:c~~~.

Therefore [B+-M:~]~=({v])M)=({~}N)=[B+-N:~]~. Conver-
sely, we must show that if 9 k BI-M=N:a, then B+-M=N:aEI’.
For any B, we can choose an environment y10 k B which maps every con-
structor variable U“ to its equivalence class (vK) and maps every ordinary
variable x with x:r E B to the equivalence class of some variable y with
y:r~A. If .9 k B+-M= N:o, then we have

Since y10 just renames ordinary variables. M is a substitution instance of
(q,,}M and similarly for N. Therefore, by Lemma 5, we conclude
B +- A4 = N: o E K This proves the theorem, except for the claim.

We verify the claim using induction on constructor expressions and
induction on typing derivations for terms. It is not hard to show [p] q =
({s} p) by induction on constructors, using essentially the same steps we
use for terms below. In particular, we have [a] v] = ({q} o) for type expres-
sions cr. We now consider terms. For any typing X:B I- X:U of a variable,
we have

SECOND-ORDERLAMBDACALCULUSSEMANTICS 101

The application case (-+E) is also straightforward. For any B I- MN:z
typed using (-+E) as the last step, we have

where a = [a] q and b = [r] q. For A-abstractions typed by (-+I), we have

j[Br--x:o.M:a-t~l]vl=~,,‘g,

where a = [[on PJ, b = [[r] v] and g is the function satisfying

g(d)= j[B, XX F kf:Tlj q[d/X]

for all do Dom“. We can see that g= (@o,b((‘I} Ax:a. M)) using the
inductive hypothesis and the substitution lemma as follows. For any
(N) E Dam”, we have

g(N)= [B,~:at-hf~] ?[(N)/X]

= w<w/~lw)
= (({y} Ax:(r.M)N)

= (@)a,b(iv> ~x:o.WKW.

Since @ii is the inverse of cO~,~, it follows easily that

[BE-Ix:o.M:o-+z]q

=@Pu,~Pa,b({~l h:a. M))

= ({?/} hl:o.M).

Similar arguments demonstrate the claim for the (VE) and (VI) cases, and
rules (add hyp) and (type eq) are trivial. This finishes the proof of the claim
and hence the theorem. 1

6. COMBINATORY ALGEBRAS AND MODELS

6.1. Introduction

In this section, we present an alternative to the environment model. The
environment model definition has two parts: the definition of a frame and

102 BRUCE, MEYER, AND MITCHELL

the stipulation that a frame 9 is a model only if every term has a meaning
in 9. While the definition of frame has the same mathematical flavor as,
say, the definition of a group or vector space, the condition distinguishing
environment models from frames is largely syntactic since it relies on the
inductive definition of the meanings of terms. In this section, we present an
equivalent “combinatory model” definition based on algebraic properties
of elements. Since second-order combinatory models are analogous to
untyped combinatory models, we will illustrate the basic ideas by reviewing
the untyped definitions (see Barendregt, 1984; Meyer, 1982 for further
discussion).

An applicative structure is said to be combinatorially complete if every
implicitly definable function is represented in the model. More precisely, an
untyped applicative structure $3 = (D, @) is combinatorially complete if,
for every expression M with no occurrence of 1, all variables among
XI, x,, and possibly containing constants from D, there is a constant
dc D such that

9 k M=dx, “.x,.

Intuitively, this means that for every implicit “polynomial” description M
of a function of n variables, there is an element of D representing this
function. For untyped extensional applicative structures, it can be shown
that combinatory completeness is equivalent to the environment model
condition that every term have a meaning (Barendregt, 1984; Meyer, 1982).

Combinatory completeness also has a relatively simple definition which
is algebraic in nature. An untyped applicative structure 9 = (D, @) is a
combinatory algebra if it has elements4 K, SE D satisfying

Kxy=x

sxyz = (xz)(yz)

for all x, y, z E D. It can be shown that the combinators K and S are an
“algebraic basis” for the implicitly definable functions. Consequently, an
applicative structure ?3 is combinatorially complete iff 53 is a combinatory
algebra (Barendregt, 1984; Koymans, 1982; Lambek, 1980; Meyer, 1982).
Since both K and S can be defined explicitly by lambda terms, an exten-
sional applicative structure ~3 is an untyped environment model iff 53 is an
untyped combinatory algebra.

4 Combinatory algebras are often defined as structures interpreting constants K and S such
that Kv and S” satisfy the equations above. If 53 is not extensional, then the equations may
hold for many K, SED and it may be useful to have a structure 9 single out specific K and

S. Since our structures will be extensional. we will not require combinatory algebras to choose
specific combinators.

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 103

Combinators for ordinary typed lambda calculus are similar to the
untyped combinators, as we shall see in the discussion of kind structures
below. Instead of using two untyped combinators K and S, typed
combinatory algebras are characterized using an infinite family of typed K
combinators and a similar family of typed S combinators.

In the discussion of second-order combinatory models, we will define
second-order combinatory completeness and second-order combinatory
algebras. Instead of infinite collections of typed K and S combinators,
second-order combinatory algebras will be characterized using a single
polymorphic K, a single polymorphic S, and infinite families of additional
combinators. As in the untyped case, each combinator is characterized by
an equation. We will see that every second-order lambda-definable function
can be viewed as an applicative combination of the combinators and show
that an extensional frame 9 is a second-order environment model iff 9 is
a second-order combinatory algebra.

It is worth pointing out that the situation becomes more complicated
if we do not assume extensionality. The correspondence between com-
binatory completeness and combinatory algebras holds in general, but non-
extensional combinatory models are more complicated than nonextensional
combinatory algebras (see Barendregt, 1984; Koymans, 1982; Meyer,
1982). Except for a brief discussion in Section 6.5, we will only consider
extensional second-order frames.

6.2. Constructor Combinators

Recall that a kind environment model is a kind frame,

in which every constructor has a meaning. As the first step towards giving
a model definition that does not rely on the meanings of terms, we will
substitute a condition involving “kinded” combinators K and S.

As described in (Barendregt, 1984; Friedman, 1975), the requirement
that every constructor expression has a meaning in Kind is equivalent to
stipulating that for all kinds K~, K*, and K~, there must be elements

K hl.h2~ I(indhl-(X2~Kl)

K ~“Zi.~‘),~(ti,~h.2)=sh.,~Lj S,,, ~?. zj E Kind’ I

with the familiar properties

K,,, “z MU = IA

SK,, “2. hj uvi4’= (uw)(vw)

for all U, v, and MI of the appropriate kinds. (As usual, we have abbreviated

104 BRUCE, MEYER, AND MITCHELL

(@,,, ,,(@,,. KZ+KIK,r ,&b to K,, .pu, and similarly for S,,. K2. X,.) In the
following discussion of frames and combinators, we will assume that every
kind frame has combinators K,,, K2 and S,,, K2, ~~ for all kinds K,, K~, and
K~. This will allow us to focus on combinators for terms.

6.3. Second-Order Combinatory Completeness

Intuitively, a second-order frame is second-order combinatorially com-
plete if it is closed under definition by polynomials over ordinary variables
and type variables. We will show that combinatory completeness is equiv-
alent to the existence of a set of combinators, each characterized by an
equational axiom. Later, in Section 6.4, we will see how to describe com-
binators formally without introducing extra constants into the language.
However, constants for elements will be convenient for discussing com-
binatory completeness and for proving the equivalence of combinatory and
environment model conditions.

If 9 is a second-order frame, then the P-terms are the applicative terms
(terms without 1x:a. M or It.M) of the language with a constant for each
element of 9”. It is understood that if c is the “constant for d,” then
Y(c) = d. Since the a-terms do not involve any lambda abstraction, every
9 term has a meaning in the frame 9, regardless of whether F is an
environment model. One minor complication with the F-terms is that the
syntactic type of an element is not determined uniquely (since our syntax
does not allow arbitrary equations between constructors). For example, if
f, gEKindT” are distinct, but Vf = Vg are the same element of Kindr,
then a constant c for de Domvf could be given syntactic type V’or Vg. We
will take the rather brute force approach of assuming we have many con-
stants for each element, one for each equivalence class of type expressions
over constants from Kind. It is important to have each typing included,
since the syntactic type of a constant determines the way the constant may
be used in terms.

A frame 9 = (Kind, Dam, {@o,b}, {Qf}) . 1s second-order combinatorialll
complete if for every %-term B + M:o without free variables of higher
kinds (kinds other than T) there is a constant d from 9 such that

where x‘ is a list of all ordinary variables in B and s’lists all type variables
of B + M:a. This definition is similar to the usual definition of com-
binatory completeness for untyped lambda calculus (Barendregt, 1984;
Meyer, 1982), but with the added consideration of types and type variables.
We do not consider implicit functions of variables of higher kinds since we
cannot I-bind variables of higher kinds in second-order terms.

We will see that a second-order frame is combinatorially complete iff it

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 105

has elements K, S, A, B, C, and D satisfying certain equational axioms.
Since these elements may be defined as the meanings of closed terms (in a
language with enough constructor constants to write down their types),
they are called combinators. The combinators K and S are similar to the
combinators of the same names used in untyped lambda calculus, while A,
B, C, and D are related to type application and type abstraction. A useful
abbreviation is to write T’=> T for the kind T=> ... * T with i + 1
occurences of T.

A second-order frame 9 is a second-order combinatory algebra if it
contains elements

KEDom VS.Vl.S + i-s

SE Domv”.v”.v~.“‘““““‘“““,

and, for all integers i, j, k 2 0 and all f~ KindT”’ * ‘, g E KindT” ’ q ‘, and
h E Kind @+* a ‘, elements

CLREDom .. vi vi[vt[(fif, - (gft)] - vr(,frf) + Vf(&)]

Dh.f~ Dom vi.vs[vr.vu(hnu) + vr(hil(.fri))]

with the properties described below.
The combinators K and S must satisfy

Kstxy = x

Srstxyz = xz(yz)

for all types r, s, t and all elements x, y, and z of the appropriate types. The
types of x, y, z, omitted to improve readability, are easily determined from
the types of the combinators. For example, to be more specific, K must
satisfy

Kstxy = x for all s, t E Kind’ and all x E Dam’, y E Dom’.

