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Abstract

We argue that the novel combination of type classes and existential types in a single language
yields significant expressive power. We explore this combination in the context of higher-order
functional languages with static typing, parametric polymorphism, algebraic data types and
Hindley-Milner type inference. Adding existential types to an existing functional language that
already features type classes requires only a minor syntactic extension. We first demonstrate
how to provide existential quantification over type classes by extending the syntax of algebraic
data type definitions, and give examples of possible uses. We then develop a type system and
a type inference algorithm for the resulting language. Finally, we present a formal semantics
by translation to an implicitly-typed second-order .̂-calculus and show that the type system is
semantically sound. Our extension has been implemented in the Chalmers Haskell B. system,
and all examples from this paper have been developed using this system.

Capsule Review

It is well known that existential quantifiers can be used to formalise the definition and use of
abstract datatypes. However, few mainstream functional languages - most of which are based
on a polymorphic, Hindley-Milner type system - provide any direct support for this.

In previous work, both Perry and Laufer have studied extensions of the Hindley-Milner type
system in which datatypes are used to manipulate values with existentially quantified types. The
current paper extends their approach to a language that combines existential typing with the
type class overloading mechanisms of Haskell. The main benefit is the ability to use type classes
in the definition of abstract datatypes; classes themselves serve as datatype signatures, particular
implementations can be coded up as instances of a class, and existential typing can be used to
make these implementations abstract.

The first part of the paper shows that the use of overloading can be quite convenient because
it frees the programmer from the need to make explicit reference to the implementation of a
particular datatype. On the other hand, this approach inherits some of the restrictions of the
Haskell class mechanism. For example, it is not possible for different implementations to share
a single representation type.

The second part of the paper provides a formal treatment of the type system. In particular,
it shows that well-typed terms have principal types and that the semantics of a program can
be explained by a type-preserving translation into an implicitly typed, second-order X calculus.
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1 Introduction

In this paper, we combine two independent programming language constructs, type
classes and existential types, in a single language. We explore this combination in the
context of higher-order functional languages with static typing, parametric
polymorphism, algebraic data types and Hindley-Milner type inference. Although
the combination of these features results in significant expressive power, adding
existential types to an existing functional language that already provides type classes,
such as Haskell, requires only a minor syntactic extension.

We first demonstrate how existential types over type classes can be added to the
language by extending the syntax of algebraic data type definitions. We give examples
illustrating how we express

• first-class abstract data types with user-defined interfaces,
• aggregates of different implementations of the same abstract data type,
• dynamic dispatching of operations with respect to the representation type, and
• separate interface and implementation hierarchies.

We then develop a type system and a type inference algorithm for the resulting
language. Furthermore, we give a formal semantics by translation to an implicitly-
typed second-order ^.-calculus and show that the type system is semantically sound.
Proofs for the various theorems can be found in the author's PhD thesis (Laufer,
1992).

For the sake of concreteness, our language is presented here as an extension to
Haskell (Hudak et ah, 1992), but other languages with similar type systems can be
extended analogously. Our proposal has been implemented in the Chalmers Haskell
B. system (Augustsson, 1993a). Thus, all examples from this paper have been
developed and tested using the hb i interpreter and are given in Haskell syntax.

In the remainder of this paper, section 2 describes how algebraic data types can be
extended with existential quantification over type classes. Section 3 contains a
collection of examples. Section 4 presents a formal language that combines type
classes and existential types. Sections 5 and 6 develop a type system and a type
inference algorithm for our language. Section 7 illustrates the translation of our
language into a suitable target language. Section 8 concludes with an outlook on
related and future work.

2 Algebraic data types with existential quantification over type classes

This section describes how abstract data types with user-defined interfaces can be
provided by extending the syntax of algebraic data type definitions. While our
extension can be applied to any language based on a polymorphic type system with
algebraic data types and type classes, it has been implemented in the Chalmers
Haskell B. system (Augustsson, 1993a) and is presented as an extension to Haskell.

Type classes (Kaes, 1988; Walder and Blott, 1989) provide a systematic approach
to ad-hoc operator overloading. Each class declaration introduces a new class name
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C and one or more new overloaded functions fu...,/„. Each type that supports a
group of overloaded functions is declared as an instance of the corresponding class.
Algorithmic type inference of principal types in the style of Hindley and Milner is
possible for ML-like languages extended with type classes, such as Haskell (Chen et
al, 1992; Nipkow and Prehofer, 1993).

Existential types (Mitchell and Plotkin, 1988; Cardelli and Wegner, 1985) are a
formalisation of the concept of abstract data type, such as the package in Ada
(United States Department of Defense, 1983), the cluster in CLU (Liskov and
Guttag, 1986), and the module in Modula-2 (Wirth, 1985). By stating that a value v
has the existential(ly quantified) type la.x, we mean that v has type [x/a]z for some
unique, anonymous type T. The existentially quantified type variable a stands for the
representation type of the abstract data type. Existential types are introduced via the
pack construct and eliminated via the abs type or open construct (Mitchell and
Plotkin, 1988; Cardelli and Wegner, 1985). Abstract data types expressed in this way
are first-class in the sense that their instances can be treated like ordinary values.

Perry (1990) incorporates abstract data types into a statically-typed functional
language by allowing the component types of algebraic data types to be existentially
quantified. The pack construct then corresponds to the application of a value
constructor, and the open construct corresponds to pattern matching against a value
constructor. Mitchell and Plotkin (1988) observe that a given expression can have
many different existential types; thus, each application of pack must state the
resulting existential type intended. Perry's system satisfies this requirement by
associating each existential type with a specific value constructor. Laufer and Odersky
(1994) give a formal treatment of a related system, and point out a technical error that
occurs in Perry's published work (1990), though not in his implemented system. Our
current work is based on Laufer and Odersky's formalism.

We now combine type classes and existential types as follows: by constraining the
existentially quantified type variables to belong to certain type classes, we can require
that the representation types support certain operations. It is in this sense that type
classes serve as interfaces of abstract data types, as suggested by Laufer and Odersky
(1991). Following Perry (1990), we syntactically extend algebraic data type definitions
by dropping the restriction that only type variables that are bound as formal type
parameters may appear in the component types of the data type. Any free type
variable in a data type declaration is considered local to and existentially quantified
in the component types of the value constructor in which it appears. Just as
universally quantified type variables can be constrained by a context c of the form
(Clu1,...,Cnun), stating that type variable u( belongs to type class C(, existentially
quantified type variables can be constrained by local contexts cx,...,cn for the value
constructors in which they appear. Thus, the general form of a data type declaration
is as follows:

A value of such a data type is constructed by applying a value constructor Kt to
values whose types are instances of the component types tn,..., tlk of K(. Both bound
and free type variables in the component types must be replaced with types that
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satisfy the global context c and the local context cv Thus the type of a value
constructor Kt is universally quantified over all bound type variables, and those free
type variables that appear in the component types of Kt:

In this type, vl,...,vl are all free type variables in the types tu,..., t(kj except ux,...,uk(,
and ct is the largest subset of c U ct that constrains only those type variables free in
the types ttl,...,tik. These free type variables are existentially quantified in the
component types of the constructed value: as the value is constructed, we lose all
information about the types the type variables are instantiated with, except that these
instance types satisfy the combined context c(.

A value of the data type is decomposed by pattern matching against the constructor
used in constructing the value. When a value constructor K appears in a pattern
Kx1...xm, each existentially quantified type variable in the component types of K
stands for some unknown type that satisfies the combined context c for K, and is
replaced with a fresh, anonymous type in the types of the bound variables xv..., xm.
Nothing is known about the anonymous types, except that they satisfy the local
context for the constructor K. Since the true identities of the anonymous types are not
known statically, they must not escape the scope of the bound variables Xj,...,xm.

