
1 i ~ @ i N

D. E. KNUTH, Editor

SIMULA an ALGOL-Based
Simulation Language
OLE-JOHAN DAHL AND I~RISTEN NYGAARD

Norwegian Computing Center, Oslo, Norway

This paper is an introduction to SIMULA, a programming
language designed to provide a systems analyst with unified
concepts which facilitate the concise description of discrete
event systems. A system description also serves as a source
language simulation program. SIMULA is an extension of
ALGOL 60 in which the most important new concept is that of
quasi-parallel processing.

l . In troduct ion

SIMULA (SI1VIUlation LAnguage) is a language de-
signed to facilitate formal description of the layout and
rules of operation of systems with discrete events (changes
of state). The language is a true extension of ALGOL 60
[1], i.e., it contains ALGOL 60 as a subset. As a program-
ming language, apart from simulation, SIMULA has ex-
tensive list processing facilities and introduces an extended
co-routine concept in a high-level language.

The principal features of SIMULA are defined below.
The syntax rules given here are slightly simplified versions
of the actual rules, since our intention is merely to intro-
duce what we feel are the most important ideas of the lan-
guage. For a complete definition of SIMULA, see [2].

A SIMULA compiler has been in operation on the UNIVAC
1107 computer since January 1965. The compiler trans-
lates a SIMULA system description into an object code
simulation program for the system described. The compiler
has now been used for the analysis of a great number of

The paper was presented as the basis of a lecture given at a
Seminar on Simulation Languages at Centro Nazional Universi-
tario di Calcolo Elettronico, Pisa, Italy, May, 1966. An earlier,
less comprehensive version was presented at a NATO "Conference
on the Role of Simulation in Operations Research," Hamburg,
Germany, September, 1965.

V o l u m e 9 / Number 9 / September , 1966

problems. Compiling and execution speeds are comparable
to those of ALGOL and FORTRAN programs of corresponding
complexity.

SIMULA has been designed and implemented by the
authors at the Norwegian Computing Center under a
contract with the Univac Division of Sperry Rand Cor-
poration.

1.1 DESIGN OBJECTIVES
Simulation is now a widely used tool for analysis of a

variety of phenomena: nerve networks, communication
systems, traffic flow, production systems, administrative
systems, social systems, etc. Because of the necessary list
processing, complex data structures and program se-
quencing demands, simulation programs are comparatively
difficult to write in machine language or in ALGOL or
FORTRAN. This alone calls for the introduction of simula-
tion languages.

However, still more important is the need for a set of
basic concepts in terms of which it is possible to approach,
understand and describe all the apparently very different
phenomena listed above. A simulation language should be
built around such a set of basic concepts and allow a formal
description which may generate a computer program. The
language should point out similarities and differences be-
tween systems and force the research worker to consider
all relevant aspects of the systems. System descriptions
should be easy to read and print and hence useful for
communication.

The need for the inclusion of algorithmic procedures as
parts of a discrete event system description makes it
natural to let a simulation language contain an algorithmic
language as a subset. Efforts then should be made, not
only to ensure that the simulation language is a logical
extension of the algorithmic language, but also to achieve
an increase in the power of the algorithmic language as
such.

1.2 BASIC CONCEPTS
An ALGOL program (block) specifies a sequence of opera-

tions on data local to the program, as well as the structure
of the data themselves. SIMULA extends ALGOL to include
the notion of a collection of such programs, called "proc-
esses," conceptually operating in parallel. The processes
perform their operations in groups called "active phases"
or "events." Between any two consecutive active phases
of one process any number of active phases of other proc-
esses may occur. The sequence of operations in the system

C o m m u n i c a t i o n s off t h e ACM 671

as a whole thus becomes a sequence of active phases of the
processes present in the system. This mode of operation
will be called "quasi-parallel."

The following are the main extensions to ALGOL, which
are introduced:

(1) Means of describing processes, generating proc-
esses dynamically, and referencing existing ones.

(2) Means of delimiting and sequencing active
phases of processes, with or without reference to
the concept of "sys tem t ime."

(3) Means of making data local to processes ac-
cessible from other processes.

(4) An ordered set mechanism convenient for
queueing and stacking processes.

The SIMULA concepts are introduced part ly by exten-
sions to the ALGOL 60 syntax, part ly through system pro-
cedures. Among the lat ter are a number of procedures for
random drawing from mathematical ly or empirically
defined distribution functions and for accumulating system
t ime integrals and histograms.

2 . P r o c e s s e s

The process concept is intended as an aid for decom-
posing a discrete event system into components, which
are separately describable. I n general, a process has two
aspects: it is a data carrier and it will execute actions.
The items of data carried by a process are described by a
sequence of specifications and declarations; the actions
are described by a sequence of s ta tements called its opera-
t ion rule. The two aspects are combined into a block called
a process block.

