
SIMULA Session

Chairman: Barbara Liskov
Speaker: Kristen Nygaard
Discussant: Ole-Johan Dahl

PAPER: THE DEVELOPMENT OF THE SIMULA LANGUAGES

Kristen Nygaard
Norwegian Computing Center and University of Oslo

Ole-Johan Dahl
University of Oslo

Preface

The organizers of this conference have told us that we should write at least 25 pages of
manuscript , but that we may produce as many pages more as we wanted. Perhaps they did
not envisage the possible consequences , but we have taken their words at face value.

This paper has implied a vast amount of work and archeological activities. We are grate-
ful to S I G P L A N for defining a task to which resources had to be allocated by our institu-
tions and which forced us to write down an account of our work from 1961 to 1971. While
we are writing this preface, those years are very much alive to us. We realize that we lived
through this period in a state of semimadness , a combinat ion of very hard work, frustra-
tion, and euphoria.

The observat ions which have impressed us most are:

that the results of the S I M U L A effort were completely dependent upon the joint beliefs,
work, ideas and advice of a very large group of people, and

that at many stages the whole effort continued just because of lucky circumstances.

Have we told the truth about S I M U L A ' s history? Yes, to our best knowledge, we have.
B u t - - h a v e we told the whole truth? No, we have not.

S I M U L A ' s history is intertwined with that of the Norwegian Computing Center. And

HISTORY OF PROGRAMMING LANGUAGES
Copyright © 1981 by the Association for Computing Machinery, Inc.
Permission for reproduction in any form must be obtained from Academic Press, Inc.
ISBN 0-12-745040-8

439

Kristen Nygaard and Ole-Johan Dahl

the emergence of NCC in the 1960s is an important part of the history of informatics in
Norway. It is too early to tell that history, but our professional society is now starting at
least to collect all the stories remembered. In this paper we are deliberately vague when
we want to avoid accusations against persons and institutions, and yet indicate problem-
atic situations.

In our time travel during the last few months, many of those involved have put their
memories at our disposal. We want to express our gratitude. In the actual writihg we have
been assisted by Birger MCqler Pedersen and Paul Wynn of the NCC, and the typing has
been very competently done by Lise Tschudi assisted by Eileen Schreiner.

1. Background

The development of the SIMULA I and SIMULA 67 languages was carried out at the
Norwegian Computing Center (NCC). The early background for the development is, how-
ever, our work at the Norwegian Defence Research Establishment (NDRE) in the 1950s.

KN started his conscript service at the NDRE in 1948 as assistant to Jan V. Garwick--
the father of computer science in Norway. Their first main task was to carry out resonance
absorption calculations related to the construction of Norway' s first nuclear reactor. After
extensive work had been invested in a traditional numerical approach, Monte Carlo simu-
lation methods (by "hand") were successfully introduced instead in 1949-1950. KN
headed the "computing office" until mid 1952, and then became a full time operational
research worker.

OJD joined the NDRE in 1952, also as a soldier doing his conscript service. Garwick
and his assistants had, since 1949, followed the development of electronic computers. A
BULL punched-card calculator had, in 1951-1953, been extended at the NDRE into a
card-programmed electromechanical computer. In 1954 it was decided that NDRE should
acquire a Ferranti MERCURY computer, then at the design and construction stage, and in
the following years the NDRE milieu developed basic software which was fairly advanced
for its time.

In the late 1950s, the NDRE milieu started work in language design, in which Garwick
and OJD were particularly active.

From 1956 on the operational research (OR) activities expanded rapidly. In the large
scale OR jobs, simulation once more turned out to be the only feasible tool for analysis of
sufficiently realistic models. Also, it became evident that no useful and consistent set of
concepts existed in terms of which the structure and interaction in these complex systems
could be understood and described. Since the task of writing simulation programs for the
MERCURY computer became important, the lack of tools for this task was a serious ob-
stacle.

In May 1960 KN left the NDRE to build up the NCC as a research institute in computer
science, operational research and related fields. Many of the civilian tasks turned out to
present the same kind of methodological problems: the necessity of using simulation, the
need of concepts and a language for system description, lack of tools for generating simu-
lation programs. This experience was the direct stimulus for the ideas which in 1961 ini-
tiated the SIMULA development.

NCC is a semigovernmental research institute, established in 1958, working within in-
formatics, operational research, numerical analysis, and applied statistics. The task of the
institute basically is to assist in disseminating new methods and tools in these fields to the

440 Part IX

Paper: The Development of the SIMULA Languages

user environment in Norway. In fulfilling this task, NCC is supposed to take on practical
jobs and to develop new knowledge through pure and applied research.

NCC is supervised by the Royal Norwegian Council for Scientific and Industrial Re-
search:The institute is funded by research contracts with customers and contributions
from the Research Council. Today (1978) approximately 60% of NCC's income stems
from customers, 40% from the Research Council. Of this 40%, 75% is grants to the insti-
tute's activities in general, and 25% (10% of the total) earmarked contributions to specified
research projects. The staff amounts to 76, of which 55 are research workers. The custom-
ers of NCC come from private commerce and industry, public agencies, other research
institutions, and (since 1971) trade unions. NCC has played an important part in the Nor-
wegian and later Scandinavian development of workers' influence on planning, control
and data processing systems.

2. SIMULA I

2.1. Early History

The ideas for a language which could serve the dual purpose of system description and
simulation programming originated at the NCC in the spring of 1961. The first written ref-
erence to SIMULA is found in a letter dated January 5, 1962, from KN to the French
operational research specialist Charles Salzmann (Nygaard, 1962a):

The status of the Simulation Language (Monte Carlo Compiler) is that I have rather clear ideas
on how to describe queueing systems, and have developed concepts which I feel allow a reason-
ably easy description of large classes of situations. I believe that these results have some interest
even isolated from the compiler, since the presently used ways of describing such systems are not
very satisfactory.

I hope that later developments, for which I have a number of ideas, will include e.g. stochastic
inventory situations amongst the situations which may be described by the language.

The work on the compiler could not start before the language was fairly well developed, but this
stage seems now to have been reached. The expert programmer who is interested in this part of
the job will meet me tomorrow. He has been rather optimistic during our previous meetings.

The naive optimism evidenced by this quotation was perhaps an asset. Had we at that time
known the magnitude of the efforts ahead, we had at least had a more difficult task in get-
ting the necessary resources for the project.

The "expert programmer" was of course OJD, who had been contacted by KN in De-
cember 1961 when the first set of apparently powerful ideas had appeared. Then it became
evident that the "SIMULA project" could only be carried out successfully if it combined:

experience in operational research, particularly related to large, complex systems of
many different kinds, with

experience and knowledge in computer programming language design and implementa-
tion.

OJD immediately got interested and participated in a long series of discussions with KN
during the spring of 1962. In May we felt that we had a language proposal which we could
present to other people. At that time OJD had become involved to such an extent that he

SIMULA Session 441

Kristen Nygaard and Ole-Johan Dahl

decided to leave NDRE for NCC. He started his work at the NCC in March 1963, after
having finished his current project at NDRE (implementing a homemade ALGOL-like pro-
gramming language).

In May 1962 Univac launched a big campaign for their new computers, the famous UNI-
VAC 1107 and the (now forgotten) UNIVAC III. KN was invited to join the "Univac Ex-
ecutive Tour" to the US, and accepted with the intention of reversing the sales mission by
selling SIMULA to Univac. To the surprise of all involved, both parties succeeded: The
NCC got a UNIVAC 1107 in August 1963. Univac and NCC entered a software contract,
and NCC had completed the SIMULA I compiler in January, 1965. The politics surround-
ing these events was complex, often tough, and gave some of those involved wounds
which were difficult to heal.

There was no initial enthusiasm for SIMULA in NCC's environment, and we were told
that:

1. There would be no use for such a language as SIMULA.
2. There would be use, but it had been done before.
3. Our ideas were not good enough, and we lacked in general the competence needed to

embark upon such a project, which for these reasons never would be completed.
4. Work of this nature should be done in countries with large resources, and not in small

and unimportant countries like Norway.

We had, however, the support of the board of NCC, and SIMULA was linked to the
acquisition of NCC's UNIVAC 1107 computer.

2.2. The Main Development Stages

The SIMULA I language went through four main stages:

1. The summer of 1961-the autumn of 1962: The initial ideas based upon a mathemati-
cally formulated "discrete event network" concept and a programming language reason-
ing which had no specific implementation situation in mind. The main references are a
working document (Nygaard, 1962b, in Norwegian) and the SIMULA presentation at the
IFIP World Congress in Munich, August 1962 (Nygaard, 1963a).

2. The autumn of 1962-September 1963: Development of the early approach, increased
flexibility introduced by the possibilities of ALGOL 60, at the same time restricted by the
assumption of SIMULA being implemented by a preprocessor to ALGOL 60 combined
with a "procedure package", The main references are Nygaard (1963d) and Dahl and Ny-
gard (1963), the latter being the language definition of the SIMULA I software agreement
between Univac and NCC (Agreement, 1963).

3. September 1963-March 1964: Decision to implement SIMULA I through a modifica-"
tion and extension of Univac's ALGOL 60 compiler, based upon a new storage manage-
ment scheme developed by OJD. The introduction in February 1964 of the "process" con-
cept, utilizing the new possibilities available. The main reference is Dahl and Nygaard
(1964a).

4. March 1964-December 1964: The implementation of the SIMULA I compiler. Minor
language modifications and extensions based upon implementation experience and pro-
gramming test cases. The main reference to the resulting SIMULA I language is Dahl and
Nygaard (1965).

442 Part IX

Paper: The Development of the SIMULA Languages

In this section we will describe the SIMULA I of stage 2 and its transition into the
SIMULA I of stage 3. The reasoning which motivated this transition and thus the final
SIMULA I language will be presented in Section 2.3.

Using the July 1963 paper (Nygaard, 1963d) as a platform, we find that the basic con-
cepts of SIMULA at that time were:

1. A system, consisting of a finite and fixed number of active components named sta-
tions, and a finite, but possibly variable number of passive components named customers.

2. A station consisting of two parts: a queue part and a service part. Actions associated
with the service part, named the station's operating rule, were described.by a sequence of
ALGOL (or ALGOL-like) statements.

3. A customer with no operating rule, but possibly a finite number of variables, named
characteristics.

4. A real, continuous variable called time and a function position, defined for all cus-
tomers and all values of time.

5. The possible sequence of positions for a given customer implied that a customer was
generated by a service part of a station, transferred to the queue part of another (or the
same) station, then to the service part of that station etc., until it disappeared by not being
transferred to another queue part by the service part of some station.

Since this structure may be regarded as a network, and since the events (actions) of the
stations' service parts were regarded as instantaneous and occurring at discrete points o f
time, this class of systems was named discrete event networks.

It should be noted that at this stage:

1. Each individual station had to be described by a declaration:

station (identifier); (statement)

the (statement) being single, compound, or a block.
2. Customers were declared collectively by

customer (customer list)

where the (customer list) elements had the format

(identifier) ((list of characteristics)) [(integer expression)]

the (integer expression) indicating the upper limit to the number of this type of customer
being present.

3. A system was declared by

system (identifier) := (station list)

where the elements of the (station list) were identifiers of stations.

The best way to give the reader a feeling for the language at this stage is to present some
fragments of an example--an "airport departure" model.

system Airport Departure := arrivals, counter,
fee collector, control, lobby;

customer passenger (fee paid) [500]; Boolean fee paid;

SIMULA Session 443

Kristen Nygaard and Ole-Johan Dahl

station counter;
begin accept (passenger) select:

(first) if none: (exit);
hold (normal (2, 0.2));
route (passenger) to:
(if fee paid then control else fee collector)
end;

station fee collector, etc.

The language elements "accept-select-if none," "hold ," and "route-to" describe the
nodes of the network and the interconnections. The syntax is that of ALGOL procedure
calls, but according to Dahl and Nygaard (1963) "these are not procedures in the strict
ALGOL sense Various details must be added behind the scenes by a preproces-
sor." For instance, the "hold" statement represented a time delay in the operation of the
station, which implied that control would have to leave the station and return to it at a later
time. Each new life cycle of a station would be started automatically at the appropriate
times.

At the next stage, March 1964 (Dahl and Nygaard, 1964a), the simple network idea had
been replaced by the more powerful concept of models consisting of interacting processes
operating in "quasi-parallel" (see Section 2.3.2). The processes were declared collectively
by activity declarations. At this stage the preprocessor idea had been abandoned, the lan-
guage would be implemented by extending the ALGOL compiler and changing parts of the
run time system (Dahl, 1963, 1964).

Process queues were now represented by explicitly declared ordered "se ts ." They were
manipulated by "wai t" and "include" statements and a special extract-select construct
which also made quantities declared local to the selected process, the "attributes," acces-
sible from the outside. Thereby processes were also data carriers, like the "customer"
objects one year earlier.

SIMULA begin comment airport departure;
set q counter, q fee, q control, lobby (passenger);

counter office (clerk); . . .
activity passenger; Boolean fee paid;

begin fee paid := random (0, 1) < 0.5; . . . ;
wait (q counter) end;

activity clerk;
begin
counter: extract passenger

select first (q counter) do
begin hold (normal (2, 0.3));

if fee paid then
begin include (passenger) into: (q control);

incite (control office) end

444 Part IX

Paper: The Development of the SIMULA Languages

else
begin include (passenger) into: (q fee);

incite (fee office) end;

end
if none wait (counter office);
goto counter

end

end of SIMULA;

Curiously enough the wait-incite operator pair makes our set concept of 1964 act as a
waiting mechanism not unlike the concept of condition variables introduced by Hoare for
process synchronization in monitors (Hoare, 1974). (Hoare never saw our paper.) Our op-
erator pair is analogous to Hoare ' s wait-signal.

At this stage all the major features of S IMULA I were present. Some important details
were adjusted, however, along with the language implementation. In order to increase
flexibility, sets were allowed to contain processes of different kinds, and process pointers
were introduced as explicit language elements. Consequently the mechanism for accessing
the attributes of a process had to be remodelled.

inspect (process reference)
when passenger do . . .
when staff do . . .
otherwise . . .

The incite operator was replaced by the more generally applicable construct

activate (process reference)

The SIMULA I compiler was finished at the end of 1964, and the language definition user 's
manual appeared in May the following year (Dahl and Nygaard, 1965).

2.3. The Development Process

2.3.1. System Description

From the very outset S IMULA was regarded as a system description language, as evi-
denced by the title of the IFIP 1962 Munich paper, " S I M U L A - - a n extension of A L G O L
to the description of discrete event ne tworks" (Nygaard, 1963a). The design objectives
were stated in Nygaard (1963d, pp. 2-3) .

1. The language should be built around a general mathematical structure with few basic con-
cepts. This structure should furnish the operations research worker with a standardized approach
in his description so that he can easily define and describe the various components of the system
in terms of these concepts.

2. It should be unifying, pointing out similarities and differences between various kinds of net-
work systems.

3. It should be directing, and force the operations research worker to consider all aspects of the
network.

4. It should be general and allow the description of very wide classes of network systems and

SIMULA Session 445

Kristen Nygaard and Ole-Johan Dahl

other systems which may be analyzed by simulation, and should for this purpose contain a general
algebraic and dynamic language, as for example ALGOL and FORTRAN.

5. It should be easy to read and to print, and should be suitable for communication between
scientists studying networks.

