
In the Proceedings of the 1994 International Conference on Computer Languages (ICCL'94), pp. 229{240, Toulouse, France,

May 16{19, 1994.
c
1994 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or

lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Taming Control Flow: A Structured Approach to Eliminating Goto

Statements

Ana M. Erosa and Laurie J. Hendren

School of Computer Science

McGill University

Montr�eal, Qu�ebec H3A 2A7

ferosa,hendreng@cs.mcgill.ca

Abstract

In designing optimizing and parallelizing compilers,

it is often simpler and more e�cient to deal with pro-

grams that have structured control ow. Although

most programmers naturally program in a structured

fashion, there remain many important programs and

benchmarks that include some number of goto state-

ments, thus rendering the entire program unstruc-

tured. Such unstructured programs cannot be han-

dled with compilers built with analyses and transfor-

mations for structured programs.

In this paper we present a straight-forward algo-

rithm to structure C programs by eliminating all goto

statements. The method works directly on a high-

level abstract syntax tree (AST) representation of the

program and could easily be integrated into any com-

piler that uses an AST-based intermediate represen-

tation. The actual algorithm proceeds by eliminat-

ing each goto by �rst applying a sequence of goto-

movement transformations followed by the appropri-

ate goto-elimination transformation.

We have implemented the method in the Mc-

CAT (McGill Compiler Architecture Testbed) opti-

mizing/parallelizing C compiler and we present exper-

imental results that demonstrate that the method is

both e�cient and e�ective.

1 Introduction and Motivation

Over the years there has been substantial discus-

sion about the use of explicit gotos in high-level pro-

grams and there have been many arguments against

the frequent use gotos from a software engineering or

program understandability point of view [9, 13, 15].

This discussion has led to the relatively infrequent use

of gotos in typical C programs [5]. However, in lan-

guages like C, there are still special occasions where

programmers like to use gotos. These include: (1) us-

ing gotos to exit from deeply nested conditionals or

loops; (2) using gotos to branch to a common piece of

code that is shared among several branches of a switch

statement; (3) using gotos in automatically generated

code such as the code produced by lex; and (4) using

gotos to handle exceptions.

In this paper we are concerned about automati-

cally eliminating explicit gotos in order to facilitate

the construction of analyses and transformations re-

quired for optimizing and parallelizing C compilers.

That is, given C source programs that may contain

some gotos, we wish to automatically transform them

into equivalent structured or compositional programs

that do not any use gotos. We have implemented this

method in our McCAT (McGill Compiler Architecture

Testbed) parallelizing/optimizing compiler, and thus

our compiler can assume fully structured programs for

all intermediate forms, analyses and transformations

[11].

From the pragmatic point of view there are many

reasons why programs without gotos are simpler to

handle in such compilers. One important consequence

is that C programs without gotos are compositional,

structured analyses techniques can be used to com-

pute data ow information. For example, one can

use the e�cient techniques available for structured

data ow graphs [1], or simple abstract interpretation

techniques that need not consider continuation-based

semantics. From the program transformation stand-

point, compositional programs also lend themselves to

simpler and often more e�cient algorithms. Consider,

for example, the e�cient creation of the Static Single

Assignment (SSA) form for structured programs con-

sisting of straight-line code, if statements, and while

statements [8], the structured transformations to the

ALPHA dependence representation [12], and the e�-

cient construction of Program Dependence Graphs for

structured programs [5]. Finally, compositional pro-

grams are naturally represented as trees, and inter-

mediate representations based on compositional rep-

resentations can be manipulated and transformed us-

ing a wide variety of strategies including the use of

attribute grammars.

Our approach to eliminating gotos is based on a

229

set of straight-forward transformations that operate

on a high-level structured intermediate representa-

tion of the original program. These transformations

come in two categories: goto-eliminations and goto-

movements. Intuitively, the method relies on the fol-

lowing observations: (1) when the goto statement and

target label are in the same statement sequence, a

goto-elimination transformation can be directly ap-

plied to eliminate the goto; and (2) if the goto state-

ment is in a di�erent statement sequence from the

target label, we can use one or more goto-movement

transformations to move the goto to the same state-

ment sequence as the target label and then apply the

appropriate goto-elimination transformation.