The combinator B and every A, C, and D must have the following equa-
tional properties, where again the types of x and y may be determined from
the types given above:

(A&) xty = (xy) t

(Br) xt = .X

(c&n) xyt = xt(yt)

(Dh. [+“) xr = xr(fs’t).

106 BRUCE, MEYER, AND MITCHELL

It is worth noting that this set of combinators has been chosen for ease in
proofs and is not intended to be minimal.

We now introduce a language for describing elements of combinatory
algebras. One complicating feature of second-order lambda calculus, men-
tioned briefly earlier, is that we cannot necessarily write closed expressions
for all of the types of any given frame. Similarly, we cannot necessarily
define all of the elements of each kind T’d T. Since we need a closed
expression p for f E KindT” ’ to make use of a constant for combinator
A,, the set of constructor constants of a language limits our ability to add
combinator constants. Therefore, we will have to pay particularly close
attention the set ‘$,, of constructor constants in the following discussion.
To describe the connection between lambda terms and combinators as
generally as possible, we will use languages which contain as many
combinator constants as the constructor expressions will allow.

For any set V&, of constructor constants and set y,,, of term constants,
the combinatory terms %‘Y(G&, y,,,) are the applicative second-order
terms over constants G&, , y,,, , and additional fresh constants for the com-
binators K, S, A, B, C, and D. Specifically, in addition to the constructor
constants %?cst and term constants (Term, the language U2’(%$,,, y,,,) has
fresh constants

K:Vs.Vt.s -+ t + s

S:Vr.Vs.Vt.(r -+ s --+ t) + (r 4.9) + r + t

and, for all closed constructor expressions ,u : T’+ ’ * T, v : Tj+ ’ =z- T, and
x:Tkf2* T of VL?(%‘cs,, y,,,), constants A,,, B, CP.“, and D,,,. Note that,
as described above, the set of combinator constants depends on the set of
closed constructor expressions. A special case of particular interest are the
V55’(9) terms, which are the combinatory terms over the language with a
constant for every element of every Kind” and Domu of 8.

A model for combinatory terms will be called a combinatory frame.
More precisely, a second-order combinatory frame for %?P’(%&,,,, y,,,) is a
frame B for the constants of %?2’(G&t, 5&,) such that the combinator
equations hold for all of the combinator constants in the language
%9’(%?G~t, 9&,,). There are two differences between combinatory algebras
and combinatory frames. The first is that a combinatory frame interprets
constants of some %?9(%&, Yerm) with combinator constants, while a com-
binatory algebra need not interpret any combinator constants. The second
difference is that a combinatory frame need only have those A,, C,, and
D,,f which have f, g, h definable in %?Y(V=,,,, @&,). If f E KindT” T is not
the meaning of any closed constructor expression of ~LZ’(G&~‘,,, V&,,), then
a combinatory frame might not have an element A, satisfying the
associated equation. Essentially, combinatory algebras are frames with a

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 107

set of semantic properties, while combinatory frames are frames that inter-
pret certain languages in a certain way. The two notions are very similar,
however, if we add enough constants to our language. Specifically, if 9 is
a combinatory frame for %‘U(9), then every combinator of 9 has a con-
stant in %2’(9), and so 9 must be a combinatory algebra. Conversely, it
follows easily from the definitions that any combinatory algebra 9 can
be extended to a combinatory frame for %2’(F) by interpreting the
combinator constants of %?9(9) appropriately. In the proof of the
combinatory model theorem, we will use %9(F). However, we will use
more general combinatory terms %“u(%&,, %$,,) in proving a general
equivalence between lambda terms and combinatory terms.

We will now justify the name “combinatory algebra” by showing that
every combinatory algebra is combinatorially complete. It is clear that
every combinatorially complete frame is a combinatory algebra, since each
combinator is defined by an equation involving variables and F-terms. To
show how combinators allow us to represent functions, we define “pseudo-
abstraction” for ordinary variables and type variables. For every com-
binatory term B, X:O + M: r without free variables of higher kinds, we
define the combinatory term B + (X :a) M:o -+ 7 using induction on the
derivation of typing B, s:ci +-- M:T as follows. We omit the trivial cases for
(add hyp) and (type eq). Since B and r~ + 5 are clear, we only specify
(x:a)M.

(x:a)x = %(a + a)cJ(KcT(a -+ o))(Kao),

(x:0)]‘= Kzoy, where r is the type of y and .v is different from x,

(x:o)c= Kzoc, where r is the type of constant c,

(x:a)(MN) = Sapz((x:o)M)((x:cT)N), where B,x:ot-M:p-+z,

(x:~)(Mp)=(A~ps’)((x:a)M)p,

where B, x:cr + M :Vp, ail free variables of ,u are among $ and f is the
closed constructor 1%. 3,t, 7.

The definition of (x:0)x is analogous to the usual untyped translation
into combinators (X)X = SKK. If B + M: r is well typed and t does not
occur free in B, we define B t- (t) M:Vt.t by induction on derivation of
typing Bt M:z as follows. Again, we omit the trivial cases and only
specify (t) M:

(t)y= BTJ, where 7 is the type of JJ,

(t)c= Bsc, where 7 is the type of constant c,

<t)(MN)= ~,,,W<~)M)((~)~),

643!85,,-8

108 BRUCE, MEYER, ANDMITCHELL

where f and g are determined by the typing of MN as follows. If
B I- M: 0 -+ z and B + N: D, let J and s’ be lists of type variables so that
,f = li. 3-t. G and g = Is’. At. r are closed;

whereSand h are determined from r and the typing B + M : Vu. cr by taking
lists i and s‘ of type variables so that j-= G.At.r and h E Ir’.lt .Au.a are
closed constructor expressions.

It is not hard to verify that B+ (X:(T) M:o-+r and Bt- (t) M:Vt. z
are well typed. The assumption that M has no free variables of higher kinds
is needed to show that, for example, f and g in the definition of (t)(MN)
may be closed. (If this were not possible, we could not give Cf., a closed
type, and so C,,, would not really be constant.) The essential properties of
pseudo-abstraction are described by the following lemma.

LEMMA 14. Let p be a second-order combinatory frame for
VT(WC,,,, y,,,). For any combinatory terms B, x :CJ I- M:t and B I-- N:a of
WYA(gCst, y,,,) without free variables of higher kinds, we have

9 + B+ ((x:a)M)N= {N/x} M:z.

Similarly, if B + MIT with t not free in B and CJ is any type expression
without free variables of higher kinds we have

9 /= B+((t)M)a= {a/t} M:(ilt.z)o.

The lemma is proved by an easy induction. Using Lemma 14 we can
prove the following combinatory completeness theorem.

THEOREM 15 (Combinatory completeness). A frame 9 is second-order
combinatorially complete iff 9 is a second-order combinatory algebra.

ProoJ If 9 = (Kind, Dom, (@Pa,b}, I@,-}) is second-order com-
binatorially complete, then 9 is a combinatory algebra since each com-
binator is defined by a polynomial over 9. Conversely, suppose F is a
combinatory algebra and let {xi :c,, ~,:a,} F M:a be any P-term
whose free type variables are among si, si. Using Lemma 14, it is easy
to show that

N=(s,)~-~(~~)(x,:cr,)~~~(x~:~~)M

is a closed term of %9(F) with

9 /= (x1 :cr,, . ..) xj:aj} + M= Ns, “‘s/xl . ..~/.a.

Thus 9 is combinatorially complete. 1

SECOND-ORDERLAMBDA CALCULUSSEMANTICS 109

6.4. Combinatorv Models

In this section, we show that an extensional frame 9 is an environment
model iff F is a combinatory algebra. This will establish that the
“algebraic” definition of combinatory algebra is equivalent to the syntactic
condition in the environment model definition. We will use translations CL
and LAM between lambda terms and combinatory terms over the same sets
of constants, which may also be of independent interest.

Let B t- M:o be a second-order lambda term over constants from gCs,
and Yerm7 without free variables of higher kinds. We define the com-
binatory term B I- CL(M) :O of V5Y(+&‘,,,, $,,,,) by induction on the deriva-
tion of B+ M:a. As usual, the trivial cases (add hyp) and (type eq) are
omitted, and, since B and cr are already determined, we mention only
CL(M).

cL(x)=x

CL(MN)=CL(M)CL(N)

CL(Ix:cl.M)=<x:o)CL(M)

CL(MrJ)=CL(M)rJ

CL(/b.M)= (1)CL(M).

We can use Lemma 14 to show

LEMMA 16. Suppose 9 is an extensional combinatory frame for
%2’(‘%l,,, , gt,,,,,) and B & M: rs is a second-order lambda term over K,, and
%? term without free variables of higher kinds. If q t= B, then the meaning of
B I- M: D exists in 9 and is given by

We will use the lemma later to show that every combinatory model is an
environment model. In doing so, we will eliminate the restriction on free
variables of higher kinds.

Proof The lemma is proved by induction on the typing of terms. The
only nontrivial cases are (+I) and (VZ). Since these two cases are similar,
we only consider the first. Recall that the meaning of B t Ax :o. M :(T + t
typed by (-+I) is

where g(d) = [B, X:CJ t M:T] ~[G!/.u] for all d E Dom” and a, b are the
meanings of o and 7 in q.

110 BRUCE, MEYER, AND MITCHELL

By the inductive hypothesis,

g(d) = [B, x:5 + cL(fI4):7j q[d/x] for all d E Dam”.