The description of a process is called an activity declara-
tion. The concept of an "ac t iv i ty ," which is a class of
processes described by the same declaration, is distin-
guished from the concept of a "process," which is one
dynamic instance of an activity declaration. The declara-
t ion is syntactically similar to tha t of a procedure.

{activity identifier} ::= <identifier}
<activity body} ::= <statement}
<activity declaration) ::= activity {activity identifier}

<formal parameter part); {specification part} <activity body}

A process block is the activity body itself, if the lat ter
takes the form of an (unlabelled block}; otherwise it is an
implied block enclosing the activity body. The parameters
and the items declared local to the process block are called
the attributes of a process; its operation rule is the list of
s tatements within the process block.

Unlike procedures, which are dynamically nested, the
relationship between processes is a symmetr ic one. They
operate in a quasi-parallel fashion, as defined below.

A discrete event system will be viewed as a collection
of processes, whose actions and interactions comprise the
behavior of the system. Processes will enter and leave the
system as results of actions within the system itself.

2.1 PROCESS REFERENCES
Processes can be referenced individually. Physically, a

process reference is a pointer to an area of memory con-
taining the data local to the process and some additional
information defining its current s tate of execution. How-
ever, for reasons stated in the Section 2.2 process references
are always indirect, through items called "elements ."
Formally a reference to a process is the value of an ex-
pression of type e l e m e n t .

<element expression) ::= none I <variable) t {function designator} I
<process designator> { {activity identifier)

<process designator) ::= new {activity identifier)
<actual parameter part)

e l e m e n t values can be stored and retrieved by assign-
ments and references to e l e m e n t variables and by other
means.

A process is generated by evaluating a process designa-
tor. I t s value is a reference to the generated process. A
process will remain par t of the system as long as it can be
referenced through a computable e l e m e n t expression.
(The deletion is automatic and is effected through a
combination of the "reference count" and "garbage col-
lection" techniques; see [6].)

Example.

e l e m e n t Pat;
activity secretary (redhaired, thumbs);

B o o l e a n redhaired; i n t e g e r thumbs;
b e g i n - - - e n d ;

Pat := new secretary (true, 10);

The value of the variable Pa t is now a reference to the
generated secretary process. I f another value is later
assigned to Pat , and if there is no other way of referencing
this secretary, she is deleted.

The symbol n e w serves to distinguish between different
uses of activity identifiers. As described in Section 4 an
(activity identifier} may be used as an e l e m e n t expres-
sion, without the symbol n e w , within a "connection
block."

The language contains a mechanism for making the
at tr ibutes of a process accessible from the outside, i.e.,
f rom within other processes. This is called remote access-
ing. A process is thus a referenceable data structure.

I t is worth noticing the similarity between a process
whose activi ty body is a d u m m y statement, and the
record concept recently proposed by C. A. R. Hoare and
N. Wir th [3]. Since processes can reference one another
through local e l e m e n t variables, they have the same list
forming capabilities. The ordered set mechanism described
in the next section has been added for convenience. The
mechanism for " remote accessing" in SIMULA differs from
the one proposed in [3].

2.2 ELEMENTS AND SETS
The element and set concepts 1 serve to facilitate and

standardize the manipulat ion of queues and other linear

1 Many of the ideas presented in this section were inspired by
the SLIP system [5].

672 Communications of the ACM Volume 9 / Number 9 / September, 1966

lists of processes. A set is an ordered sequence of elements,
which are objects having a standard format as shown in
Figure 1. An element pointing to a process is a marker
representing that process. There may be more than one

pointer to successor in set

pointer to predecessor in set

pointer to process

I.
FIo. 1. Element in a set. In addition to the information shown,

an element contains a "reference count , " which implicit ly defines
its " l i fe t ime" in the system.

element in the system pointing to the same process. A
process is said to be member of a set if there is an element
in the set pointing to it.

A value of type e l e m e n t , except the value n o n e , is a
pointer to an element. We may equivalently say that the
value is the element itself, and we shall do so in order to
shorten the following discussion.

Two of the three components of an element (Figure 1)
are themselves e l e m e n t values. They are accessed through
basic e l e m e n t procedures. If X is an element in a set,
suc(X) is the successor element and pred(X) is the prede-
cessor. These pointers between elements of a set are up-
dated implicitly by system procedures such as include(X)
in:(S), precede(X)by:(Y), and remove(X), where X and Y
are elements and S is a set. I f an element X currently
has no set membership, the values of suc(X) and pred(X)
are both n o n e .