The remainder of this paper is structured as fol-

lows. In Section 2 we present the goto-elimination

and goto-movement transformations. We �rst show

how they can be applied to remove a single goto state-

ment from a C program and then we present a high-

level algorithm for eliminating all gotos from a C pro-

gram, thus producing an equivalent structured C pro-

gram. In Section 3 we show how some optimizations to

our method can improve the resulting code. We have

completely implemented the method and in Section 4

we give experimental results for both the unoptimized

and optimized methods. Finally, in Section 5 we com-

pare our method with related methods, and in Section

6 we give some conclusions and discuss further work.

2 Eliminating Goto Statements

In this section we �rst present the goto-elimination

transformations, and then we present the goto-

movement transformations and show how to apply

successive goto-movements in order to reach a point

where a goto-elimination can be applied. To simplify

the explanation of the method, we assume that a goto

statement is always a conditional goto in the form if

(condition) goto Li. Thus, we assume that any un-

conditional goto of the form goto Li is transformed

into an equivalent conditional statement of the form

if (true) goto Li.

Another important point is that we have chosen

to directly support break and continue statements.

That is, even though these are a form of control-ow

similar to gotos, they are already quite tame in the

sense that they are compositional, and we can easily

handle them in our compiler framework. Thus, there

is no bene�t in eliminating these statements. Our

method could easily be modi�ed to eliminate break

and continue statements, if this was required.

2.1 Goto-elimination Transformations

When both the goto statement and the label are

in the same statement sequence, we can directly elim-

inate the goto statement. There are two possibilities:

the goto statement occurs in the program before the

label statement, or after the label statement. In

the �rst case, the goto is eliminated and replaced by

a conditional, while in the second case the goto is

eliminated and replaced by a loop.

Goto statement is before label statement:

If the goto statement is before the label state-

ment, there is an obvious transformation to a condi-

tional statement. As illustrated in Figure 1, the goto

is eliminated and the statements between the goto

statement and the label are embedded into a condi-

tional statement guarded by the negation of the con-

dition of the original goto statement.

stmt_1;

if (cond) goto L_i;

stmt_2;

...

L_i:stmt_n;

)

stmt_1;

if (!cond) {

stmt_2;

...

}

L_i:stmt_n;

Figure 1: Eliminating a goto with a conditional

Goto statement is after label statement:

If the goto statement is after the label statement,

then the goto is eliminated by embedding the state-

ments between the label and the goto in a do-while

loop. The example program in Figure 2 illustrates this

case.

stmt_1;

L_i:stmt_2;

...

stmt_n;

if (cond) goto L_i;

)

stmt_1;

do {

L_i: stmt_2;

...

stmt_n;

}while (cond);

Figure 2: Eliminating a goto with a loop

These two goto-elimination transformations are ob-

vious, and it is unlikely that a programmer would have

used a goto in these situations where a conditional or

loop are much more reasonable constructs. However, a

tool that generates C code could very easily produce

such programs. Furthermore, these goto-elimination

transformations provide the backbone for the com-

plete method. As described in the next section, we

can always eliminate a goto by moving the goto to

the appropriate place and then applying one of these

two goto-eliminations.

2.2 Goto-movement Transformations

In order to categorize the goto-movement trans-

formations, we require a precise notion of o�set,

level, sibling statements, directly-related statements

and indirectly-related statements.

De�nition 1 The o�set of a goto or label statement

is n if the statement is the nth goto or label statement

that appears in the source program relative to the be-

ginning of the program.

230

De�nition 2 The level of a label or a goto statement

is m if the label or the goto statement is nested inside

exactly m loop, switch, or if/else statements.

De�nition 3 A label statement and a goto statement

are siblings if there exists some statement sequence,

stmt 1; ... ; stmt n, such that the label statement

corresponds to some stmt i and the goto statement

corresponds to some stmt j in the statement sequence.

De�nition 4 A label statement and a goto statement

are directly-related if there exists some statement se-

quence, stmt 1; ... ; stmt n, such that either the

label or goto statements corresponds to some stmt i

and the matching goto or label statement is nested

inside some stmt j in the statement sequence.

De�nition 5 A label statement and a goto statement

are indirectly-related if they appear in the same pro-

cedure body, but they are neither siblings nor directly-

related.