By the substitution lemma and Lemma 14,

(@a,bBB + (x:5> CLWJ :cr~~gvl)d=IB,x:~~c~(M):zl q[d/‘x]=g(d)

for all dE Dom”. Therefore,

proving the lemma. 1

We now show how to translate combinatory terms into lambda terms.
For any combinatory term B + M:z of %?9(%‘CS~, G$,,,), we define the
lambda term B I- LAM(M) : r over ‘&, and $:,,,, as follows:

LAM(X) =X

LAM(C) = C for c E %&,,

LAM(K)=h.;lt.~x:~.~y:t.x

LAM(S) = h.h.it.~X:r +s -P t.Ay:r + s.Az:r.xz(yz)

LAM&) = A.r./G.Ax:r -+ Vt(fs’).;lt.~y:r.xyt,

LAM(B) = h.1x:r.k.x

LAM(Cf,.) = rii.ni.nX:k((fr’t) -+ (gft)).~y:tlt(f:t).h.(Xt)(yt),

LAM(D,/)=;Ij.;Ist.;IX:Vt.vU(hr’t#).~t.Xt(fs’t)

LAM(MN) = LAM(b!f) LAM(N)

LAM(hfO) = LAM(h’.f)(T.

Note that for combinators indexed by constructors, such as A,, we have A,
in %9(%$‘,,,, G&,,) only iffis a closed constructor expression. Therefore, for
every A/ in %?S?(G&, , %?,,,), the term LAM(A/) will be a closed lambda term
over %&, and %,;,,,. In the special case that %P’(%&,, y,,) is G?Z(@), then
LAM translates every combinator of 9 into a closed lambda term over con-
structor constants from 9’.

If 9 = (Kind, Dom, {@o,6}, {@.}) is an environment model for terms
over Y,, and %,,,,, then we define 9+ to be the result of extending Yb,,
to interpret the fresh combinator constants of %Y.Y(G&, C&.,,) as the
lambda terms above. It is easy to prove the following lemma.

LEMMA 17. Let 9 be an extensional environment model for terms over

SECOND-ORDER LAMBDA CALCULUSSEMANTICS 111

KS, and Grm. Then F + is a combinatory frame for %‘Y(VCst:,,, G&,,) such
that for every B I--- M:a of WY(%$,,,, %&.,,), we have

Using Lemmas 16 and 17, we can now prove the combinatory model
theorem. This theorem is analogous to the combinatory model theorem of
(Meyer, 1982, but somewhat more simply stated since we have only
considered extensional structures.

THEOREM 18 (Combinatory model theorem). An extensional second-
order frame F is an environment model $7 9 is a combinatory algebra.

Proof: First, suppose 9 is an environment model. By Lemma 11, the
environment model condition does not depend on the choice of constants,
and so we may assume 9 is an environment model for lambda terms over
constants from 9. Therefore, by Lemma 17, 9 + is a combinatory frame
for %2(F), and so 9 must be a combinatory algebra.

We now suppose B is a combinatory algebra and show that S must be
an environment model. To prove this, we must remove the restriction of
Lemma 17 to terms without free variables of higher kinds. This will be
done by substituting constants for variables. To this end, we first extend 9
to be a combinatory frame for %3(T) with constants for every element
of 9:.

Let Y” be any set of constructor variables, not containing any type
variables, let qO be any environment for 9, and let &r-,VO be the class of all
environments for 9 which agree with qO on all variables from ^Y, i.e.,

v(v) = rldv) for all q E G$-,~~ and v E I’“.

We will say that B I- M:a is a V-term if all free variables of B c- M:o are
ordinary variables, type variables, or variables from Y. If B t- M:a is a
Y-term, then let MY-.,, by the result of replacing each variable v from V
by the constant for qO(v). By Lemma 16, we know that every B t- M,,,,:a
has a meaning in 9. An easy induction shows that for every Y-term
B t M: 0, and every environment q E &Y-,qO, we have

Thus every Y-term has a meaning in 5. Since every term is a V-term for
some “t’, it follows that 9 is an environment model. 1

112 BRUCE, MEYER, AND MITCHELL

6.5. Second-Order Type Theory

The combinatory characterization of untyped lambda models shows how
to reduce untyped lambda calculus to first-order logic. Specifically, when
combined with the extensionality axiom,

Vz(xz = yz) 3 x = y,

the combinator axioms

vx, y . Kxy = x,

vx, y, z.sxyz = (xz)(yz)

provide a first-order axiomatization of extensional models for untyped
lambda calculus (Barendregt, 1984; Meyer, 1982). Second-order com-
binatory algebras and models may also be defined in first-order logic.
However, since the details of interpreting second-order lambda calculus in
first-order logic are not very enlightening, we will show how to axiomatize
combinatory algebras and models in the logical system YY of “second-
order type theory.” This axiomatization is relatively natural since the type
structure of YY matches that of second-order lambda calculus. By a
further reduction of YY to first-order logic, which is entirely routine, one
may see that the semantics of second-order lambda calculus is reducible to
first-order model theory. However, we will not go into the details of the
reduction to first-order logic.

The language YY is built from applicative second-order terms using
equality, the logical connectives, and quantification. To be more precise, an
9.F atomic formula is an equation B +-- M= N:o without lambda binding
of ordinary variables or type variables in M or N. If B t- G, and B I-- G2
are YY formulas. then so are

B+G, A G2 and B+-- lG,.

In addition, if u“ does not appear free in B, then

B+Qv”.G

is an YY formula. Similarly, if B, X:O I--- G is an YY formula, then

B+Vx:a.G

is an YY formula as well. Finally, we need an (add hyp) rule for formulas
since formulas include type assignments for ordinary variables. We do not
need (type eq) for formulas since the types of formulas are not part of the
syntax. Formulas of YY are interpreted by giving the logical connectives

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 113

A and 1 their usual meanings and by interpreting quantifiers as ranging
over the appropriate sets of the frame. Since only applicative terms appear
in formulas of Y5, we can interpret logical formulas over any second-
order frame for the appropriate set of constants.

It is easy to read through the definition of combinatory algebra and see
that all the combinator axioms may be formalized in YY. In axiomatizing
combinatory algebras, we may replace constants by existential quantifiers.
For example, K is described by the axiom

3K:VsVt(s + t -+ s).Vs.Vt.Vx:s.Vy: t. Kstxy = x.

The axioms for A, C, and D involve variables of higher kinds. In addition,
we need infinitely many axioms for each family of combinators. For exam-
ple, for each i > 0, we need the A axiom

v. T’+‘*T.3A, :vr, q(r + Vt.fs’) -+ Vt.(r -fit)].

vr.v’s’.v.x:(r+vt.fs’)vt.vy:r.(Afrs’)xty=(xy)t.

It should be clear that an extensional frame 9 satisfies the collection of
Y.Y combinator axioms iff 9 is a combinatory algebra. Therefore, we may
axiomatize combinatory algebras without introducing constants into the
language.

The language YY may be reduced to first-order logic using a relatively
straightforward method, similar to the reduction of ordinary type theory to
first-order logic outlined in (Monk, 1976). However, in the reduction to
first-order logic, we must be careful to specify that frames are extensional.
Essentially, this involves introducing axioms

VP “‘.vf:(v/ll).vg:(Vp).(vt.ft= gt)3f= g

Vs.Vt.Vf:s + t.vg:s -3 t.(Vx:s.,fx= gx) 3f= g

to say that elements which have identical functional behavior must be
equal. By including typed extensionality axioms and reducing to first-order
logic, we can show that second-order lambda calculus is reducible to first-
order logic. It is worth emphasizing that, as with other versions of lambda
calculus, the first-order axioms are not equational (due here to exten-
sionality), so second-order lambda calculus is not an algebraic theory. One
consequence is that the class of second-order lambda models is not closed
under homomorphism (cf. Barendregt, 1984; Meyer, 1982).

6.6. Nonextensional Models

Throughout this paper, we have emphasized extensional models. Essen-
tially, the extensionality axioms (q) state that if two elements d and e

114 BRUCE, MEYER, AND MITCHELL

behave the same way as functions (i.e., if dx = ex for all x of the
appropriate type or kind), then d and e must be equal. These axioms are
quite reasonable, but nonextensional models are occasionally of interest
also. Semantically, the extensionality axiom is reflected in the fact that we
have assumed a bijection @u,b between Dom”‘h and [Dom,+Domb],
and similarly for each GP Thus every function g E [Dom” -+ Domb]
corresponds to precisely one element @-r(g) E Doma-’ b. In nonextensional
models, we let two different elements d # e E DomU+’ represent the same
function @u,b(d) = @O.b(e). This leads to some complication, since we used
@- ’ to find the meanings of lambda abstractions.

In nonextensional models, the main difficulty in interpreting lambda
terms becomes the weak extensionality property of second-order lambda
calculus. Intuitively, weak extensionality states that if A4 and N both define
the same function of X:C-J, then 1,x:0. A4 must equal 2x:0. N, and similarly
if M and N both define the same function of t, then 1.t.M must equal it. N.
This is formalized in the inference rules

(51,
B,x:rs+M=N:p,+p=z

B+,lx:~~.M=h:z.N:a+p

(4)z
B+M=N:a

B +- At.M= h.N:Vt.a
t not free in B.

We satisfy weak extensionality using “choice functions” to determine the
meaning of Ax:a.M or At. M. Specifically, we wish to define the meaning
of B+-ix:o.M:a-+r from the function

g(d) = [B, X:(T + M:tl q[d/x].

In a nonextensional structure, there may be several elements representing
g, so we need some extra machinery to choose which one. We need to
make sure that if B, x : CJ c- M: t and B, x: cr F-- N: r give us the same func-
tion g, then we choose the same meaning for B F-- Ax : 0. M:o -+ r and
B F- Ax : cr. N: c + z. The simplest way to do this is to use a choice function
Y& to select the meaning ul,,,(g) of a lambda abstraction.