The third component of an element, the process pointer,
remains fixed. I t is not itself an e l e m e n t value, and is
therefore not explicitly accessible as the value of an ex-
pression. There is, however, a corresponding e l e m e n t
procedure "proc," which generates an element. The value
of proc(X) is a new element with the same process pointer
as X and no set membership. As shown above, a (process
designator) is another "generating" expression, which
actually generates both a process and an element referring
to it. The latter has no set membership and is the value
of the expression.

The process pointer of an element is used implicitly by
a number of system procedures and special statements,
which operate on the process referenced by a specified
element. The element concept and the technique of refer-
encing processes indirectly yield the following desirable
language properties.

(1) Ordered sets of processes can be manipulated by
means of efficient standard procedures.

V o l u m e 9 / N u m b e r 9 / S e p t e m b e r , 1966

(2) When a process is referenced through an element
in a set, its successor and predecessor in the set are
immediately accessible.
(3) Any given process can be member of an un-
limited number of sets at the same time.
(4) The members of a set can be processes of differ-
ent classes.

A set has one permanent dummy element called the
set head, which conforms to the standard element format,
except that it refers to no process. Together with the
ordinary elements of a set it forms a circular list of ele-
ments (Figure 2). An "empty" set has a set head which is
its own successor and predecessor.

• se t S

[r pred ~ P pred [|

FIo. 2. Set with 3 members

A set designator

(set designator) ::= (variable)

has a value of type set , which is, physically, a pointer to
a set head. This pointer remains fixed during the scope of
the set designator. The set head is generated as the result
of the set declaration, at which time the set is empty. At
the end of the scope of a set each element loses its set
membership. The head of a set S can be referenced as an
element through the function designator "head(S)." The
"first" and "last" elements of the set are defined as

first(S) = suc(head(S))

last(S) = pred(head(S)).

The members of a set S may be scanned successively by
means of the following for clause:

for X := first(S), suc(X) whi l e exist(X) do

or, in order to avoid the execution of the controlled state-
ment if the set is empty:

X := head(S); f o r X := suc(X) w h i l e exist(X) d o

The Boolean expression "exist(X)" has the value t r u e
if X refers to a process, otherwise false. The set head is
the only element of a set which does not refer to a process
thereby signalling the "end" of the set in either direction.

C o m m u n i c a t i o n s o f t h e ACIVI 673

2.3 THE SEQUENCE CONTROL
The actions of a process are grouped together in active

phases, separated by periods of inactivity. Only one proc-
ess is active executing actions at any one time. An inactive
period of a process is caused by a deactivating statement
executed by that process. (Deactivating statements are
special cases of the sequencing statements described in
Section 2.6.) The statement terminates the current active
phase, and control leaves the process. Usually a reactivation
point is defined for the process, whose function is similar
to tha t of the "router" of a co-routine, as defined by M. E.
Conway [4]. At the time of the next active phase of the
process, control re-enters the process at the place where it
most recently left, as specified by the reactivation point.
(A deactivating statement may be given inside any sub-
block or procedure called by the process, therefore the
reactivation point must also include information relating
to the status of a "block stack" belonging to the process,
as used in most ALGOL implementations.)

The reactivation point concept allows the programmer
to string together actions occurring at widely different
times into a logically coherent sequence. He can think of a
process as possessing its own "local" sequence control,
identical to the main control during active phases, and
represented by the reactivation point during inactive
periods. From this local point of view a deactivating state-
ment allows other processes to be active during its
execution.

An active phase of a process is called an event. I t has
an associated system time, which remains constant during
the execution of the event. The system times form a non-
decreasing sequence of rea l numbers. A deactivating
statement may invoke an inactive period of a definite or
indefinite length. As an example of the former, consider
the following activity declaration.

activity report(dr); real dr;
begin L: write (-); hold(dr); go to L end;

The statement "hold(dt)" is a call to a system procedure,
which represents an inactive period of length dt in system
time. I t follows that a report process will give output with
regular system time intervals. Several report processes
could operate in quasi-parallel, e.g., n ew report(7) and
new report(30) giving "weekly" and "month ly" reports,
provided that the system time is being given in units of
one day.

2.4 THE SEQUENCING SET (SQS)
An event can be scheduled to happen either immedi-

ately or at some later time. The event is the next active
phase of some specified process. A process for which an
event has been scheduled but not completed has an asso-
ciated event notice representing the event. There can be
at most one event notice associated with a given process.

