
Finger Trees Explained Anew, and Slightly Simplified
(Functional Pearl)

Koen Claessen
koen@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Abstract
We explicitly motivate the subtle intricacies of Hinze and
Paterson’s Finger Tree datastructure, by step-wise refining
a naive implementation. The result is a new explanation of
how Finger Trees work and why they have the particular
structure they have, and also a small simplification of the
original implementation.

CCS Concepts: • Theory of computation→ Data struc-
tures design and analysis; • Software and its engineer-
ing→ Functional languages.

Keywords: datastructures, finger trees, amortized complex-
ity, functional pearl

ACM Reference Format:
Koen Claessen. 2020. Finger Trees Explained Anew, and Slightly
Simplified (Functional Pearl). In Proceedings of the 13th ACM SIG-
PLAN International Haskell Symposium (Haskell ’20), August 27,
2020, Virtual Event, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3406088.3409026

1 Introduction
In 2006, Hinze and Paterson [3] introduced an astonishingly
beautiful and versatile data structure that they dubbed “Fin-
ger Trees”. Finger Trees are nowadays used as the sequence
datatype Seq in the standard Haskell library Data.Sequence,
providing a highly efficient implementation of sequences.
We can see the appeal of Finger Trees used as sequences

in Fig. 1, which displays the time complexities of some of
the basic sequence operations they support. For compari-
son, the time complexities of regular Haskell lists are also
given in the table. Most impressive are the amortized com-
plexities (where we compute the average complexity of an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Haskell ’20, August 27, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8050-8/20/08. . . $15.00
https://doi.org/10.1145/3406088.3409026

regular Seq Seq
lists worst-case amortized

head 𝑂 (1) 𝑂 (1) 𝑂 (1)
cons 𝑂 (1) 𝑂 (log𝑛) 𝑂 (1)
tail 𝑂 (1) 𝑂 (log𝑛) 𝑂 (1)
last 𝑂 (𝑛) 𝑂 (1) 𝑂 (1)
snoc 𝑂 (𝑛) 𝑂 (log𝑛) 𝑂 (1)
init 𝑂 (𝑛) 𝑂 (log𝑛) 𝑂 (1)
(++) 𝑂 (𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛)
length 𝑂 (𝑛) 𝑂 (1) 𝑂 (1)
(!!) 𝑂 (𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛)

Figure 1. Time complexities of the operations

data Seq a = Nil
| Unit a
| More (Some a) (Seq (Tuple a)) (Some a)

data Some a = One a
| Two a a
| Three a a a
| Four a a a a

data Tuple a = Pair a a
| Triple a a a

Figure 2. Hinze and Paterson’s datatype for Seq

operation appearing in a sequence of 𝑛 operations) – they
strictly improve the time complexities over regular lists.

As Hinze and Paterson noted in their paper, Finger Trees
were not the first sequence data structure with these or simi-
lar worst-case and amortized time complexities. In the paper,
after reviewing a few alternatives, they say “[t]he biggest ad-
vantage of 2-3 finger trees is the simplicity of the data structure
[...]”.
Finger Trees are certainly simpler than the alternative

sequence datatypes mentioned in their paper. But Finger
Trees are far from simple... Take a look at Fig. 2, which
shows the original implementation that Hinze and Paterson
used1. It involves an instance of non-regular recursion in the
1The original paper used different names for some of these types and con-
structor functions; we instead used the names that fit with the explanations
in this paper.

31

https://doi.org/10.1145/3406088.3409026
https://doi.org/10.1145/3406088.3409026
https://doi.org/10.1145/3406088.3409026

Haskell ’20, August 27, 2020, Virtual Event, USA Koen Claessen

Seq type (which is indeed needed), as well as two different
helper types, one (Some) for sequences of length 1–4, and
one (Tuple) for sequences of length 2–3.