To be more precise, a nonextensional frame is defined in the same way
as an extensional frame, except that instead of requiring each @U,b and @,,.
to be bijections, we require additional functions Y,,b and Yf such that

Y a. b ’ @a, b = IdCDornu - Domh] and Y,.o @,.= Id CG,K~~~T’- Dom”l.

(We make no assumptions about the reverse compositions @u,bo Y,,b and
are YP) The functions lu,,, and Yf then replace @,L and @i’ in defining
the meanings of terms of the form Ax: a.M and It. M. The completeness

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 115

proof for the nonextensional case is a simple modification of the complete-
ness proof given in Section 5 (see the completeness proof for nonexten-
sional untyped lambda calculus in (Meyer, 1982)).

Nonextensional combinatory models are somewhat more complicated
than extensional combinatory models. One important feature of the com-
binatory model definition is that it reduces the definition of model to a set
of first-order axioms. It is therefore appropriate to remove the condition
Yn @ = Id from the definition of frame and incorporate it into the set of
axioms. To do this, we use a family of “choice elements” {E} corresponding
to the family of choice functions { Y}. The basic idea is illustrated in the
following discussion of untyped combinatory models.

An untyped combinatory modef is an untyped combinatory algebra
9 = (D, c@) with element ? ED satisfying

(&,l) Vd, e(ed)e = de,

(~2) Ve(d, e = d,e) 3 EdI = cdl,

(E.3) EE = E.

Untyped lambda abstraction can be interpreted using E as

[[Ax. m r/ = Ed,

where

de = IIMa vlCelx1 for all e ED.

Since 9 is a combinatory algebra, an element d E D with de = [n/rll q[e/x]
for all e E D will exist for any M. Furthermore, weak extensionality (<)
follows from the properties of E. Note that

A comprehensive discussion of the equivalence between the environment
and combinatory model definitions for untyped lambda calculus is given in
Meyer (1982). Note that since the combinatory algebra axioms are equa-
tional, nonextensional combinatory algebras from an algebraic variety
(Gritzer, 1968). However, the axioms for E, like the extensionality axioms
discussed in the preceding subsection, are not equational.

In the case of second-order lambda calculus, we need a family of typed
E’S. At the very least we need an

E a.6 = ,lx:a + bAy:a.xy

for every a, b E Kind’ and, for every f~ Kind ‘* ‘,

Ef= iX:vf.k.Xt

116 BRUCE,MEYER, AND MITCHELL

to serve the roles of ul,., and ul,. However, these are not quite enough
since we have no way of defining, say,

from combinators and the above E’S. Essentially, we need to be able to
define E,~~ as a function of a and 6.

There seem to be a number of ways of defining nonextensional second-
order combinatory models and we have not made a thorough study of
the possibilities. One set of choice elements that yields a combinatory
characterization of nonextensional models includes

&(J=/lS.~t.~x:S-+ t.;ly:s.xy,

from which we can define any E,,~ by application, and for each f: T’ * T,
an

The types and axioms for these E’S are easily derived from the lambda terms
above. The details of this combinatory model definition are cumbersome,
but essentially straightforward. (The family of choice elements s0 and Ed for
all f: T’* T repair an oversight in Mitchell, 1984b.)

7. EXAMPLES OF MODELS

7.1. Introduction

We will discuss models of second-order lambda calculus that are
constructed from untyped structures. These are the simplest examples of
models, and historically the first. The models fall into two groups. In the
first class of models, types are represented by elements of a “universal”
domain. This allows us to use ordinary untyped lambda calculus to define
operations on types. In the second class of models, types are quotients of
subsets of an untyped value space. Another class of models, Girard’s
qualitative domains, are too recent for us to survey here (Girard, 1986). In
addition to describing two kinds of second-order models, we will also see
that the ideal model of type inference (MacQueen and Sethi, 1982;
MacQueen, Plotkin, and Sethi, 1986) is not a model, and that there are no
nontrivial finite models.

There are several variations on both universal domain and HE0 models,
but we will not take the time to discuss all of them. Universal domain
models may be constructed using closures, tinitary retracts, or finitary pro-
jections of certain domains. We will discuss the closure model and refer to

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 117

the literature on finitary retracts and projections. Girards’ HEO, is a
specific model based on recursive function application. The main idea may
be used to construct a second-order model over any “partial combinatory
algebra,” a class of structures which includes all models of untyped lambda
calculus (Plotkin, 1985; Rosolini, 1986). Some variations are discussed in
(Mitchell, 1986b) and some connections between retracts and equivalence
relations are discussed in Section 7 of (Scott, 1976).

Although it is not very exciting, it is probably worth mentioning a trivial
model construction. Any model 22 of the untyped ,I-calculus may be viewed
as a second-order model by taking ~3 as the sole element of Kind?

1.2. Retract Models

There are three kinds of models built using retracts of universal domains.
A retraction is a function f with the property that f 0 f =f, and the range
of a retraction is called a retract. In the retract models, the types are chosen
to be some class of retractions of a model of untyped lambda calculus. One
of the reasons why retract models are easy to work with is that type
operators like --f and V may be represented by lambda-definable functions
on retractions (see Scott, 1976 for further discussion). An important
property of the three models below is that in each case, a very rich class
of retractions is itself a retract of the untyped value space. Because of this,
each model will have a “type of all types,” something which is not generally
required of second-order lambda models. The three models will differ
primarily in the class of retractions used as the type of types.

The first model construction was based on Scott’s 5% model of untyped
lambda calculus, with types represented by a special class of retracts
called closures. This model is due to McCracken (1979) drawing on ideas
presented in (Scott, 1976). We assume that the reader is familiar with the
Bo model of the untyped lambda calculus (Scott, 1976), with

@=fun:9Pw+ [9%0-+2P0]

mapping each element of 2%~ to a continuous function on Yo, and

!J’=ggraph:[9w+9co] -+9%

mapping every continuous function to some element of 90. (An important
relationship between @ and Y is that @a Y is the identity function on
[So + L?+%II].) A certain amount of notational clutter will be eliminated by
writing closed lambda terms to describe elements of 90, as well as writing

de for (@d)(e) when d, e E P&u,

doeforix.d(ex)whend,eEpm.

118 BRUCE, MEYER, AND MITCHELL

A retraction in ~3% is an element Y(f) EPCO such that the function
f:Po + PO is a retraction. This is equivalent to saying that a retraction in
CF’OJ is an element a E 90 with a 0 a = a in the notation above.

We can build a second-order model from P’w by using the closures as
types. We say a retraction a E &O is a closure if

ad>d for all de 9%~

and let

Kind’= (aE9w (aisaclosure}

be the collection of closures. The elements of type a are the elements fixed
by a, i.e., for every a E KindT, we let

Dom”= {ad (dE&o).

We may think of the closure a as coercing untyped elements of PO into
elements of type a. Since a is a retraction, this coercion leaves elements of
type a unchanged. As shown in (Scott, 1976), there is a closure VE Kind7
of all closures, so that Dom’ = Kind? This is a particular property of
closures of 5%~ which fails for retractions. Specifically, the collection of all
retractions in 90 is not a retract of 90 (Scott, 1976). If a is a closure, then
it will be convenient to write

d:a for d = ad,

which is equivalent to saying d E Dam”. In addition, a useful abbreviation
is

Ax:a.M for 1~. { ay/x > M.

Intuitively, E.x:a. M is the function lx.M, restricted to the range of
closure a.

If a and b are closures, then we want a -+ b to be a closure which coerces
every element d of Pw to a mapping from Domu to Domb. In addition, we
would like to have each function D(d) mapping Dom” into Dom” represen-
ted exactly once in the range of a -P 6, so that Domu* b is an extensional
collection of functions (see Scott, 1976 for further discussion). Both of these
goals may be accomplished by taking

Intuitively, a -+ b works by taking any element d and producing the ele-
ment b 0 do a which, when used as a function, first coerces its argument to
an element of type a, then applies d, and then coerces the result to type 6.

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 119

It is easy to see that if x:a, then ((bodoa)x):6, so (bod~a) represents a
function from Dom” to Dom ‘. In addition, if d already represents a
function from Dom” to Domb, so dx: b whenever .X :a, then (b 0 do u)x = d-x
for all x :a. What is a little less obvious is that if (b 0 d, c a)x = (b 0 d, 0 a).~
for all x:u, then b 0 d, 0 u = b 0 d, 3 a’, This means that range of a + b contains
exactly one representative for each continuous function on Y’w that maps
a into b. Based on this discussion, we define

-+ =h: V.Ab: V.(Ax.boxoa)

and write + as an infix operator, as in a + 6. It is easy to verify that for
any a, b E P?‘w, the element a + b is a closure (see Scott, 1976).

Since KindT= Dam”, we will use the same function space constructor -+
for both types and kinds. For each kind expression IC, we let TP(K) be the
expression obtained by replacing all occurrences of T in k’ by V and all
occurrences of 3 by +. Using the definition of + above, we may interpret
TP(K) as a closure, and so we take Kind” = DomTP(X). It is now easy to
show that + is in KindTDCT’ ‘). We leave this to the reader.

The intuition behind V is quite straightforward. If f: V --) V is a function
from closures to closures, then every element x :Vf should map each closure
(type) t : V, to some element xt of type ft. Therefore, Vf should be a func-
tion that coerces any x E 9’0 to a function which, given any t : V, returns an
element xt:ft. Writing this out as a lambda term (including the type
assumptions), we are led to the definition

v = I*$: v-r V.2x.h: V.(ft)(xt).

Recall that xt:ft is an abbreviation for xt = (ft)(xt), so we have used
(ft)(xt) in the definition of V. It is easy to verify that iffc KindT’ ‘, then
V’E KindT, and that V E KindCT’ ‘I* ‘.