Given these de�nitions, it is clear that the goto-

elimination transformations presented in the previous

subsection are applied exactly when the goto state-

ment and target label statements are siblings. The

goto-elimination transformation given in Figure 1 is

used when the o�set of the goto statement is less than

the o�set of the target label statement, while the goto-

elimination transformation given in Figure 2 is applied

when the o�set of the goto statement is greater than

the o�set of the target label statement.

We can now restate our overall strategy as follows.

Given any goto/label pair, we can eliminate the goto

by �rst moving the goto until it becomes a sibling

of the label, and then applying the appropriate goto-

elimination transformation. Figure 3 illustrates the

four situations that may occur.

Figure 3(a) illustrates the case when the label and

goto are directly-related, and the level of the goto is

greater than the level of the target label. The objec-

tive is to move the goto to the same level as the label.

In this case we apply outward-movement transforma-

tions, where each transformation moves the goto out

one level. Figure 3(b) illustrates the case where the la-

bel and goto are directly-related, and the level of the

goto is less than the level of the label. In this case we

apply inward-movement transformations, where each

transformation moves the goto in one level.

Figures 3(c) and 3(d) illustrate the more com-

plicated situations where the goto and label are

indirectly-related. When the label and goto are in

entirely di�erent statements (Figure 3(c)), the goto

is �rst moved using outward-movements until it be-

comes directly-related to the label, and then inward-

movements are used to move the goto to the same level

as the label. When the label and goto are in di�erent

branches of the same if or switch statements (Fig-

ure 3(d)), then the goto is �rst moved using outward-

movements until it becomes directly-related to the en-

closing if or switch, and then inward-movements are

used to move it to the same level as the label.

switch(i)

if (expr2)

while (expr1)

case 1:

then

if (cond) goto L1;

L1:

while (expr1)

if (expr2)

switch(i)

if (cond) goto L1;

case 1:

else

then

L1:

(a) Directly-related (b) Directly-related

(level(goto) > level(label)) (level(goto) < level(label))

switch(i)

case 1:

if (expr1)

if (cond) goto L1;

then

while (expr2)

if (expr3)

then

L1:

if (cond)

then

if (cond) goto L1;

while (expr2)

if (expr3)

then

L1:

while (expr1)

else

(c) Indirectly-related (d) Indirectly-related

(different statements) (different branches of the same if/switch)

Figure 3: The four cases for goto/label relationships.

Given that all situations may be handled by inward

or outward goto-movements, the only remaining prob-

lem is to de�ne both outward- and inward-movement

transformations for each kind of construct (loop, con-

ditional, switch). These transformations are presented

in the next subsections.

2.2.1 Outward-movement Transformations

The outward movement transformations are very

straight-forward. There are basically two cases, mov-

ing a goto out of a loop or switch statement, and

231

moving a goto out of an if statement.

Moving a goto out of a loop or switch state-

ment:

This transformation is very simple since we make

use of the break statement to exit the switch or loop.

We have made use of break since it is compositional

and our compiler can handle it easily. However, note

that it would also be possible to use a more compli-

cated transformation that did not make use of the

break statement, if this was desired. The complete

transformation is illustrated in Figure 4. Note that

a new variable is introduced to store the value of the

conditional at the point at which the goto was encoun-

tered. This value is then reused in the goto statement

that is introduced at the exit of the switch/loop.

{ ...

switch(i): {

case 1:

stmt_1;

if (cond) goto L1;

stmt_2;

...

stmt_i;

break;

case 2:

...

default:

...

}

...

L1:stmt_n;

}

)

{ ...

switch(i): {

case 1:

stmt_1;

goto_L1=cond;

if (goto_L1) break;

stmt_2;

...

stmt_i;

break;

case 2:

...

default:

...

}

if (goto_L1) goto L1;

....

L1:stmt_n;

}

Figure 4: Moving a goto out of a switch

Moving a goto out of an if statement:

In this case the break statement cannot be used,

and instead a new conditional is introduced as shown

in Figure 5.

{ ...

if (expr) {

stmt_1;

if (cond) goto L1;

...

stmt_i;

}

...

L1:stmt_n;

}

)

{ ...

if (expr) {

stmt_1;

goto_L1=cond;

if (!goto_L1) {

stmt_2;

...

stmt_i;

}

}

if (goto_L1) goto L1;

...

L1:stmt_n;

}

Figure 5: Moving a goto out of an if

2.2.2 Inward-movement Transformations

In the previous section we presented the rel-

atively simple outward-movement transformations.