6. It should be problem-oriented and not computer-oriented, even if this implies an appreciable
increase in the amount of work which has to be done by the computer.

Two years later, in May 1965, the design object ives were restated in the S I M U L A I Man-
ual (Dahl and Nygaard , 1965, pp. 4 -5) :

1. Since simulation is the method of analysis most commonly to be used for the systems in
which we are interested, SIMULA is a dynamic language:

It is designed to describe sequences of actions, not permanent relationships. The range of varia-
tion in decision rules and interactions between components of systems is so wide that it is neces-
sary to let the language contain a general algorithmic language. An important reason why ALGOL
has been chosen is that its block structure is similar to what was needed in SIMULA.

2. SIMULA should be built around a few basic concepts, selected to provide the research
worker with a standardized approach to a very wide class of problems and to make it easy to iden-
tify the various components of the system.

3. Attempts have been made to make the language unifying--pointing out similarities and dif-
ferences between systems, and directing--forcing the research worker to consider all relevant
aspects of the systems. Efforts have also been made to make SIMULA descriptions easy to read
and print and hence a useful tool for communication.

4. Taking the above objectives into account, SIMULA descriptions (supplemented by the nec-
essary input, output and data analysis statements) should without any rewriting be able to pro-
duce simulation programs for electronic computers through compilers.

Comparing the two versions of the design objectives, it is seen that the three main differ-
ences are:

1. In 1963 S I M U L A was related to "d iscre te event network sys t ems . " In 1965 the term
" n e t w o r k " had disappeared.

2. In 1963 it was stated that S I M U L A "should be built around a general mathematical
structure with few basic concep t s . "

Also it was said in Nygaard (1963d) that " o u r present idea is that the first S I M U L A
compiler should be A L G O L - b a s e d , and A L G O L is used here. A later version may be
FORTRAN-based , using the same basic concep t s . " In 1965 S I M U L A ' s nature as a "dy-
namic language" (i.e. algorithmic language) and its relationship to the block structured
programming language A L G O L was strongly emphasized.

3. In 1963 it was said that S I M U L A "should be problem-oriented and not computer-
oriented, even if this implies an appreciable increase in the amount of work which has to
be done by the compute r . " In 1965 S I M U L A ' s problem orientation was still s tressed, but
its computer orientation was also underlined.

Let us examine the reasons for each of these modifications of the design objectives.
When we started the deve lopment of S I M U L A , we felt that we had a rather wide range

of sys tem examples available to test our ideas against. The situation was, however , that all
these sys tems could be conceived as consisting of components of two distinct kinds: per-
manently present active components , and a variable number of transient passive compo-
nents moving between and being a c t e d u p o n by the active ones. Such a sys tem could in a
natural way be regarded as a network.

First we observed that, e.g., the airport departure sys tem could be considered f rom a

446 Part IX

Paper: The Development of the SIMULA Languages

"dual" point of view: It could be described by active passengers, grabbing and holding the
passive counter clerks, fee collectors, etc. Then we realized that it was also possible to
adopt an "in-between" or "balanced" point of view: describing the passengers (custom-
ers) as active in moving from station to station, passive in their interaction with the service
parts of stations. These observations seemed to apply to a large number of situations. Fi-
nally, in our search for still wider classes of systems to be used to test our concepts, we
found important examples of systems which we felt could not naturally be regarded as
"networks" in the sense we had used the term (e.g., the "epidemic system" described in
Dahl and Nygaard, 1966.) The result of this development was the abandonment of the"net-
work" concept and the introduction of processes as the basic, unifying concept.

The second modification of the design objectives was related to the first. We no longer
regarded a system as described by a "general mathematical structure" and instead under-
stood it as a variable collection of interacting processes--each process being present in
the program execution, the simulation, as an ALGOL stack.

From then on the program execution, existing as a dynamic system within the com-
puter's store, became prominent in our discussions. Graphical representations of simpli-
fied (but structurally identical) versions of the program executions were used as models of
the systems described by the language. More and more our reasoning on language proper-
ties was related to desirable features of these model systems. (The textbook SIMULA
BEGIN is a later example of the systematic pedagogical use of such graphical models
(Birtwistle et al., 1973).)

It turned out that this approach was essential in the teaching of SIMULA I, and it was
an important mode of thinking when SIMULA 67 was developed and later taught. Instead
of deriving language constructs from discussions of the described systems combined with
implementation considerations, we developed model system properties suitable for por-
traying discrete event systems, considered the implementation possibilities, and then set-
tled the language constructs. An obvious consequence was that we abandoned the idea of
a FORTRAN-based version of SIMULA I (see Section 2.5). ALGOL's stack structure had,
in its generalized form, become an essential feature of SIMULA I and a main reason for its
s u c c e s s .

Finally, let us consider the modification of the 1963 design objective, that SIMULA
"should be problem-oriented and not computer-oriented, even if this implies an apprecia-
ble increase in the amount of work which has to be done by the computer." This design
objective caused much discussion and disagreement between us. But, as the language
gradually developed, we felt that the expected conflict between problem orientation and
computer orientation diminished and to some extent disappeared. Instead we often dis-
covered that, with the language approach chosen, good system description capabilities
seemed to result in a more simple and logical implementation. Another reason for the
modification was that we realized that the success of SIMULA would, regardless of our
insistence on the importance of problem orientation, to a large extent depend upon its
compile and run time efficiency as a programming language.

2.3.2. Storage Allocation

The initial plan was that the simulation facility should be implemented as a procedure
package and a simple preprocessor on top of ALGOL 60. One idea that looked promising
at the time came from the observation that ALGOL, by its recursive block mechanism,
did cater for multiple occurrences of user defined data structures rather like the "custom-

SIMULA Session 447

Kristen Nygaard and Ole-Johan Dahl

ers" that would go from one "stat ion" to the next in our simulation models. Also the sta-
tion descriptions had block format. It turned out, however, that the block structure of
ALGOL was not very helpful, in fact the preprocessor would have to fight against it by
breaking up the blocks, making local variables nonlocal, etc. There was no hope of inte-
grating special purpose operations like "hold (time interval)" completely into the lan-
guage, since it implied a kind of "parallel" processing foreign to ALGOL and conflicting
with ALGOL's strict dynamic stack regime of procedure calls and storage allocation.

During the spring of 1963 we became more and more convinced that the project was on a
wrong track, and started toying with the idea of making nontrivial changes to ALGOL by
breaking with the stack regime. Since that would have grave consequences for the storage
management of the ALGOL run time system, we had to dig from that end.

During the summer and autumn of 1963 a storage allocation package was designed,
based on a two-dimensional free area list (Dahl, 1963). The inner lists contained areas of
the same size, which we felt would be numerous in typical steady state situations; the
outer list contained the inner ones ordered according to area size. Each area had a "used"
bit in its first and last words to facilitate the recombination of neighbouring free areas.
Thus the system had stack allocation as a special case, and could at the same time utilize
the entire noncontiguous store of our computer.

With this solution to the storage allocation problem the search space for useful dynamic
structures was drastically increased, and in February 1964 the SIMULA process concept
was born, ranging from pure data structures to quasi-parallel ALGOL programs. Quasi-
parallel execution of processes implied that control would switch from one process to an-
other as the result of special sequencing statements such as "hold." Each temporarily inac-
tive process had a "reactivation point" (represented by a system variable local to the pro-
cess) which identified the program point where control should resume operations next
time it entered the process. With the new storage allocation package quasi-parallel se-
quencing statements could be allowed at arbitrary program points, e.g., inside procedures
called by the processes, since their data stacks could grow and shrink independently
(Dahl, 1964). Furthermore processes could be created and destroyed in arbitrary order.

2.3.3. Security and Consistency

During the summer of 1963 Bernard Hausner, then working at RAND Corporation,
Santa Monica, U.S., was employed by the NCC (see section 2.5). Hausner was one of the
fathers of SIMSCRIPT (Markowitz et al., 1963), and through him we got to know the SIM-
SCRIPT language and its implementation rather well. This was our first encounter with the
pointer concept in a high-level language. To some extent, however, our reaction to SIM-
SCRIPT can best be described as that of a "cultural clash." It helped to make an impor-
tant design goal conscious and explicit.

Our language had to provide programming "securi ty" to the same extent as ALGOL 60
itself: Any erroneous program must either be rejected by the compiler (preferably), or by
run time checks (if unavoidable), or its behavior must be understandable by reasoning
based entirely on the language semantics, independent of its implementation.

A main aspect of security was to achieve compiler controlled data access. As far as
processes only interacting through nonlocal data were concerned, the problem Was solved
merely by applying the usual ALGOL access rules, with user convenience and computer
efficiency thrown into the bargain (no subscripts needed to distinguish " m y " local vail-

448 Part IX

Paper: The Development of the SIMULA Languages

ables from those of other processes of the same kind). However , there was a need to ob-
tain access to the contents of an object from outside the object. In a model containing
" c us tomer s " and "c l e rks" the active agent would need access to its own data as well as
those of the partner during " s e rv i ce . "

The inspect . . . when . . . when . . . otherwise construct did provide the required
compiler control, at the expense of run time tests to determine the type of the inspected
object. However , the testing was turned into a potentially constructive language mecha-
nism, rather than unproductive run time checking. Compiler control required that outs'ide
access be limited to the outermost block level of a process. This had the advantage that a
process could prevent outside interference by hiding local data in inner blocks.

Another aspect of security had to do with de-allocation of storage. For reasons of imple-
mentation simplicity and efficiency one would like de-allocation to be explicit, say through
a " d e s t r o y " statement, or self-destruction by control going through process end. How-
ever, the only way this could be combined with security would have been a process re-
ferencing regime essentially ensuring one pointer at a time to any process. Unable to find
such a scheme providing sufficient programming flexibility we implemented a reference
count scheme, an idea borrowed from Weizenbaum (1962), and also added a " las t resor t"
garbage collector.

Automatic data retention was felt to be a fairly dangerous approach, in the sense that
bad programs might easily lead to the flooding of memory by useless data, the resulting
error message not giving many clues as to which pointers were responsible. To reduce that
danger we insisted that procedures and ordinary subblocks should be self-destructive on
exit, as they are in A L G O L 60. Combining these two different de-allocation strategies led
to two possibilities of conflict with respect to data accessing security.

1. A process could outlive its dynamic parent, i.e., the block instance containing the
generating expression which gave rise to the process. As a result the process might access
nonexisting data through its formal parameters. The remedy chosen was to forbid all kinds
of call by name parameters to processes (including procedures, labels, and switches), only
excepting arrays which had to be allocated as separate objects anyway. The restriction
was sometimes painful, but it did conform with the notion that a process breaks loose (be-
comes "de t ached") from its parent upon generation and starts a life of its own.

2. A process could outlive its textually enclosing block instance (by being pointed to by
data nonlocal to the latter), thereby accessing nonexisting nonlocals. A remedy was to
require that all processes be declared (by activity declarations) local to a special block,
identified by the prefix SlMULA.

S I M U L A b e g i n . . . e n d

Furthermore the SIMULA block must be the outermost one or must be embedded in an
ordinary A L G O L program. This latter requirement was enforced by the following com-
piler stratagem: the special S IMULA vocabulary was part of the compiler dictionary only
inside a S IMULA block, with the single exception of the word SIMULA; the latter was
removed from the dictionary inside a SIMULA block. (It would still be possible to have
dynamically nested instances of a S IMULA block, by embedding it in a recursive proce-
dure. But to our knowledge nobody has ever found a use for this construct , or even
checked that the compiler could handle it properly).

SIMULA Session 449

Kristen Nygaard and Ole-Johan Dahl

The SIMULA block would correspond to the simulation model as such. It was not un-
natural to require that processes, running in quasi-parallel, should also be declared "in
parallel" and as direct components of the model.

A final aspect of security concerned the ALGOL rule that the value of a variable is un-
defined upon declaration. With reference variables in the language (see below) it was very
clear that "undefined values" would have to be treated explicitly and cautiously by the
implementation. The best way we could find of combining reasonable efficiency with full
programming security was to revise ALGOL on this point and assign neutral initial values
to all variables. Fortunately this revision could not change the behavior of any correct
ALGOL program.

2.3.4. Process Referencing

The concept of "process sets" was planned to be a prominent feature of the language,
together with associated scanning mechanisms and with "selector expressions" as the
only means of process identification. In this respect we were influenced by the design of
SIMSCRIPT; certainly the term " se t " was borrowed from that language, in SIMULA I
meaning "ordered set of processes." It was questions of efficiency and algorithmic gener-
ality that made us abandon that approach and settle for "process pointer" as a basic data
type.

As the language and its implementation took form, efficiency issues came more into the
foreground. Not only should the language implementation be efficient, but the language
itself must be such that users were invited to make efficient programs. In particular all
built-in mechanisms ought to have execution times independent of model size.

One of our standard examples was a queue of high- and low-priority customers. Rather
than having any easy-to-use selector expression that would search the queue for a priority
customer, it would be better to maintain separate queues for the two kinds of customers.
Thereby customer selection would become independent of queue size.

Still, some kind of built-in list mechanism was required for queueing and similar pur-
poses, so an abstract ordered set concept was included as a second new data type, imple-
mented as two-way circular lists. It seemed attractive at the time to emphasize the "ab-
stract" nature of the set concept and enable processes to be members of arbitrarily many
sets at the same time. This could be achieved by using auxiliary "e lement" objects to rep-
resent a process in different sets. At the same time all process references were made
indirect through element objects by providing only "element pointers" in the language.
Thereby "successor" and "predecessor" functions could be implemented without im-
plicit searching.

No special scan/select mechanisms were included, except the natural extension of the
ALGOL for statement to control pointer variables. Unfortunately the ALGOL while con-
struct insists on advancing the controlled variable before testing it, which meant that the
"set head" had to come out into the open and make our sets look less abstract than we had
intended.

s e t S ; e l e m e n t X ; . . .

X := head(S);
f o r X := suc(X) while exist(X) do

inspect X when . . . do . . .

450 Part IX

Paper: The Development of the SlMULA Languages

Admittedly the inspect construction was a clumsy and fairly inefficient device for taking
brief looks at objects in passing. However, we rationalized by referring to the "invitation-
to-efficiency" principle: the clumsier the better, searching is abominable anyway.

In retrospect the introduction of "multimembership" sets was a mistake. First the
"se ts" were really process sequences allowing multiple process occurrences, whereas
simple process chains would have been more appropriate for most purposes. Second, nat-
ural abstract set primitives like P E S and S := S - {P} for given process P and set S
were not efficient operations for the chosen set representation. So, contrary to good
principles, functions like "member (P, S)," searching S for an element representing P,
found their way into the language as built-in procedures. Third, there was an ever-present
overhead in process referencing caused by the fact that all process pointers were directed
through separately allocated "element" objects.

2.3.5. Process Scheduling

If (avoidable) searching in space is bad, then searching for the correct point in time is
even worse. The May 1963 language specifications (Dahl and Nygaard, 1963) contain a
statement

PAUSE ((Boolean expression))

to that effect (awaiting the truth of the Boolean expression). The idea was quietly buried,
and we made do withpassivate, activate, hold, and cancel statements as described in Dahl
and Nygaard (1964a). There was direct activation for immediately invoking the next active
phase of a process, comparable to a procedure call and activation with time delay (includ-
ing hold) not unlike the CAUSE-AT mechanism of SIMSCRIPT.