3 Examples

The following examples illustrate various applications of existential quantification
combined with type classes. All examples were developed and tested using the
Chalmers Haskell B. interpreter h b i (Augustsson, 1993a). We assume that all
numerals have type In t , except in the last example, where they have type Float .

3.1 Lists of different implementations of the same abstract data type

The first two examples are variations on a simple example of existential quantification
provided by Cardelli and Wegner (1985). The sole purpose of these examples is to
illustrate how the type system works. Consider the following algebraic data type
declaration:

d a t a KEY a = MakeKey a (a - > In t )

This declaration introduces a new type constructor KEY with formal type parameter
a. The type of the value constructor MakeKey is universally quantified over a

MakeKey : : a - > (a - > I n t ) - > KEY a

By contrast, the declaration

d a t a KEY = MakeKey a (a — > I n t )

introduces a new (parameterless) type KEY and a value constructor MakeKey of type

MakeKey : : a - > (a — > I n t ) - > KEY
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Since all applications of MakeKey have the same result type, KEY, we can construct
the following list:

h e t L i s t =
MakeKey [1,2,3] length,

if x then 1 else 0) ,

Although h e t L i s t is a homogeneous list of type [KEY], each of its elements can
have a different representation type a.

We use pattern matching to extract the two components of a value of type KEY. The
type variable a in the component type of the constructor MakeKey is existentially
quantified. Thus the argument type of f and the type of x in the following function
definition are identical, giving the function the type KEY — > I n t :

whatkey (MakeKey x f) = f x

Since the anonymous types that replace existentially quantified type variables must
not escape the scope in which they are introduced, the following function definition
is ill-typed:

va lue (MakeKey x f) = x

The function hetMin finds the minimum of a list of KEYs with respect to the
integer value obtained by applying the function whatkey:

hetMin [x] = x

hetMin (x:xs) = l e t y = hetMin xs in
i f whatkey x < whatkey y then x e l s e y

and the expression whatkey (hetMin h e t L i s t ) evaluates to 1.
We observe that KEY is an abstract data type whose implementations explicitly

bundle together a value of some type and a method on that type returning an I n t .
Each element of h e t L i s t may be viewed as a different implementation of the same
abstract data type. Two implementations of KEY differ either in representation types,
for example the second and third elements, or in methods, such as the first and last
elements of h e t L i s t . Given a value of type KEY, we do not know its representation
type, but it is guaranteed that we can safely apply the second component (the method)
to the first component (the value).

By contrast, the traditional approach to dealing with heterogeneous lists in
statically-typed languages is to introduce an algebraic data type with a separate
constructor for each type allowed in the list. There are several disadvantages to this
approach: first, one has to remember and use a number of different constructors.
Second, the component types of the algebraic data type are not abstract;
consequently, any operation can be applied to the components as long as it is type-
correct. Finally, and most importantly, algebraic types of this form do not support
extension; when a new case is added to an algebraic type, every function that operates
on the type has to be changed to include the new case. Our examples show that
algebraic data types with existential component types simultaneously cure all three of
these drawbacks.
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3.2 Type classes as interfaces of abstract data types

Type classes provide a way of associating methods with a type in such a way that the
methods are implicitly available for any value of this type. For example, the following
type class Key specifies that its instances must implement a method ge t key
returning an integer:

class Key a where

getkey :: a — > Int

Each instance type of Key declares how it implements the method getkey, for
example:

instance Key Int where getkey = id

instance Key Bool where getkey = \x — > if x then 1 else 0

instance Key [a] where getkey = length

We can use the type class Key to define the interface of the abstract data type KEY
by constraining the existentially quantified type variable a to be an instance of the
type class Key. This interface is expressed by the constructor context Key a in the
following type declaration:

da t a KEY = (Key a) — > MakeKey a

We can still define lists of different KEYs:

h e t L i s t = [MakeKey 5, MakeKey [ 1 , 2 , 3 ] , MakeKey True,
MakeKey 9]

However, any two implementations of KEY with the same representation type now
share the method implemented in the instance declaration corresponding to that type.
Unlike in the explicit case, the method dictionaries are packed implicitly with the
component values. This is reflected in the translation scheme presented in section 7,
and corresponds to dynamic dispatching in object-oriented programming languages,
where a method associated with an object is selected and applied to the object at run
time. Unlike the previous example, new implementations of the type KEY can only be
added by declaring additional instances of the class Key.

As in the previous example, we compare different values of type KEY by mapping
them to integer values. Since the methods g e t k e y can be applied to the component
of any value of type KEY, we could now write the function whatkey as follows:

whatkey (MakeKey x) = getkey x

Instead, we choose to take a more systematic approach. We first make the type KEY
an instance of the class Key. The method g e t k e y is implemented in the same way
as whatkey:

i n s t a n c e Key KEY where ge tkey (MakeKey x) = getkey x

We then declare KEY as an instance of the equality and ordered classes, thus taking
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advantage of a whole collection of predefined functions. Only the methods ( = = )
and ( < = ) need to be implemented here, since the class declarations for E<q and Ord
contain default implementations for all their other methods:

i n s t a n c e Eq KEY where

x = = y = getkey x = = getkey y

i n s t a n c e Ord KEY where

x < = y = getkey x < = getkey y

Using the predefined polymorphic minimum function on lists of ordered values, the
expression getkey (minimum h e t L i s t ) evaluates to 1.

3.3 Tree search

Mitchell and Plotkin (1988) provide two interesting applications of existential types,
which we adapt to our language. The first example is a tree search function whose
behaviour is directed by a data algebra parameter. If a stack is passed as a parameter,
the function performs depth-first search, while a queue parameter results in breadth-
first search. Other data algebras could be passed as parameters as well. For example,
a priority queue results in 'best-first' search, where 'best' is determined by the
priority queue.

We first define a type class Tree that describes trees whose nodes have integer
labels. The function l a b e l returns the label of a node. The function i s l e a f tests
whether a node is a leaf, whereas l e f t and r i g h t return the left and right subtrees
of any nonleaf.

class Tree a where

label : : a — > Int

isleaf : : a — > Bool

left :: a — > a

right :: a — > a

The following abstract data type describes data algebras parameterised by the type of
the element stored in the structure. The first component corresponds to the storage
structure itself, the second component to the insert operation, and the third
component to the delete operation.

data STRUCT t = S t r u c t s ( ( t , s) - > s) (s - > ( t , s) )

We now implement three data algebras, all of which are represented as lists, but have
different operations. In the case of a stack, insert and delete correspond to push and
pop at the head of the list. In the case of a queue, new elements are inserted at the
tail of the list instead.

s t ack = S t r u c t [] ( \ (x , s) —> x : s)
(\s — > (head s, t a i l s ) )

queue = S t r u c t [] ( \ (x , s) —> s + + [x])
(\s - > (head s, t a i l s) )
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A priority queue requires an ordering relationship on its element type, as expressed
by the context Ord t. Insertion takes place at the head of the list, while deletion
causes the smallest element according to the ordering relationship to be returned.

prique :: (Ord t) = > STRUCT t

prique = Struct [ ] (\(x, s) -*• x : s)

(\s -»- let x = minimum s in

(x, s \\ [x]) )

We now define the sea rch function. The first parameter is the tree to be searched,
the second parameter is the label of the node we are looking for, and the third
parameter is the data algebra that directs the search. Since we assume that at least one
node has the desired label, there is no error checking. The result is the first subtree
of s t a r t whose root has the label goa l .

search :: (Tree t) = > t - > Int - > STRUCT t - > t

search start goal (Struct empty insert delete) =
find

(start, empty)

where

next (node, st) = if isleaf node then

delete st

else

delete (insert (left node,

insert (right node, st) ) )

find (node, st) if label node == goal then

node

else

find (next (node, st) )

Perry's (1990) system does not allow the declaration of functions whose result type
contains anonymous representation types of abstract data types. Therefore, it would
be impossible to write the auxiliary functions n e x t and f ind as local functions.
Instead, one would have to write them as global functions that operate on the
encapsulated structure. This is undesirable for several reasons: first, one might not
want the auxiliary functions to be accessible outside of search . Second, any local
variables in s ea r ch shared by nex t and f i n d would have to be passed as
parameters. Finally, operating on the encapsulated structure requires repeatedly
opening and encapsulating the structure.