The inward-movement transformations are slightly

more complicated. Firstly, we can not take advan-

tage of the break statements, and secondly we must

consider whether the goto appears before or after the

target label. We describe the inward-movement trans-

formations for the cases where the goto appears be-

fore the label, and then show how we can apply a

goto-lifting transformation (see Section 2.2.3) that

can always move the goto so that it appears before

the label.

Moving a goto into a loop statement:

This transformation �rst introduces a conditional

that: (1) embeds the statements that occur between

the goto and the start of the loop; and (2) modi�es the

loop condition such that it will be entered either when

the goto expression is true, or when the original loop

expression is true. The transformation is illustrated

in Figure 6. Note that the short-circuit evaluation in

C will ensure that the original loop expression will not

be evaluated if entry into the loop is due to the goto.

Further, note that the goto variable must be set to

false at the point of the label in order to preserve the

correct behaviour of the loop in succeeding iterations

(i.e. force evaluation of the loop expression).

{ ...

if (cond) goto L1;

stmt_1;

...

stmt_i;

while (expr) {

stmt_j;

.....

L1:.....

stmt_n;

}

}

)

{ ...

goto_L1=cond;

if (!goto_L1) {

stmt_1;

...

stmt_i;

}

while (goto_L1||expr) {

if (goto_L1) goto L1;

stmt_j;

...

L1:goto_L1 = false;

...

stmt_n;

}

}

Figure 6: Moving a goto into a loop

The transformation for do loops is similar, except

that the condition of the loop does not need to be

modi�ed. To handle for loops that have labels in

their body, one can simply transform it to the equiva-

lent while or do loop and then apply the appropriate

inward-movement transformation.

Moving a goto into an if statement:

In this case the transformation is similar to the loop

transformation, except that the if condition is modi-

�ed di�erently depending on whether the label is in

the then or else part. If the label is in the then

part, the modi�cation of the condition is the same as

for the while condition. If the label is in the else part

the if condition is modi�ed to lead to the else part,

when the goto condition is true, or the if condition is

false. Figure 7 illustrates this case.

Moving a goto into a switch statement:

In order to move a goto into a switch statement,

one must �rst locate the case that contains the target

label. In order to force control to enter this case, a

new variable is de�ned to be used as the switch vari-

able, and a conditional is introduced that initialize the

new variable to the constant expression of the case in

question when the condition of the goto is true and to

232

{ ...

if (cond) goto L1;

stmt_1;

...

stmt_i;

if (expr) {

...

stmt_j;

...

}

else {

stmt_k;

L1: ...

stmt_n;

}

}

)

{ ...

goto_L1=cond;

if (!goto_L1) {

stmt_1;

...

stmt_i;

}

if (!goto_L1 && expr) {

...

stmt_j;

...

}

else {

if (goto_L1) goto L1;

stmt_k;

L1: ...

stmt_n;

}

}

Figure 7: Moving a goto into an if

the switch expression when the condition of the goto

is false. This is illustrated in Figure 8.

{ ...

if (cond) goto L1;

stmt_1;

...

stmt_i;

switch (i) {

case 1: {

stmt_j;

L1: ...

stmt_k;

}

default:

...

}

}

)

{ ...

goto_L1=cond;

if (!goto_L1) {

stmt_1;

...

stmt_i;

t_switch=i;

}

else t_switch = 1;

switch (t_switch) {

case 1: {

if (goto_L1) goto L1;

stmt_j;

L1: ...

stmt_k;

}

default:

...

}

}

Figure 8: Moving a goto into a switch

2.2.3 Goto-lifting Transformation

Each of the previous inward-movement transforma-

tions have moved a goto that appeared before the tar-

get label (i.e. o�set(goto) < o�set(label)).

However, there are also situations where the tar-

get label appears before the matching goto. In this

case, one must �rst move the goto to just before the

statement containing the target label using the goto-

lifting transformation, and then apply the appropriate

inward-movement transformation.

The goto-lifting transformation is illustrated in Fig-

ure 9. In this example stmt label is the statement

that contains the label L1, and the goto statement

is originally below stmt label. We can lift the goto

up above stmt label by introducing a do loop that

on the �rst iteration ignores the goto and on sub-

sequent iterations uses the value of the conditional at

the bottom of the loop. After the goto has been lifted,

the inward-movement transformations can be used to

move the goto inside stmt label.