A simple way to implement model time scheduling is to maintain a list of scheduled pro-
cesses sorted by time attributes. The list (we called it the "sequencing set," SQS) was
made to look like a generalized ALGOL activation stack by an invariant stating that the
currently operating process is at the end of the SQS. (And its time attribute is the current
model time). Admittedly scheduling with a time delay is then not an O(1) operation, and to
improve efficiency, the SQS was represented by a kind of binary tree (left heavy, postor-
dered). The tree preserved the order of elements with equal time values and had O(1) algo-
rithms for removal and for LIFO and FIFO insertion. Worst-case insertion was O(n), but
according to experiments (Myhrhaug, 1965), the "average" behavior was much better.

Recently the insertion algorithm was analyzed with respect to exponentially distributed
time delays (Jonassen and Dahl, 1975), and the average performance in that case was
found to be O((ln n)~).

The decision, made early 1964, not to include any mechanism for "interrogative se-
quencing" (Dahl, 1968b), was a fairly natural one at the time. It was based on considera-
tions of efficiency and ease of implementation, and on the growing conviction that the lan-
guage must give the user full sequencing control in order to be a sufficiently general
purpose modeling tool.

As a result of discussion with colleagues, especially those from the CSL group (Buxton
and Laski, 1962), it became clear that the case for interrogative sequencing was stronger
than we had originally realized (see, e.g., Blunden, 1968), compared to the "imperative"
sequencing of SIMULA (and SIMSCRIPT). The dilemma may be explained as a choice
between a statement

SIMULA Session 451

Kristen Nygaard and Ole-Johan Dahl

await ((Boolean expression))

in process P, and a passivate statement in P together with matching occurrences of acti-
vate P in other processes. Advantages of the former are:

I. It is obviously easier to use, and more self-documenting.
2. It leads to better program decomposition in terms of processes; process P is made

more self-contained.
3. Properly implemented it protects the user from making the error of forgetting neces-

sary occurrences of activate P. This kind of programming error is especially nasty since
the observable consequences are negative: events that should have happened in the model
do not take place.

Yet, we feel that our design decision was the right one, for the following reasons:

1. The notion of waiting until a given condition becomes true is not well defined within
the framework of quasi-parallel processes, since only one process may run at a time.
Thus, any realization can only approximate the idea, which means that sequencing deci-
sions that ought to be in the hands of the user, will have to be arbitrarily made by the
implementation. A "good" implementation is likely to be so complicated that the exact
model behavior is hard to predict from the program text in complex cases.

2. There is no a priori upper limit to the cost of executing an await statement. The cost
is likely to increase with the size of the model (as is true for searching in space too).

From 1 and 2 we draw the conclusion that interrogative sequencing should not be among
the language primitives. Whether it should be added as an auxiliary mechanism on top of
the language is perhaps a question of time, money, programming skill, and taste. Fortu-
nately one has learned to achieve program decomposition (cf. point 2 above) by isolating
sequencing strategies as separately verifiable class-like program components, repre-
senting such concepts as abstract resource schedulers, communication channels, or even
interrogative schemes. (Compare the monitor concept of Hoare (1974) for parallel pro-
gramming.)

Our attitude and feelings towards interrogative sequencing has been conditioned by ex-
perience and perhaps cultural factors. Two incidents from the year 1965 are worth re-
counting. At the IFIP Congress 65 in New York, May 24-29, 1965 (Nygaard and Dahl,
1965), we were able to show results from our first real-life simulation model (of a paper
mill lumbering yard). For the first time we could exchange information on typical simula-
tion execution speeds and found that SIMULA I's performance was very much better
than what a number of people in that audience were accustomed to.

Some of the first SIMULA programs written outside our center were part of Univac's
acceptance tests for our compiler. One of the programs, a model of the job flow through an
operating system, appeared to go into a tight loop. After running it for 15 minutes while
nothing happened we were convinced that another bug had been discovered in the run
time system. It turned out that the program was built around a loop of the form

wait: if nothing has happened then
begin hold (one drum cycle);
goto wait end

According to the program, the computer was switched on at 8 A.M., and the data provided
the first job arrival at 9 A.M. Since the drum cycle was 34 milliseconds, approximately

452 Part IX

Paper: The D~velopment of the SIMULA Languages

100,000 events had to be executed before anything happened. After some simple repro-
gramming a whole day's work was simulated in a few minutes of computer time, which
goes to show that the "invitation-to-efficiency" may well be turned down by language
u s e r s .

2.4. Relation to Other Languages

SIMSCRIPT was the only simulation language that we were closely acquainted with
during the design phase of SIMULA. From the preceding sections it will be evident that it
had a considerable impact through its list processing and time scheduling mechanisms. It
also contained a set of random drawing and other utility routines, which served as a model
for our procedure library. Information on GPSS (Gordon, 1962) was available to us
through IBM Norway, but the GPSS system looked more like a generalized simulation
model than a programming language. Consequently we did not study it very closely. Only
later did it occur to us that the "transactions" of GPSS could in fact be looked upon as
processes in quasi-parallel. Tocher's work on GPS (e.g., Tocher, 1963), gave us a greater
awareness of some of the practical considerations and difficulties of large scale simulation.
However, his system design appeared to be too specialized. SOL (Knuth and McNeley,
1964a, b) came to our attention too late (July 1964) to have an effect on our design, but we
were impressed with its beauty and realized that others before us had had the idea of
quasi-parallel processes in an ALGOL-like setting.

At the time when we offered our SIMULA introduction paper (Dahl and Nygaard, 1966)
to the ACM, October 1965, Don Knuth was serving as the programming language editor.
He wrote us a very generous letter, typical for him, which added to our pride and became
the starting point of a long and lasting friendship. Other good friendships resulted from
contacts and discussions with the CSL designers John N. Buxton and John Laski.

By far the most important language ancestor of SIMULA I is of course ALGOL 60 it-
self. Through its orthogonal design, concept economy, strictness of definition, and degree
of compile time error control it set a standard of quality that we could only hope to ap-
proach, but which was well worth striving for. The concept central to us was the dynamic
block structure. In retrospect the two main lessons were:

1. The distinction between a piece of program text and an execution, or "dynamic in-
stance" of it.

2. The fact that data and operations belong together, and that most useful program con-
structs contain both.

In ALGOL, blocks (including procedures) are seen externally as generalized operations.
By introducing mechanisms for quasi-parallel sequencing, essentially the same construct
could play the role of processes in parallel, and through mechanisms for naming block in-
stances and accessing their contents they could function as generalized data objects. The
essential benefits of combining data and operations in a single construct were already
there to be explored.

One result of this exploration was the discovery that "procedure attributes" might be
useful. The following example of a class of "abstract" car objects is quoted from the Lan-
guage Definition document (Dahl and Nygaard, 1965), Section 5.3:

SIMULA Session 453

Kristen Nygaard and Ole-Johan Dahl

activity car;
begin real V, Xo, To;

real procedure X; X := Xo + V * (time - To);
procedure update (Vnew); real Vnew;
begin Xo := X; To := time; V := Vnew end;

end;

The attributes X, V and update were used by a police survey process to enforce a speed
limit on a given road section. (It is perhaps a pity that the representation variables Xo and
To could not be hidden away in a subblock.) Another discovery was the fact that SIMULA
had become a powerful list processing language. A second example in the same document
defines a process for scanning the leaves of a tree, advancing to the next leaf with each
activation.

It should be mentioned that D. Ross, through his AED project (Ross and Rodriguez,
1963), independently and unknown to us had developed an ALGOL-like language also ex-
ploiting the idea of adding operators to data structures.

One factor which contributed to the comparative success of the SIMULA I project was
the fact that we had a good ALGOL compiler to start with. It had been developed at Case
Institute of Technology in Cleveland by J. Speroni, W. Lynch, N. Hubacker, and others.
They had extended the ALGOL language by a rather nice I/O system, including an elabo-
rate generalized parameter list mechanism. The compiler was finished and installed in
Oslo late spring 1964 (which was in the nick of time for our project schedule). Our imple-
mentation effort amounted to about one man-year's work on the run time system, includ-
ing built-in procedures, and one man-month for extending the compiler.

2.5. The Software Agreement between Univac and NCC

In the second half of May 1962, Univac arranged the "Univac Executive Tour." A
Douglas DC-8 was filled with prospective customers who were shown Univac's new
computers and production facilities. KN was invited to participate by Stig Walstam,
Director of Univac Scandinavia. KN came into contact with James W. Nickitas, then As-
sistant to Luther Harr,.director of Univac Europe. Nickitas was told about SIMULA and
also about another NCC software project: a linear programming package based upon a
new algorithm developed by Sverre Spurkland at NCC. Nickitas immediately arranged a
meeting at a hotel in New York for himself, KN, and three important people within Uni-
vac's software activities: Alvin M. Paster (Manager, Systems Research), his boss Robert
W. Bemer (Director, Systems Programming), and Bemer's boss, William R. Lonergan. In
the setting of the Executive Tour, a certain measure of polite interest was of course to be
expected. But Paster, Bemer, and Lonergan turned out to be really interested, both in
SIMULA and the LP package. (They knew that NCC recently had contracted a Danish
GIER computer and would not buy Univac equipment.) Bemer at once invited KN to pre-
sent SIMULA at the session which he was to chair at the IFIP 62 Congress in Munich.
When the Executive Tour arrived at St. Paul, KN was very impressed by the brand-new
UNIVAC 1107, and this both pleased Nickitas immensely (he was deeply in love with that
computer himself) and also gave him another idea which he started to work on.

On May 29 the Executive Tour had arrived in Washington, D.C. After a dinner at the

454 Part IX

Paper: The Development of the SIMULA Languages

Mayflower, Nickitas, who is of Greek descent, invited KN to a Greek nightclub. While
they were listening to bouzouki music, watching a beautiful belly dancer, Nickitas pre-
sented the following informal proposal: Univac needed in the near future a good UNIVAC
1107 demonstrat ion site in Europe. If NCC would be willing to provide Univac with
S IMULA and the LP package, Univac would be willing to sell the 1107 at a substantial
discount. When KN returned and told this story, most people raised serious doubts as to
the state of his mind. In the end of June, however , Luther Harr, Nickitas and Walstam
turned up in Oslo and presented the offer officially at a meeting with the NCC board. Dur-
ing the meeting, it became clear that Luther Harr either was in a very generous mood, or
he had not read his lesson sufficiently well and did not realize that S IMU LA and the LP
were to be a part of the payment for the 1107. KN then asked him if Univac was definite in
their decision to offer NCC a software contract for these items, and this was confirmed.
Nickitas was foaming, but could do nothing. Afterwards, Nickitas took the incident with
grace and became a very close friend of us as well as NCC. But Univac was from then on
not too happy when money was discussed in relation to SIMULA.

After a summer of intensive computer evaluation studies the GIER contract was can-
celled and UNIVAC 1107 purchased by the NCC. Alvin M. Paster became Univac 's man
in the subsequent software contract negotations. Univac 's letter of intent was dated Octo-
ber 12, 1962, and it also contained Univac 's first contract proposal (Paster, 1962). The con-
tract work was delayed because of the long communication lines (the contract was with
Univac headquarters, New York) and because NCC had internal troubles associated with
the very rapid expansion necessary to take over a large scale computer.

Another factor also complicated the picture: Univac decided to support an alternative
basic Software package for the 1107 ("Package B" as opposed to the original "Package
A") . KN was sent to the US in November 1962, as a representative for the European 1107
users to make an evaluation of the situation, which was critical also for SIMULA: what
would the quality be of the proposed new Package B A L G O L 60 compiler, to be devel-
oped at Case Institute of Technology in Cleveland? (The Package A A L G O L 60, later to
be dropped, was contracted from General Kinetics Inc.).

KN returned as a convinced Package B supporter, and had established very useful con-
tacts with Joseph Speroni and others participating in the Case A L G O L 60 project. In Los
Angeles he had lectured on S IMULA at the RAND Corporation and got Bernie Hausner
interested. Hausner was the chief implementor in the SIMSCRIPT team (Markowitz
et al., 1963). He was promptly offered a job at the NCC, which he later accepted, and ar-
rived on July 1, 1963.

At a meeting at NCC on May 2, 1963, Univac to our surprise confronted us with a pro-
posal for an extension of the contract: we should also implement a SIMSCRIPT compiler.
The reason was that Univac had met a US market demand for SIMSCRIPT. They did not
lose interest in SIMULA, but used Hausner ' s presence at NCC to force us into SIM-
SCRIPT as well, as an "initial s tep" towards implementing SIMULA. (It was believed,
also by us, that we could use important parts of a SIMSCRIPT compiler as a platform for
SIMULA.) Another awesome new person now also entered the scene: Mr. C. A. Chris-
topher, Univac 's Director of Procurement . We never met him, but his presence was very
much felt as the representative of the world of law, money and vast administrative hierar-
chies. Our first encounter with this new world was the first page of his contract text pro-
posal, where we read:

SIMULA Session 455

Kristen Nygaard and Ole-Johan Dahl

WITNESSETH:

WHEREAS, Univac desires to have a program developed and implemented which will solve
Linear Programming Problems, a Simscfipt Compiler developed and implemented, and a
SIMULA Compiler developed and implemented, all for a UNIVAC 1107 Computer System, and

WHEREAS, NCC is willing and able to design, develop, implement, check out and document
such aforementioned programs for the stated purposes on the terms and conditions hereinafter set
forth.

NOW, THEREFORE, in consideration of the premises and of the mutual convenants herein
contained, the parties hereto agree as follows.

The contract text was worked out and agreed upon. It specified Robert L. Hengen as the
Technical Supervisor and C. A. Christopher as the General Contract Administrator for
Univac, KN serving in both these functions for NCC. Hengen was, however, substituted
by Alvin M. Paster. Paster gradually got other responsibilities and Hengen returned in
February, 1964. The contract was dated June 1, 1963, signed June 1 by the NCC and July 3
by Univac (Agreement, 1963).

The SIMULA part of this contract clearly describes (in Article III B) the SIMULA
compiler as a preprocessor to the ALGOL compiler. It also has our language specifica-
tions of May 18, 1963 (Dahl and Nygaard, 1963) as an appendix, defining the SIMULA
language. It states that variations in the language have to be approved by Univac. The
payment was $35,000, according to a payment schedule which assumed that the SIM-
SCRIPT part of the contract should be completed first. It is also implicitly assumed that
the SIMULA compiler should be ready for acceptance tests by July 3, 1964 (366 days after
the contract was signed). The contract gave NCC 60 days maintenance responsibility after
it had been accepted by Univac, and it described the details of the acceptance procedure.

The SIMSCRIPT compiler was to be completed very quickly, in five months, for the
sum of $25,000. Already in August-September 1963 it became clear that it would not be
sensible to transform the SIMSCRIPT IBM 7090 compiler into an 1107 compiler. NCC
immediately told this to Paster during a visit at NCC late September, and Univac agreed to
terminate this section of the contract. During this visit Univac got our proposal of making
a SIMULA compiler with a new storage management scheme, and not only a preproces-
sor and procedure package in ALGOL. Communication between Univac and NCC was
problematic, and for various reasons our work was delayed. In February 1964 the terms of
the contract were modified (Christopher, 1964). SIMSCRIPT was officially terminated.
The delivery date was changed to January 1, 1965. The payment schedule was revised:
$33,000 had already been paid ($8000 for SIMSCRIPT), $20,000 was to be paid by March
31, 1964, and $30,000 was to be paid upon Univac's acceptance of the SIMULA and LP
products. (The main reference to the history of the contract work is Nygaard (1965a).)