An event notice contains a reference to the associated
process (through an element) and a rea l number, called
its t ime reference. The event notices are members of the
sequencing set (SQS), which is ordered according to non-

decreasing time references, as shown in Figure 3. The
time reference of an event notice is accessed through the
rea l function evtime(X), where X is an e l e m e n t expres-
sion referencing the associated process. The sequencing
set is not, strictly speaking, a "set" in the sense of Section
2.2.

current eventnoticeL nexteV ~ even t not ice ~ nextev

(time ref. T1) F] (time ref. T2) V

.L, \ 2 . \
I Pr~ess f " I pr?~ss V

FIo. 3. The sequencing set. P1 is the currently active process,
P2 is suspended, "current" is equal to E1 and "time" is equal to
T1. P1 has a local element variable X, to which has been assigned
the value "nextev(current)". "evtime (X)" is equal to T2, which
is greater than or equal to T1.

The event notice at the "lower end" of the SQS is
called the current event notice. Its associated process is
the currently active one, and its t ime reference is regarded
as the current value of the "system time." The active
process may be referenced by the e l e m e n t procedure
"current," and there is a rea l procedure "time" equivalent
to "evtime(current)."

When the current active phase is completed, the current
event notice is deleted. Its successor in the SQS becomes the
current event notice, and control enters the associated process
at its reactivation point.

2.5 STATES
A process can be in one of four possible states: active,

suspended, passive, and terminated. As simulation pro-
ceeds, the states of processes will change.

(1) Active. The currently active process can, by se-
quencing statements, alter the states of processes, including
its own.

(2) Suspended. A suspended process has an associated
event notice and a reactivation point. Unless a change of
state is caused by another process, the next active phase
of this process will start when the event notice becomes
the current one.

(3) Passive. A passive process has a reactivation
point, but no associated event notice. I t will remain passive
until a change of state is caused by another process. At

674 Communications o f t h e ACM Volume 9 / Number 9 / September, 1966

the time of generation a process is passive, and its reacti-
vation point is in front of the first statement of its opera-
tion rule.

(4) Terminated. A process becomes terminated when-
ever control passes through the final end of its operation
rule or exit from the process is made by a go to statement.
Such a process has no reactivation point and no event
notice. The state of a terminated process can not be
altered by ordinary sequencing statements.

A process will remain part of the system at least as long
as it has an associated event notice. It can be referenced
through system procedures such as "current" if active, or
"nextev(X)" if suspended (where X refers to an active or
suspended process). A passive or terminated one will
remain (as a data structure) as long as it can be referenced
through an c l e m e n t expression.

The activator ac t iva te will cause the generation of an
event notice only if the referenced process is passive,
whereas reac t iva te in addition will delete the event
notice associated with an active or suspended process
and "re-schedule" the event.

A timing clause specifies the time reference of the gen-
erated event notice, either "time" or the value of the ex-
pression, whichever is greater, and this determines its
position in the SQS. The event notice is normally placed
behind all others with the same time reference, but it
can also be placed in front of these event notices by add-
ing the symbol pr ior .

The statement "hold(T)" already mentioned is equiva-
lent to:

r e a c t i v a t e current delay T (or " a t time + T")

2.6 SEQUENCING STATEMENTS
Sequencing statements are statements operating on the

SQS, thereby altering the states of processes. A sequencing
statement may delete an event notice and/or schedule an
event by generating an event notice and include it in the
sqs.

The basic sequencing statements are:
(1) cancel ((element expression)), which deletes the

event notice, if any, associated with the referenced process,
(2) terminate ((element expression}), which in addition

deletes the reactivation point, if any,
(3) scheduling statements, which are described below.
Deletion of the current event notice causes the current

active phase to terminate. Any sequencing statement,
except "terminate" will in that case define a reactivation
point for the process at the end of the statement. The
statement "terminate(current)" is equivalent to leaving
the process through its final end . The statement "cancel
(current)" represents an inactive period of indefinite
length. The process becomes passive.

A scheduling statement usually generates an event
notice for a specified process and includes it in the SQS.
The process is referenced through an element expression,
whose value is stored in the event notice.

In addition, the statement will specify explicitly either
(1) the time reference of the event notice, or (2) its posi-
tion in the SQS. The information not specified is deter-
mined according to rules consistent with the ordering
criterion of the SQS.

The basic scheduling statements are special syntactic
constructions.

<activator> ::= activate] reactivate
(simple timing clause> ::= at <arithmetic expression) [

delay <arithmetic expression>
(timing clause> ::= <simple timing clause>]

<simple timing clause> prior
(scheduling clause> ::= (empty>] (timing clause) l

before <element expression) [after <element expression)
<scheduling statement> ::= <activator) <element expression>

(scheduling clause>

Another option is to specify the position of the event
notice relative to (before, or af ter) the event notice asso-
ciated with a second process. I t gets the same time refer-
ence as the latter. If the second process is passive or termi-
nated, no scheduling takes place.