{ ...

stmt_1;

stmt_2;

...

stmt_lab;/*contains L1*/

...

if (cond) goto L1;

...

stmt_n;

}

)

{ int goto_L1 = false;

...

stmt_1;

stmt_2;

...

do {

if (goto_L1) goto L1;

stmt_lab;/*contains L1*/

...

goto_L1 = cond;

}

while (goto_L1);

...

stmt_n;

}

Figure 9: Lifting a goto above the statement contain-

ing the label

2.3 Examples of Inward and Outward

Transformations

Figure 10 illustrates a series of outward transforma-

tions followed by a goto-elimination transformation,

while Figure 11 illustrates a series of inward trans-

formations followed by a goto-elimination transforma-

tion. Note that the dotted arrows indicate the move-

ment just applied, while the dashed arrows indicate

the next movement.

2.4 Avoiding the Capture of break and

continue Statements

Since we are directly supporting break and

continue statements, there is one twist that we must

consider when applying the goto-elimination (Sec-

tion 2.1) and goto-lifting (Section 2.2.3) transforma-

tions that introduce new do loops. Although these

transformation seem quite simple and innocent at �rst,

there is one subtle point that arises due to the pres-

ence of break and continue statements. The crucial

point is that, on rare occasions, the do loop that we

introduce captures a break or continue statement

that belongs to an enclosing loop or switch state-

ment. Consider, for example, the original program

in Figure 12(a) and the incorrect capturing of a break

statement in Figure 12(b). In order to avoid this sit-

uation, we must add one further transformation for

each captured break or continue. As illustrated in

Figure 12(c), we need to: (1) introduce one new logical

variable for each loop that captures a break, (2) set

these variables to false at the beginning of procedure,

(3) set the appropriate variable to true at the point of

the break, and (4) check the variable at the exit of the

introduced loop: if it is true reset the logical variable

to false and issue the proper break for the enclosing

loop. A similar method for captured continue state-

ments may be used.

2.5 Eliminating all goto statements

Based on the goto-elimination, goto-movement and

goto-lifting transformations, we can now state the

complete algorithm for removing all goto statements

233

{ ...

while (true) {

L_i: stmt_i;

...

stmt_j;

if (exp1) break;

...

if (exp2) goto L_i;

...

stmt_n;

}

}

{ ...

while (true) {

do {

L_i: stmt_i;

...

stmt_j;

if (exp1) break;

...

goto_Li = exp2;

} while (goto_Li);

...

stmt_n;

}

{ int do_brk = 0;

...

while (true) {

do {

L_i: stmt_i;

...

stmt_j;

if (exp1)

{do_brk=1; break;}

...

goto_Li = exp2;

} while (goto_Li);

if (do_brk)

{do_brk=0; break;}

...

stmt_n;

}

}

(a) original program (b) incorrect capture of break (c) correct treatment of captured break

Figure 12: Avoiding capture of break and continue statements

then
switch (i)

if (expr2)

while (expr1)

goto_L1=cond;

if (goto_L1) break ;

case 1:

if (goto_Li) goto L1

L1:

then
switch (i)

if (expr2)

while (expr1)

goto_L1=cond;

if (goto_L1) break ;

case 1:

if (!goto_L1)

{

}

L1:

if (goto_L1) goto L1;

(a) outward movement from switch (b) outward movement from if

switch (i)

if (expr2)

while (expr1)

goto_L1=cond;

if (goto_L1) break ;

case 1:

if (!goto_L1)

{

}

if (goto_L1) break;

if (goto_L1) goto L1;

then

L1:

switch (i)

if (expr2)

while (expr1)

goto_L1=cond;

if (goto_L1) break ;

case 1:

if (!goto_L1)

{

}

if (goto_L1) break;

if (! goto_L1)

{

}

L1: goto_L1=0;

then

(c) outward movement from while (d) application of goto elimination

Figure 10: Outward movements followed by goto elim-

ination.

from a C program. The complete algorithm is pre-

sented in Figure 13.

For each procedure, the algorithm proceeds in �ve

steps. The �rst two steps are simple initializations.