In February 1964 the SIMULA language could be reconsidered with the freedom made
available by the new storage management scheme developed in the autumn by OJD. The
process concept was developed and reported in March (Dahl and Nygaard, 1964a). From
then on only minor language revisions were made.

A major problem encountered was the late arrival of the Case ALGOL 60 compiler (May-
June 1964) and the lack of suitable documentation, particularly relating to its interface
with the EXEC II operating system. Two American visitors during the summer of 1964
provided useful assistance in this situation: Ken Walter from Purdue and Nicholas Hu-
backer from Case. At the NCC Bjrrn Myhrhaug and Sigurd Kubosch were members of
the SIMULA team. The work during the summer and autumn went on with much effort

456 Part IX

Paper: The Development of the SIMULA Languages

and little drama. Progress reports were forwarded to Univac as before, but we only got a
reaction once (through a Telex) when we urgently requested an acknowledgment of the ar-
rival of our reports. Our impression was that the personnel with knowledge of the con-
tracts left Univac and did not inform those who took over their responsibilities. (We got,
however, the scheduled March 1964 payment of $20,000).

When the SIMULA I compiler was ready, on the date specified by the revised contract,
January 1965, Univac was notified, but we got no reaction. During our visit to the US in
May 1965, in connection with the IFIP 65 World Congress, we had a meeting with Ira A.
Clark (Technical Coordinator for Systems Programming, Univac, St. Paul) and W. J. Ray-
mond (Systems Programming Manager, Univac International Operations, New York).

Clark's attitude toward SIMULA was initially very negative, and for good reasons. It
turned out that he, who had got the responsibility for handling the contract, had never
seen our letter. Later on it was discovered, we were told, in an abandoned desk at the
Univac New York headquarters.

Clark later on was very helpful as our contact during the acceptance tests which fol-
lowed. Univac forwarded their test problems to be run in Oslo on October 27, 1965. On
January 10, 1966, a Telex informed us that Univac was accepting SIMULA I, and a letter
from Ira A. Clark (dated January 27, 1965) said

We have examined the results of test cases submitted as acceptance runs for the SIMULA com-
piler. In every case, the compiler performed successfully and useful results were obtained. The
personnel in the Center were very helpful in doing everything necessary to analyze our test cases,
insure the accuracy of our work, successfully compile these SIMULA tests, and provide helpful
comments and listing annotation of output.

SIMULA I was for some time Univac Category III Software. This implied that Univac
distributed the compiler, but NCC had the maintenance responsibility. When NCC had
completed a comprehensive technical documentation, SIMULA I was (in May 1967) made
Category I software. (NCC had a maintenance agreement with Univac until Univac
adapted the SIMULA I compiler to its EXEC-8 operating system).

In spite of our efforts, Univac had lost interest in our LP package, and a last letter from
C. A. Christopher (1965, Dec. 15) stated: "To date we have made payments to you of
$53,000. I realize that time and effort were put into the other projects but with negative
results. We feel that the total paid NCC to date represents full and adequate reim-
bursement for the SIMULA Compiler."

2.6. The Response to SIMULA I

At the NCC the use of SIMULA I for simulation programming started immediately and
spread rapidly. In 1965 three SIMULA I courses were given at NCC. The use of SIMULA
I up to December 1965 is reported in Nygaard (1965b). A later version of this report covers
the period up to June 1968 (Hegna et al., 1968).

A visit to Stockholm in February 1965 triggered offan important development. We were
lecturing three days at the Royal Swedish Institute of Technology and were pleased to
note the first day that two representatives from the big Swedish company ASEA seemed
to be very interested. The second day we were disappointed to find that the ASEA people
did not turn up. The third day they returned however, Niels Lindecrantz of A S E A bring-
ing an offer: ASEA would consider using SIMULA for a number of jobs if we were willing

SlMULA Session 457

Kristen Nygaard and Ole-Johan Dahl

to do a test job free of charge. We were requested to program and run a large and complex
job shop simulation in less than four weeks, with a simulation execution efficiency which
was at least four times higher than that job on the FACIT computers. We accepted, suc-
ceeded and got the other jobs. (A simplified version of this program is one of the main
examples used in Dahl (1968b).)

In addition to the money from Univac, NCC got a number of other benefits. Our Opera-
tional Research Department could take on jobs which otherwise would have been impossi-
ble to accept. Customers got important problems solved. The first SIMULA-based appli-
cation package, for simulation of logic circuits, was implemented (Stevenson, 1967). The
NCC developed international connections, and we got into direct contact with many of the
other research workers developing programming languages, particularly simulation lan-
guages, at the time. We had at an early stage ideas for using SIMULA I as a tool in real-
time programming, but these plans never materialized (Nygaard, 1963e, in Norwegian).

Burroughs was the first of the other computer manufacturers to take an interest in
SIMULA I, for two reasons:

the advocacy of Don Knuth and John L. McNeley, the fathers of SOL,
the general ALGOL orientation within the company.

In 1968 SIMULA I was made available to Burroughs B5500 users. The language was mod-
ified and extended, the reasons being discussed in a letter from John S. Murphy of Bur-
roughs, Pasadena (Murphy, 1968).

Another early interest in SIMULA I developed in the Soviet Union, reported in Ny-
gaard (1968b). The main center of activity was the Central Economical Mathematical In-
stitute of the Russian Academy of Sciences in Moscow (CEMI). The CEMI Computer Sci-
ence department was beaded by E. I. Yakovlev. KN was invited to the Soviet Union
twice in the summer of 1966, and gave one-week courses in Moscow, Leningrad, Novosi-
birsk, and some lectures in Kiev. A number of reciprocal visits resulted and a cooperative
agreement was in effect for some time. OJD and Myhrhaug lectured on SIMULA I and
SIMULA 67 implementation in Moscow, and a team in Yakovlev's department later im-
plemented SIMULA I on a URAL 16 computer. The project leader was K. S. Kusmin.
Implementation on the BESM 6 computer was discussed but never carried out. The SI-
MULA I manual (Dahl and Nygaard, 1965) was translated into Russian.

During the first years of SIMULA's life, the NCC had to do most of the teaching of the
language. We soon discovered that this was not a trivial task. As a result we developed the
pedagogical approach in which the process concept was the first one introduced, then the
reference ("element") concept and informal versions of the statements followed. Proce-
dures and formalized versions of the statements were introduced later. Graphical models
were used extensively (see Section 2.3.1).

Those familiar with FORTRAN very often had difficulties in unlearning that language.
Those familiar with ALGOL were better off, but still found it problematic to substitute
ALGOL's single-stack picture of the world with SIMULA's multistack picture. Quite
often the newcomers to programming seemed to absorb SIMULA faster than the oldtim-
ers.

When SIMULA I was put to practical work it turned out that to a large extent it was
used as a system description language. A common attitude among its simulation users
seemed to be: Sometimes actual simulation runs on the computer provided useful informa-
tion. The writing of the SIMULA program was almost always useful, since the develop-

458 Part IX

Paper: The Development of the SIMULA Languages

ment of this program (regarded as a system description) resulted in a better understanding
of the system. Semiformalized SIMULA programs, with the input, output, and data anal-
ysis statements omitted, proved to be useful in discussing the systems' properties with
people unacquainted with programming.

SIMULA was intended to be a system description and simulation programming lan-
guage. Some users discovered that SIMULA I also provided powerful new facilities when
used for other purposes than simulation. After the first introduction phase we became
more and more interested in this use of SIMULA I, and we soon discovered a number of
shortcomings within the language. The resulting discussions on the possible improve-
ments to SIMULA I in 1965-1966 initiated the development of SIMULA 67.

3. SIMULA 67

3.1. From SIMULA I to SIMULA 67

During 1965 and the beginning of 1966, most of our time went to using and introducing
SIMULA I as a simulation language. Tracing facilities were designed and implemented
(Dahl et al., 1966), but were never used very much (at the NCC). When the first large jobs
had been successfully completed and a number of users had learned the language, we be-
came more and more interested in the possibilities of SIMULA I as a general purpose pro-
gramming language. A first reference to a "new, improved SIMULA" occurs in a letter
dated September, 1965 (Nickitas, 1965). We explored SIMULA I's list structuring and
coroutine capabilities, the use of procedure attributes etc. Gradually we realized that a
number of shortcomings existed in the language.

1. The element/set concepts were too clumsy as basic, general purpose mechanisms for
list processing. Even for simulation modeling our experience showed that simple process
pointers might be better, combined with an inherent set membership capability of pro-
cesses, restricted to one set at a time.

2. The inspect mechanism for remote attribute accessing turned out to be very cumber-
some in some situations. (Try to compute X.A+Y.A using inspect statements.) Then
Hoare's record class proposal appeared (Hoare, 1965, 1966, 1968), which showed how full
security could be obtained in constructs like X.A by compile time reference qualifica-
tion, and how reasonable flexibility of run time referencing could be obtained by the idea
of record subclasses.

3. We were beginning to realize that SIMULA I's simulation facilities were too heavy a
burden to carry for a general purpose programming language. Certainly the multistack
structure was a big advantage, but quasi-parallel sequencing had many applications inde-
pendent of the concept of simulated time.

4. We had seen many useful applications of the process concept to represent collections
of variables and procedures, which functioned as natural units of programming although
they had no "own actions." It occurred to us that the variables of such an object could
play the role intended for the not very successful own variables of ALGOL 60, since they
survived individual procedure activations. In our experience, however, such data would
often be associated with a group of procedures rather than just one. The difficulties inher-
ent in the own variable concept were related to generation and initialization. However,

SIMULA Session 459

Kristen Nygaard and Ole-Johan Dahl

SIMULA objects were generated by explicit mechanisms, and initializing actions could be
naturally assigned as "own actions" of the object.

5. When writing simulation programs we had observed that processes often shared a
number of common properties, both in data attributes and actions, but were structurally
different in other respects so that they had to be described by separate declarations. Such
partial similarity fairly often applied to processes in different simulation models, indicat-
ing that programming effort could be saved by somehow preprogramming the common
properties. Parametrization could not provide enough flexibility, especially since parame-
ters called by name, including procedure parameters, had been banned for processes (for
good reasons, see Section 2.3.3). However, the idea of subclasses, somehow extended to
apply to processes, might prove useful.

6. We were itching to revise the SIMULA implementation. The Univac ALGOL com-
piler, although efficient for most ALGOL programs, was terribly wasteful of storage space
whenever the number of process activation records was large, as it would be in most simu-
lation models. This made memory space our most serious bottleneck for large scale simu-
lation. Jan V. Garwick, back from work in the US, had shown us a nice compacting gar-
bage collector (now well known, said to have been designed for the implementation of a
language called LISP 2). Some experimentation indicated that it was more efficient than
our combined reference count/garbage collecting scheme. Furthermore it could take ad-
vantage of active deallocation at exit from procedures and blocks, simply by moving the
free pointer back whenever the deletion occurred at the end of the used memory. Thus,
ALGOL programs could be run with hardly any overhead at all, and most SIMULA pro-
grams would benefit too.

Our discussions during the spring and summer of 1965 had been rather academic: what
should be revised if a revision was to be made. In the autumn of 1965 the Technical Uni-
versity of Norway in Trondheim contacted NCC and expressed its interest in implement-
ing a new ALGOL 60 compiler on the UNIVAC 1100 series. The possibilities of basing a
SIMULA compiler upon an ALGOL 60 compiler designed with SIMULA in mind seemed
attractive. From February 1966 the term "SIMULA II" started to appear in our corre-
spondence.

We started at that time a cooperation with a team headed by Knut Skog and Kristen
Rekdal at the Technical University. NCC's part of that work faded out from December
1966 onwards, when the SIMULA 67 ideas were developed. The compiler was completed
by the Technical University and marketed under the name "NU ALGOL."

This was the background for our language discussions during the autumn of 1966. All six
points listed above were motivating us, but in retrospect it appears that points 2 and 5 -
attribute accessing and common properties of processes--were the most important ones.
That is, important in the sense that our work to resolve these problems resulted in the
class/subclass concepts which structured the rest of the new language. The subclass idea
of Hoare (1968) was a natural starting point, but there were two difficulties:

1. We needed subclasses of processes with own actions and local data stacks, not only
of pure data records.

2. We also needed to group together common process properties in such a way that
they could be applied later, in a variety of different situations not necessarily known in
advance.

Much time was spent during the autumn of 1966 in trying to adapt Hoare's record class

460 Part IX

Paper: The Development of the SIMULA Languages

construct to meet our requirements, without success. The solution came suddenly, with
the idea of "prefixing," in December 1966. We were thinking in terms of a toll booth on a
bridge, with a queue of cars which were either trucks or buses. (This example reappears in
Dahl and Nygaard, 1968.) A "str ipped" list structure, consisting of a "set head" and a
variable number of "links," had been written down, when we saw that both our problems
could be solved by a mechanism for "gluing" each of the various processes (trucks,
buses) on to a "l ink" to make each link-process pair one block instance. Such a language
feature would not be difficult to implement. Now each of the processes in the example
would be a block instance consisting of two layers: A prefix layer containing a "succes-
sor" and "predecessor ," and other properties associated with two-way list membership,
and a main part containing the attributes of either a truck or a bus. In order to obtain
compiler simplicity and, at the same time, security in attribute referencing, it was neces-
sary that the two-layer property of these processes be known at compile time and that
the prefix and main part be permanently glued together into one block instance.

The syntax for this new language feature was easy to find. The "l inks" could be de-
clared separately, without any information about the other process classes which used link
instances as a prefix layer. Since the processes of these other process classes were at the
same time both "links" and something more, it was natural to indicate this by textually
prefixing their declarations with the process class identifier of this common property,
namely, " l ink." These process classes would then be "subclasses" of " l ink."

It was evident that when prefixing was introduced, it could be extended to multiple pre-
fixing, establishing hierarchies of process classes. (In the example, " ca r " would be a sub-
class of " l ink," " t ruck" and "bus" subclasses of "car . ") It was also evident that this
"concatenation" of a sequence of prefixes with a main part could be applied to the action
parts of processes as well. Usually a new idea was subjected to rather violent attacks in
order to test its strength. The prefix idea was the only exception. We immediately realized
that we now had the necessary foundation for a completely new language approach, and in
the days which followed the discovery we decided that:

1. We would design a new general programming language, in terms of which an im-
proved SIMULA I could be expressed.

2. The basic concept should be classes of objects.
3. The prefix feature, and thus the subclass concept, should be a part of the language.
4. Direct, qualified references should be introduced.

The development of the first SIMULA 67 proposal, based upon these decisions, is de-
scribed in the next two sections.

3.2. The Lysebu Paper

The IFIP Technical Committee 2 (on programming languages) had decided in the au-
tumn of 1965 that an IFIP Working Conference on simulation languages be held in Oslo in
the spring of 1967. The decision was the result of a proposal made by the Norwegian repre-
sentative to TC2, at the time, OJD. At New Year 1967 preparation had been under way
for more than a year, and the time and place of the conference had been fixed for May
22-26 at Lysebu, a resort in the hills outside Oslo. We naturally hoped to be able to com-
plete the design of our new language in time for the Lysebu conference. According to the
conference schedule, preprints of all papers were to be distributed to the participants at

SIMULA Session 461

Kristen Nygaard and Ole-Johan Dahl

the end of March. Consequently we were in a hurry, but fortunately the most difficult
work had already been done, and the initial version of the paper (Dahl and Nygaard,
1967a) was ready in time. We had a fairly clear idea of how to unify the old processlike
objects and the new concept of self-initializing data/procedure objects (Section 3.1, point
4), and at the same time remove the special purpose "model time" concept from the for-
mer. Since the term "process" could not apply to the unified concept, we introduced the
more neutral word "object" as a technical term.