Since type classes in Haskell cannot be parameterised, we have to settle for trees
with a fixed element type. We would have preferred to parameterise the type class
TREE by its element type. Two extensions of Haskell address the issue of
parameterised type classes (Chen et al., 1992; Jones, 1993b). Combining para-
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meterised type classes with existential types would give us abstract data types with
parameterised interfaces. We plan to investigate this combination further.

3.4 Abstract streams

The second example by Mitchell and Plotkin (1988) shows how to express streams
using existential quantification over type classes. The example employs the Sieve of
Erastosthenes to produce a stream enumerating all prime numbers.

We first introduce a type class S t a t e to describe representation types of internal
states of integer streams. It resembles the type class Key from the first example in this
section: the only operation, value produces an integer from a state.

class State a where

value :: a — > Int

The following data type specifies that a stream has two components, a start state and
a function to produce the next state from the start state. We use existential
quantification over the type class S t a t e to express that we can produce a value of
type integer from a state of the stream.

data STREAM = (State a) — > Stream a (a — > a)

We now define possible instance types of S t a t e . Clearly, any integer can represent
the state of a stream of integers. So can any stream of integers, if we interpret the
value of the internal state of the stream as the value of the state that the stream
represents.

instance State Int where

value = id

instance State STREAM where

value (Stream s n) = value s

The s i f t function removes from a stream of integers s all numbers divisible by the
first value of s.

sift (Stream start next) =

let n = value start

f state = if (value state ) 'mod^ n = = 0 then

f (next state)

else

state

in

Stream (f s t a r t ) (\x — > f (next x))

Thus, if s is the stream 2, 3, 4, ...then the sequence formed by taking the first value
of each stream s , s i f t s , s i f t ( s i f t s) ),...is the sequence of all primes. The
stream of these streams can be written as

sieve = Stream (Stream 2 (+ 1)) sift
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Finally, a stream of integers can be converted to an (infinite) list of integers as follows:

tolist (Stream start Next) =

(value start) : (tolist (Stream (next start) next))

The i-th prime is then given by (tolist sieve ) ! ! i.

5.5 Composition of a list of functions

The algebraic data types in the preceding examples have only one constructor. Data
types with several constructors are possible as well; any existentially quantified type
variables are local to the component type of the constructor in which they appear.

The following type describes lists of functions, in which the type of each function
would allow it to be composed with the next. For notational convenience, we declare
the first constructor as right-associative:

i n f i x r 'FunCons'

data FunList a b = (a — > c) 'FunCons' (FunList c b)
| FunOne (a -> b)

The universally quantified type variables a and b correspond to the argument type of
the first and the result type of the last function, respectively; the existentially
quantified type variable c represents the intermediate types arising during the
composition of two functions. We can now construct lists of composable functions,
for example:

funOne = FunOne id

funList = (\x -»• x * x) 'FunCons'

(( = = ) 9) 'FunCons1

(-̂x -> (x, x) ) 'FunCons'

funOne

We use a recursive function to apply the function resulting from the successive
composition to an argument. Since the recursive call to apply has a different type
from the one defined, we must enable polymorphic recursion by giving an explicit
type signature:

apply :: FunList a b — > a — > b

apply (FunOne f) x = f x

apply (f 'FunCons' fl) x = apply fl (f x)

Evaluation of the expression apply funList 3 then results in (True, True). We
can even count the number of functions in the composition:

numberComposites : : Num c — > (FunList a b) — > c

numberComposites (FunOne f) = 1

numberComposites (f 'FunCons1 fl) = 1 •+ numberComposites fl

The expression numberComposites funList evaluates to 4.
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3.6 Points and coloured points

The following example demonstrates how object-oriented concepts can be modelled
using existential quantification over type classes. We start out with a two-level class
hierarchy of points and coloured points. In object-oriented terminology, this is
inheritance at the interface level, used to establish relationships between the abstract
properties of classes.

data Color = Red | Green | Blue deriving Eq

type Pair = (Float, Float)

class Point p where

move : : p — > Pair — > p

pos : : p — > Pair

class (Point p) — > ColorPoint p where

color : : p — > Color

paint :: p — > Color — > p

Next, we define two implementations of class Point , one based on cartesian
coordinates:

data CartPoint = C Pair

instance Point CartPoint where

move (C(x,y)) (dx,dy) = C(x + dx, y + dy)

pos (C p) = p

and one on polar coordinates:

data PolarPoint = P Pair

instance Point PolarPoint where

move p (dx, dy) = cart2polar (x + dx, y + dy)

where (x,y) = pos p

cart2polar (x,y) =
P(sqrt(x * x -I- y * y) , atan2 y x)

pos (P(r,a)) = (r * cos a, r • sin a)

As in the previous examples, we define an abstract data type with type class P o i n t
as its interface:

data POINT = (Point p) — > MakePoint p

By making type POINT an instance of class Point , we provide dynamic dispatching
of the methods in the interface class:

instance Point POINT where

move (MakePoint p) q = MakePoint (move p q)

pos (MakePoint p) = pos p
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We now declare a type constructor that simply adds a field of type Color to any
instance of the class Po in t :

d a t a (Point p) — > COLORPOINT p = MakeColPoint p Color

We now add coloured points to our class hierarchy in two steps. First, we state that
any application of the type constructor COLORPOINT to an instance of the class
P o i n t again results in an instance of P o i n t :

i n s t a n c e (Point p) — > P o i n t (COLORPOINT p) where

move (MakeColPoint p c) d = MakeColPoint (move p d) c

pos (MakeColPoint p c) = pos p

Second, we state that any application of COLORPOINT to an instance of the class
P o i n t belongs to the class C o l o r P o i n t as well:

i n s t a n c e (Point p) — > C o l o r P o i n t (COLORPOINT p) where

c o l o r (MakeColPoint p c) = c

p a i n t (MakeColPoint p c) d = MakeColPoint p d

These two instance declarations state that extending any instance type of the class
P o i n t by a Color component results in an instance of the classes Poin t and
ColorPo in t . Thus we automatically get a coloured version of both implementations
of P o i n t , C a r t P o i n t and P o l a r P o i n t . In object-oriented terminology, this is
inheritance at the implementation level of code reuse.

The following list of points contains various combinations of uncoloured,
coloured, cartesian, and polar points:

pointList = [MakePoint (P(5,0)),

MakePoint (MakeColPoint (C(3,4)) Blue),

MakePoint (C(2,7)),

MakePoint (MakeColPoint (P (5,pi/4)) Red)]

Once we make a coloured point abstract by applying the constructor Point , we can
only apply the operations move and pos in class Point , but not the operations in
class ColorPoin t . Thus we cannot directly obtain any colour information from an
abstract (coloured) point. We could, however, make indirect use of this information
if we modified the second last instance declaration such that, for example, red points
moved slower and appeared in a closer position than blue points.