The �rst step collects a list of all label and goto state-

ments in the procedure. In our implementation, we

store the gotos in a list in the order in which they

appear, and we store the labels in a hash table. The

second step introduces one logical variable for each la-

bel, initializes the variable to false, and inserts a reini-

tialization to false at the point of the label. These ini-

tializations and reinitializations are required to make

sure that the value of the logical variable is false on

all paths except the path coming from the point at

which the appropriate conditional test evaluated to

true. The third step converts all unconditional gotos

to conditional gotos.

The fourth step is the heart of the algorithm where

each goto is eliminated one at a time. The simplest

order to eliminate them is in the order in which they

occur in the goto list. However, as we point out

in Section 6, there may be better orderings that can

be considered. For each goto, the matching label is

located. For our implementation we make use of the

hash table of labels to do this e�ciently. Once the

goto/label pair has been located, it is simply a mat-

ter of applying goto-movement transformations until

the goto/label pair become siblings and then apply-

ing the appropriate goto-elimination transformation.

Any implementation of this algorithm should be able

to support e�cient operations to get the level and o�-

set of each label and goto, and an e�cient means to

determine if the goto and label are indirectly-related,

directly-related, or siblings. In our implementation

we store the level and o�sets in the goto list and label

hash table, and we make use of parent pointers in the

SIMPLE tree to �nd common ancestors that can be

used to e�ciently determine the relationship between

the goto and label.

The �fth step is the elimination of all the labels

(since all gotos to these labels have now been elimi-

nated).

It should be noted we actually implement all of the

initialization steps during one pass through the AST

and no further passes are required as all subsequent

234

while (goto_L1||expr1)

L1:

if (expr2)

switch (i)

goto_L1=cond;

if (!goto_L1)

{

}

if (goto_L1) goto L1;

case 1:

else

then

while (goto_L1||expr1)

L1:

if (goto_L1) goto L1

if (!goto_L1 && expr2)

switch (i)

goto_L1=cond;

if (!goto_L1)

{

}

if (!goto_L1)

{

}

case 1:

else

then

(a) inward movement into a while (b) inward movement into an if

while (goto_L1||expr1)

if (goto_L1) goto L1;

L1:

if (! goto_L1)

 {

 t_switch=i; }

else

 t_switch=1;

if (!goto_L1 && expr2)

switch (t_switch)

goto_L1=cond;

if (! goto_L1)

{

}

if (! goto_L1)

{

}

case 1:

else
then

while (goto_L1||expr1)

if (!goto_L1)

{

}

L1: goto_L1=0;

case 1:

if (!goto_L1)

 {

 t_switch=i; }

else

 t_switch=1;

if (!goto_L1 &&expr2)

switch (t_switch)

goto_L1=cond;

if (!goto_L1)

{

}

if (!goto_L1)

{

}

then

else

(c) inward movement into a switch (d) application of goto elimination

Figure 11: Inward movements followed by goto elimi-

nation

steps can be done directly using the information col-

lected in this �rst pass. That is, we store enough in-

formation about the location of goto and label state-

ments so as to allow direct manipulation of the re-

quired parts of the AST.

3 Optimizations

There are several simple optimizations that can

be made as the goto-elimination and goto-movement

transformations are applied. Figure 14(a) illustrates

the case where a goto is immediately next to the la-

bel. This situation may occur after several movement

transformations, and clearly in this case we may just

eliminate the goto. Figure 14(b) illustrates the sit-

uations where the goto is at the end of a statement

sequence and is being moved out of an if. In this case

we can avoid introducing a conditional statement at

the end of the block (there are no statements after the

goto that must be guarded). Similarly, Figures 14(c)

and (d) illustrate that when the goto is immediately

for each procedure p do

{

/*get list of labels and gotos for procedure*/

label_list := all labels in procedure p

goto_list := all gotos in procedure p

/*introduce and initialize the logical variables*/

for each label Li in label_list do

{ introduce a var. goto_Li initialized to false

introduce a stmt. just after the label Li

that resets goto_Li to false

}

/*change unconditional gotos to conditional gotos*/

for each unconditional goto g in goto_list do

change g to a conditional goto

/*eliminate gotos*/

while not empty(goto_list) do

{ /*select the next goto/label pair*/

g := select a goto from goto_list

l := label matching g

/*force g and l to be directly related*/

if indirectly_related(g,l) then

if different_statements(g,l) then

move g out using outward-movement transf.

until it becomes directly related to l

else

/*diff. branches of same if or switch*/

move g out using outward-movement transf.

until it becomes directly related to

an if or switch containing l

/*force g and l to be siblings*/

if directly_related(g,l) then

if level(g) > level(l) then

move g out to level(l) using

outward-movement transformations

else /* level(g) < level(l) */

{ if offset(g) > offset(l) then

lift g to above stmt containing l

using goto-lifting transformations

move g in to level(l) using

inward-movement transf.