An object would start its life like an instance of a function procedure, invoked by the
evaluation of a generating expression. During this phase the object might initialize its own
local variables. Then, on passage through the end of the object or as the result of a new
basic operation "detach," control would return to the generating expression delivering a
reference to the object as the function value. In the former case the object was "termi-
nated" with no further own actions, in the latter case it had become a "detached object"
capable of functioning as a "corout ine." The basic coroutine call resume ((object refer-
ence)) would make control leave the active object, leaving behind a reactivation point at
the end of the resume statement, and enter the reference object at its reactivation point.
(The Lysebu paper mentions a third primitive operation "goto ((process reference))"
terminating the active object, but on this point revisions were made later.)

A declaration giving rise to a class of objects might well have been called an object class
(in analogy with Hoare's record class). In choosing the shorter term class we felt that we
had a good terminology which distinguished clearly between the declared quantity (the
class) and its dynamic offspring (the objects). Our good intentions have not quite worked
out, however. Many users tend to use the term class, or perhaps class instance, to denote
an object, no doubt because object does not occur as a reserved word of the language. (As
an afterthought, around 1978, we might have insisted that all class declarations must be
prefixed, and defined a primitive outermost prefix object containing detach and resume as
local procedures. (See also Wang and Dahl, 1971.))

The idea of class prefixing and concatenation was the most important step towards our
goal. It had become possible to define classes primarily intended to be used as prefixes.
Our idea was that some of the special purpose concepts of SIMULA I could be expressed
by such "prefix classes" available to the programmer as plug-in units.

It was easy to describe "circular list processing" (like "se t s" in SIMULA I) by means
of a little class hierarchy for list elements (class link) and list heads (class list, later called
"head") , with a common prefix part containing forward and backward pointers. Now any
class prefixed by "link" would give rise to objects that could go in and out of circular lists,
using procedures like " in to" or " ou t " declared within its prefix part together with the list
pointers. The lists themselves would be represented as "l ist" objects, possibly augmented
by user defined attributes.

In order to explain the process concept as a prefix class it became necessary to extend
the concatenation mechanism slightly. The original rule was that the operation rule of a
concatenated class consisted of the operation rule of the prefix class followed by that of
the main part. For a process object it was necessary to have predefined actions both at the
beginning and at the end of its operation rule. So the prefix class had to be given a "split
body" whose operation rule consisted of initial actions and final actions textually sepa-
rated by a special symbol inner.

Now the task was simple. The prefix class was named "process ," which meant that the
term activity of SIMULA I would be represented by the much more descriptive term

462 Part IX

Paper: The Development of the SIMULA Languages

"process class." The Lysebu paper shows a class "process" containing a real variable
"evtime" representing model time, and a ref (process) variable "nextev" used to describe
the SQS as a one-way list of process objects. (In an actual implementation we intended to
use the logically equivalent binary tree technique, mentioned in Section 3.2.5). Obviously
the sequencing primitives of SIMULA I could be represented by procedures manipulating
the SQS, keeping it sorted with respect to evtime values, and passing control by resume

• operations. The "final actions" of a process were needed to remove the now dying object
from the SQS and pass control to its successor on the SQS. Now only two problems re-
mained: where to store the SQS pointer, and how to represent the "main program" of a
simulation model.

We had independently, while exploring the linguistic consequence of the prefix nota-
tion, considered block prefixes as a natural extension. The reason for this was the fact that
an ordinary in-line block could be viewed as the body of a very specialized anonymous
class. We were quite pleased to discover that this very idea had been used before, through
the ad hoc notation

SIMULA begin • • • end

of SIMULA I for making available the non-ALGOL simulation facilities.
Now everything fell into place. We only had to collect the various bits and pieces like

prefix classes, procedures, and nonlocal variables (the SQS pointer) into one big class,
appropriately named SIMULA and intended to be used for block prefixing. Its "initial ac-
tions" were used to initialize the SQS, containing a specialized process object impersonat-
ing the main program, whereupon control would proceed as it should: to execute the first
active phase of the latter.

One ad hoc rule was needed to make the whole thing run: "an instance of a prefixed
block is a detached object by definition." Thereby the main program could function as a
coroutine in quasi-parallel with its local process objects. (It was later discovered that this
effect could have been achieved in a somewhat more natural way (Wang and Dahl, 1971).)

It goes without saying that the class/subclass constructs had not been fully explored as
general purpose programming tools at the time of the first version of the Lysebu paper
(March 1967). However, the possibility of using class declarations to define "language dia-
lects oriented towards special problem areas" is pointed out, and so is the importance of
"making user defined classes generally available."

The generalization to hierarchies of "language dialects" was fairly obvious. In June
1967 the "SIMULA class" had been renamed and reorganized as a two level hierarchy,

class SIMSET, and
SIMSET class SIMULATION,

reflecting the fact that circular list handling could be useful for other purposes than simula-
tion modelling. (We never quite got rid of the term "se t " from SIMULA I.) This kind of
hierarchy points towards a technique of level-by-level bottom-up program design not un-
like that of Dijkstra in constructing his THE operating system (Dijkstra, 1968).

No mention of the class concept as an abstraction mechanism is made in the Lysebu
paper. It took several years of slowly growing understanding (see, e.g., Dahl, 1970; Dahl
and Hoare, 1972), until the fundamental difference between the internal ("concrete")
view of an object and an external ("abstract") one finally was made clear by Hoare (1972).

SIMULA Session 463

Kristen Nygaard and Ole-Johan Dahl

It is worth noticing that the Lysebu paper, as distributed prior to the conference, does
not mention the concept of virtual attributes. In fact, a preliminary version of that mecha-
nism was developed in April-May and is described in a paper dated May (Dahl and Ny-
gaard, 1967b), also available at Lysebu. The concept was discussed at the conference, and
a short section on virtuals has been added to the paper as it appears in the conference
proceedings (Buxton, 1968). (This conference report is still today quite refreshing read-
ing.)

We had seen that the class/subclass facility made it possible to define generalized object
classes, which could be specialized by defining subclasses containing additional declared
properties. However, the concatenation mechanism was not quite flexible enough for add-
ing details to the operation rules. Something like procedure parameters still seemed to be
needed for classes.

As discussed in Section 2.3.3 the ALGOL-like call-by-name parameters were out of the
question for reasons of security and storage allocation strategy: the actual parameter
could be lost during the lifetime of an object. The problem then was to find a name-param-
eter-like mechanism that would guarantee a safe place for the actual parameter. After
much trial and error we hit on the virtual quantity concept where the actual would have to
be declared in the object itself, but at a deeper subclass level than that of the virtual speci-
fication. Now generalized objects could be defined whose behavior pattern could be left
partly unspecified in a prefix class body. Different subclasses could contain different ac-
tual procedure declarations.

The implementation efficiency of virtual quantities was good, since no change of en-
vironment was needed to access a virtual from within the object. Unfortunately we chose
to model the virtual specifications after the parameter specifications of ALGOL, which
meant that the parameters of a virtual procedure had to be run time checked.

It has later been shown that virtual quantities make it possible to directly use class
hierarchies for top-down programming, but in a fairly clumsy way. Consequently this way
of using classes has not received much attention.

3.3. The Common Base Conference

As reported in Section 3.5 a SIMULA 67 Common Base Conference (CBC) was ar-
ranged June 5-9, 1967, at the NCC, two weeks after the Lysebu conference.

The following papers were submitted to the CBC:

1. The Lysebu paper (Dahl and Nygaard, 1967a, Mar.),
2. "SIMULA 67 Common Base Proposal" (Dahl and Nygaard 1967b, May), and
3. "Proposals for Consideration by the SIMULA 67 Common Base Conference" (Dahl

and Nygaard, 1967c, June).

The most controversial subject discussed at the CBC was what we called "in-line" dec-
larations. We had realized that the indirect naming of objects through reference variables
often represented wasteful overhead for the programmer as well as the program execution
(not to speak of the garbage collecting effort). It would be useful to have a direct naming
mechanism, in fact treating objects as ("in-line") compound variables. The Common Base
Proposal, Section 8.3 reads:

464 Part IX

Paper: The Development of the SIMULA Languages

8.3 In-line declarations

8.3.1 Syntax

(in-line object) ::= (identifier) (actual parameter part)

(in-line declaration) :: = (class id) (in-line object)[

(in-line declaration), (in-line object)

8.3.2 Semantics

A class identifier, underlined, may be used as a declarator. The identifier of a declared (in-line
object) is a qualified ref variable, initialized to refer to a generated object of the stated class, and
with the given actual parameters.

Assignment to the variable is not allowed. (Procedure declarations local to the class may be
used to simulate en-bloc assignment of attributes.)

The implementor has the option to represent the declared variable by the associated object it-
self, rather than by the associated ref value.

(The important problem of reference variables elsewhere in the system pointing to an in-
line object was not mentioned. To allow that would have grave consequences for the gar-
bage collector.)

The proposals of (2) were, however , to be replaced by a set of much more ambitious
proposals, (3), intended to unify the concepts of " c l a s s " and " t y p e . " These ideas were to
some extent inspired by discussions at the Lysebu conference, and in particular the papers
of Garwick (1968) and McNeley (1968). (Actually the paper presented to the CBC was an
iteration of (3) produced during two hectic days and nights prior to the CBC. This paper
has been lost.) Essentially the proposals were as follows:

1. Let C be a class identifier. Then

def(C) V (actual parameter part)

is a declaration which defines a variable named V of " t y p e " C.V is an (in-line) object of
class C initialized according to its operation rule and the actual parameter part. Thus, the
above declaration is comparable to

ref(C) X; followed by X := new C (actual parameter part)

except that the latter generates an "off - l ine" object. The types C and ref(C) are distinct
and an operation like X := V is therefore illegal. An ad hoc restriction on the class body
(that it must contain no occurrence of the reference expression "this C") ensures that no
reference values pointing to an in-line object can ever occur. Given a reference value X of
type ref (C) to an object, then " X . " is an expression of type C denoting that object. (Since
it is mentally difficult to distinguish correctly between a reference to, or "n am e o n , " a
thing and the thing itself, we felt there should be a notational difference forcing the pro-
grammer to precise thinking.)

2. Each basic type is a predefined class with local data and procedures defined outside
the high level language. There is a one-to-one correspondence between operator symbols
and a certain preselected set of identifiers (such as " b e c o m e s , " "p lu s , " grea ter ," etc.).
Thus a declaration line "integer a" means

def(integer) a;

SIMULA Session 465

Kristen Nygaard and Ole-Johan Dahl

where "integer" is a predefined class. And a statement like "a := b*c+d" means

a.becomes(b.times(c).plus (d))

where the closing parentheses are positioned according to operator priority, and the iden-
tifiers refer to procedures local to the class "integer." A consequence of this transforma-
tion rule was that operations such as : =, =, +, etc., would be available for a user defined
type if and only if the class body contained procedures with the corresponding names.

3. Whenever a formal parameter is specified to be of type C, a corresponding actual
parameter must belong to C or to a subtype (subclass) of C. This proposal opened up for a
lot of interesting possibilities such as introducing side effects to assignment operations on
variables belonging to subtypes of the basic ones (McNeley, 1968), without changing their
meaning as operands in basic type expressions. It also made it possible to unify the con-
cepts of function procedure and prefixed class; an instance of the procedure would be an
object whose prefix part played the role of the function value.

No doubt the above proposals were prematurely presented. Although the final proposal
document has been lost, we are sure that we had not managed to work through all the
consequences for the language and its implementation during the two short weeks avail-
able between the Lysebu conference and the CBC.

Anyway, we made a valiant attempt to get our new proposals accepted by the CBC, but
failed. The parties who had committed themselves to implementing the new language felt
they were too complicated and cautiously rejected them, (NCC, 1967). We were in no po-
sition to overrule these parties. It was crucial for the continuation of the whole SIMULA
67 effort to get at least one major manufacturer (in this case Control Data, see Section 3.5)
to commit itself to implementations. Unfortunately the simpler proposal of (2) was swept
aside too.

The concept of virtual quantities was thoroughly discussed by the CBC. The discussion
led to an interesting and nontrivial improvement of our own proposal. By a slight change
Of the binding rule for actuals it became possible to redefine previously bound virtuals. An
actual declaration provided at a deep subclass level of an object would have precedence
(throughout the whole object) over definitions at more shallow levels. This meant added
flexibility in designing application languages. "Default" actuals for virtual procedures,
provided at an application language level, now were replaceable in user defined sub-
classes. For instance, default error printouts might be replaced by corrective actions ap-
plicable in user defined situations.

One beauty of the principle of required qualification of references lies in the fact that it
solves completely, at least for disjoint classes, one of the problems of language consis-
tency discussed in Section 2.3.3. No object can lose its textual environment by active de-
letion of block/procedure instances, because any reference to an object must occur within
the textual scope of the object class declaration and is therefore embedded in that environ-
ment.

However, in order to utilize the full capabilities of class concatenation it was deemed
necessary to allow prefix sequences to cross block levels. In particular, predefined classes
declared nonlocally to a user program, must be available for prefixing within the program.
But then consistency is lost, since an object belonging to a local subclass may lose part of
its textual environment if pointed to by a nonlocal reference. In order to prevent this phe-

466 Part IX

Paper: The Development of the SIMULA Languages

nomenon we had to devise an ad hoc rule restricting reference assignments (and class pre-
fixing), the so called "Rule R" (see, e.g., Dahl and Nygaard, 1967d), Section 4.1.2:

A reference assignment is legal only if the left hand quantity is declared within the scope of the
class qualifying the fight hand side and all its subclasses, scopes defined after effecting all concat-
enations implied by class and block prefixes.

(It must be admitted that the wording of this rule is more compact than understandable).
The rule would (as far as we know !) restore full security and consistency, even if unquali-
fied references were allowed. However, it was very unnatural, too implicit, and therefore
very difficult to grasp, to observe, and to enforce. A simpler rule of "same block level,"
called "Rule S ," was apparently too restrictive:

All classes of a prefix sequence must belong to the same block head (which may be that of a
concatenated class or a prefixed block). Qualification is required for all references.

These matters were discussed by the CBC, but no recommendation was given, except
to forbid unqualified references. Soon afterwards it occurred to us, however, that the es-
sential capabilities of the prefixing mechanism could be salvaged and full security retained
by applying the Rule S to class prefixes, but not to block prefixes. Sufficient flexibility
could now be obtained by embedding predefined classes in a textually enclosing class C,
say, (also predefined). Now these classes could be made available for class prefixing in
any desired block head by prefixing that block by the class C. Since that technique would
be the standard way of implementing application languages in any case, we were fairly
happy. Still, there are situations in which Rule S is a nuisance.