We can now evaluate expressions such as

map (\p — > move p (1 , 2)) p o i n t L i s t

resulting in

[MakePoint (P(6.32, 0.32)),

MakePoint (MakeColPoint (C(4.00, 6.00)) Blue),

MakePoint (C(3.00, 9.00)),

MakePoint (MakeColPoint (P(7.16, 0.89)) Red)]
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4 The formal language Exeil

In this section, we formally describe the syntax of expressions and types in our
language, Exell. Exell is an extension of Mini-Haskell (Nipkow and Prehofer, 1993)
with user-defined algebraic data types. While Mini-Haskell is not strictly a subset of
the Haskell language, it captures the essential features of Haskell relating to type
classes. The results language is a ^.-calculus with let-expressions, extended with class,
instance and data type declarations, and with expressions for constructing, examining
and decomposing values belonging to data types. A program is a sequence of
declarations followed by an expression. The syntax of Exell expressions is shown in
figure 1. For syntactic convenience, a list of objects s1,...,sn'is abbreviated by sn; for
example, t{xx,..., tn) is written as t{xn).

The type syntax of Exell is given in figure 2. It includes recursive types p and user-
defined type constructors t. Skolem types K are used to type identifiers that are bound
by a pattern-matching let-expression and whose type is existentially quantified.
Skolem types are drawn from a collection of uninterpreted ground types; thus a fresh
Skolem type is unique and distinct from all other types except itself. Explicit
existential types arise only in the component types of user-defined type constructors;
thus the syntax for type schemes includes the case r\ -> x. Unlike Haskell, which allows
value constructors to have several curried arguments, Exell uses argument tuples
instead. Both approaches are equivalent since all curried arguments must be present
when a Haskell constructor is used in a pattern.

In typed languages such as ML, values are classified by types in judgments of the
form e:x. In Exell, as well as in Haskell, types are classified by sorts in judgments such
as x: S, stating that type x is in sort S. Sorts are finite sets of classes, and T : S means
that x belongs to each class in S. The empty sort is denoted by 0, and the class C is
an abbreviation for the singleton sort {C}.

Since classes with multiple functions and subclasses are syntactic sugar (Chen et al.,
1992), Exell classes are not ordered, and each class declares only one overloaded
function. For convenience, we use the same name for the class and the function. Sorts
are ordered by their natural subset relationship; semantically, if S' c s, then S' is
more general than S.

We illustrate the syntax of Exell by translating the second example from section 3
into Exell: .

class Key is Va: Key. a ->• int
inst int: Key is Xx. x
inst bool.Key is Xx. if x 1 0
inst list: (Q) Key is length
data KEY = jiy. K (30: Key. P)
inst KEY: Key is Xx. let K z = z in Key z
inst KEY.Eq is Xxy. Eq {Key x) {Key y)
inst KEY: Ord is Xxy. Ord {Key x) {Key y)
let hetList = [K 5, K[l, 2, 3], K True, K 9] in

Key {minimum hetList)
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Identifiers

Constructors

Expressions

Declarations

Programs

x,C

K

e =

d =

V =

x 1

data

dp

<ei

*(c

1 e

e2) 1 Xx.e

*n*J = P '

Ietx =

class C

ex in e2 IK

is Vct:C.Van

isK

:Sn.x

letKx

inst ( : S )C is e

Fig. 1. Syntax of Exell expressions.

Type classes C, D

Sorts S, T={Cj Cn}

Type variables a, p

Type constructors t

Skolem types K

Recursive types p =

Types x =

Existential types r\ =

Type schemes a =

iip.K1nl + ... + jcll,nM

unit 1 bool 1 a 1 xt xx 2 1 T - > X ' 1 K 1 f(Xj, ...,xn)

3a:S.T| 1 x

Va:S.o 1 T| -»x 1 x

Fig. 2. Syntax of Exell types.

TVAR

SUB

Ta=S

r,Ift:S
r,Z|-x: s-

TCON
: ( s ; ) S e Z

UNION

r,

r,

r,xi-x

«»-«('»)

r,z

• : S , -

:S

)- x :

i

r , i

= I

'2

...n

:S2

Fig. 3. Type inference rules for classes and sorts.

The case-expression and the related pattern matching for function parameters in
source-level Haskell syntax correspond to nested if-expressions with is-expressions as
conditions and pattern-matching let-expressions for the different cases. The Haskell
example

d a t a T a = K a | L I n t | M

c a s e x of K y ->• 1

L z -»• z

M -> 0
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translates to Exell as follows:

data T(a) = ny.Ka + Lint + Munit

if (isKx)

1

(if (isLx)

(let L z = x in z)

0)

5 Sort inference and type inference for Exell

In this section, we present a syntax-directed type inference system for Exell. The rules
for sort inference determine to what sort a given type belongs. The rules for type
inference rely on the rules for sort inference and determine to what type a given
expression belongs.

5.1 Sort inference

We follow Nipkow and Prehofer (1993) in our treatment of sort inference. The sorts
of type variables are recorded in a sort context T, a mapping from type variables to
sorts such that Dom(Y) = {oc| Aoc =1= 0 } is finite. Sort contexts are written as [ax: Sx,...,
an: Sn], where {a15..., aj 3 Dom{T) are distinct type variables. The extension of T to
map a type variable a to a sort S is denoted by r[<x:S]. For a set of type variables
V, the restriction of T to variables not in V is T\ V = [a:rot|ae£>oOT(r)— V].

The behaviour of type constructors is stated by arity declarations of the form
/: (Sn) S. Such a declaration means that an application of t to types x1,...,xn of sorts
Sj, . . . , Sn, respectively, has the sort S. A set of arity declarations is called a signature
E. A default arity declaration of the form t: (5n) 0 guarantees that a type constructor
is always applied to a fixed number n of argument types of the correct sorts; all
other arity declarations are associated with instance declarations and have the form
t:(Sn)C.

The judgment r , Z I- T : S states that the Exell type T belongs to sort S. The rules
for sort interference are given in figure 3. In the TVAR rule, the sort of a type variable
is looked up in the sort context. In the TCON rule, the sort of a type constructor
application is determined by looking up a declaration for the type constructor in the
signature and checking that the actual type arguments have the correct sorts. In the
SUB and UNION rules, the sort assigned to a type is generalised and specialised,
respectively.

5.2 Type inference

Our type inference system builds on the one given by Nipkow and Prehofer (1993),
which extends the original system of Damas and Milner (1982) by the notion of sorts.
To facilitate algorithmic type inference, our system is syntax-directed; there is one
type rule for each case in the grammar. An environment is a finite mapping E =
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[x1:a1,...,xn:an] from identifiers to type schemes. The domain of E is Dom{E) =
{x1;..., xn). E[x: CT] is a new environment that maps x to a and all y in Dom(E) to E(y).
The free type variables in E are given by FV(E) = FV(pJ U . .. U FV(an). The free
Skolem types in a type T are given by FS(x); FS generalises to environments
analogously to FV. A substitution is a finite mapping from type variables to types.
Substitutions are denoted by 0 and 8; 0 denotes the empty substitution. We define
Dom(Q) = {<x|e<x # a}.