To complete the definition of a second-order frame, it remains to define
a family of @h.,,T2 functions that give us a kind structure, and @rr,h and Qr
for every a, b E Kind7 and f~ Kind’*? Surprisingly, all of these may be
obtained as restrictions of the untyped @ mapping 90 to [PO -+ Pw].
With QK,, “z defined to be the restriction of @ to Kind”’ * Q and 4 defined
as above on --f and V, it is not hard to verify that Kind,, =
({Kind”, (@x,.xz),~> is a kind structure. Assuming %&,, is empty, we
leave Yb,, empty and take

Dom.p,o = ((Dam” 1 uEKindr}, &,,).

’ This is proved by noticing that the restriction to x:a is inessential. and so (bo d, oa)x =
(b 0 dz 0 a),~ holds in 90. Therefore, by rule (5) of untyped lambda calculus, Ix. (b 0 d, 0 a)x =

11. (b 0 d, oa)x. Working out the delinition of D gives the desired equation.

120 BRUCE, MEYER, AND MITCHELL

For a, bEKind’, dEDom”‘b,fEKindT’T, and eEDomvf, we let

@0,6(d) = @(a Dorn~ and @f(e) = @P(e)1 Kindr.

These restrictions of the “untyped” @ have some remarkable properties:

LEMMA 19. (i) @a,b is a one-to-one and onto function from DomU+b to
[Dom”+ Domb], where [Dom” + Domb] is the set ofcontinuousfunctions
from Domcl to Domb.

(ii) @.r is a one-to-one and onto function from Darn’.’ to
[nacKlndTDomf(fl’], where [Z7,Eki,drDomf(a)] is the set of continuous
functions from ZZ,, kindrDomf(‘).

Proof (i) (Sketch) Note that dEDom”‘b implies d=bodoa. Thus
@(d)(e) = b(d(ae)) E Domb. It can also be shown that the range of @o,b is
all of [Dom” + Domb]. Suppose there are d,, d, E Dom”‘b such that
@a.b(d,) = @u,b(d2). It is then easy to show that @(d,)= @(d2). Hence,
Y(@(d,))= Y(@(d,)). However d,,d,EDomn’b implies di=bod,oa for
i= 1, 2, and therefore Y(@(d,))= Y(@(bodioa))=bodioa=di, where the
middle equation holds since b 0 die a is of the form Y(g) and
ul(@(Y(g)))= Y(g). Thus d, = Y(@(d,)) = Y(@(d,)) = d2, and it follows
that oio,b is one to one. (ii) Similar. m

This shows that 9$, = (Kind,, , Domdw, (@, b, Cp,}) is a second-order
frame. Since [Dom” -+ Domb] and [n,, kindiDomf(n)] consist of all
continuous functions of the appropriate functionality, it is easy to verify
that this is an extensional second-order model.

THEOREM 20 [McCracken, 19791. Fq, = (Kind,,, Dam,,,
{ @a,b, Or}), as defined above, is an extensional second-order model.

The model FL, has several interesting features. Perhaps most interesting
is that Kindle Dom, giving the set of types a very rich structure. In par-
ticular we can solve recursive domain equations in this model. Somewhat
surprisingly, given the definition of Kind=, the correspondence between
KindT and Dom is bijective, i.e., a = b iff Dom” = Domb.

A similar argument shows that the class of finitrary retract models,
developed in McCracken (1984b) using ideas of Scott (1980b), is also an
extensional second-order model. We say a cpo is a domain if it is
o-algebraic and consistently complete, and a retraction r is finitary if the
range of r is a domain. The finitary retract model is built from a domain
model of untyped lambda calculus by taking finitary retracts as types.
While similar to the closure model described above (e.g., in the definitions
of -+ and V), there are some differences. For example, the relation between

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 121

KindT and Dom is not bijective. A similar extensional model using finitary
projections appears in Amadio et al. (1986); the ideas behind this model
also appear implicitly in several papers of Scott. The linitary projection
model is again bijective in the relationship between Kind’ and Dom. In
Amadio et al (1986) it is shown how to solve higher order recursive
domain equations in this model. The same paper also shows that the type
structures of all three models are very similar.

1.3. The Ideal Model of Polymorphic Type Inference

The ideal model proposed in (MacQueen and Sethi, 1982; MacQueen,
Plotkin, and Sethi, 1986) was designed to explain polymorphic type
inference for untyped lambda calculus. In the programming language ML,
for example, the untyped identity function 2x.x is given all types of the
form a -+ a, where tx may be any “monotype” without V (Milner, 1978). The
assignment of types to untyped terms is formalized as a deductive system
for assertions like ix.x:cr -+ cc A natural extension of ML typing is to
assign second-order types to untyped lambda terms, giving the untyped
identity type Vt. t + t, from which all of the ML typings can be obtained.
A semantic explanation of the deductive system for polymorphic type
assignment involves a structure for interpreting untyped lambda expres-
sions and a way of associating a predicate with each second-order type
(Mitchell, 1984b). The ideal model is an example of such a structure, using
ideals over complete partial orders as types (Milner, 1978; Shamir and
Wadge, 1977). It is sometimes thought that the ideal model is in fact a
model of second-order lambda calculus. However, we will see that it is not.
The shortcomings of the ideal model (as a second-order model) will be
used to motivate the HE0 model in the next subsection. We should
emphasize that this model was only intended to explain type membership,
not equality between typed terms. So it is through no fault of the authors
of (MacQueen and Sethi, 1982; MacQueen, Plotkin, and Sethi, 1986) that
the ideal model is not a second-order lambda model.

Although there may be trivial or contrived ways of treating the ideal
model as a model of second-order lambda calculus, the most natural way
would be to interpret each typed term as the term obtained by erasing all
type information. This makes some sense, since the meaning of any typed
term ends up belonging to the correct semantic type. The problem with this
interpretation of terms is that it is not even weakly extensional, let alone
extensional. Every model of second-order lambda calculus (or any other
typed lambda calculus) must satisfy the axiom

IfM=Nforallx:t,thenix:r.M=i.u:t.N.

We will construct a counterexample to this axiom in the ideal model. For

122 BRUCE, MEYER, AND MITCHELL

concreteness, the counterexample will use the type Vt. t. However, the
argument is quite general.

Let P and Q be any two closed terms of the same type t which have
different meanings in the ideal model. (To be more concrete, we could take
P=At.Ix:t.Ay:t.x and Q=lt.~x:t.~y:t.y of type t=Vt.t+t+t.) Since
Vt. t has only one element I, we have

XTP=XTQ= 1

for all x:Vt. t. Therefore, we would like to obtain equal lambda terms by
lambda abstracting x:Vt. t on both sides of the equation. However, we have

lx:(tlt.t).xzP#ix:(vt.t).xzQ

in the ideal model, since Lx.xP and Ax.xQ are distinct. Thus weak exten-
sionality fails. For similar reasons, weak extensionality generally fails in
interpretations of second-order typed lambda calculus based on the models
of type inference discussed in (Mitchell, 1984b).

7.4. HEOz and Related Models

The main reason that ideal model and related structures do not form
models of second-order lambda calculus is that equality is untyped, or
independent of type. However, we can construct second-order models in
much the same spirit if, in addition to a membership predicate, we also
associate an equivalence relation with each type. Essentially, the predicates
say what the elements of each type are, and the equivalence relations say
when two elements are to be regarded as equal with respect to that type.
One intuitive explanation for this view of types is based on computer
implementation. In compiling a typed language, we might choose to repre-
sent characters or boolean values as single bytes. Any byte would be accep-
ted as a valid representation of either a boolean or a character. However,
we are likely to regard any byte with least significant bit 1 as a representa-
tion of true, and so any two bytes ending with 1 will be regarded as equal
booleans. However, all bytes with the same least significant bit will not be
considered equal characters. Thus, although characters and booleans may
have the same membership predicate on machine-level representations, the
equality relations are different.

When we formalize the two-part interpretation of types, it is technically
convenient to combine membership predicates and equivalence relations
into a single notion. Intuitively, a partial equivalence relation on a set S is
intended to be an equivalence relation R on a subset S, 5 S. However, it
turns out that the predicate S, is superfluous. To begin with S, =
{s E S 1 (s, s) E R}, so it is easy to see that S, is determined by R. In addi-

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 123

tion, R is an equivalence relation on some subset of S iff R is a symmetric
and transitive relation on all of S. Therefore, we will simplify the technical
details by working with symmetric, transitive relations instead of predicates
and equivalence relations. If S is any set, we say a binary relation R on S
is a partial equivalence relation if R is symmetric and transitive.

The use of partial equivalence relations has a significant history. Partial
equivalence relations for first-order function types were introduced in
(Myhill and Shepherdson, 1955) and extended to higher order functional
types CJ -+ z in (Kreisel, 1959). Kreisel’s structure is also described in
(Troelstra, 1973), where it is called HEO, for the hereditarily effective
operations. The structure HE0 was extended to an interpretation of
predicative polymorphic types in (Beeson, 1982) and to a second-order
model HEO, in (Girard, 1972; Troelstra, 1973). The structure HEO,
was also discovered independently by Moggi and Plotkin (personal
communication, 1985). A partial equivalence relation interpretation of
functional types (in a somewhat more general setting) is also discussed in
(Scott, 1976) and taken up in the study of polymorphic type inference in,
e.g., (Hindley, 1983a; Coppo and Zacchi, 1986). Further discussion and
some general results about partial equivalence relation models of second-
order lambda calculus are given in Mitchell (1986b).

We will now concentrate on Girard’s model HEO,, which is a particular
model of second-order lambda calculus based on partial equivalence rela-
tions. Instead of using partial equivalence relations over untyped lambda
models, HEOz is based on the integers with partial recursive function
application. We assume some enumeration of all partial recursive functions,
and write {n}m for the application of the nth recursive function to m. As
in (Girard, 1972), we will assume that the recursive functions are numbered
so that {O 1 m = 0 for every integer m. With this assumption on the coding
of recursive functions, we will end up with at least one element of every
type (namely, the equivalence class of 0).