A natural question is “why are these two different helper
types with these particular length intervals needed?”. Hinze
and Paterson do not answer this question directly, although
they say “[w]e shall [...] allow[...] between one and four sub-
trees at each level” and then claim that “this [...] provides just
enough slack to buffer deque operations efficiently.”
The material in this paper was created in an attempt to

confirm that their chosen implementation for Finger Trees
was “just enough”. The idea was that we would start with a
very simple implementation, and make step-by-step incre-
mental improvements as needed, until we would arrive at
an implementation that satisfies all the time complexities
mentioned in Fig. 1.
What we actually arrived at was something slightly less

complicated! So, the first contribution of the paper is a slightly
simpler implementation of Finger Trees. The second, more
important contribution, is an explanation of why this imple-
mentation actually needs the datatypes it has. The third con-
tribution is an alternative proof of the (sequential) amortized
complexity analysis of the operations, which was done using
an automated theorem prover. Our proof is simpler than
Hinzes and Patersons, mostly because we prove a weaker
result (although that claim is hard to make because their
proof does not appear in their paper).
Before we start, let us establish some boundaries on the

scope of this paper. This paper is not concerned with the
implementation and analysis of the functions length and (!!)
(and neither with other similar functions such as take, drop
and split). These can be implemented in a very similar way
to the original paper.

2 Try 0: Regular Lists
Let us start with implementing Seq using the same technique
as regular lists in Haskell:

data Seq a = Nil
| Cons a (Seq a)

All desired operations can be supported, but not with the
desired complexity. For example the function last has to be
recursive:

last :: Seq a → a
last (Cons x Nil) = x
last (Cons q) = last q

This leads to a time complexity of 𝑂 (𝑛). The culprit is the
fact that the last element of the sequence is hidden deep
inside the data structure.

3 Try 1: Constant-Time Head and Last
If we look at the table with the complexities, we can see
that the functions head and last both have time complexity
𝑂 (1). This suggests that the datatype for Seq should have the
first and last elements readily accessible, i.e. not recursively
nested inside the datastructure. This leads to our next try:

data Seq a = Nil
| Unit a
| More a (Seq a) a

Weuse two new constructors:Unit for singleton sequences,
and More for sequences with at least two elements, directly
exposing the first and last elements. The functions head and
last can now be implemented as follows:

head :: Seq a → a
head (Unit x) = x
head (More x) = x

last :: Seq a → a
last (Unit y) = y
last (More y) = y

They clearly have constant time complexity.
(We can see that the functions cons and snoc – and also

tail and init – have the same time complexities. A reasonable
choice is to implement Seq fully symmetrically w.r.t. the front
and back, which is what we will do. In the remainder of the
paper, we only show the implementations of head, cons, tail,
(and (++)), and not last, snoc, and init, because the latter three
are symmetrically implemented to the first three.)
What is wrong with the current implementation of Seq?

The functions cons (and also tail) have to be recursive, e.g.:

cons :: a → Seq a → Seq a
cons x Nil = Unit x
cons x (Unit y) = More x Nil y
cons x (More y q z) = More x (cons y q) z
This means that cons and tail have complexity 𝑂 (𝑛). We
need to come up with a solution for this.

4 Try 2: Logarithmic-Time Operations
As we can see in Fig. 1, all operations that do not have con-
stant time complexity actually have logarithmic time com-
plexity. How can this be achieved? The key idea that solves
this was already introduced by Okasaki in 1998 [4] and called
implicit recursive slowdown.

The intuition is this. Given a sequence type Seq a, we can
make a new kind of sequence datatype as follows:

type Seq2 a = Seq (a, a)
Elements in this new sequence datatype come in pairs, so to
perform an operation on 2 elements in Seq2, one only has to

32

Finger Trees Explained Anew, and Slightly Simplified (Functional Pearl) Haskell ’20, August 27, 2020, Virtual Event, USA

do perform one operation on Seq. So, Seq2 can be thought of
as twice as fast as Seq! Furthermore, if we manage to imple-
ment a sequence type Seq a where the recursive sequence
type is of type Seq2 a, operations that have linear complexity
in the recursion depth will have logarithmic complexity in
the number of elements in the sequence! This is because
each recursive subsequence has less than half the number of
elements (pairs) as the original sequence has elements.