We define the following two relations between types:

Definition 5.1
The type scheme CT' = V<x'm :S'm.x' is a generic instance of CT = Van:Sn.x under F and
£, written F, £ I— CT ̂  CT', iff there exists a substitution 0 such that

(i) 0T = X', _
(ii) Dom(Q) s {a,},

(iii) F[a^m: S'J, £ I- 0a: St for / = 1... n, and
(iv) {«'„} n FV(a) = 0.

Similarly, the type scheme CT' = Va'm:S'm.r|'-»-x' is a generic instance of CT =
Van: Sn.T| ->• x under F and £ iff there exists a substitution 0 such that 0(t) -> x) = x\' -> x'
and (ii), (iii) and (iv) hold as above.

Definition 5.2
The existential type T|' = 3a^:S"OT.x' is a generic generalisation of T) = 3an:S'n.x
under F and £, written F, £ h- r| < n', iff there exists a substitution 0 such that

(i) 0x = x', _
(ii) Domje) g {«„},

(iii) F[a'm: 5 ' J , Z I- Got,: 5, for / = 1...«, and
(iv) {Vj n FK(T,) = 0 .

The following are examples of the ordering relations involving existential quantifi-
cation :

Q,{i«r:C}l-Va:C. (3p:D.$x(fi^a))^a^(3$:D.$x($^int))-+int

Q, {int: C, /wr: (C) £>} h- 3P: D. P x (P -> /«/) sj listQni) x (list(int) -> int)

The judgment F, £, E\- p:x states that the Exell program/; is of type x under the
signature £ and the assumptions in F and E.

The typing rules for declarations are shown in figure 4. The rules for class and
instance declarations are the same as in Mini-Haskell. In a class declaration, the
environment E is extended by a type declaration for the overloaded function C;
according to the expression syntax given in figure 1, the type Voc: C.CT of C must not
contain any existential quantifiers. In an instance declaration, the signature £ is
extended by an arity declaration for the type constructor t. In a recursive data type
declaration, a default arity declaration for the data type t is added to the signature
£, and the value constructors AT( are recorded in the environment with explicit
universal and existential quantification for use by the CONS, TEST and PAT rules
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I
DATA

C\ ACQ

i

INST -

r, X, E \- data t(an

r,£,E[C:Va:C.o] \-£
M, E (-class C is Va:C.a

E(C) = Va:C.VPm:rm

t

;p :x

X

T, X, E \- inst t: 1

/a]x

r ,zu <

Ŝ  JC is

>

1 +

e;

.......]M = .

m ;p :x

FV(x)-{a}

Snlc},EFp:x'
p : x'

Fig. 4. Type inference rules for declarations.

VAR
r,j:,E(-A::[xn/an]x

ABS
T, I, E h Xx.e : x2 -> x1

APP
r,Z,E (-(e^z) :

L E T
r, I, E I- let x = et in e2 : x2

Fig. 5. Type inference rules for expressions.

below. The declaration rules can be applied backwards to build up Z and E, which
are then used to type the expression e.

The four typing rules shown in figure 5 are the same as in the Mini-Haskell system.
They are used in the typing of variables, abstractions, applications and let-
expressions.

Three new rules are given in figure 6; they are used to type value constructors, is-
expressions, and pattern-matching let-expressions, respectively. We explain each of
the new rules in turn. The CONS rule specifies that the existentially quantified type
variables in the argument type of a constructor are replaced with types of appropriate
sorts when the constructor is used. Hence these type variables behave as if they were
universally quantified, and the type of the constructor reflects the type given in section
2. The TEST rule ensures that the predicate isAT is applied only to arguments whose
type is the same as the result type of the constructor K. Finally, the PAT rule governs
the typing of pattern-matching let-expressions. It requires that the expression ex is of
the same type as the result type of the constructor K. The body e2 is typed under the
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CONS

PAT

r,

r,

z

r,
x,

=

r-E(K)>(3Pm:
r

U-E(K)!sii-»

E |-is K : f(xn)

r,X|-E(K)S

1' ' kt

m
r , i u KJ {K

i = i

X,E

'(T
n)

->boo/

«

•:oc;
r,i,

=

....

EF

: L^P

l...m

let K x =

r.xi-x1,.

x̂ ) r,

{Km} O

, E [ X : [ K B

= tx in e2 :

:T,. , - - l . . . m

)

X, E F e, : f(x^)

(FS(x')uFS(E)) = 0

x'

Fig. 6. Type inference rules for expressions involving existential types.

environment extended with a typing for the bound identifier x. The new Skolem types
K15 ..., Km must not appear in the environment E; this ensures that they do not appear
in the type of any identifier free in e2 other than x. The rule also guarantees that the
Skolem types do not appear in the result type x'. Since the Skolem types K1;...,Km

replace the existentially quantified type variables of sorts Su..., Sm in the component
type of K, the body of the let-expression must be typed under an extended signature
containing appropriate instance declarations for K1; ..., Km. The pattern-matching let-
expression is monomorphic in the sense that the type of the bound variable x is not
generalised. This restriction is sufficient to guarantee a type-preserving translation
into a target language (see section 7).

The following theorem states that Exell is a conservative extension of Mini-
Haskell:

Theorem 5.3
For any Mini-Haskell program;?,T,l,E\-p:xiffr,£,isl-MH/?:x.

The theorem still holds if we extend Mini-Haskell to include recursive data types
and pattern-matching let-expressions without existential quantification.

6 Computing principal types

In this section, we present the type inference algorithm W3 and demonstrate that it
computes principal types for well-typed Exell expressions.

Nipkow and Prehofer (1993) show that coregular signatures guarantee unique most
general unifiers, which are a sufficient condition for the existence of principal types
(see Appendix A). A signature £ is called coregular if for all type constructors t and
all classes C the set

is either empty or contains a greatest element w.r.t. the component-wise ordering of
the Sn. If £ is coregular, let Domz(t, C) return the greatest element of Dz(t, C) or fail
if DT(t, C) is empty.
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Coregular signatures are guaranteed if we require the following, simpler context
condition for the instance declarations in an Exell program:

For every class C and type constructor t, there is at most one instance declaration

A significant difference between our contribution and Nipkow and Prehofer's
(1993) work is that signatures are no longer fixed, since the body of a pattern-
matching let-expression has to be typed under an extended signature. Because the
extended signature contains only one instance declaration for each Skolem type, it is
also coregular, provided that the original signature satisfied the context condition.

We are now ready to present the type inference algorithm W3. The parameters of
W3 are a set of symbols (type variables and Skolem types) V, a substitution 9, a sort
context F, a signature E, an environment E, and an expression e. W3 returns a
quadruple (V, T, 9, T), where 0T is the type of e under the context T and the signature
Z. The set Vcontains all 'used' symbols, that is, type variables and Skolem types that
occur in x, 9 or E. Thus a new symbol is one that does not occur in V.

For an environment E and a substitution 9, we define QE = [x:Q(E(x))\xe
Dom{E)]. We call E a closed environment if FV{E) = 0. The free variables of a
substitution 9 are given by

FV(Q) = Dom(Q) U | J FV(Qa)
aeOom(8)

A substitution 0 obeys T in the context ofV and I , written V, 11- 9: T, iftT', £ I- 0a:
Ta for all aeDom{T).