The first step in describing HEO, is to define the kind frame Kin&o.
We let Kind* be the set of all partial equivalence relations R over the
integers, subject to the constraint that (0,O) E R. The remaining Kind“ are
defined inductively, with Kind”““’ the set of all functions from Kind”’ to
Kind”‘. Since Kind”’ *“l is a set of functions, we let @,,, “2 be the identity.
For any R, SE KindT, we let R + S be the relation

R+S={(n,, n2> I if(m,,mz)ERthen ({n,]m,, {n,jm2)ES}.

It is easy to see that (0,O) E R +S, and so --f ~Kind”‘~“. If fg
Kind T* r is any function from types (partial equivalence relations) to
types, then we define Vf by

vf= n f(R).
R c Kmd7

124 BRUCE, MEYER, AND MITCHELL

It is also quite easy to see that (0,O) E VA and so V is a function of the
appropriate kind. We let Kind= ((Kind”, { Qti,, K1}, S) with ,a(+) and
Y(V) as above. Since Kind is a full function hierarchy, it is clear that every
constructor expression has a meaning in Kind.

For every R E KindT and every integer IZ with (n, n) E R, we let [n] R be
the equivalence class

Cnlg+= {m I (v+R),

and define DomR to be the set of all such equivalence classes

We then take Dam,,, to be the collection of all DomR. Note that since
(0,O) E R for every R, every DomR is nonempty. The functions @R,S and
Qr are defined by

and the sets [DomR -+ Dom”] and [Z7RGki,,dT.DomT11(R)] are defined to be
the ranges of functions @R,S and @,-, respectively. It is easy to see that both
functions are well defined on equivalence classes. Although Qr may look
trivial, it is not entirely so since [nlfcR, will generally be a larger equiv-
alence class than [nlw At this point, we have a frame

HE% = (K&Eo, DomHEo, {@a.6r Gf> >

and it remains to show that every term has a meaning.
The proof that HEO, is a model relies on elementary facts from recur-

sive function theory, such as recursive sequencing functions and the sy
theorem (see, e.g., Rogers, 1967). The main idea is to show inductively that
for every term B + M: c, there is a recursive function for the meaning
[B + M:alj. This shows not only that every term has a meaning, but that
we can compute the meaning of every term as a function of the environ-
ment. Since I-IEO, contains only recursive functions, we use the stronger
induction hypothesis to show that lambda abstractions have meaning in
the model.

Recall that the meaning of a term depends only on the finite sequence of
values given to its free variables, not the entire environment. Consequently,
we may regard [B +-- M:oj as a function on finite sequences of values, the
types of these values given by B. Since every value in HE02 is an equiv-
alence class of integers, we will consider [B I- M:aJ recursive if we have
a corresponding recursive function on integer representatives (or “codes”)
for values. More precisely, we say f is a recursive function for

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 125

xk:frkj +M:oJ if, for any environment q k {xi:(~i, xk:gk}
, 3 nk) of integers with n,~q(xi), the function f

computes an integer

f((n,, . ..) rlk))E [(x,:a,, . ..) Xk:cTk) +M:.jq.

A straightforward induction shows that there is a recursive function for the
meaning of every term and that the recursive function for [B I- M:o] has
the appropriate type. The only nontrivial case is lambda abstraction, which
uses the s; theorem. It follows that HEO, is a second-order lambda model.

7.5. Finite Models

One distinction between untyped lambda calculus and the ordinary
typed lambda calculus is that typed lambda calculus has nontrivial models
in which all types are finite, but the untyped lambda calculus has no finite
models (see Barendregt, 1984, Proposition 51.15). A simple argument due
to Gordon Plotkin (private communication, 1985) shows that there are no
nontrivial models of second-order lambda calculus in which all types are
finite. The numerals are the terms of the form

it.Af:t + t.llX:t.fnX,

where f”x is the term f(f.. . (fx) . . .) with n occurences off (see Statman,
1981; Fortune et al., 1983). All of the numerals have type Vt.(t --+ t) + t + t.
We write fi for the numeral At.if: t -+ t.,lx: t.f”x.

Since every integer function which can be proved total recursive in
analysis is definable in second-order lambda calculus (Girard, 1972;
Statman, 1981) there is a term EQ with

+ EQ %i = true if m=n

+ EQ mn = false if m #n,

where true and false are the terms

true ::=h~x:tAy:t.x

false ::= Atix : tAy : t . y

with type Vt. t + f -+ t. (The term EQ can also be constructed explicitly
using the arithmetic functions given in (Fortune et al., 1983, p. 167.) If 9
is a finite model, then clearly 9 + r?r = fi for some m #n, since there are
only finitely many elements of type Vt. (t + t) + t -+ t. Therefore, in any
finite model 9, we have

9 k false = EQ tin = EQ fifi = true.

126 BRUCE, MEYER, AND MITCHELL

However, it is easy to see that if true = false, then for any type t and x, y : t,
we have

x = true txy = false txy = y.

It follows that every equation holds in 9, and 5 is a trivial model. This
concludes the proof that the only second-order model with no infinite types
is the trivial model.

8. SUMMARY AND DIRECTIONS FOR FUTURE WORK

The second-order lambda calculus is a very expressive, explicitly typed
extension of the ordinary typed lambda calculus. In this paper, we have
examined the semantics of the language. Intuitively, a term Ix:a.M
denotes a function from type (T to some type T, and a term &.A4 denotes
a function from types to the union of all types. However, since terms like
At.Ax: t.x can be applied to their own types, the naive interpretation of
second-order lambda terms contradicts standard set theory. Borrowing an
idea from the semantics of untyped lambda calculus (Barendregt, 1984;
Meyer, 1982; Scott, 1976), we use a set together with an “element-to-
function” map @ in place of a set of functions. We interpret a A-abstraction
with domain a and range b as an element d which we may regard as a
function by applying the map @a,b to d. Since the range of @a,b need not
be all set-theoretic functions from type a to 6, we can associate a set with
each type and avoid set-theoretic paradoxes.

A collection of sets, one for each type and kind, together with an
appropriate collection of bijective “element-to-function” maps, is called an
extensional second-order frame. Second-order frames are analogous to
untyped functional domains (Meyer, 1982) for untyped lambda calculus
and type frames for ordinary typed lambda calculus (Henkin, 1950). Like
their analogs, second-order frames have the right structure for interpreting
terms, but may not contain enough elements to give meanings to all terms.

Environment models are defined as frames in which every well-typed
term has a meaning. Although it depends on the inductive definition of
meanings of terms, this model definition is straightforward and useful. The
soundness and completeness theorems suggest that the definition is
reasonable and not too restrictive. The soundness theorem shows that
every structure which meets our definition has the right equational proper-
ties, while completeness demonstrates that every theory has a model. More
evidence that our model definition is useful for studying second-order
lambda calculus is provided by observing that several models proposed in
the literature also meet our definition. However, it is worth mentioning

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 127

that our soundness and completeness theorems apply only to models
without empty types.

After preliminary work on this paper was completed, we became aware
of a class of models based on partial equivalence relations, as described in
Section 7.4. In some natural variations on these models, there exist empty
types. While it is easy to remove the assumption that all types are non-
empty from our model definition, the appropriate changes to the proof
system are not entirely straightforward. To preserve soundness, the rule
(remove hyp) must be discarded. In Meyer et al. (1987), additional proof
rules for reasoning about empty types are given and a completeness
theorem is proved.

In showing that certain structures are models in Section 7, we make use
of independent characterizations of functions, like continuity or recursive-
ness. In the absence of such additional structure in the model, it might be
more difficult to certify that a second-order frame is actually an environ-
ment model. Therefore, we provide an algebraic equivalent of the environ-
ment model condition that “everything must work out right.” Combinatory
models are defined as second-order frames which contain combinators S,
K, A, B, C, D, where each combinator is characterized by an equation. We
prove that the environment and combinatory model definitions are
equivalent and, in the process, show how to translate between lambda
terms and equivalent second-order combinatory terms. The combinatory
model definition also shows that the model theory of second-order lambda
calculus is reducible to the standard model theory of first-order logic.

Product types, sums, and existential types can be added to second-order
lambda calculus by adding additional constructor constants and either
term constants or additional term formation rules. Although we have not
presented the details here, our model definition extends relatively easily.
For example, a model of second-order lambda calculus with existential
types is a model of the second-order lambda calculus with constructor
constant 3 E %&, of kind (T* T) * T and term formation rules given in
(Mitchell and Plotkin, 1988). The extra constructor constant produces
additional elements of KindT, and the additional structure associated with
sets Dom3j is easily determined from the operations rep and sum discussed
in (Mitchell and Plotkin, 1988).

The Automath languages (De Bruijn, 1980) are essentially extensions of
the typed lambda calculus formed by allowing the types of terms to be
functions of elements of other types. Automath expressions of “first-order
dependent type” define elements of Lrdc ,,, Domfcd’ for A E Dom and f: A -+
Kind’. In (Barendregt and Rezus, 1983), a model for Classical Automath
is constructed using closures, as in the models we discussed in Section 7.
A general model definition for Classical Automath, along the lines we have
proposed for second-order lambda calculus, seems relatively easy to work

128 BRUCE, MEYER, AND MITCHELL

out. We are grateful to Robert Harper for extending the semantics of
second-order lambda calculus to include first-order dependent types (pri-
vate communication, 1986). Other extensions of our language, presented
in McCracken (1979), and the languages F3, F4, . . . of Girard mentioned
earlier, allow terms of the form lu”.M, where v’ is a variable of higher
kind. We believe that a straightforward extension of the model definition
given here will suffice for this language, but have not worked out the
details. The Calculus of Constructions developed by Coquand and Huet
(1988) encompasses some of these extensions, but we have not worked out
a precise model definition.