The scheduling clauses "de lay 0 pr ior" , "at time
prior" , "at 0 pr io r" and "before current" are equiva-
lent. The generated event notice is placed in front of the
current event notice, whereby the currently active process
becomes suspended. The scheduled event becomes the
current event. This is called "direct scheduling". Since
direct scheduling is used frequently in practice, an
empty (omitted) scheduling clause is understood to be
an abbreviation for direct scheduling.

The statement "act iva te (element expression)" is
therefore somewhat similar to a procedure call, in the
sense that actions are invoked as a "subroutine" to the
calling program. Notice, however, that the event notice
associated with the calling process may well be deleted or
rescheduled before control returns.

Two processes X and Y, calling each other by, respec-
tively, reac t iva te Y and reac t iva te X, would function
as co-routines in the sense of [4]. They could communicate
through nonlocal variables.

2.7 PARAMETERS AND IN~ONLOCALS
The quasi-parallel operation of processes is not com-

patible with the simple stack structure of an ALGOL pro-
gram at run time. In order to make possible an efficient
data storage allocation scheme the activity declaration is
subject to certain restrictions as compared to the proce-
dure declaration.

(1) Only (type) and (type) array parameters are per-
mitted. The former are transmitted by value, the latter
by location. The activity declaration has no (value part).

(2) Activity declarations are only accepted in the
block heads of certain special blocks called SIMULA blocks;
this is to permit unrestricted reference to nonlocals within
processes.

Volume 9 / Number 9 / September, 1966 Communications of the ACM 675

2.8 MAIN PROGRAM

A SIMULA block

(SIMuLA block) : := S I M U L A (unlabelled block)

is itself a statement, which can be part of an otherwise
ordinary ALGOL program. S~MVLA concepts are not avail-
able outside a SIMI~LA block. The SQS is local to it and all
activity declarations describing a discrete event system
are given in the SIMULA block head.

The SIMIJLA block functions dynamically as a process
called the "main program," and at the same time as an
outer block to all processes except itself. I t is always
present in the system. Upon entry into a SIMULA block
the main program is the only process in the system. I t is
active, and system time is zero. When exit is made out of
the S~MULA block the simulation is terminated.

The initialization of the system is usually done by the
main program. I t may suspend itself during the simulation
proper, or may take an active part in it.

3. An E x a m p l e

The following program is a skeleton SIMULA description
of a classical "job shop" system. The shop consists of a
given number (nmg) of machine groups. The j t h group
contains a number of identical machines, given by the
initial value of "available [j]." They operate in parallel
and have a common queue (que[j]) of orders waiting. The
orders are treated on a "first come first served" basis at
each group.

An order defines its own pa th through the shop
(mgronp[1],..., regroup[n]) and its processing time at
each group of the path (ptime[1],..., prime[n]). The
arrival pat tern of orders and their contents are defined
by an input stream. The data describing an order are the
number n of steps in its schedule, its arrival time T, and
the schedule itself represented by the components of the
arrays regroup and prime. The end of the arrival pat tern
is signalled by a zero n, where the associated T is the sys-
tem time at which the simulation is to be terminated.

The system might be formulated as a collection of
machine processes acting on orders (through remote access-
ing). However, in this case, the simplest program is ob-
tained by looking at the system entirely from the point of
view of an order, since the lat ter contains all the informa-
tion relevant to the routing and processing. The main
program acts as a steering routine timing the order
arrivals.

The following program contains only statements es-
sential to the behavior of the system. No data are collected,
and no output is given.

Line
1. begin in t eger nmg; read(nmg);
2. S I M U L A beg in i n t eger array avai lable [l:nmg];

set array que [1 :nmg];
.3. a c t i v i t y order(n); i n t eger n;

4. beg in in t eger i, rag; in t eger array mgroup[l:n];
a r r a y prime[1 :hi;

5. read(mgroup, ptime) ;
6. fo r i : = 1 s t e p 1 u n t i l n do
7. b e g i n mg := mgroup [i];
8. i f available[rag] ~ 0 t h e n
9. b e g i n wait(que[mg]); remove(current) end

10. e l se available[rag] := available[rag] --1;
11. hold(prime[i]) ;
12. i f empty(que[mg]) t h e n available[mg] := available[mg] -4-1
13. else act ivate first (que[mg])
14. e n d p a t h t h rough shop
15. e n d order;
16. i n t e g e r n ; r e a l T;
17. read(available) ;
18. next: read(n, T); react ivate currentatT;
19. i f n > 0 t h e n beg in ac t iva te n e w order(n) ; go t o next end
20. e n d S IMULA end program

Comments

Line 2. All sets are empty ini t ial ly. The machines are all avail-
able (cf. line 17).

Line 3. The ac t iv i ty declara t ion (lines 3-15) describes the s t ruc-
tu re and behav ior p a t t e r n of an order.

Line 5. An order reads i ts own schedule dur ing its first act ive
phase.