The algorithm follows the syntax-directed type inference rules, hence there is
one case for each rule. The cases for declarations are shown in figure 7, where

W3(V, 6, T, Z, E, class C is Va:C.a ; p) = W3(V, 9, r, Z, £ [C:Va:C.o], p)

W3(V, 6, T, Z, £, inst t: [S~JC is e ; p) =

let (Vj.Tj.ej.Xj) = ^ 3 ^ , 9, T, Z, E, e)

in

if geninstrz(E(C)ZVam:riam.dlxl)

then W3(VV 9, r, X,, £, p)

Fig. 7. Type inference algorithm for declarations.
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geninstj- T(a ^ a') checks whether a' is a generic instance of a. The four cases in figure
8 are identical to algorithm / in Nipkow and Prehofer's (1993) paper; the function

w3(v, e, r, r, E,

w3(v,e,r,z,E,

w3(v, e, r, i, E,

w3(v,e,r,x,E)

x)

Xx.e)

, v

* 1 2 '

let x =

= let

in

= let

in

= let

in

el in e2) =

let

in

Vet
n

[v*
ae

(V,

(V\

(V,

ae

(r,
(v2

W3(

:S .x = Efx^

} nV = 0

-<{

V

r,
r,

r

V 2

&)

r i

} =

e'.x) = w

G', a^x)

,e , ,x . ) =
' r i'
, e 2 > x 2 ) =

= wqfatr
{o},r,e'8

.e^T.) =

3(Vu

W3(V,

* Q —

2,a)

{a},e,r,I,E[ro],e)

8, T, £, £

I = e2'C2 '

w3(v, e, r, z, E

>jE)

E[x:Van

-»o)

Fig. 8. Type inference algorithm for expressions.

unifyz for unification of types with sort constraints is described in Appendix A. The
three additional cases given in figure 9 deal with value constructors, is-expressions
and pattern-matching let-expressions.

The remainder of this section presents the lemmas and theorems needed to establish
the correctness and principal types results. The first two lemmas state that an
instantiation or a generalisation still holds after a substitution is applied to both types
involved, provided that the substitution obeys the sort context.

Lemma 6.1
If r , I I -o^T and r,ZI-0:r, then T',2\-Go ^ 9x.

Lemma 6.2
If r , S I— T) ^ T and r ' , I H 0 : r , then T', £ I- On ̂  9T.

The next lemma states that a typing judgment still holds after a substitution is
applied to the type of the expression, provided that the substitution obeys the sort
context.
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= let

in

W3(V, 6, r , Z, E, is K) = let Van:Sn.n -> t(an

{oT.} nV = 0

in (

W3(V, 6, T, I , E, let K x = Cj in e2) =

let \

o^} n V = 0

rvTvevil) = W3(Vu{o'n},9,r,I,E,e1)

-,e') = unify z(jrvelxl = t^Tn))

(v2,r2,e2 >x2) = v

Zu u {K.:()C|CeT,.]

in

if { i ^ } n (FS(62x2)uFS(62E)) = 0

then (V2,r2,e2,x2)

Fig. 9. Type inference algorithm for expressions involving existential types.

Lemma 6.3
If r , I , £ H e : x a n d r ' , I I - 0 : r , thenr,I.,QE\-e:QT.

The syntactic soundness theorem states that any typing computed by algorithm
W3 can be provided under the type inference rules.

Theorem 6.4 (Syntactic soundness)
If W3(V,Q,T,^,E,e) = (V',r,Q',x) and Dom{T) U FV(Q) U FV(E) S V, then

(i) r,l,Q'E\-e:Q'x
(ii) Dom(T') U FV(Q') U FV(E) £ F
(iii) r',
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Definition 6.5
Let E be a closed environment. The type scheme CT = Van: Sn. x is a principal type of
an expression e w.r.t £ and Eif[an:Sn], I,, E \-e:i a.ndif[a'm:S'm],2.,E\- e:t' implies

[a'm: S'J, S I- a ss x' where {a'm} <= FF(x').

The following lemma and theorem establish syntactic completeness and the
principal type property: if it can be proved under the type inference rules that an
expression has a type x, then the type inference algorithm computes a type that is at
least as general as x.

Lemma 6.6
If T', I , E' \- e: T' where E' = 5'OE and T', 2 I- 6': F, then there exist F and 5X such
that

(i) Dom(T) U FK(6) U
(ii) W3(F, 9, T, Z, £, e) = (K1; r i s 01; x j

(iii) £" = 5161£'
(iv) x' = 8101x1

(v) r .

Theorem 6.7 (Syntactic completeness and principal types)
If r , I , £ h e : T ' and E is closed, then W3(0,0,[ ],I.,E,e) = (F,T,0,x) and
Vare:ran.8x is a principal type of ew.r.t.E and £, where

fa) = FV(QT).

The restriction to closed environments is justified since class and inst declarations
cannot introduce free type variables into E.

7 A translational semantics

In this section, we present a semantics for Exell by translation to a suitable target
language. Our approach is based on the original compile-time translation scheme by
Wadler and Blott (1989), which was further developed by Hall, Hammond, Peyton
Jones and Wadler (1992). The basic idea is to eliminate classes in favour of run-time
method dictionaries that contain instances for particular types of the overloaded
functions associated with a class. An identifier given a polymorphic type scheme in
the original environment is typed as a function in the translated environment; the
translated type has dictionary arguments for each class that constrains a type variable
in the original type, and the result type of the function is the same as the original type.
The translation is type-preserving in the sense that every well-typed Exell program
translates to a well-typed target program.

7.1 Informal treatment of the translation

We first explain the translation informally by translating the second example in
section 3 into an implicitly-typed language with a Haskell-like syntax. As in the
original article by Wadler and Blott (1989), we declare a new type for each class
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declaration to represent the corresponding method dictionaries. In this case, we
introduce the type constructor KeyD corresponding to the class Key. All dictionaries
for this class are created using the value constructor KeyDict.

da t a KeyD a = KeyDict (a — > I n t )

The function ge tk selects from a method dictionary of type KeyD the (only) method
it contains:

ge tk (KeyDict g) = g

Each instance declaration of the class Key translates to the declaration of a method
dictionary of type KeyD. Corresponding to the instance Key I n t , we declare a
dictionary of type KeyD In t , and so forth:

keyDInt = KeyDict id

keyDBool = KeyDict (\x — > if x then 1 else 0)

keyDIntList = KeyDict length

An application of the function g e t key to a value translates to an expression
selecting the only method from a dictionary of type KeyD and applying that
method to the value. For example, the expression ge tkey [ 1 , 2 , 3 ] translates to
(getk KeyDIntList) [ 1 , 2 , 3 ] and evaluates to 3.

Existentially quantified type variables can occur in the component types of
algebraic data types. Furthermore, each existentially quantified type variable may be
constrained by one or more type classes. The functions required by these type classes
are implicitly bundled with the component values and are available when the
component values are accessed. This bundling is made explicit in the translation: each
type variable that is constrained by one or more type classes requires including one
or more dictionaries in the component type of the algebraic data type. In our
example, the type variable a is an instance of the class Key, hence the translated data
type KEY' contains a dictionary of type KeyD a in addition to the value of type a:

da ta KEY' = MakeKey' (KeyD a) a

Each application of the original value constructor MakeKey is translated to an
application of the new constructor MakeKey', and an appropriate method dictionary
is supplied as an argument:

hetList' = [MakeKey' keyDInt 5, MakeKey' keyDIntList [1,2,3],

Makekey' keyDBool True, MakeKey, keyDInt 9]

When a value of type KEY is decomposed, two components are available: a value of
some type t and a suitable dictionary of type KeyDt containing a function that can
be selected and applied to the value. This can be seen in the translated version of the
what key function:

whatkey' (MakeKey' keyDa x) = (getk keyDa) x

It is not surprising that our translation of the second example in section 3 almost
exactly results in the first example, where a method was provided explicitly as a
component of the data type.
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7.2 Finding a suitable target language

Translation into an ML-like language is insufficient since the dictionaries are passed
as function arguments but used polymorphically. The following Haskell program
illustrates this problem:

c l a s s C a where f : : a —> b — > (a, b)

h x = (f x 3 , f x True)

According to the original translation scheme (Wadler and Blott, 1989) used in Haskell
B. (Augustsson, 1993b), this program is translated to the following program with
explicit method dictionaries instead of classes:

h = \C - > \x - > ((f C) x 3 ) , (f C) x True))

The expression f C is component of the dictionary C corresponding to the overloaded
function f. The problem is that C is used in two different polymorphic instances!
Therefore the translated program cannot be typed in the ML system.