}

/*g and l are guaranteed to be siblings,

eliminate g*/

if offset(g) < offset(l) then

eliminate g with a conditional

else

eliminate g with a do-loop

}

/* eliminate labels */

for each label Li in label_list do

eliminate Li

}

Figure 13: High-level algorithm for removing all gotos

before a loop or switch we can avoid introducing a

conditional statement before the loop or switch.

Another common situation that can be optimized

occurs when there is more than one goto associated

with a label inside the same while, if, switch or loop

statement. If we were to apply the transformations

blindly, we would introduce, for each goto, a condi-

tional check at the exit of the while, if, switch or

loop. It is clear that when there is more than one goto

statement to the same label, it would be preferable to

insert only one conditional check per label. For ex-

235

{

stmt_1;

...

if (cond) goto L1;

L1:stmt_n;

}

)

{

stmt_1;

...

L1:stmt_n;

}

(a) goto next to label

{

if (expr) {

stmt_1;

...

if (cond) goto L1;

}

...

L1:stmt_n;

}

)

{

if (expr) {

stmt_1;

...

goto_L1=cond;

}

if (goto_L1) goto L1;

.....

L1:stmt_n;

}

(b) goto at the end of an if block

{

if (cond) goto L1;

while (expr) {

stmt_1;

...

L1:stmt_n;

}

}

)

{

goto_L1=cond;

while (goto_L1||expr) {

if (goto_L1) goto L1;

stmt_1;

...

L1:stmt_n;

}

}

(c) goto immediately before a loop

{

if (cond) goto L1;

switch (i) {

case 1: {

stmt_1;

...

L1: stmt_n;

}

default:

.....

}

}

)

{

goto_L1=cond;

if(goto_L1)i=1;

switch (i) {

case 1: {

if (goto_L1) goto L1;

stmt_1;

...

L1: stmt_n;

}

default:

...

}

}

(d) goto immediately before a switch

Figure 14: Simple Optimizations

ample, the transformation given in Figure 15 for the

case where there are multiple gotos to the same label

from a switch. We implement this optimization by

�rst checking to see if the appropriate conditional has

already been inserted, and avoiding duplicating the

code if it is already there.

4 Experimental Results

In this section we give some experimental results

using our implementation of the algorithm presented

in this paper.

4.1 McCAT Compiler

As shown in Figure 16, the McCAT compiler is

based on a family of three intermediate representa-

tions that range from a high-level abstract representa-

tion, FIRST, to a low-level representation, LAST [11].

The design of each intermediate representation is

driven by the requirements of the analysis and trans-

{ ...

switch(x) {

case 1:

...

break;

case 2:

...

goto error;

case 3:

...

break;

case 4:

...

goto error;

}

...

error:

}

)

{ ...

switch(x) {

case 1:

...

break;

case 2:

...

goto_error=true;

break;

case 3: ...

break;

case 4: ...

goto_error=true;

break;

}

if (goto_error) goto error;

...

error:

}

Figure 15: Optimizing multiple gotos from the same

switch

formations that we consider most important at that

level. Note that we have implemented our goto-

elimination restructuring phase at the SIMPLE level.

This is the most convenient place to insert the restruc-

turing since all statements and conditional expressions

have been simpli�ed at this point. Note that from

the SIMPLE representation we can either dump out a

C program (using McCAT as a source-to-source com-

piler), or continue with the backend phases of McCAT.

Also note that all analyses and transformations that

are done after the restructuring (goto-elimination) can

assume structured programs.