Here is an attempt at implementing this:

data Seq a = Nil
| Unit a
| More a (Seq (a, a)) a

However, our initial enthusiasm soon cools off when we
try to implement the first non-trivial operation, cons:
cons :: a → Seq a → Seq a
cons x Nil = Unit x
cons x (Unit y) = More x Nil y
cons x (More y q z) = -- impossible!
The last line is impossible to implement! The resulting se-
quence should have shape More x . . z, but we only have one
y to add to the subsequence q, not two. (We can easily see
that the idea is doomed from the beginning since sequences
of size 3 are impossible to represent!)

5 Try 3: Fixing Cons and Tail
The problem is that, if Seq (a, a) is going to be the type of
subsequences, we need two elements to add to it when we
do add something. A straightforward way to fix this is to
allow More-sequences to start and end with either one or
two elements. In this way, single elements can always be
paired up with another element before being added to the
subsequence of pairs.

data Seq a = Nil
| Unit a
| More (Some a) (Seq (a, a)) (Some a)

data Some a = One a
| Two a a

Let us start by seeing how to implement head:
head :: Seq a → a
head (Unit x) = x
head (More (One x)) = x
head (More (Two x)) = x

The function cons can now pair up elements before recursing:
cons :: a → Seq a → Seq a
cons x Nil = Unit x

cons x (Unit y) = More (One x) Nil (One y)
cons x (More (One y) q u) = More (Two x y) q u
cons x (More (Two y z) q u) =

More (One x) (cons (y, z) q) u

And tail does the opposite:

tail :: Seq a → Seq a
tail (Unit) = Nil
tail (More (Two x) q u) = More (One x) q u
tail (More (One) q u) = more0 q u

more0 :: Seq (a, a) → Some a → Seq a
more0 Nil (One y) = Unit y
more0 Nil (Two y z)) = More (One y) Nil (One z)
more0 q u = More (Two x y) (tail q) u

where (x, y) = head q

Here, the helper function more0 is used to take care of the
special cases when the recursive subsequence is empty but
the sequence itself is not.
The time complexities of cons and tail are 𝑂 (log𝑛), be-

cause the size of the subsequence they recurse on is (less
than) half the size of their argument sequence.
(A side note: It is also possible to allow zero or one ele-

ments to appear at the start and end ofMore-sequences to fix
the problem in this subsection. However, that would mean
that head and last would not have constant time complexity
anymore.)

So, we can support head, cons, and tail (and also last, snoc,
and init) with their desired worst-case complexity. Unfortu-
nately, the current design does not allow the implementation
of (++) with sub-linear time complexity. Imagine computing
a concatenation like this, for arbitrary subsequences q1 and
q2:

> More (One 1) q1 (One 7) ++More (Two 8 9) q2 (One 13)

The result should look something like:

More (One 1) (q1 ... 7, 8, 9 ... q2) (One 13)

The problem is that we want to add three elements 7, 8, 9 in
between two subsequences q1 and q2, that only consist of
pairs. There is no way to do this other than to destruct all
pairs in at least one of those subsequences.

6 Try 4: Preparing for Append
The problem mentioned in the previous section can be fixed
by allowing the tuples in the subsequences to represent an
odd number as well as an even number of elements. Since
we want the worst-case time complexity of many of our
operations to be logarithmic, the number of elements per
tuple should be at least 2. A natural choice is to allow tuples
of size 2 or 3 in the subsequences:

33

Haskell ’20, August 27, 2020, Virtual Event, USA Koen Claessen

data Seq a = Nil
| Unit a
| More (Some a) (Seq (Tuple a)) (Some a)

data Some a = One a
| Two a a

data Tuple a = Pair a a
| Triple a a a

(We leave the sizes of the sequences in the Some datatype
untouched, for now.) The functions head and last are un-
changed, and cons only needs a small change (use the Pair
constructor instead of (−,−)):

cons :: a → Seq a → Seq a
cons x Nil = Unit x
cons x (Unit y) = More (One x) Nil (One y)
cons x (More (One y) q u) = More (Two x y) q u
cons x (More (Two y z) q u) =

More (One x) (cons (Pair y z) q) u

The function tail is a little bit more intricate. What should
happen when we compute:

> tail (More (One 1) (cons (Triple 2 3 4) q) (One 13))

We cannot just lift out the Triple 2 3 4 from the subsequence
(using head and tail recursively) and place those three ele-
ments at the start, because we only have space for one or
two elements. The only possibility is to turn the Triple into
a Pair and only lift out the first component 2:

More (One 2) (cons (Pair 3 4) q) (One 13)

To implement this, the function tail does not have to change,
but its helper function more0 does:

more0 :: Seq (Tuple a) → Some a → Seq a
more0 Nil (One y) = Unit y
more0 Nil (Two y z)) = More (One y) Nil (One z)
more0 q u =

case head q of
Pair x y → More (Two x y) (tail q) u
Triple x → More (One x) (map1 chop q) u

where chop (Triple y z) = Pair y z

map1 :: (a → a) → Seq a → Seq a
map1 f (Unit x) = Unit (f x)
map1 f (More (One x) q u) = More (One (f x)) q u
map1 f (More (Two x y) q u) = More (Two (f x) y) q u

We also introduce a new helper function map1 that applies
a function only to the first element of a sequence. Note that
map1 is not recursive, so it has constant time complexity. The
function tail still has logarithmic time complexity, because
there is only one recursive call, on the subsequence.

7 Try 4 Continued: Implementing Append
How about (++)? Just like Hinze and Paterson, we are going
to introduce a number of helper functions. It is going to be
necessary to convert elements in the Some datatype to lists:

toList :: Some a → [a] 1..2

toList (One x) = [x]
toList (Two x y) = [x, y]

We are also going to convert small lists of elements into lists
of tuples:

toTuples :: [a] 2..6 → [Tuple a] 1..2

toTuples [] = []
toTuples [x, y] = [Pair x y]
toTuples [x, y, z,w] = [Pair x y, Pair z w]
toTuples (x : y : z : xs) = Triple x y z : toTuples xs

We have carefully annotated the list types with the lengths
that we are going to use the function on2. These functions
have constant time complexity, as long as we guarantee not
to violate the size requirements.

When implementing (++), it turns out to be useful to gen-
eralize and take an additional small list of elements as an
extra argument, that should be inserted in between the two
argument sequences. The generalized function is called glue,
and the implementation of (++) becomes trivial using glue:

(++) :: Seq a → Seq a → Seq a
q1 ++q2 = glue q1 [] q2

The implementation of glue looks as follows:

glue :: Seq a → [a] 0..2 → Seq a → Seq a
glue Nil as q2 = foldr cons q2 as
glue q1 as Nil = foldl snoc q1 as
glue (Unit x) as q2 = foldr cons q2 (x : as)
glue q1 as (Unit y) = foldl snoc q1 (as ++𝐿 [y])
glue (More u1 q1 v1) as (More u2 q2 v2) =

More u1
(glue q1

(toTuples (toList v1 ++𝐿as ++𝐿toList u2)
q2)) v2

(Here, ++𝐿 stands for the append function on regular lists.)
The first 4 cases are base cases, and use the already estab-
lished cons and snoc, together with foldr and foldl to con-
struct the result sequence. The time complexity is logarith-
mic, because the lists involved have bounded size. The last
case calls glue recursively on q1 and q2, combining the end
v1 of the first sequence, the middle elements as, and the start
u2 of the second sequence, into the new middle elements.
The function toTuples converts a longer list of elements into
a shorter list of tuples.

2toTuples is actually defined for all list lengths, except for size 1.