Line 6. The control led var iable counts the number of steps in
the schedule. The following compound s t a t e m e n t (lines 7-14)
describes the behavior of an order at each machine group.

Line 9. If there is no avai lable machine in the cur ren t machine
group (rag), the order includes itself in the appropr ia te queue
and goes passive. The sys tem procedure wait(S) is equiva-
lent to

include(current, S) ; cancel(current).
The order becomes "last (que [mg]) ' '. The local sequence control
s tays a t this s t a t e m e n t unt i l the order has become
'~rst(que[mg])", and is ac t iva ted by ano ther order leaving the
machine group (line 13). The next s t a t e m e n t removes the
order from que[mg].

Line 10. The order allocates an avai lable machine to itself.
Line 11. The hold s t a t emen t represents the processing time.
Line 12. If the queue is now empty, the machine is made available.
Line 13. If not , th is order ac t iva tes the one in f ront of the queue.

The l a t t e r removes itself f rom the queue (line 9) and becomes
suspended (line 11). Control then re turns to the former order,
which proceeds to the next machine group or leaves the shop.

Line 15. At this po in t the order is a member of no set, and the
only reference to i t is f rom the cur ren t even t notice. At the
end of the act ive phase the l a t t e r is deleted and the order
therefore leaves the system.

Line 17. This is the first s t a t emen t of the Main Program, and
therefore i t is the first s t a t emen t of the first event , t ak ing
place at sys tem t ime zero. The sizes of the machine groups
are read.

Line 18. The arr ival of the next order is t imed according to the
value read for T. The Main Program suspends itself unt i l
sys tem t ime T.

Line 19. The e l e m e n t expression " n e w o rde r (n) " generates an
order. I t s first act ive phase is scheduled directly, whereby the
n-s tep schedule is read (line 5). At the end of this act ive
phase (line 9 or 11) control re turns to the Main Program.
If n is nonposi t ive , the s imulat ion is t e rmina ted (at sys tem
t ime T).

4. R e m o t e Access ing

Remote access to items local to a process is made pos-
sible through the connection mechanism. A connection

676 C o m m u n i c a t i o n s of t h e ACM V o l u m e 9 / N u m b e r 9 / S e p t e m b e r , 1966

statement may have the form:

inspec t (element expression) when A1 do St
when A 2 do S~

when An do S~
otherwise S

where A~ are activity identifiers and S~ and S are state-
ments. If the referenced process belongs to the activity
A¢, S~ is executed and the other statements are skipped.
The o t h e r w i s e clause is optional. The symbol " i n s p e c t "
may be replaced by " e x t r a c t " , which will remove the
referenced element from its set, if it has set membership.

S~ acts as if it is immediately enclosed in a block con-
raining exactly the same local items as the process block
of the referenced process. Thereby the attributes of the
process are accessible within S~ through their local names.
S~ is called a connection block, and the referenced element
and process are said to be connected. Within a connection
block the relevant activity identifier functions as an e l e -
m e n t procedure, whose value is the eormected element.

A connection clause (when A d o S), or otherwise clause
(o the rwise S) within the lexieographic scope of more than
one connection statement is part of the one with the small-
est scope. An otherwise clause terminates the scope of the
corresponding connection statement. (Evidently the scope
of a connection statement can also be terminated by any
symbol "end", "e lse" or ";" which is not a part of the
statement.)

The attributes of a process may include procedures,
switches and labels. By going to a label local to a con-
nected process it is possible to override its reactivation
point and to "revive" a terminated one. [This situation
is explained further in 2.]

The eormection mechanism has been designed with the
following objectives in mind:

(1) To make the language "self-protecting" in the
sense that only meaningful references to attributes can
be made in a program acceptable to the compiler. The
user is forced to check the class of the referenced process.

(2) To give easy and rapid access to the attributes
once this cheek has been made. Interaction between proc-
esses often requires remote access to several attributes
of the same process, occasionally interspersed with sched-
uling statements.

(3) To preserve the locality of attribute identifiers.
The same identifier can be used for different purposes
within different activities. The semantic contents of an
attribute identifier within a connection block are defined
by the activity identifier of the connection clause.

The next version of the language, now being imple-
mented, will be extended by " e x t e r n a l " declarations (and
specifications) for remote accessing. An e x t e r n a l declara-
tion declares a nonlocal name for a local quanti ty (in
contrast to o w n , which declares a local name for a non-
local quantity). Remote access to a quanti ty local to a
given process and declared e x t e r n a l will be written
"(element expression}.(identifier)." e x t e r n a l identifiers

will belong to the SIMULA block, and must be unique. I t
follows that the semantic contents of such an identifier is
known to the compiler anywhere within the SIMULA block,
and that a simple run-time consistency check can be de-
vised for the process reference.