We have not considered second-order theories involving equations
between constructors. The language is defined to suggest this possibility
and the term model construction in the completeness proof does not seem
to rely on the absence of constructor axioms. However, there are some
complications that must be resolved. To begin with, Lemma 1 fails: if we
take g’I -+ ti = crZ + r2 as a nonlogical axiom, it does not follow that cr, =
oz or zi = r2. Since Lemma 1 figures crucially in the proof of Lemma 8, it
is no longer possible to show that the meaning of every well-typed term
B I- M:cr is independent of the way in which the typing is derived. Since
Lemma 8 is important in our understanding of what an equation means
(as discussed in Section 4.3), it would seem best to add more type informa-
tion to terms so that Lemma 8 can be restored. Essentially, the syntax of
terms would have to determine the types of all subterms up to constructor
equivalence. For example, applications (MN) would have to be typed in a
way that makes the types of M and N unambiguous. Some related discus-
sion of ordinary typed lambda calculus with type equations is given in
(Breazu-Tannen and Meyer, 1985).

Another extension of the second-order lambda calculus involving
“bounded quantification” is proposed in (Cardelli and Wegner, 1985). A
polymorphic function of the form EJ < r . M will take any subtype of r as a
type parameter. In this calculus, we may write functions such as the iden-
tity At < int.Ax: t. t on all subtypes of int. (A related form of polymorphism
was developed in Mitchell, 1984a.) This extension is designed to model the
uses of subtypes and inheritance in object-oriented languages. A semantics of
this language based on the PER model of Section 7.4 is developed in Bruce
and Longo (1988), while a semantics based on interval models is presented
in Martini (1988). While bounded quantification seems more expressive in
an intuitive sense, there is an interpretation of bounded quantification into
pure second-order lambda calculus (Breazu-Tannen et al., 1989). This
interpretation allows us to use models of second-order lambda calculus as
models of bounded quantification.

There are a number of interesting open problems involving the semantics
of the second-order lambda calculus. Recent work on a category theoretic

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 129

approach to second-order lambda calculus (Moggi, 1984; Seely, 1986;
Pitts, 1987; Meseguer, 1989) seems quite promising in presenting another
way of looking at this language. Based on recent work on categorical
models of ordinary typed lambda calculus (Mitchell and Moggi, 1987) we
expect the categorical models of second-order lambda calculus to be intui-
tionistic versions of our model definition. However, the details of this
correspondence have yet to be worked out. Another direction for investiga-
tion is the relationship between our model definition and models based on
Girard’s qualitative domains (Girard, 1986), which were developed after
the bulk of this paper was written. Since maps from types to types in
Girard’s model (and the related model of Coquand et af., 1989) are
functors rather than functions, extensionality may fail for kind T* T. We
believe that if our extensionality requirement is dropped, then these models
satisfy our definition. However, we have not checked the details. Although
there are a growing number of examples of second-order models, we still
do not know very much about them. It would be interesting to discover
more models and study both the local structure (equational theories) and
global structure of models.

One way to study the global structure of models is by examining the
isomorphisms or retractions between types. In Reynolds (1984) it is shown
that in every “set-theoretic” model there is some type S which is
isomorphic to (S + B) -+ B for some nontrivial B. This conflicts with classi-
cal set-theoretic function spaces quite clearly, implying that set-theoretic
models (i.e., models in which the function space construction gives the full
classical set-theoretic funcltion space) do not exist. In contrast, Bruce and
Longo (1985) have characterized the class of isomorphisms that must hold
in every second-order model. Essentially, these isomorphisms all follow
from the “commutativity” of Cartesian product, i.e., 0 x 7 is isomorphic to
T x 0. This property of x applies to the language without x since 0 x 7 -+ p
is isomorphic to both 0 + 7 -+ p and 7 -+ (T + p, and so we expect (T -+ 7 -+ p
and 7 -+ g --, p to be isomorphic. Similarly, regarding Vt(o --) 7) as a type of
functions from types to CJ to 7, we expect Vt(a + 7) to be isomorphic to
(T --f Vt.7 when t does not appear free in CJ. Since these are all the
isomorphisms that hold in all models, Reynolds’ problematic isomorphism
does not hold, in general. This leaves open the possibility of relatively
“natural” models which do not satisfy isomorphisms like S isomorphic to
(S-+ B) -+ B. We might gain further insight by studying retractions instead
of isomorphisms.

In our models, higher order operations on types are elements of higher
kinds. For example, pair, sum, list stack, tree, etc. are all type constructors
of kind T * T. We can avoid having a separate hierarchy of kinds by
making the set of types a domain. Once we have Kindle Dom, it is natural
to identify the function-space constructor 3 on kinds with the function-

130 BRUCE,MEYER, AND MITCHELL

space constructor + on types, putting every Kind” into Dom. All of the
retract models in Section 7.2 have this property. In the finitary projection
model, with kinds as types and recursion over all types, Amadio, Bruce,
and Longo (1986) have shown how to solve recursive domain equations. A
natural question to ask is whether every second-order model 4 can be
embedded in a model 9 with Kind,TE Dom, so that 9 and 9 satisfy the
same equations between second-order terms. Meyer and Reinhold have
shown that adding a type of all types to the syntax of a related language
has dramatic effects (Meyer and Reinhold, 1986), but this does not settle
the question for second-order lambda calculus.

Since much of the interest in second-order lambda calculus stems from
the similarity between the typing rules of the calculus and typing in
programming languages like Ada, CLU, ML, and Russell, we expect the
semantics of second-order lambda calculus to be useful for studying seman-
tic properties of modern programming languages. One important property
of typed programming languages is “representation independence,” which
has been studied by Reynolds and others (Donahue, 1979; Fokkinga, 1981;
Haynes, 1984; Reynolds, 1974; Reynolds, 1983). Roughly speaking,
representation independence ensures that the meaning of a program does
not depend on whether the boolean value true is represented by 1 and false
by 0, or vice versa. All that matters is that the operations on booleans
behave properly. Two of the authors have studied representation inde-
pendence for second-order lambda calculus using the model theory
proposed in the present paper (Mitchell and Meyer, 1985; Mitchell, 1986a),
proving general representation independence theorems. Another important
topic in programming languages is full abstraction (Milner, 1977; Plotkin,
1977). While it is probably more difficult to construct fully abstract model
for second-order lambda calculus than for ordinary typed lambda calculus
(without polymorphism), this topic is well worth investigating.

ACKNOWLEDGMENTS

The authors would like to thank Giuseppe Longo, Eugenio Moggi, and Richard Statman

for many helpful conversations.

RECEIVED January 10, 1989; FINAL MANUSCRIPT RECEIVED February 23, 1989

REFERENCES

AMADIO, R., BRUCE, K., AND LONGO, G. (1986), The linitary projection model for second
order lambda calculus and solutions to higher order domain equations, in “IEEE Symp.
Logic in Computer Science,” pp. 122-130.

BARENDREGT, H. P. (1984), “The Lambda Calculus: Its Syntax and Semantics,” rev. ed.
North-Holland, Amsterdam.

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 131

BARENDREGT, H., AND REZUS, A. (1983), Semantics for classical automath and related
systems, Inform. and Control 59, Nos. l-3.

BARENDREGT, H., COPPO, M., AND DEZANI-CIANCAGLIN~ M. (1983), A filter lambda model
and the completeness of type assignment, J. Symbolic Logic 48, No. 4, 931-940.

BEESON, M. (1982). Recursive models for constructive set theories, Ann. Math. Logic 23,

127-178.
BREAZU-TANNEN. V., AND MEYER, A. R. (1985). Lambda calculus with constrained types. in

“Logics of Programs,” pp. 2340, Springer-Verlag, New York/Berlin.
BREAZU-TANNEN, V., COQUAND, T., GUNTER, C. A., AND SCEDROV, A. (1989), Inheritance

and explicit coercion, in “Fourth IEEE Symp. Logic in Computer Science.”
BRUCE, K., AND LONGO, G. (1985), Provable isomorphisms and domain equations in models

of typed languages, in “17th ACM Symp. on Theory of Computing,” pp. 263-272.
BRUCE, K., AND LONGO, G. (1988), A modest model of records, inheritance and bounded

quantification, in “Third IEEE Symp. Logic in Computer Science,” pp. 38-51.
BRUCE, K., AND MEYER, A. (1984), A completeness theorem for second-order polymorphic

lambda calculus, in “Proceedings Int. Symp. on Semantics of Data Types, Sophia-Antipolis
(France),” Lect. Notes in Comput. Sci., Vol. 173, pp. 131-144, Springer-Verlag.
New York/Berlin.

CARDELLI, L., AND WEGNER, P. (1985). On understanding types, data abstraction, and
polymorphism, Comput. Surveys 17, No. 4. 471-522.

COPPO, M., AND ZACCHI. M. (1986), Type inference and logical relations, in “Proceedings,
IEEE Symp. on Logic in Computer Science,” pp. 218-226.

CCQLJAND, T., AND HUET, G. (19881, The calculus of constructions, Inform. and Compui. 76,
No. 2/3.

COQUAND. T., GUNTER, C. A., AND WINSKEL, G. (1989). Domain-theoretic models of
polymorphism, Inform. and Comput. 81, 123-167.

DE BRUIJN. N. G. (1980), A survey of the project Automath, in “To H. B. Curry: Essays on
Combinatory Logic. Lambda Calculus and Formalism,” pp. 579-607, Academic Press,
New York.

U.S. Department of Defense (1980), “Reference Manual for the Ada Programming Language,”
GPO 008-OUO-00354-8.

DONAHUE, J. (1979), On the semantics of data type, SIAM J. Comput. 8, 546-560.
FORTUNE, S.. LEIVANT, D.. AND O’DONNELL, M. (1983), The expressiveness of simple and

second order type structures, J. Assoc. Compui. Mach. 30, 151-185.
FOKKINGA. M. M. (1981). On the notion of strong typing, in “Algorithmic Languages”

(De Bakker and van Vliet, Ed.), pp. 305-320, North-Holland, Amsterdam.
FRIEDMAN, H. (1975), Equality between functionals, in “Logic Colloquium,” (R. Parikh, Ed.),

pp. 22-37. Springer-Verlag, New York/Berlin.
GIRARD, J. Y. (1972), “Interpretation fonctionelle et i?limination des coupures de I’arithmeti-

que d’ordre supCrieur.” These D’Etat, UniversitC Paris VII.
GIRARD, J.-Y. (1986), The system F of variable types, fifteen years later, Theoret. Comput. Sci.