34

Finger Trees Explained Anew, and Slightly Simplified (Functional Pearl) Haskell ’20, August 27, 2020, Virtual Event, USA

The specified list sizes are respected: The argument to
toTuples combines three lists of sizes 1..2, 0..2, and 1..2, result-
ing in a list of possible sizes 2 . . 6, which is exactly what
toTuples requires. It in turn produces a list of possible sizes
1..2, which is what glue accepts. The function (++) is the only
function that will call glue with an empty list. All size anno-
tations on the lists in this section are the smallest possible
ones.
The result is a sequence datatype implementation where

all the worst-case complexities from Fig. 1 are satisfied!

8 Try 5: Amortized Constant-Time Cons
and Tail

The current implementation of Seq supports all operations,
but the amortized complexity of cons and tail is not yet con-
stant. Consider a sequence of the following shape:

More (One) (More (One (Pair))
(More (One (Pair))
(More (One (Pair)) ...)...)...) ...

Applying tail to this sequence will recurse all the way down,
so it will take logarithmic time. The resulting sequence will
have the shape:

More (Two) (More (Two)
(More (Two)
(More (Two)...) ...)...) ...

Applying cons to this sequence will recurse all the way down,
so it will take logarithmic time. The resulting sequence will
have the same shape as the sequence we started with.

The problem is that for each possible shape that the start
of a sequence can have, there is an operation (cons or tail)
that may recurse in that case. However, if we look at the
code, we see that cons and tail do not need to recurse in
every case, in which case they take constant time.

Looking closer, tail recurses when the start of a sequence
has minimal length (One), and cons recurses when the start
of a sequence has maximal length (Two). What if starts (and
ends) of sequences could have three different lengths (i.e.
One, Two, and Three), so that there is a case where neither
tail nor cons needs to recurse?

We can implement this idea as follows:

data Seq a = Nil
| Unit a
| More (Some a) (Seq (Tuple a)) (Some a)

data Some a = One a
| Two a a
| Three a a a

data Tuple a = Pair a a
| Triple a a a

This is our last try – the data structure design is finished!
What is left is to implement the operations.

The function head gets one extra case:

head :: Seq a → a
head (Unit x) = x
head (More (One x)) = x
head (More (Two x)) = x
head (More (Three x)) = x

And so does cons:

cons :: a → Seq a → Seq a
cons x Nil = Unit x
cons x (Unit y) = More (One x) Nil (One y)
cons x (More (One y) q u) = More (Two x y) q u
cons x (More (Two y z) q u) = More (Three x y z) q u
cons x (More (Three y z w) q u) =

More (Two x y) (cons (Pair z w) q) u
The last two lines are new. The last line is the recursive case,
and it seems that we have a choice to either leave Two x y
at the top and push Pair z w recursively (as we do here), or
to leave One x at the top and push Triple y z w recursively.
But in order to have a constant amortized time complexity,
it is very important that we choose the first! The Two case
will not trigger a recursive step in either cons or tail in a
later call, and thus it is important to introduce it when we
perform a recursive call right now. We shall see more details
on this in the next section.
The function tail has to be reimplemented too. Mostly,

this involves just adding extra cases to the existing functions.
Here is tail:

tail :: Seq a → Seq a
tail (Unit) = Nil
tail (More (Three x y) q u) = More (Two x y) q u
tail (More (Two x) q u) = More (One x) q u
tail (More (One) q u) = more0 q u

The helper function more0 also gets an extra case:

more0 :: Seq (a, a) → Some a → Seq a
more0 Nil (One y) = Unit y
more0 Nil (Two y z)) = More (One y) Nil (One z)
more0 Nil (Three y z w)) = More (One y) Nil (Two z w)
more0 q u =

case head q of
Pair x y → More (Two x y) (tail q) u
Triple x → More (One x) (map1 chop q) u

where chop (Triple y z) = Pair y z

We can see that tail also leaves a Two as the start of the
sequence when it performs a recursive call. It may be tempt-
ing to remove the use of chop here, because we have room
for three elements at the start, but that would destroy the
constant amortized complexity! When the first element of

35

Haskell ’20, August 27, 2020, Virtual Event, USA Koen Claessen

the subsequence is a Triple, we prefer not to perform any
recursion at all.