5. S e c o n d E x a m p l e

The program below is a description of a simple epidemic
model. A contagious, nonlethal disease is spreading through
a population of a given fixed size. (Words used as identifiers
in the program are italicized here.) Certain counter-
measures are taken by a public health organization.

An individual infection has a given incubation period,
during which the subject is noncontagious and has no
symptoms, followed by a contagious period of a given
length. Each day of the latter period the subject may seek
treatment and get cured. The (unconditional) probability of
doing so is probtreat[day] (day = 1, 2, . . . , length). Each
sick person has an expected number of contacts per day.
At one such contact the probability of infecting an unin-
fected person is prinf. A person previously cured is im-
mune. If untreated the infection ceases spontaneously
after the given period.

Only sick persons appear as processes in the system.
When cured they leave the system. The very first infection
is generated by the Main Program. A subject infected by
another person is included as an element of a set belonging
to the latter, called his environment. Any subject is a
member of at most one such set. I t will be seen that the
subjects initially form a simple tree structure. As subjects
are cured they are removed from the tree, which will
therefore disintegrate into smaller tree structures. The
latter will grow independently, disintegrate further, and
so forth. As the number of uninfected persons decreases
the growth of the contagion slows down, until finally it
dies out.

The public countermeasures are represented by treat-
ment processes. A patient is removed from the environment
set to which he belongs, if any. If he has visible symptoms,
he is cured (terminated). In addition his environment is
searched and each member is subjected to a full treatment,
which may cause another environment to be searched,
etc. A patient displaying no symptoms is given "mass
t rea tment" (cheap pill) which has a certain probability,
probmass, of success. I-Iis environment is not searched. In
the present model, treatments act instantaneously in
system time. The simulation ends after simperiod units
of time.

The following program shows only the system descrip-
tion (SIMuLA block) itself, and no output is given. The
following quantities are declared and given values in outer
blocks:

integer population, length, contacts, ul, u2, u3, u4;
real incubation, prinf, probmass, simperiod;
array probtreat[1 : length];

The variables u l , u2, u3, u4 represent different "s treams"
of pseudo-random numbers.

Volume 9 / Number 9 / September, 1966 Communications of the ACM 677

1. S I M U L A b e g i n in t eger uninfected;
2. a c t i v i t y sick person;
3. b e g i n i n t e g e r day; B o o l e a n symtoms; se t environment;
4. uninfected := uninfected-l; symptoms := f a l s e ;
5. hold(incubation); symptoms := true;
6. fo r day := 1 s t e p 1 u n t i l length do
7. b e g i n ifdraw(probtreat[day], u l)

[t h e n a c t i v a t e n e w treatment (current);
8. infect (Poisson (contacts, u2), environment) ;
9. heM(l) e n d

10. e n d sick person;
11. p r o c e d u r e infect(n, S); v a l u e n; i n t e g e r n; set S;
12. b e g i n i n t e g e r i ;
13. fo r i := 1 s t e p 1 u n t i l n do
14. i f draw(prinfXuninfected/population, u3) t h e n
15. b e g i n include(new sick person, S);

a c t i v a t e last(S) e n d
16. e n d infect ;
17. a c t i v i t y treatment(patient); e l e m e n t patient;
18. b e g i n e l e m e n t X;
19. e x t r a c t patient w h e n sick person do
20. i f symptoms t h e n
21. b e g i n terminate(patient);
22. fo r X := first(environment) w h i l e exist(X) do
23. a c t i v a t e n e w treatment(X) e n d
24. e lse i f draw(probmass, u4) t h e n terminate (patient)
25. e n d treatment;
26. uninfected := population;
27. a c t i v a t e n e w sick person; hold (simperiod)
28. e n d SIMULA

Comments
Line 4. A new sick person has entered the sys tem: the n u m b e r

of persons t h a t have not been in touch wi th the disease, mus t
therefore be reduced by one.

Line 5. He executes no act ion re levan t to the disease dur ing the
incuba t ion period.

Line 6. The control led s t a t emen t (lines 7-9) describes his be-
havior p a t t e r n each day of the contagious phase.

Line 7. "draw" is a B o o l e a n sys tem procedure, which makes a
r andom drawing. The p robab i l i ty of ge t t ing t r u e as the resul t
is given by the first pa rameter . If the ac t iva te s t a t emen t
is executed the sick person is t e rmina ted immedia te ly (line
21).

Line 8. Through the "infect" procedure (lines 11-16) he tr ies
to infect a number of o ther persons, given as a r andom drawing
from the Poisson d i s t r ibu t ion wi th mean "contacts."
"Poisson" is an i n t e g e r valued sys tem procedure.