Hall et al. (1992) solve this problem by translating Haskell into the second-order
X-calculus. Similarly, we translate Exell into the language MPS, an implicitly typed
second-order ^.-calculus with existentially quantified and recursive types (MacQueen
et al., 1986), whose properties are summarised in Appendix B. Since the MPS type
system is semantically sound, we can prove semantic soundness of the Exell type
system by showing that our translation is type-preserving. We use MPS as our target
language instead of the (explicitly typed) second-order ^.-calculus for two reasons:
First, it directly supports existentially quantified and recursive types. Second, since it
is implicitly typed, it provides a concise notation and closely corresponds to the way
programs are executed in the sense that no type information is maintained at run-
time.

7.3 Formal aspects of the translation

In our translation scheme, we assume that the classes in a sort are always listed in the
same, fixed order, for example, in their order of declaration. A method dictionary for
a class C and a type constructor /is a single function Ct corresponding to the instance
function implementing the overloaded class function for that type constructor; in the
case of a parameterised type constructor, the method dictionary takes additional
dictionaries as parameters corresponding to the sorts of the formal type parameters.
The function dT(x, C) generates the method dictionary for type T and class C under
signature Z:

d1(a,C) = ac

dM^nl C) = Ct 4-K, CD... dz(xu Cl)... dx(Tn, Q")... dt{xn, C y where

(SJ = Domz(t, C) and St = {C[,..., C<(} for i = 1... n.

A class definition of the form classCisVorC.a gives rise to a corresponding type
definition C(a) = MPS(a). Thus we can type the dictionaries as
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Fig. 10. Translation rules for declarations.

The type translation function MPS is defined as follows, assuming S( = {C[,..., C'k(}
for i = 1... n:

^S;. T) = VS£. CtfcO - . . . - C^te) ̂ . . . -̂  Q J a J -...-> QB(O J
7T5;.T) = 3^.(^(01,) x ... x CJ/cO) x ... x (Qn(an) x ... x

C» («„)) x

n)) = [3fPS(Tn)\oJ (u(3....

MPS(x) = T for all other types x

The type translation function extends to environments as follows:

MPS(E) = [x:MPS(E(x))\xeDom(E)]

Thus, if an identifier x has the type Van: Sn. x in E, it has the type MPS(E)(x) =
MPS(Van:Sn.T) in the translated environment. MPS(Van:Sn.x) is a polymorphic
function type with parameter types Cj(oc() and the result type MPS(T); in the type
system of our target language, the parameters can again be used polymorphically.
Although the type translation function MPS does not appear explicitly in the typing
rules below, it captures the implicit types of the dictionaries generated by the
translation.

The syntax-directed translation scheme is integrated in the type inference rules. The
judgment T,I,,E\-p:x =>p states that the Exell program/? has type x and translation
p under the signature I and the assumptions in T and E. We now discuss the
translation rules in turn.

Figure 10 shows the translation rules for declarations. A data type declaration is
not translated at all. The overloaded function in a class declaration is translated to
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E(x) = Van:Sn.t T,Z\-x.: S,. S,. = [C\ Ck)
VAR : j

r,2, £ I- x : [TB/a l ^
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Fig. 11. Translation rules for expressions.
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Fig. 12. Translation rules for expressions involving existential types.

the identity function that receives and returns a method dictionary. An instance
declaration for a class C and a type constructor t is translated to a binding for the
corresponding instance function Ct.

Figure 11 contains the translation rules for Haskell expressions. Abstractions and
applications are translated to abstractions and applications of their translated
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subexpressions. An identifier is provided with method dictionaries for each class
required by the sorted type variables in its type scheme. According to the definition
of method dictionaries, a free variable in a type results in corresponding free
identifiers in the dictionary for that type. In a let-expression, any free identifiers that
arise from generic type variables in the translation of the bound expression are
captured by ^.-bindings.

Figure 12 gives the translation rules for Exell expressions involving existential
quantification and recursive data types. A value constructor K is translated to a
function that attaches the tag K to its component value; in addition, dictionaries for
the existentially quantified type variables must be grouped with the component value.
This technique has its analogy in object-oriented programming languages, where an
object includes a method dispatch table; in typical implementations, however,
references to dictionaries instead of copies of dictionaries are included in the objects.
An is-expression is translated to a function that inspects the tag of a pair. The
translation of a pattern-matching let-expression first requires the tag to be inspected;
then the method dictionary components are bound to identifiers for the instance
functions corresponding to the Skolem types; finally, the value component is bound
to the original bound identifier.

7.4 Type preservation and ambiguity

The type preservation theorem states that the Exell type system is sound w.r.t. is
translational semantics: every translation of a well-typed Exell program results in a
well-typed MPS program.

Theorem 7.1
If T, E, E \-p: x =>p, where Dom(T) = {aj and Tot, = {C[,..., Ok) for i = 1 ... n, then

FV(p) - FV(j>) = {ocft..., acj\...,<",..., *%} and

The practical implication of this result is that we do not need to carry around any
type information after the translation. Therefore, it is type-safe to evaluate the
translated programs in an untyped language. A similar theorem for Mini-Haskell was
given by Nipkow and Snelting (1991).

As in Haskell, there are terms in Exell that do not have a unique semantics. For
example, the term show (read " T r u e " ) either evaluates to the string " T r u e "
or fails, depending on the choice of the type of the subexpression read " T r u e " .
This problem is called (semantic) incoherence (Blott, 1991; Jones, 1993a; Thatte,
1994) and occurs when unbound method dictionaries are generated during the
translation. Our goal is to establish a simple syntactic criterium for typings leading
to a coherent semantics for a term. We observe that unbound method dictionaries in
the translation correspond to sorted type variables that do not occur in the expression
type or in the environment. Since no dictionary variables are ever generated for type
variables belonging to the empty sort 0 , only type variables in T that are not free in
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x or is can lead to incoherence. Following Blott (1991), we define {syntactic) ambiguity
for typings, type schemes, and environments:

Definition 7.2
A typing F,E,E\-p:x is unambiguous iff Dom(T) £ FV(x) U FV(E).

Definition 7.3
A type scheme a = Van: Sn. a', where a' = x or a' = n -»• T, is unambiguous iff

Definition 7.4
An environment £ is unambiguous iff £(;t) is unambiguous for all x e Dom(E).

Blott's (1991) coherence result states that a syntactically unambiguous typing leads
to a coherent semantics. In the presence of existential quantification, application of
a value constructor causes incoherence when there is a choice of possible
representation types that replace the corresponding existentially quantified type
variables. The representation types would then contain type variables that are
recorded in the sort context, but neither occur in the result type nor in the
environment. Thus, the incoherence would again be apparent syntactically. We
therefore expect Blott's result to extent to Exell, as expressed in the following
conjecture:

Conjecture 7.5
If £" is unambiguous, £ is coregular, and r,2.,E\— p:x is unambiguous, then for any
two translations F, S, EI— p: x => p1 and F, £, E I—p: x => p2, [p j = fpj with respect to
the semantics of MPS defined in Appendix B.