For completeness, here is map1:

map1 :: (a → a) → Seq a → Seq a
map1 f (Unit x) = Unit (f x)
map1 f (More (One x) q u) = More (One (f x)) q u
map1 f (More (Two x y) q u) = More (Two (f x) y) q u
map1 f (More (Three x y z) q u) =

More (Three (f x) y z) q u

And finally, we have to adapt (++), which was imple-
mented using some helper functions. Looking at the code,
we can see that the only helper function that actually pattern
matched on Some is toList:

toList :: Some a → [a] 1..3

toList (One x) = [x]
toList (Two x y) = [x, y]
toList (Three x y z) = [x, y, z]

The implementations of the other functions (toTuples, (++),
and glue) do not have to be changed! But the list sizes anno-
tations of toTuples and glue do of course change. The largest
size of the “middle element list” of glue now becomes 3. This
in turn means that the largest argument to toTuples now has
9 elements.

toTuples :: [a] 2..9 → [Tuple a] 1..3

glue :: Seq a → [a] 0..3 → Seq a → Seq a

The function toTuples produces a list of maximum size 3,
which is accepted by glue as an argument.

We have sucessfully adapted the implementations of our
operations to the change of adding Three to the Some type.
Do we now have the desired amortized complexities?

9 Amortized Complexity Analysis
In this section, we detail a simplified amortized complexity
analysis. Here, we formally state what our proof obligations
are. We have discharged these with an automated theorem
prover.

We start by focusing on the functions cons and tail.
There exist various methods for showing amortized com-

plexity of operations on a datatype. Okasaki discusses sev-
eral such methods in his book [4]; most notably the Banker’s
method, which was chosen by Hinze and Paterson in their
original paper (which sadly does not contain details of their
proof), and the Physicist’s method, which we will use here.
The reason we choose the Physicist’s method here is that it
is generally considered simpler, and seems more amenable
to formal verification.

In the Physicist’s method, we start by constructing a func-
tion pot that assigns a natural number (the “potential”) to
every element of the datatype. The idea is that the places in
the data structure that may cause certain operations to cost

too much time will contribute to increasing the potential. Op-
erations may use the potential that exists in a data structure
as virtual time, but only if the operation itself contributes to
decreasing the potential.

Given any choice of potential function, we can define the
amortized time that a operation takes as follows:

amortized time ≡ actual time + increase 𝑖𝑛 potential

In our case, we want to find a potential function that leads
to the amortized time of cons and tail being constant.

So what should pot be?We already saw that occurrences of
One andThree are problematic for tail and cons, respectively.
What if we just count the number of occurrences of these
“dangerous’ constructors? We made sure to transform occur-
rences of One andThree into occurrences of Two whenever
a recursive call was made, so that looks promising.

pot :: Seq a → Nat
pot Nil = 0
pot (Unit) = 0
pot (More u q v) = dang u + pot q + dang v

where
dang (One) = 1
dang (Two) = 0
dang (Three) = 1

How can we show that cons and tail have amortized constant
time complexity with respect to this potential function? Let
us first formalize the actual time that cons and tail take for a
given argument. We define the function consT to compute
the number of computation steps needed for cons to com-
pute its result. We approximate the number of steps as 1 for
any case that takes constant time, and furthermore add the
number of recursive calls:

consT :: a → Seq a → Nat
consT Nil = 1
consT (Unit) = 1
consT (More (One)) = 1
consT (More (Two)) = 1
consT (More (Three z w) q) = 1 + consT (Pair z w) q
We created the function definition for consT by copying
the definition of cons and replacing the right-hand sides by
the appropriate times. We can do the same for tail using a
function tailT :

tailT :: Seq a → Nat
tailT (Unit) = 1
tailT (More (Three)) = 1
tailT (More (Two)) = 1
tailT (More (One) q u) = more0T q u
where