Line 9. F u r t h e r actions are pos tponed till the next day. System
t ime is measured in days in this example.

Line 10. If the sick person is never t rea ted , the local sequence
control will finally leave the opera t ion rule t h rough end ,
whereby he becomes t e rmina ted (cured). He also leaves the
system.

Line 14. When a person chosen a t r andom is contacted, the prob-
abi l i ty of infect ing h im is "prinf" mult ip l ied by the prob-
abi l i ty t h a t he is previously uninfected. If the value of draw
is f a l s e no th ing is done, and therefore the i den t i t y of the
contac ted person is of no concern.

Line 15. A sick person is genera ted and included in S, which is the
"environment" set of the person calling the procedure (line
8). The former becomes last(S). His first act ive phase
is scheduled direct ly, whereby the n u m b e r of uninfected
persons is upda ted (line 4) before the next contac t is made.

Line 17. The c l e m e n t parame te r refers to a sick person process.
Line 19. The pa t i en t is removed from the set (environment) of

which i t is a member (if any) and, since i t is a "sick person"
process, i t is connected, and the following s t a t e m e n t is ex-
ecuted. This s t a t emen t (lines 20-24) is a connection block, in

which the a t t r ibu tes of the connected sick person are ac-
cessible.

Line 20. "symptoms" is an a t t r i bu t e of the connected sick person
(ef. line 3).

Line 21. The sick person process is t e rmina ted ; i.e., the event
not ice and reac t iva t ion po in t belonging to i t are b o t h deleted.

Line 22. "environment" is an a t t r i bu t e of the connected sick
person. The fo r s t a t emen t amounts to a scanning of th is set ,
because the controlled s t a t emen t (line 23) removes the cur ren t
e lement X from the set (line 19 of the new treatment process).

Line 24. A pa t i en t wi thou t symptoms is given mass t r e a t m e n t
wi th p robab i l i ty "probmass" of success.

Line 25. The t r e a t m e n t process leaves the system, and so does the
sick person, if he has become te rmina ted .

Line 26. The Main Program s ta r t s here. In i t iMly the ent i re popu-
la t ion is uninfected.

Line 27. The first infect ion is generated, af ter which the Main
Program suspends itself for the s imula t ion period.

Acknowledgments. The SIMIILA compiler presently
operating has been implemented by the authors as an
extension of the UNIVAC 1107 ALGOL compiler, under a
contract with the UNIVAC Division of Sperry Rand Cor-
poration. The ALGOL compiler was constructed at the Case
Institute of Technology by a team originally headed by
Joseph Speroni (now at UNIVAC International). The input-
output and backing store facilities, together with facilities
for string handling and other valuable extensions to
ALGOL 60, have been carried over to the SIMULA system.
The authors are indebted to Nicholas Hubacker (UNIVAC
International) for help in finding the way through the
ALGOL compiler.

The authors wish to express their sincere thanks to
those who have contributed to the development of the
SIMULA project, in particular to: Bernard Hausner, of
Rand Corp., whose experience with SIMSCRIPT had no
little impact at an early stage; Ken Walter, of Case In-
stitute of Technology, who boosted the project during
a few summer months; BjSrn Myhrhaug, whose contri-
bution to the implementation has been indispensable;
and Sigurd Kubosch, who is rapidly becoming indis-
pensable. Dag Belsnes and Sigurd Kubosch have given
valuable comments and criticism concerning the form of
the present paper. The authors also wish to thank the
Programming Languages editor of this journal for his
assistance.

RECEIVED OCTOBER, 1965; REVISED MAY, 1966

R E F E R E N C E S

1. NAUR, P. (Ed.) . Revised repor t on the a lgor i thmic language
ALGOL 60. Comm. ACM 6 (Jan. 1963), 1-17.

2. DAHL, O.-J. , AND NYGAARD, K. S I M U L A - - a language for pro-
g ramming and descr ipt ion of discrete even t systems,
in t roduc t ion and user ' s manual . Norwegian Comput ing
Center , Forskningsveien 1 B, 0s lo 3, Norway, M a y 1965.

3. HoAi~, C. A. R., AND WIRT~, N. A. Con t r ibu t ion to the develop-
men t of ALGOL 60. Comm. ACM 9 (June, 1966), 413--432.

4. CONWAV, M. E. Design of a separable t r ans i t i on -d i ag ram com-
piler. Comm. ACM 6 (July 1963), 396.

5. WEIZENBAUM, J . Symmetr ic l is t processor. Comm. ACM 6
(Sept. 1963), 524-544.

6. WEIZEN~AUM, J . Le t t e r to the edi tor . Comm. ACM 7 (Jan.
1964), 38.

678 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 9 / N u m b e r 9 / S e p t e m b e r , 1966