Our various proposals to the CBC contained nothing about string handling and input-
output. The CBC unanimously stressed the importance of having such facilities included
as well defined parts of a "Common Base Language." Consequently a working group was
established consisting of members of the implementation teams and persons from the
NCC. One hoped that the class/subclass concept might lead to fruitful constructs. The
proposals of the group should be submitted for approval to the "SIMULA 67 Standards
Group" (see Section 3.5), which was also established by the CBC. Of the remaining re-
corded decisions of the CBC (NCC, 1967) one notes a recommendation on the syntax of
"external class" declarations (for the inclusion of separately compiled classes). Every-
thing considered, the CBC played a very constructive role dunng the birth of SIMULA 67.
Among other things it helped the first implementation efforts to get off the ground by re-
jecting our premature proposals. However, if the CBC had been delayed a couple of
months, SIMULA 67 might well have contained a general type concept. As an immediate
follow-up of the CBC we produced a document called "The SIMULA 67 Common Base
Definition," dated June 1967 (Dahl and Nygaard, 1967d), which, except for the missing
string and I/O facilities, gives a surprisingly accurate description of the language as it
exists today. In the preface are listed those whom we felt at that time had given us useful
advice: C. A. R, Hoare, Jan V. Garwick, Per Martin Kjeldaas, Don Knuth, John Buxton,
John Laski, Pat Blunden, and Christopher Strachey.

The Rule S, which later was made part of the Common Base, is mentioned as an "op-
tional restriction." The introduction of the document refers to plans for a "full SIMULA
67 language," as opposed to the Common Base, which would contain a unification of the
type and class concepts. But this dream was never to be realized.

SIMULA Session 467

Kristen Nygaard and Ole-Johan Dahl

3.4. The SIMULA 67 Common Base.

According to the CBC the SIMULA 67 Common Base (SCB) had been frozen in June,
except for string handling and I/O facilities. The responsibility for the latter was assigned
to a working group reporting to the SIMULA Standards Group (SSG). In actual fact a few
adjustments were made to the SCB during the autumn of 1967, along with the development
of the new facilities. But all decisions and proposals were made in contact with the imple-
mentation teams headed by P. M. Kjeldaas in Oslo and J. Newey in Paris (see Section
3.5).

At NCC BjOrn Myhrhaug was given responsibility for the development of the string and
I/O proposals. Myhrhaug had for a long time been most useful as a partner in the imple-
mentation work and as a "sounding board" in our language discussions. Now he became a
member of the design team and thus a co-author of SIMULA 67.

In October Myhrhaug had his first string handling proposals ready (Myhrhaug, 1967b).
There were three alternatives, two of which introduced in-line strings of compile time de-
fined lengths as a new primitive type. We rejected both of them for two reasons: insuffi-
cient flexibility, and the fact that they were based on concepts unrelated to those of the
SCB.

The third proposal was based on classes and a new basic type character . There were
two classes, "string descriptor" and "string," the latter containing a character array, the
former identifying a substfing of a string object and a "scan pointer" for sequential char-
acter access, together with various operators declared as procedures. We felt that these
constructs would provide good flexibility and could be implemented with reasonable exe-
cution efficiency, also on computers without direct character accessing capability. The
price was a certain amount of overhead in run time data structure, and a syntactic over-
head which was unacceptable. The latter could, however, be alleviated by defining" string
descriptor" as an "in-line object type" using operator notation for operations like "be-
comes" and "equal ." True enough, this new construct could not be defined within the
SCB, but it was consistent with our (still evolving) plans for a "complete" SIMULA 67
with classlike types. The new type was later called tex t in order to avoid confusion with
ALGOL's string concept.

The input-output facilities were in some ways easier to design. The proposals con-
verged on a hierarchy of classes corresponding to different kinds of files. (However, some
details in the "printfile" class kept worrying the SSG for several years.)

The first meeting of the SIMULA 67 Standards Group was held in Oslo, February 10,
1968. The last of a series of proposals by Myhrhaug (1968) was presented at the meeting,
together with recommendations by the Working Group. The proposals were approved
(SIMULA Standards Group, 1968), and the NCC was instructed to "provide a new
SIMULA 67 Common Base Definition paper within 6 weeks." The NCC actually worked
twice as long to produce it. The first complete and authoritative Common Base Definition
is dated May 1968 (Dahl et al., 1968a).

It so happened that the first batch of the new SCB documents came out of the printing
mill the day before the ten-year anniversary conference for ALGOL in Zurich. Myhrhaug
arrived late for the conference with 45 kg overweight baggage and reported difficulties in
passing the customs control. The inspector had become very suspicious when, on opening
one of the books, his eyes fell upon the following example (Dahl et al., 1968a, pp. 22-27):

c l a s s h a s h i n g ; v i r t u a l : p r o c e d u r e h a s h ; . . .

468 Part IX

Paper: The Development of the SIMULA Languages

One adjustment to the old SCB, approved by the February meeting of the SSG, deserves
to be mentioned, since it is related to basic ways of thinking of objects, values and refer-
ences. We had discussed during the summer of 1967 whether references were so different
from other kinds of operands that they needed a special set of operator symbols. The an-
swer had been a tentative "yes, perhaps," but the possible gain in clarity had not seemed
important enough to warrant the expense. Faced with our new text type the old question
appeared in a new light. A text could either be thought of as a string descriptor ("text
reference") or as a character sequence ("text value"), and we needed some notation for
distinguishing between them. The operators , = = , " and " = / = " were chosen for
reference assignment and reference equality/inequality, respectively. It was then natural
to apply these operator symbols to object references as well. A similar distinction was
made between parameter transmission "by reference" and "by value." This had only
syntactic consequences for the old SCB, since an object transmitted by reference is the
same as an object reference transmitted by value.

At the beginning of 1968 we regarded the Common Base as a statue with one leg miss-
ing. Our plan was to "complete" the language and provide an experimental in-house Uni-
vac implementation by extending the Common Base compiler now in progress on our
UNIVAC 1107 (Nygaard, 1967). We were now thinking in terms of class declarations giv-
ing rise to in-line references to off-line objects, and analogous " type" declarations giving
rise to in-line objects. (text could be seen as a type prefixed by a class, whose objects were
references with additional descriptive information.) Some of our views at the time are ex-
pressed in a letter from OJD to Tony Hoare (Dahl, 1968a).

We had had some correspondence with Hoare during the preceding autumn, and
through him we had seen some of his correspondence with Niklaus Wirth. This contact
had been very stimulating and refreshing. We invited Hoare and Wirth to a three day
meeting, February 4-6 , to discuss types and classes (Nygaard, 1968a). We also wanted to
consult them on our string handling and I/O proposals, about to be submitted for approval
by the SSG. They kindly accepted our invitation, and we had a series of discussions which
were very useful to us, since they clarified our own thoughts considerably. It turned out
that their views and ours differed so much (Wirth, 1968) that we could not follow their
advice in specific matters (which implies that neither of the two is responsible for any
shortcomings of SIMULA 67's text and I /O facilities).

One concrete result of the meeting was that the while statement of PASCAL was in-
cluded in the Oslo compilers and later proposed as a "recommended extension" of the
SCB. It is now a part of the SCB.

The Common Base paper consumed most of our time during the spring. From the sum-
mer of 1968 on there were no resources for a continuation of work on the "complete
SIMULA 67." OJD moved to the University of Oslo, KN had to concentrate on
"SIMULA politics," and the implementors had enough problems to cope with within the
Common Base.

3.5. The Fight for the SIMULA 67 Compilers.

Fairy tales end with the heroine getting her prince, and everybody (except the witch)
living happily ever after. As language designers we often feel that people believe that one
has "succeeded" and that a language "exists" as soon as it is defined, and that the subse-

SIMULA Session 469

Kristen Nygaard and Ole-Johan Dahl

quent implementation is a mere triviality, even if time consuming. The implementors very
often are only briefly mentioned in a preface to some report.

In fact it is when the language is reasonably well described and thus the implementation
task defined, that the main, tedious, and frustrating part of the struggle for a language's
existence really starts. The actual writing of compilers is one aspect of this struggle. To
obtain the resources necessary for this work is another aspect, to establish an organiza-
tional f ramework for distribution, maintenance, language standardization and develop-
ment, is a third aspect. Finally, a fourth one is to make the language known and used.

We believe that these aspects of the histories of the various programming languages are
usually quite dramatic and very often without a happy ending. We also suspect that this is
the case even when large, powerful organizations are involved.

In the case of S IMULA 67 very scarce resources were at hand. The NCC is a small
institute in a small country, without a worldwide organizational network to support its ac-
tivities. We are not presenting the true history of S IMU LA 67 unless we tell this second
part of the story, at the same time mentioning a few of those who contributed to S IMULA
67's survival.

S IMULA I was originally only considered as a system description and simulation lan-
guage, not as a general programming language. S IMU LA I was implemented for UNIVAC
1100 series computers , later on also for Burroughs B5500 and U RA L 16.

Our ambitions for S IMULA 67 were much higher: we wanted S IMULA 67 to become
an "exis t ing" general programming language, "ex is t ing" in the sense that it was available
on most of the major computer systems, being used over a long period of time by a sub-
stantial number of people throughout the world and having a significant impact upon the
development of future programming languages. We felt, of course, that S IMU LA 67 was
worth fighting for. What were our resources?

In 1968 NCC entered a difficult reorganization period. (The NCC is described in Section
1). From 1963 on NCC had been operating a UNIVAC 1107 and acted also as a computer
service bureau. Now the 1107 was sold, and NCC was itself to become a user of other
organizations' computers. A number of employees associated with our function as sup-
plier of computing power left the institute. Even if NCC now was supposed to focus upon
research and development work, large new long-range projects were not particularly pop-
ular in this turbulent period.

As mentioned earlier, the S IMULA I ideas were not received with enthusiasm in NCC's
environment. The reception of S IMULA I in the professional world had made it difficult to
maintain that the language was a poor one and its designers incompetent. This time it was
stated (without any knowledge of the new language) that

1. Obviously S IMULA 67 was a wonderful language, but
2. Programming languages would have an average life time of about five years. Conse-

quently, S IMULA 67 should not be implemented by NCC unless we could be certain of
covering the total expenses by sales income over a five year period.

We were convinced that the language situation would be different in the coming decade
from what it had been in the previous one. Nei ther users nor computer manufacturers
would be willing to accept a stream of new languages. Also, in the research world it would
be demanded that what had been achieved in the sixties should now be consolidated and
evaluated through practical use of the most advanced high-level languages which had been
developed.

470 Part IX

Paper: The Development of the SIMULA Languages

We felt that in the next decade a large number of languages would cease to "exis t ," and
that only about a dozen would survive: COBOL and FORTRAN because of conservatism
and the colossal investment in programs written in these languages, PL/ I because of IBM
support, and then, at a lower scale of usage, some ten other languages. We wanted
SIMULA 67 to be in that group.

SIMULA I had been developed during NCC's expansion years in the early 1960s,
within KN's research department, established in 1963 and named the "Department for
Special Projects." This department consisted in 1967 of six persons, the total staff of NCC
being about 120 persons at that time.

Even if KN had a decisive influence on the work in the department, it was not possible
to allocate more than at most four persons to SIMULA 67 implementations, and not possi-
ble to get additional resources from other departments unless such implementations were
set up as projects intended to be profitable from a strictly economic point of view.

Another argument against SIMULA 67 implementation projects was a valid one, but
greatly exaggerated: A modern, commercial compiler would require investment on a much
greater scale than the SIMULA I compiler, and we were told that IBM was using about
five hundred man-years on their PL/ I effort. We realized that our objectives for SIMULA
67 would require much larger resources than SIMULA I, but could not accept that this
should rule out SIMULA 67. (We often quoted the story about the two businessmen de-
bating whether to locate an important software project in the US or in Europe, the ques-
tion being settled by the remark: "We have to locate the project in Europe, since in the US
it is not possible to put together a sufficiently small team.")

To sum up: our resources in manpower and money were very modest, and we had to
provide economic arguments for the implementations of SIMULA 67. We had other re-
sources, however: the reputation of SIMULA I, and the fact that SIMULA was linked to
ALGOL 60. Simulation was becoming more and more important, and in Europe people
started asking for SIMULA when computer purchase contracts were negotiated.

We had defined our objective as making SIMULA 67 a member of the small group of
programming languages which in ten year's time would still "exis t" in the sense defined
earlier. Obviously, we had very great odds against us, and we had to plan very carefully.
Some aspects of our strategy and tactics will be described below.

In practice, the language could be regarded as "existing" only if implementations of a
high standard were available on the most important computers. In our environment that
implied giving top priority to implementations on Control Data, IBM and Univac com-
puters.

By "high standard" we understood:

I. Compilation and run time execution speeds comparable with the most efficient
ALGOL 60 compilers.

2. Availability of comprehensive and well written documentation and educational ma-
terial.

3. The existence and effective operation of distribution and maintenance organizations
for the compilers.

We also felt, based upon the fate of ALGOL 60, that the implementations should be com-
patible as far as possible, and continue to be so. This implied:

1. String handling and input/output facilities should be defined as a part of the SIMULA
67 language.

SIMULA Session 471

Kristen Nygaard and Ole-Johan Dahl

2. The establishment of an organization which had the exclusive power to state what
was "legal SIMULA 67" and adopt changes to that SIMULA 67. This organization had to
be set up to provide conservatism, but also such that its members had genuine common
interests in the spreading and development of the language.

Compatibility considerations also were important in other respects. Should SIMULA 67
contain ALGOL 60 as a subset? We disagreed with some basic design features of ALGOL
68, and compatibility with that language was ruled out. We also doubted that ALGOL 68
would be accepted by a large proportion of the ALGOL 60 user community and we felt
that we could improve certain features of ALGOL 60 in SIMULA 67. On the other hand,
ALGOL 60 is a beautiful language and the advantages of staying compatible were indeed
very great. We decided that the possibility of running ALGOL 60 programs on SIMULA
67 compilers and of "growing" from ALGOL 60 to SIMULA 67 would attract many
ALGOL 60 users. We needed their support, even with the limited size of the ALGOL
community, and made only small modifications in the ALGOL 60 part of SIMULA 67.

A minor, but not unimportant point was the name of our new language. SIMULA is an
abbreviation of "simulation language," and very obviously so. The new language was a
general, high-level programming language and a system description language. In the short
run the language would benefit from a name presenting it as an improved version of the
simulation language SIMULA. In the long run the SIMULA name possibly might slow
down the language's acceptance as a general purpose language. We decided that we were
forced to give priority to the short term advantages and named the language SIMULA 67.
Today the language suffers from the predicted long range effects.

In the spring of 1967, we did the basic groundwork in the design of the SIMULA 67 run-
time system features. At the same time Control Data decided that they wanted SIMULA
implemented both on their 3000 and 6000 series of computers because of customer de-
mands. Among the customers were the Kjeller Computer Installation [KCIN, serving the
Norwegian Defence Research Establishment (NDRE)] and the University of Oslo.

Negotiations between NCC and Control Data (acting through Control Data Norway)
were started on March 1, 1967, and a contract was signed on May 23, 1967 (Agreement,
1967). According to this contract and discussions with Control Data:

1. Control Data intended to implement SIMULA 67. The 6000 series compiler would be
implemented by Control Data, Europe. The 3000 series compiler would be implemented
by KCIN.

2. At the insistence of Svein A. 0vergaard, director of KCIN, a firm "SIMULA 67
Common Base" language definition should specify what was to be implemented. A
SIMULA Common Base Conference should meet "within the first ten days of June 1967."

3. A new organization named the "SIMULA 67 Standards Group" (SSG) was to be
established. Eligible for membership of the SSG would be organizations which were re-
sponsible for development and/or maintenance of SIMULA 67 compilers. NCC would be
an ex officio member and have the right to veto decisions in the SSG. Control Data should
apply for membership. (The statutes of SSG are found in Statutes, 1967.)