36

Finger Trees Explained Anew, and Slightly Simplified (Functional Pearl) Haskell ’20, August 27, 2020, Virtual Event, USA

more0T Nil = 1
more0T q =

case head q of
Pair → 1 + tailT q
Triple → 1

What is left to prove are the following two properties. They
express that “actual time + increase in potential is less than
a constant”.
prop_AmortizedCons x q =

consT x q + pot (cons x q) − pot q ⩽ 3
prop_AmortizedTail q =

𝑛𝑜𝑡 (null q) =⇒
tailT q + pot (tail q) − pot q ⩽ 2

How did we come up with these constants 3 and 2? Well,
both properties can be QuickChecked [1], and we picked
the lowest constants for which the properties succeeded.
At further inspection of the counter examples, we can see
that cons increases the potential from 0 to 2 when adding
an element to a sequence of length 1, forcing the 3 in the
property.
The above properties can both be proved by structural

induction on the sequence q in a straightforward way. How-
ever, there are quite a large number of cases to be considered,
which are easy to forget in a proof by hand. We used HIP [2],
a translator for Haskell programs to first-order logic, and
then used an automated theorem prover (in our case E [5]) in
order to fully automatically discharge the proof obligations
required in the induction proofs.

Append. A few words about (++) in the context of amor-
tized complexity. Even though the worst-case and the amor-
tized case are the same for (++), we need to include it in the
analysis nonetheless. If we didn’t, a danger may be that (++)
increases the potential more than its time complexity allows!
Fortunately, this is not the case. As the value of pot itself is
in 𝑂 (log𝑛) (because its value is constant in the recursion
depth), the amortized time of𝑂 (log𝑛) for (++) will always be
able to pay for the possible worst-case increase of potential.

Sequential vs. persistent amortized complexity. Hinze
and Paterson make an even stronger claim in their paper:
the amortized times of the operations do not only hold for
a sequential usage of the datastructure (i.e. every result of
an operation is only used once as the argument to another
operation, as shown here), but also for a persistent usage (i.e.
every result can be used an unlimited amount of times as an
argument to any other operation). The proof for this claim
needs a lot more detail than the proof we provide here, and in
particular needs to involve an argument about laziness. We
believe the same argument holds for the simpler version of
finger trees presented here, but just like Hinze and Paterson,
we do not provide a proof here either. Finding a simpler proof
for the persistent amortized complexity is future work.

10 Discussion and Conclusion
We started this work with the motivation of understanding
the detailed choices behind Hinze and Paterson’s Finger
Trees. From an initial naive implementation of sequences,
we used step-by-step refinements to end up with a data
structure that is in fact slightly simpler than Finger Trees!
On the way, we developed a detailed explanation of Finger
Trees and why they work, including a more detailed and
complete proof of its amortized time complexity.

One less constructor. The constructor Four turns out to
be not needed in our implementation. It seems that our use
of chop in the function tail eliminated the need for Four . This
certainly leads to simpler code, because many functions in
the library (not only the ones mentioned here) have one less
case to consider.

Are there other advantages? Our expectation is that there
is no difference in run-time behavior, although we have not
done any serious experiments to shine light on the matter.
In fact, we believe that an implementation that allows larger
Tuples will behave faster in practice, because then there is
less administration related to the recursion. Larger Tuples
means larger Somes. The detailed development in this paper
opens up for new designs of Finger Trees that can generalize
in three dimensions: (1) the size of the smallest sequences
that are not represented using More (right now 0..1), (2) the
size of sequences in Some (right now 1..3), and (3) the size of
sequences in Tuple (right now 2..3). These choices all depend
on each other. For example, if we aim for large tuples, we
could choose (1) for small sequences 0..15, (2) for Some 8..24,
and (3) for Tuple sequences of sizes 16..31.