45, No. 2, 159-192.
GR~~TZER, G. (1968). “Universal Algebra,” Van Nostrand, New York.
HAYNES. C. T. (1984). A theory of data type representation independence, in “Proceedings,

Int. Symp. on Semantics of Data Types, Sophia-Antipolis (France),” pp. 157-176, Lect.
Notes in Comput. Sci. Vol. 173, Springer-Verlag. New York/Berlin.

HENKIN, L. (1950), Completeness in the theory of types, J. Symbolic Logic 15, No. 2, 81-91.
HINDLEY. R. (1983). The completeness theorem for typing lambda terms, Theorer. Camput.

Sci. 22, l-17.
KOYMANS, C. P. J. (1982), Models of the lambda calculus, Inform. and Conrrol 52, No. 3,

306-323.

132 BRUCE, MEYER, AND MITCHELL

KREISEL. G. (1959), Interpretation of analysis by means of constructive functionals of finite
types, in “Constructivity in Mathematics,” (A. Heyting, Ed.). pp. 101-128, North-Holland,
Amsterdam.

LAMBEK, J. (1980), From lambda calculus to Cartesian closed categories, in “To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism,” pp. 375402, Academic
Press. New York.

LANDIN, P. J. (1965), A correspondence between Algol 60 and Church’s lambda notation.
Comm. ACM 8, 89-101, 158-165.

LEIVANT. D. (1983a). Polymorphic type inference, in “Proceedings, 10th ACM Symp. on
Principles of Programming Languages,” pp. 88-98.

LEIVANT, D. (1983b), Structural semantics for polymorphic types, in “Proceedings, 10th ACM
Symp. on Principles of Programming Languages,” pp. 155-166.

LISKOV, 8.. et al. (198!)+ “CLU Reference Manual.” Lecture Notes in Computer Science, Vol.

114. Springer-Verlag. New York/Berlin.
MACQUEEN, D.. AND SETHI. R. (1982), A semantic model of types for applicative languages,

in “ACM Symp. on Lisp and Functional Programming,” pp. 243-252.
MAC QUEEN. D., PLOTKIN, G., AND SETHI. R. (1986), An ideal model for recursive

polymorphic types, Inform. and Control 71. No. l/2, 95-130.
MARTINI, S. (1988), Bounded quantifiers have interval models. in “ACM Conf. on LISP and

Functional Programming,” pp. 164-173.
MARTIN-LBF. P. (1975), About models for intuitionistic type theories and the notion of delini-

tional equality, in “3rd Scandinavian Logic Symposium,” (S. Kanger, Ed.). pp. 81-109,
North-Holland. Amsterdam.

MCCRACKEN, N. (1979), “An Investigation of a Programming Language with a Polymorphic
Type Structure.” Ph.D. thesis, Syracuse University.

MCCRACKEN. N. (1984a), The typechecking of programs with implicit type structure, it
“Proceedings, Int. Symp. on Semantics of Data Types, Sophia-Antipolis (France),” Lect.
Notes in Comput. Sci., Vol. 173, pp. 301-316, Springer-Verlag, New York/Berlin.

MCCRACKEN, N. (1984b), A finitary retract model for the polymorphic lambda calculus,
manuscript.

MESEGUER, J. (1989), Relating models of polymorphism, in “Proceedings, 16th ACM Symp.
on Principles of Programming Languages.”

MEYER, A. R. (1982), What is a model of the lambda calculus?, Inform. and Control 52, No.

1. 87-122.
MEYER, A. R., AND REINHOLD, M. B. (1986). Type is not a type, in “Proceedings, 13th ACM

Symp. on Principles of Programming Languages,” pp. 287-195.
MEYER, A. R., MITCHELL. J. C., Moccl, E., AND STATMAN, R. (1987), Empty types in

polymorphic lambda calculus, in “Proceedings, 14th ACM Symp. on Principles of
Programming Languages,” pp. 253-262.

MILNER, R. (1977), Fully abstract models of typed lambda calculi, Theoret. Comput. Sci. 4.
No. 1.

MILNER, R. (1978), A theory of type polymorphism in programming, J. Comput. System Sri.

17, 348-375.

MITCHELL. J. C. (1984a), Coercion and type inference (Summary), in “Proceedings, 11th
ACM Symp. on Principles of Programming Languages,” pp. 175-185.

MITCHELL. J. C. (1984b), Semantic models for second-order lambda calculus, in “Proceedings,
25th IEEE Symp. on Foundations of Computer Science.” pp. 289-299.

MITCHELL. J. C.. AND PLOTKIN, G. D. (1988), Abstract types have existential types, ACM
Trans. Programming Languages Systems 10, Ni. 3, 47g-502; in “Proc. 12th ACM Symp. on
Principles of Programming Languages.

MITCHELL. J. C., AND MEYER, A. R. (1985). Second-order logical relations, in “Logics of

SECOND-ORDER LAMBDA CALCULUS SEMANTICS 133

Programs,” Lect. Notes in Comput. Sci., Vol. 193, pp. 225-236, Springer-Verlag,
New York/Berlin.

MITCHELL, J. C. (1986a), Representation independence and data abstraction, in “Proceedings,
13th ACM Symp. on Principles of Programming Languages,” pp. 263-276.

MITCHELL, J. C. (1986b), A type-inference approach to reduction properties and semantics of
polymorphic expressions, in “ACM Conference on LISP and Functional Programming.”
pp. 308-319.

MITCHELL, J. C., AND MOGGI, E. (1987), Kripke-style models for typed lambda calculus, in
“IEEE Symp. Logic in Computer Science,” pp. 303-314; revised and expanded version,
J. Pure Appl. Logic, in press.

MITCHELL. J. C. (1988), Polymorphic type inference and containment, Inform. and Comput.

76, No. 2/3.
MOGGI, E. (1984), Internal category interpretation of second-order lambda calculus,

manuscript.
MONK, J. D. (1976), “Mathematical Logic,” Graduate Texts in Mathematics, Vol. 37,

Springer-Verlag. New York/Berlin.
MYHILL, J. R., AND SHEPHERDSON, J. C. (1955), Effective operations on partial recursive

functions. Z. Math. Logik Grundlag. Math. 1.
PITTS, A. M. (1987), Polymorphism is set-theoretic, constructively, in “Proceedings, Summer

Conf. on Category Theory and Computer Science,” Lect. Notes in Comput. Sci., Springer-
Verlag, New York/Berlin.

PLOTKIN. G. D. (1977), LCF considered as a programming language, Theoret. Comput.
Sci. 13.

PLOTKIN, G. (1985), Denotational semantics with partial functions, Lecture notes, C.S.L.I.
Summer School. Stanford.

REYNOLDS, J. C. (1974), Towards a theory of type structure, in “Paris Colloq. on Program-
ming,” Lect. Notes in Comput. Sci., Vol. 19. pp. 408425, Springer-Verlag, New York/
Berlin.

REYNOLDS, J. C. (1981), The essence of algol, in “Algorithmic Languages,” (de Bakker and
van Vliet, Ed.), pp. 345-372, North-Holland, Amsterdam.

REYNOLDS, J. C. (1983), Types, abstraction, and parametric polymorphism, in “IFIP
Congress.”

REYNOLDS, J. C. (1984), Polymorpism is not set-theoretic, in “Proceedings, Int. Sym-,. on
Semantics of Data Types, Sophia-Antipolis (France),” Lect. Notes in Comput. Sci., Vol.
173, pp. 145-156, Springer-Verlag, New York/Berlin.

ROGERS, H. (19671, “Theory of Recursive Functions and Effective Computability,”
McGraw-Hill, New York.

ROSOLINI. G. (1986), “Continuity and Effectiveness in Topoi,” Ph.D. thesis, Merton College,
Oxford.

SCOTT, D. (1976), Data types as lattices, Siam J. Comput. 5, No. 3, 522-587.
SCOT, D. S. (1980), A space of retracts, manuscript, Merton College, Oxford.
SEELY. R. A. G. (1986), Categorical semantics for higher order polymorphic lambda calculus,

manuscript, 1986.
SHAMIR, A., AND WADGE, W. (1977), Data types as objects, in “Proceedings, 4th ICALP

Conference.” Lect. Notes in Comput. Sci., Vol. 52, pp. 465479, Springer-Verlag. New
York/Berlin.

STATMAN. R. (1979), The typed lambda calculus is not elementary recursive, Theoret. Comput.

Sci. 9, 73-81.
STATMAN. R. (1981), Number theoretic functions computable by polymorphic programs, in

“22nd IEEE Symp. on Foundations of Computer Science,” pp. 279-282.

134 BRUCE, MEYER, AND MITCHELL

STATMAN, R. (I 985), Equality between functionals, revisited, in “Harvey Friedman’s Research
on the Foundations of Mathematics,” pp. 331-338, North-Holland, Amsterdam.

STENLUND, S. (1972) Combinators, I-terms and Proof Theory, Reidel, Dordrecht.
TRAKHTENBROT, B. A., HALPERN, J. Y., AND MEYER, A. R. (1983), From denotational to

operational and axiomatic semantics for algol-like languages: An overview, in “Logics of
Programs, Proceedings,” Lecture Notes in Computer Science. pp. 474-500, Springer-Verlag.
New York/Berlin.

TOELSTRA, A. S. (1973), “Mathematical Investigation of Intuitionistic Arithmetic and
Analysis,” Lecture Notes in Mathematics, Vol. 344, Springer-Verlag. New York/Berlin.

Prinrrd m Belgium