4. NCC would provide SIMULA 67 implementation guidance to Control Data.

This was the initial platform for the SIMULA 67 implementation efforts. In June the Uni-
versity of Oslo, through its Computer Department headed by Per Ofstad, joined the

472 Part IX

Paper: The Development of the SIMULA Languages

project. The 3000 series work was carried out in a cooperation between KCIN ("upper"
3000 series) and the University ("lower" 3000 series).

In order to make the initial and basic definition of SIMULA 67, named the "SIMULA
67 Common Base Language", and to set up the SSG, the "SIMULA 67 Common Base
Conference" convened at the NCC in the period June 5-9. Present at the conference were
representatives from Control Data, KCIN, people from the University of Oslo, and some
individual computer scientists invited by the NCC. The conference succeeded in making
the necessary basic decisions, deferred certain decisions for further study, and established
the SSG, with Control Data and NCC as the initial members, KN being the first chairman.
(Today the SSG has ten member organizations representing active implementations).
Some of the decisions at the conference were rather important and have been discussed
earlier in this paper.

The real freezing of SIMULA 67 happened during the autumn of 1967. Formally the
freezing was achieved by decisions made at the SSG meeting in Oslo on February 10, 1968
(see Section 3.4).

We also planned from the outset that an "Association of SIMULA Users" (ASU)
should be the framework for contact between the end users of SIMULA and for channel-
ling their demands and complaints to the SSG and its members (having compiler mainte-
nance responsibility). The ASU was established five years later, in September 1972, with
Robin Hills being Chairman the first two years. ASU has since then had annual confer-
ences and a series of workshops on a wide range of issues. (The first conference was in
Oslo, the second in Monte Carlo). The present active membership is approximately
500.

The last element of the organizational strategy was the SIMULA Newsletter. After a
few abortive attempts (NCC, 1968b) the Newsletter has been published regularly by the
NCC since May 1972 and is now distributed to approximately 1000 subscribers. The rea-
sons for the delays in setting up the ASU and the Newsletter were simple: we had to econ-
omize carefully with our scarce manpower resources and we did not get SIMULA users in
any quantity until 1971.

In the beginning of 1968 the SIMULA 67 Common Base Language was quite well de-
fined and the initial stage of the organizational plan in operation. Later on that year OJD
became the first Professor of Informatics at the University of Oslo. He participated in the
Control Data 3000 series implementations, but was mainly absorbed by the task of build-
ing up informatics at the University of Oslo. Also, in the beginning of 1968, the "battle for
the compilers" started and lasted till the summer of 1969 when it was finally decided that
NCC should implement and market SIMULA 67 on the IBM 360/370 computers and com-
plete and market SIMULA 67 for the UNIVAC 1100 series computers.

The Control Data projects started in 1967 and were carried out in Paris under the direc-
tion of Jacques Newey (6000 series). In Norway the two 3000 series implementations were
run as a joint KCIN/University project under the direction of Per Martin Kjeldaas of
KCIN. There was some contact between the Oslo and Paris teams. In Oslo the work on
the lower 3000 series compiler was pushed ahead, since the test facilities were better at the
University. Both compilers were, however, ready in the spring of 1969 and turned out to
satisfy the "high standard" criteria for efficiency stated earlier.

The Norwegian teams had some financial support from Control Data Europe. In return
Control Data Europe obtained the right to use and distribute the 3000 series compilers.

SIMULA Session 473

Kristen Nygaard and Ole-Johan Dahl

The University and KCIN had maintenance contracts for their respective compilers. The
3000 series team directed by Kjeldaas consisted of Dag Belsnes, Ole Johnny Dahle,
Oivind HjartOy, Oystein Hope, Ole Jarl Kvammen, Hans Christian Lind, Amund Lunde,
Telje Noodt, Tore Pettersen, and Arne Wang.

At the NCC the situation was more complex. When the class/subclass concepts were
invented, SIMULA 67 emerged and the "SIMULA II" ideas were dropped. Our work in
the Department for Special Projects in 1967 and early 1968 was, in addition to the language
definition, mainly directed towards the development of the basic design of SIMULA 67
compilers. We were always running implementation studies in parallel with the language
design. A concept was not incorporated in the language until we had a sensible way of
implementing it. One of the few exceptions was the "type proposal" (Section 3.3). A re-
sult of this work was the "SIMULA 67 Implementation Guide" (Dahl and Myhrhaug,
1969). This report contained the results of a quite substantial investment and was regarded
as a commercial secret until it was released in 1971. The report was sold as a part of
NCC's consultancy contracts with SIMULA 67 implementors. [See KN's letter to Hoare,
then working at EUiott-Automation Computers Limited, dated November 3, 1967, for
conditions offered (Nygaard, 1967).]

Bjorn Myhrhaug, Sigurd Kubosch, Dag Belsnes, and OJD were active in these design
studies. Gradually Sigurd Kubosch (originally from Germany) became more and more in-
volved with the UNIVAC 1100 series compiler, later on joined by Ron Kerr (from Scot-
land), and they did the main bulk of work on that implementation.

Kubosch and Kerr worked mostly alone and without the major support which the IBM
compiler project later received. Their task was made even more difficult because NCC
changed from using UNIVAC 1107 (with EXEC II) to UNIVAC 1108 (with EXEC 8) in
the middle of the project. A first, rather restricted version was ready in the summer of
1969, being released to Univac, St. Paul, for evaluation purposes and to the Technical
University in Trondheim. The compiler was gradually extended and improved. When it
was clear that we had a marketable product, and that we had to market it ourselves, we
were able to allocate Kubosch and Kerr to write comprehensive documentation. There
had been no resources for that earlier. The first commercial delivery of the UNIVAC 1100
series SIMULA System took place in March 1971 to the University of Karlsruhe, West
Germany.

In the spring of 1968 it was made clear to us that NCC could only support the production
of Univac and IBM SIMULA 67 compilers if we could establish a financial arrangement
which secured NCC the same payoff on these products as on our strictly commercial
projects. Preferably, NCC should not run any economic risk.

The financial pressure was brought to bear upon SIMULA 67 at a time when NCC, as
mentioned earlier, had large reorganizational problems. From a narrow SIMULA 67 point
of view this was a lucky circumstance, since the insistent pressure was never followed up
by administrative decisions. Time passed by and in the summer of 1969 the work on the
Univac compiler and the support for the IBM compiler had developed to a stage beyond
"the point of no return."

In the autumn of 1968 Harald Omdal was employed by NCC to assist KN in finding
suitable financial arrangements for the two compiler projects. Omdal, former director of
the Joint Computing Center of the four largest Norwegian commercial banks, was working
as a private consultant. After initial work by Omdal on designing alternatives, he and KN

474 Part IX

Paper: The Development of the SIMULA Languages

visited in the spring of 1969 a number of large Scandinavian companies to obtain their fi-
nancial partnership in the production of an IBM 360/370 compiler. We got a pleasant re-
ception, interest in later use of SIMULA 67, and some, but not many positive responses.
We were not too surprised. Why should these companies pay in advance for something
they could get without risk later? The whole idea of this type of project support had to be
abandoned.

We also contacted IBM in Norway and Sweden. Both IBM and we were rather careful
in these discussions. IBM wanted to support advanced national programming research in
Scandinavia. To accept SIMULA 67 as an IBM-supported language would, however, be
a major decision with far-reaching economic implications. Such a decision could only be
made at IBM headquarters in the U.S. On our side, we were afraid of giving IBM control
over the 360/370 compiler because of the risk of the language and its compiler being put on
the shelf.

The results of these contacts were in the end positive and very important. IBM agreed
to support the project by granting NCC a very substantial amount of computer time for
developing and testing the compiler (40 hours on a 360/75 in Stockholm and 200 hours on a
360/40 in Oslo).

The event which finally triggered off the IBM compiler project occurred in the summer
of 1969: the Swedish Agency for Administrative Development (Statskontoret) decided,
with the support of the Swedish Defence Research Establishment, to participate in the
project through two highly qualified programmers. Jacob Palme played an important role
in this decision. The IBM 360/370 SIMULA 67 compiler project was headed by Bj0rn
Myhrhaug, and the team consisted of Lars Enderin and Stefan Arnborg (from the Swedish
Defence Research Establishment), and the NCC employees Francis Stevenson, Paul
Wynn, Graham Birtwistle (all from the United Kingdom) and Karel Babcicky (from
Czechoslovakia). When Myhrhaug got a leave of absence, Babcicky was project leader for
a period. Myhrhaug also was coordinator for both the Univac and IBM projects, being
succeeded by Birtwistle. The first public release of the IBM compiler took place in May
1972 (to the governmental data center in Stockholm).

Univac had mixed reactions towards SIMULA 67. From a commercial point of view
SIMULA I was a useful but not very important part of their software library. They felt no
market demand for an improved language and, in particular, no reason to share SIMULA
with other manufacturers From a professional point of view, however, many within Uni-
vac were actively interested in getting SIMULA 67. A long series of discussions and con-
tract negotations with various Univac agencies followed, but a contract was never signed.

We think it can be safely said that the UNIVAC 1100 series and the IBM 360/370 series
compilers both satisfy the criteria for "high standard" described earlier. It is interesting to
observe that they were developed in two completely different ways. The two-man UNI-
VAC ll00 series compiler team worked their way with little support, using a long time,
and were asked to provide comprehensive documentation at a late stage. The seven man
IBM 360/370 series compiler team worked in a well supported and carefully planned
project, documenting as they went along. The end result was that both compilers proved
efficient and successful and both consumed approximately 15 man-years. Our initial esti-
mate had been 8- l0 man-years, assuming no suitable ALGOL 60 compiler available (Ny-
gaard, 1967). We underestimated to some extent the design and programming work and to
a great extent the documentation effort.

SIMULA Session 475

Kristen Nygaard and Ole-Johan Dahl

At the NCC a team of four persons, headed by Karel Babcicky, is now constantly em-
ployed in handling our SIMULA activities. For many years Eileen Schreiner has been our
"SIMULA secretary" keeping all threads together and serving on the board of the ASU.

We have mentioned that the attitude toward SIMULA I and SIMULA 67 was rather
negative in certain parts of NCC's environment. In other parts of that environment,
among professional people, the attitude has been mainly positive. Within the NCC itself,
SIMULA has had wholehearted and generous support. The period in which (in our opin-
ion) too shortsighted economic considerations threatened the development was quite
brief, atypical and had its reasons. Anyhow, an institute organized as the NCC is forced to
take economics into account, and the compiler projects represented in the years 1968
-1971 a significant economic burden for the institute.

Has SIMULA 67 then been an economic success or a failure for the NCC? That is a
difficult question to answer, since it is not easy to measure the economic side effects of the
SIMULA efforts. The experience gained has been the platform for later, straightforwardly
profitable jobs, e.g., other language projects. SIMULA itself has made it possible to do
jobs within operational research and data processing which otherwise would have been
much more costly or beyond our capabilities. The international acceptance of SIMULA 67
has contributed to the Institute's reputation. In direct money terms, SIMULA 67 has not
produced a profit. On the other hand, distributed over the eleven years since 1967, serious
losses have not been incurred.

Today it is generally accepted that SIMULA has been a worthwhile effort, both for
NCC and its environment. We have since then, in 1973-1975, developed a new type of
language--a pure system description language--called DELTA (Holb~ek-Hanssen et al.,
1975), starting from the SIMULA platform. From DELTA we are now deriving a new sys-
tems programming language, called BETA (Kfistensen et al., 1977) in cooperation with
research workers from the Universities in Arhus and Alborg in Denmark. Whereas
DELTA cannot be compiled, BETA of course can. Will the NCC embark upon the imple-
mentation of BETA, having had the SIMULA experience? This remains to be seen.

4. Concluding Remarks

The organizers of this conference have suggested that we should discuss our own lan-
guages' "implications for current and future languages." We find this difficult because of
our personal involvement and think that other research workers are better judges on this
subject. However, we are in the lucky situation that we may refer to Peter Wegner's re-
cent article, "Programming Languages--The first 25 years" (Wegner, 1976), which con-
tains many comments on SIMULA 67. Instead, we would like to conclude our paper with
some reflections on our experiences from the process of developing a programming lan-
guage.

In the spring of 1967 a new employee at the NCC in a very shocked voice told the
switchboard operator: "Two men are fighting violently in front of the blackboard in the
upstairs corridor. What shall we do?" The operator came out of her office, listened for a
few seconds and then said: "Relax, it's only Dahl and Nygaard discussing SIMULA".
The story is true. The SIMULA 67 language was the outcome of ten months of an almost
continuous sequence of battles and cooperation in front of that blackboard--interrupted
by intervals when we worked in our neighboring offices (communicating by shouting
through the wall if necessary) or at home. (The people arranging this conference asked us

476 Part IX

Paper: The Development of the SIMULA Languages

to provide material relating to the development of our respective languages. We felt that
the best thing we could have done was to bring along that blackboard. But we did not
know for certain whether we would be flying a wide-body aircraft.)

In some research teams a new idea is treated with loving care: "How interesting!,"
"Beautiful!." This was not the case in the SIMULA development. When one of us an-
nounced that he had a new idea, the other would brighten up and do his best to kill it off.
Assuming that the person who got the idea is willing to fight, this is a far better mode of
work than the mode of mutual admiration. We think it was useful for us, and we succeeded
in discarding a very large number of proposals. The class/subclass concept was perhaps
the only one which was immediately accepted, whereas the virtual concept perhaps was
the one which went through the longest sequence of initial rejections before it finally was
given a definition acceptable to both of us.

When we started working together, we had quite different backgrounds. KN had quit
programming in 1954, at a time when an essential aspect of the art was to program an algo-
rithm with the minimum number of machine code instructions. His reasoning was always
related to suitable language mechanisms for the description of systems in the real, physical
world. OJD had been working on typical programming tasks and programming language
design and implementation, with little experience from the problem area of operational
research. In the initial stages of our cooperation we had communication problems. Gradu-
ally the area of common knowledge and understanding increased. We believe that our dif-
ferences turned out to be a useful resource in our work, since each of us developed his
own " ro le" in the team. In this way we were more likely to create ideas together which
none of us would have created alone. We have later on both been working in close-knit
teams with other people and we have found that we have had to develop other roles in
these teams, the resource situation not being the same.

Sometimes we are asked questions like: "Who invented the virtual mechanism?" or
"Who got the prefix idea?" Even if an answer could be given it would only tell who
brought an idea forward the last of a long sequence of steps, and thus be of little interest.
We tried once (when OJD was applying for his current position at the University of Oslo)
to sort out at least certain rough areas of "ownership" in our relations to SIMULA I and
SIMULA 67. When we found that each of us owned one half of the "reactivation point,"
we discontinued the effort.