Explanation. Hinze and Paterson start from 2-3 trees,
mention that they have nice properties, and then add a “fin-
ger” (a direct reference to the first and last elements) to be
able to implement head and last efficiently. This paper starts
with adding a “finger” to a naive sequence type and then re-
fines the result. These two explanations are complementary
and both give insights that the other does not.

Symmetric treatment. Just like Hinze and Paterson, we
chose to present the data structure in a one-sided way. The
operations last, snoc, and init are indeed completely symmet-
rical. One worry the reader may have is about the amortized
complexity analysis. What happens when the operations
cons and tail are freely mixed with snoc and init? The analy-
sis still holds, because all 4 operations use the same identical
potential function pot.

Production code. The code in this paper is not meant to
be production code. In a real implementation, we’d have to
be more careful with memory usage. In one place particular,
where head, tail, and chop are used in the implementation
of tail, a potential space leak exists (that can be remedied
by strictness annotations). The actual implementation in

37

Haskell ’20, August 27, 2020, Virtual Event, USA Koen Claessen

Data.Sequence is very optimized and uses lots of strictness
annotations.
Another spot that can be optimized is the use of the

(short) helper lists in the implementation of glue. In fact,
they can be eliminated completely by specializing those func-
tions, resulting in a lot of nested cases. (This is also done
in Data.Sequence.) For the sake of explanation, this was not
done here. Implementing glue without these helper lists and
without excessive case analyses is still future work.

QuickCheck. QuickCheck was used during the develop-
ment of the various data structures that made it in the paper
(as well as many many more versions that didn’t!). Both
functional correctness properties (linking the behavior of
the operations to their corresponding list functions) as well
as the amortized complexity properties proved extremely
useful. Any kind of simplification that could not be made
immediately results in a counter example.

Also, playing around with amortized complexity (different
potential functions, different choices in the operations) was a
breeze because the QuickCheck properties were there. For a
while we thought we had developed an even simpler version
of Finger Trees that had 𝑂 (log𝑛) amortized complexity for
(++) but 𝑂 (𝑛) worst-case! This turned out to be wrong, so
we had to rethink.

The functions consT and tailT were implemented by hand,
which introduces a risk that the versions that are used for

testing and proving do not correspond to the versions in the
implementation. An automated translation (e.g. going from
cons to consT) would have been nice, but this remains future
work.

Acknowledgments
Thanks to the anonymous referees for their valuable com-
ments on an earlier draft of this paper. Thanks to John
Hughes for an insightful discussion on amortized complex-
ity. This research was partly funded by the Swedish Science
Council (VR, “SyTeC”, 2016-06204) and the Swedish Founda-
tion for Strategic Research (SSF, “Octopi”, RIT17-0023).

References
[1] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for

random testing of haskell programs. In Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming, ICFP ’00,
page 268–279, New York, NY, USA, 2000. Association for Computing
Machinery.

[2] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone.
Automating inductive proofs using theory exploration. In International
Conference on Automated Deduction, pages 392–406. Springer, 2013.

[3] R. Hinze and R. Paterson. Finger trees: a simple general-purpose data
structure. Journal of Functional Programming, 16(2):197–217, 2006.

[4] C. Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

[5] Stephan Schulz, Simon Cruanes, and Petar Vukmirović. Faster, higher,
stronger: E 2.3. In Pascal Fontaine, editor, Proc. of the 27th CADE, Natal,
Brasil, number 11716 in LNAI, pages 495–507. Springer, 2019.

38

	Abstract
	1 Introduction
	2 Try 0: Regular Lists
	3 Try 1: Constant-Time Head and Last
	4 Try 2: Logarithmic-Time Operations
	5 Try 3: Fixing Cons and Tail
	6 Try 4: Preparing for Append
	7 Try 4 Continued: Implementing Append
	8 Try 5: Amortized Constant-Time Cons and Tail
	9 Amortized Complexity Analysis
	10 Discussion and Conclusion
	References