As pointed out by Jones (1993a), a significant limitation of his and Blott's work is
that their coherence results apply only to languages with a nonstrict or call-by-name
semantics. Jones suggests extending these results to languages with a strict or call-by-
value semantics by reworking them under an axiomatisation of equality suitable for
a strict semantics.

8 Conclusion and related work

We have demonstrated how type classes and existential types can be combined in a
functional language with a static, polymorphic type system and algebraic data type
declarations. Furthermore, we have given a formal type system and a type inference
algorithm for our language. Finally, we have presented a semantics via a type-
preserving translation of our extended language into an implicitly typed second-order
^.-calculus.

Perry (1990) was the first to address Hindley-Milner type inference for existential
types in the Hope + C system. We follow Perry in allowing existential quantification
in the component types of algebraic data types. There is a significant difference
between Perry's and our treatment of Skolem types. Following Mitchell and Plotkin
(1988), we require in the PAT rule that Skolem types do not escape the pattern-
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matching let-expression in which they are introduced. Perry, on the other hand, places
no restriction on his equivalent DES rule, but disallows any Skolem types in the result
type of a function in his ABS rule. His approach leads to a more restrictive system
in practice: it is not possible in Hope + C to define local functions that operate on the
internal representation of an abstract data type (see also the tree search example in
section 3). Cardelli and Leroy (1990) also describe a formal calculus that allows
Skolem types to escape the expression in which they are introduced when an
existential type is eliminated, provided that they do not escape the scope of the
(existentially typed) identifier with which they are associated. While their approach
requires restrictions in the type rules for constructs that introduce bound identifiers,
it does admit Skolem types in the result types of functions.

Laufer and Odersky (1991) employ Haskell type classes as interfaces of abstract
data types by using them to constrain existentially quantified type variables. By
applying their idea to existentially quantified type variables in the component types
of algebraic data types, we avoid having to include the operations on abstract data
types explicitly in the component types. Laufer and Odersky (1994) present an
extension of ML with existentially quantified types; in their language, as in Perry's
(1990), operations on abstract data types must be included explicitly in the
component types of algebraic data types. Following Cardelli and Leroy (1990),
Laufer and Odersky (1994) then describe a further extension of ML that allows
Skolem types to escape the expression in which they are introduced. If we drop the
class and instance constructs from our language and avoid overloading in the initial
environment, we obtain Laufer and Odersky's (1994) language as a special case.
However, the PAT rule in our type system is monomorphic to facilitate the proof of
soundness for our translational semantics, whereas the corresponding rule in their
system is polymorphic. While this condition is minor in practice, strictly speaking, our
system includes only a subsystem of theirs with a monomorphic PAT rule. We
conjecture that an extension of our system with a polymorphic PAT rule is still
semantically sound and expect to prove this in the future.

Chen, Hudak and Odersky (1992) present an extension of Haskell with
parameterised type classes. Jones (1993b) describes a related extension of Haskell
with type constructor classes. We plan to extend Exell analogously to obtain abstract
data types with parameterised interfaces.

Mitchell, Meldal and Madhav (1991) describe the possibility of treating Standard
ML modules as first-class values, but do not address the issue of type inference. By
hiding the type components of a structure, the type of the structure itself is implicitly
coerced from a strong (dependent) sum type to a weak (existentially quantified) sum
type. Harper and Lillibridge (1994), and independently Leroy (1994), further explore
this idea in a new treatment of the Standard ML module system. In their approach,
structures have weak sum types and act as first-class values. Thus stratification of
types into different universes of' small' types and' large' strong sum types is no longer
necessary. However, the module-based approaches are semantically complex and lack
support for type inference.

Statically-typed object-oriented languages such as C + + (Stroustrup, 1986) have
been successful at expression heterogeneous aggregates via extensible subtype
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hierarchies. However, most of these languages lack type inference and parametric
polymorphism. Furthermore, they do not support separate interface and im-
plementation hierarchies. Baumgartner and Russo (1994) propose a solution that
separates the two hierarchies in C + + . Since our work is based on type classes, it
provides a similar separation, but allows only a limited form of reuse at the
implementation level via conditional instance declarations, as illustrated in section 3.

Pierce and Turner (1993) describe an object-oriented language based on existential
quantification instead of recursive record types. Their language builds on an
extension of Fa to include subtyping and seems sufficiently powerful to model most
features in typical object-oriented languages, including reference to the methods of
the superclass and private instance variables, which are not supported in Exell.
However, their language is explicitly typed and highly complex; consequently,
algorithmic type inference is not considered.

Remy (1994) investigates the idea of object-oriented programming in an extension
of ML by modifying the type system to include recursive types, existential and
universal types, and mutable extensible records. His work supports single and
multiple inheritance and access to methods of the superclasses. However, unlike our
work, there is no support for an interface hierarchy; thus lists containing, for
example, both points and colour points cannot be built.
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Appendix A: Unification of types with sort constraints

We summarise Nipkow and Prehofer's (1993) results on unification of types with sort
constraints. An important difference in our work is that signatures are no longer fixed
since the body of a pattern-matching let-expression has to be typed under an extended
signature. Therefore, all functions depending on £ have to be parameterised by X.

We define the following generality ordering on context-substitution pairs:

(r,G) > ( r ' ,9 ' ) i f f r ' ,ZI -e : r and there is a substitution 5 such that 86 = 0'.

We can express sorted unification as unsorted unification plus constraint solving.
Given a coregular signature Z, this has the following form

unify^T,^ = x2) = l e t 6 = mgu(xl = x2)

r c = U constrained, Pa)
aeZ>om(8)

i n (rc U (r\Dom(Q)),Q)
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constrained, S) = [a: S]

constrain1(t(xJ,S) = [

515

zl,lSJ = |J

The following two theorems give a precise characterisation of those signatures that
allow principal types:

Theorem A.I
If £ is coregular, then unify^ computes a most general unifier.

Theorem A.2
unifyx is unitary iff £ is coregular.

Appendix B: The MPS polymorphic ^-calculus

MacQueen, Plotkin and Sethi (1986) give a semantics for an implicitly typed, second-
order polymorphic .̂-calculus based on order ideals over domains. The expression
syntax, the type syntax, and the type inference system of the language MPS a.re shown
in figure 13. The type con consists of all constructor tags K. Whereas the Exell
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Fig. 13. Syntax and type inference system of MPS.
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inference rules follow the expression syntax, the MPS inference rules follow the type
syntax; this facilitates the proof of Theorem 7.1. We allow the form let* = ^inej as
syntactic sugar for the substitution [el/x]e2-

The denotational semantics of MPS expressions is given as follows:

Mp = p(x)

[ee'Ip = ifee K-> Kthen(|[eIp)(Ie'Ip) else wrong

where p is an environment mapping identifiers to values. The denotational semantics
of MPS types is given by the ideal expressions corresponding to the syntactic type
expressions; for example, the semantics of universal and existential quantification is:

where vy is a type environment mapping type variables to ideals / over the domain D.
We define E = e:a to mean that for all p and \\i such that [x]pE[.E(jc)]|y for all

xeDom(E) we have [elpe[oj\|/.
MPS is semantically sound with respect to its type inference system; this is

expressed by the following theorem:

Theorem B.I
If E I—MPS e: a then E \= e: a.

This theorem says that if we can statically infer a type for an expression, then the
dynamic type of an expression is the same as the static type. Consequently, no well-
typed MPS expression evaluates to wrong.
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