We have been criticized for "dropping" SIMULA 67 after it had been developed. It is
said that other people, e.g., Tony Hoare, Jean Ichbiah, Don Knuth, Jacob Palme, have
done the real job of promoting the language. This is partially true, and we are grateful for
their interest. One reason for the increased use of SIMULA 67 in recent years, especially
within the United States, is undoubtedly the very successful DEC 10 implementation pro-
duced by a Swedish team in 1973-1974. Amborg and Enderin, who also took part in the
IBM implementation, were key members of that group. Ingrid Wennerstr6m was another
important member. Jacob Palme again played a decisive role in initiating the work. OJD's
work on structured programming has been based on a SIMULA 67 platform, and has con-
tributed to making SIMULA 67 known in the scientific community. Graham Birtwistle
took the main burden in writing a comprehensive SIMULA 67 textbook (Birtwistle et al.,
1973). NCC and its staff has invested a substantial effort in promoting SIMULA 67 in
many other ways: courses in many countries, publication of the SIMULA Newsletter,
contacts with users in general. It was SIMULA 67's simulation capability which made it
possible to get support for the implementation of the first set of compilers and to sell these

SIMULA Session 477

Kristen Nygaard and Ole-Johan Dahl

compilers to customers. I f we had used our very scarce resources for writing papers and
as traveling lecturers, S I M U L A 67 might have been a paper language today, not a living
one with an active user communi ty .

REFERENCES

The letter P, D, or C following each reference should be understood as follows: P--publication, D--docu-
ment, C--correspondence.

Agreement (1963) June 1. Agreement made 1st day of June by and between Sperry Rand Corporation (Univac)
and the Royal Norwegian Council for scientific and industrial research (by NCC). (D).

Agreement (1967). Agreement on implementation of the S1MULA 67 language between Control Data A /S Nor-
way and the Norwegian Computing Center, Oslo May 23, 1967. NCC Doc. (D).

Agreement (1969) September. Draft outline for a SIMULA 67 agreement between UNIVAC and the Norwegian
Computing Center. (D).

Birtwistle, G. M., Dahl, O.-J., Myhrhaug, B., and Nygaard, K. (1973). SIMULA BEGIN. Studentlitteratur,
Lund, Sweden and Auerbach Publ., Philadelphia, Pennsylvania. (P).

Blunden, G. P. (1968). Implicit Interaction in Process Models. In Buxton, J. N., ed, Simulation Programming
Languages, pp. 283-287. Amsterdam: North-Holland Publ. (P).

Buxton, J. N., ed. (1%8). Simulation Programming Languages. Proceedings of the IFIP Working Conference on
Simulation Programming Languages, Oslo, 1967. Amsterdam: North-Holland Publ. (P).

Buxton, J. N., and Laski, J. G. (1962). Control and Simulation Language. Computer Journal 5(5). (P).
Christopher, C. A. (1964) February 28. Letter to Leif K. Olaussen, Director NCC. (C).
Christopher, C. A. (1965) December 15. Letter to Leif Olaussen, Director, NCC. (C).
Clark, I. A. (1966) January 27. Letter to Leif Olaussen, Director, NCC. (C).
Clark, I. A. (1967) January 24. Letter to Kristen Nygaard, NCC. (C).
Dahl, O.-J. (1963) November. The SIMULA Storage Allocation Scheme. NCC Doc. 162. (D).
Dahl, O.-J. (1964) February/March. The S1MULA Data Structures. NCC Doc. (D).
Dahl, O.-J. (1968a) January 24. Letter to C. A. R. Hoare, Elliott-Automation Computers, Herts., England. (C).
Dahl, O.-J. (1968b). Discrete Event Simulation Languages. In Genuys, F., ed., Programming Languages, pp.

349-395. New York: Academic Press. (P).
Dahl, O.-J. (1970). Decomposition and Classification in Programming Languages. In Linguaggi nella Societti e

nella Tecnica. Milan: Edizioni di Comunita. (P).
Dahl, O.-J., and Hoare, C. A. R. (1972). Hierarchical Program Structures. In Dahl, O.-J., Dijkstra, E. W., and

Hoare, C. A. R., Structured Programming, pp. 175-220. New York: Academic Press. (P).
Dahl, O.-J., and Myhrhaug, B. (1%9) June. SIMULA 67 Implementation Guide. NCC Publ. No. S-9. (D).
Dahl, O.-J., and Nygaard, K. (1963) May. Preliminary presentation of the S1MULA Language (as of May 18th

1963) and some examples of network descriptions. NCC Doc. (D).
Dahl, O.-J., and Nygaard, K. (1964a) March. The SIMULA Language..Specifications 17 March 1964. NCC Doc.

(D).
Dahl, O.-J., and Nygaard, K. (1964b) July. The SIMULA Project. Tech. Prog. Rep. 1, July 1964. NCC Doc. (D).
Dahl, O.-J., and Nygaard, K. (1%5) May. S1MULA--A language for programming and description of discrete

event systems. Introduction and user's manual. NCC Publ. No. 11. (D).
Dahl, O.-J., and Nygaard, K. (1966) September. S IMULA--an ALGOL-based Simulation Language. CACM

9(9): 671-678. (P).
Dahl, O.-J., and Nygaard, K. (1%7a) March. Class and subclass declarations. NCC document. (As presented at

the IFIP Working Conference on Simulation Programming Languages, Oslo May 1967.) (D).
Dahl, O.-J., and Nygaard, K. (1967b) May. SIMULA 67 Common Base Proposal. NCC Doc. (D).
Dahl, O.-J., and Nygaard, K. (1%7c) June. Proposals for consideration by the SIMULA 67 Common Base Con-

ference, June 1967. (D). [See author's comment on pp. 465-466. Ed.]
Dahl, O.-J., and Nygaard, K. (1967d) June. SIMULA 67 Common Base Definition. NCC Doc. (D).
Dahl, O.-J., and Nygaard, K. (1968). Class and subclass declarations. In Buxton, J. N., ed., Simulation Pro-

gramming Languages, pp. 158-171. Amsterdam: North-Holland Publ. (P).
Dahl, O.-J., Myhrhaug, B., and Nygaard, K. (1966). SIMULA. Simula Tracing System. NCC Doc. (D).

478 Part IX

Paper: The Development of the SIMULA Languages

Dahl, O.-J., Myhrhaug, B., and Nygaard, K. (1968a) May. The SIMULA 67 Common Base Language. NCC
Publ. S-2. (D).

Dahl, O.-J., Myhrhaug, B., and Nygaard, K. (1%8b) October. Some uses o f the External Class Concept in
SIMULA 67. (Presented by P. M. Kjeldaas at the NATO sponsored conference on Software Engineering,
Garmisch, Germany, 7th- 1 lth October 1968); referred in the conference report Software Engineering, 1968,
Naur, P., and Randell, B., eds., p. 157. NCC Doc. (D).

Dahl, O.-J., Myhrbaug, B., and Nygaard, K. (1970) October. Common Base Language. NCC Publ. No. S-22.
(Revised edition of S-2.) (P).

Dijkstra, E. W. (1%8) May. The Structure of THE Multiprogramming System. CACM 11(5). (P).
Garwick, J. V. (1968). Do we need all these languages? In Buxton, J. N., ed., Simulation Programming Lan-

guages, pp. 143-154. Amsterdam: North-Holland Publ. (P).
Gorchow, N. (1966) January 10. Telegram to Leif Olaussen, NCC. (C).
Gordon, G. (1962) September. A General Purpose Systems Simulator. IBM Systems Journal 1. (P).
Hegna, H., Lund, O. J., and Nygaard, K. (1968) June. User's experience with the SIMULA language. NCC Doc.

(D).
Hoare, C. A. R. (1965) November. Record Handling. In ALGOL Bulletin No. 21. (P).
Hoare, C. A. R. (1%6) May. Further Thoughts on Record Handling. In ALGOL Bulletin No. 23. (P).
Hoare, C. A. R. (1968). Record Handling. In Genuys, F., ed., Programming Languages, pp. 291-347. New

York: Academic Press. (P).
Hoare, C. A. R. (1972). Proof of Correctness of Data Representations. Acta Informatica 1:271-281. (P).
Hoare, C. A. R. (1974)October. Monitors: an operating system structuring concept. CACM 17(10): 548-557. (P).
Holbaek-Hanssen, E., Hhndlykken, P., and Nygaard, K. (1975) September. System Description and the DELTA

Language. DELTA Project Rep. No. 4, NCC Publ. No. 523. Oslo: Norwegian Computing Center. (P).
Ichbiah, J. D., and Morse, S. P. (1969) December. General Concepts o f the SIMULA 67 Programming Lan-

guage. DR. SA. 69. 132 ND. Compagnie Internationale pour l'Informatique. (P).
Jonassen, A., and Dahl, O.-J. (1975). Analysis of an Algorithm for Priority Queue Administration. BIT 15(4):

409-422. (P).
Knuth, D. E., and McNeley, J. L. (1964a) August. S O L - - A Symbolic Language for General Purpose Simula-

tion. IEEE Transactions on Electronic Computers ED-13(4): 401-408. (P).
Knuth, D. E., and McNeley, J. L. (1964b) August. A Formal Definition of SOL. 1EEE Transactions on Elec-

tronic Computers ED-13(4): 409-414. (P)
Kristensen, B. B., Madsen, O. L., and Nygaard, K. (1977) September. BETA Language Development. Survey

Rep. 1. November 1976. (Revised version, September 1977.) RECAU-76-77, DAIMI PB-65, NCC PUbl. No.
559. (P).

Markowitz, H. M., Hausner, B., and Karr, H. W. (1963). SIMSCRIPT, A Simulation Programming Language.
Englewood Cliffs, New Jersey: Prentice-Hall. (P).

McNeley, J. L. (1968). Compound Declarations. In Buxton, J. N., ed., Simulation Program Languages, pp.
292-303. Amsterdam: North-Holland PUbl. (P).

Murphy, J. S. (1968) July 10. Letter to Kristen Nygaard, NCC. (C).
Myhrhaug, B. (1965). Sequencing Set Efficiency. Working Paper. (D).
Myhrhaug, B. (1967a) April 25. Letter to I. A. Clark, Systems Programming, Univac, Minnesota. (C).
Myhrhaug, B. (1967b) October. A note on string handling facilities in SIMULA 67 Common Base. NCC PUbl.

No. D24. (D).
Myhrhaug, B. (1968) January. Proposal for string and input/output definition in SIMULA 67 Common Base.

Preliminary presentation. NCC Publ. No. 212. (D).
Naur, P., et al. (1960) May. ALGOL 60 Report. CACM 3(5). (P).
Naur, P., et al. (1963) January. Revised ALGOL Report. CACM 6(1): 1-17. (P).
NCC (1967) June. Recommendations from the S1MULA 67 Common Base Conference, NCC, June 1967. (D).
NCC (1%8a). 1107/1108 SIMULA 67 Project. Internal Information No. 1, July 22. (D).
NCC (1968b) July 26. SIMULA Newsletter No. 1. (D).
Nickitas, J. W. (1965) September 13. Letter to Kristen Nygaard, NCC. (C).
Nygaard, K. (1%2a) January 5. Letter to Charles Salzmann, CFRO, Paris. (C).
Nygaard, K. (1962b) September 24. Diskret-begivenhets nettverk (Discrete event networks). Note, in Norwe-

gian. (D).
Nygaard, K. (1963a). SIMULA, An Extension of ALGOL to the Description of Discrete Event Networks. In

Proceedings o f the IFIP Congress, 62, pp. 520-522. Amsterdam: North-Holland Publ. (P).

SIMULA Session 479

Kristen Nygaard

Nygaard, K. (1963b) April 17. Letter to C. A. Christopher, Director of Procurement, Univac (C).
Nygaard, K. (1963c) May 18. Letter to A. M. Paster, Manager Systems Research, Univac, New York. (C).
Nygaard, K. (1963d). A Status Report on S I M U L A - - A Language for the Description of Discrete-event Net-

works. In Proceedings o f the Third International Conference on Operational Research, pp. 825-831. Lon-
don: English Universities Press. (P).

Nygaard, K. (1963e) September 19. Opparbeidelse av kompetanse innenfor Real-time Systemer (Building up
competence on real-time systems), Note, in Norwegian. (D).

Nygaard, K. (1965a) August 15. The Software Contract between UNIVAC and the Norwegian Computing Cen-
ter. NCC Doc. (D).

Nygaard, K. (1965b). Report on the use o f SIMULA up to December 1965. NCC Doc. (D).
Nygaard, K. (1966) February 17. Letter to S. M. Haffter, Univac Sperry Rand Corporation, Lausanne. (C).
Nygaard, K. (1967) November 3. Letter to C. A. R. Hoare, Elliott-Automation Computers, Hefts., England. (C).
Nygaard, K. (1968a) January 29. Letter to Niklaus Wirth, Rechenzentrum der Universitftt, Ziifich. (C).
Nygaard, K. (1968b) April 2. En redegjorelse for samarbeidet mellom Det russiske vitenskapsakademi og Norsk

Regnesentral om bruk av programmeringssprdket SIMULA i Sovjet (An account of the cooperation be-
tween the Russian Academy of Science and the Norwegian Computing Center on the use in the Soviet Union
of the programming language SIMULA). Note, in Norwegian. (D).

Nygaard, K. (1968c) September. Oversikt over NR's SIMULA-engasjement (Survey of NCC's commitment to
SIMULA). Note, in Norwegian. (D).

Nygaard, K. (1968d) September. Markedsforing av SIMULA 67 (Marketing of SIMULA 67). Note, in Norwe-
gian. (D).

Nygaard, K. (1969) September 26. Letter to Peter Weil, Manager, Contracts and Pricing, Univac, England.
(c).

Nygaard, K., and Dahl, O.-J. (1965). S I M U L A - - A Language for Describing Discrete Event Systems. In Pro-
ceedings o f the 1FIP Congress, 65, Vol. 2, pp. 554-555. Washington, D.C.: Spartan Books; New York:
Macmillan. (P).

Palme, J. (1968), A comparison between SIMULA and FORTRAN. BIT 8:203-209. (P).
Paster, A. M. (1962) October 12. Letter to Kristen Nygaard, NCC. (C).
Reitan, B. (1969) September 4. Letter to Knsten Nygaard, NCC. (C).
Roach, (1963) July 3. Telegram to Kristen Nygaard, NCC. (C).
Ross, D. T., and Rodfiguez, J. E. (1963). Theoretical Foundations for the Computer-aided Design System. In

Proceedings o f the SJCC, p. 305. (P).
SIMULA Standards Group (1968).Report from the meeting o f the SIMULA Standards Group, held in Oslo, Nor-

way, February lO, 1968. (D).
Statutes (1967) May 23. Statutes for the SIMULA Standards Group. NCC Doc. (D).
Stevenson, F. (1967) November. LOGIC, A computer program for simulation o f digital logic networks. NCC

Doc. (D).
Tocher, K. D. (1963). The Art o f Simulation. London: English Universities Press. (P).
Wang, A., and Dahl, O.-J. (1971). Coroutine Sequencing in a Block Structured Environment. BIT 11: 425-449.

(P).
Wegner, P. (1976) December. Programming Languages--The first 25 years. IEEE Transactions on Computers

C-25(12): 1207-1225. (P).
Weizenbaum, J. (1962) March. Knotted List Structures. CACM $(3): 161-165. (P).
Wirth, N. (1968) February 14. Letter to Kristen Nygaard, NCC. (C).

TRANSCRIPT OF PRESENTATION

BARBARA LISKOV: Our speaker on SIMULA will be Kfisten Nygaard. At the time that
SIMULA was developed, Kristen Nygaard was the Director of Research at the Norwe-
gian Computer Center, and apart from his work on SIMULA he was also responsible for
building up the NCC, as it's called, as a research institute. He had been working in com-
puting since 1948, and in Operations Research since 1952. Today, Kdsten Nygaard, con-

480 Part IX