Compiler

Front-end

Processing

Blastify

Simplify

C-dumper

Native

C compiler

Code

Generator

.c

FIRST

SIMPLE

LAST

• register allocation

• instruction scheduling

• low-level loop

 transformations

Source Linker

. ..c

• program structuring

• function inlining

• loop unrolling

• gen. const. propogation

• points-to analysis

• dependency analysis

• high-level loop &

 parallelization

 transformations

Figure 16: The McCAT Compiler

236

program description

asuite Test for C vectorizing compilers

nrcode2 Test for C vectorizing compilers

compress File compression

tomcatv Mesh generation

FSM Implementation of �nite state machine

lex Output program generated by lex

cq Tests on a C compiler

par Program �lter

whetstone Synthetic benchmark

frac Finds rational aproximation to FP value

Table 1: Benchmark Description

4.2 Benchmarks

In order to test our restructuring method we col-

lected a set of 10 benchmarks that contain goto state-

ments. Although in practical terms, our restructurer

is required for programs that contain even one goto,

we wanted to test the e�ect and complexity of our ap-

proach on at least some benchmarks that contained

a signi�cant number of goto statements. The bench-

marks are described in Table 1.

1

.

4.3 Experimental Method

In order to measure the e�ectiveness of our restruc-

turing phase, we performed the following experiment.

For each benchmark we used our McCAT compiler as

a source-to-source compiler and we produced the fol-

lowing three semantically equivalent versions of the

benchmark:

SIMPLE version: This is a C program that is

dumped after conversion into our high-level SIM-

PLE intermediate representation. All goto state-

ments remain.

GTE version: This is a C program that is dumped

after the SIMPLE representation has been re-

structured using the transformation rules pre-

sented in Section 2. No optimizations of the

transformation rules were used.

GTE(opt) version: This is a C program that is

dumped after the SIMPLE program has been

restructured using the transformation rules pre-

sented in Section 2, and the optimizations pre-

sented in Section 3.

Note that in the two GTE versions we eliminated

the goto statements in the reverse order from how

they appeared in the source code.

Given the three versions of each program, we

then compiled each version using the GNU C gcc,

1

The benchmarks we used for these experiments can be ob-

tained by contacting benadmin@bluebeard.cs.mcgill.ca. We

would also appreciate receiving other benchmarks that contain

numerous goto statements

version 2.4.5, with the -O option, and timed the

resulting executables using the UNIX time command

on a Sparcstation 10. We have reported the user time

from these experiments.

4.4 Results and Discussion

Table 2 gives the experimental measurements for

each benchmark. In the �rst section of columns we

give the name of the benchmark, the number of gotos

in the program, and the number of lines of source code.

To provide a fair comparison for the number of lines

of source code we ran a script that strips comments,

and formats the programs into a standard form.

The second section of columns gives the execution

times for each version of the benchmark (times col-

lected as described in the previous section).

The third section of columns gives a count of the

total number of transformations applied, and the num-

ber of statements inserted for the GTE and GTE(opt)

versions of the programs. Note that the number of ex-

tra statements in the GTE versions is really the num-

ber of statements inserted minus the number of goto

statements eliminated. To count the statements in-

serted in the GTE versions we counted all new state-

ments including the added if and do-while state-

ments, the initialization of the logical variable with

the goto condition and the re-initialization of the log-

ical variables.

First, let us consider the e�ect of restructuring on

execution time. As expected, restructuring programs

with very few goto statements have very little impact

on execution time. For example, this is true for nr-

code2 and cq with only two and one goto respectively.

This is an important observation since many programs

have only a few goto statements, and our method al-

lows us to handle them with a structure-based com-

piler at low cost.

On the other extreme, is the FSM benchmark which

is an irreducible loop, has many nested gotos, and the

ratio of gotos to total statements is very high. Fur-

thermore, most of the execution time is spent in the

part of the program that implements the �nite state

machine. Thus, we see that there is a signi�cant per-

formance impact, with even the optimized GTE ver-

sion executing signi�cantly slower. This result would

indicate that we should explore some further optimiza-

tions of the restructurer for such goto-intensive pro-

grams. In experimenting with various orderings of the

goto statements, we observed that the order of elimi-

nation is important for such programs, and this is one

source of optimization that we will consider.

For asuite, although the ratio of gotos to the num-

ber of statements is also high, we observed that the

transformations applied are very simple (almost all

the gotos are siblings of their labels, or exit from a

for loop).

237

name of # of # of time for time for time for GTE(opt)/ transf new stat transf new stat

benchmark gotos stats. SIMPLE GTE GTE(opt) SIMPLE GTE GTE GTE(opt) GTE(opt)

asuite 21 91 4.2 4.5 4.3 1.02 34 81 34 74

nrcode2 2 132 3.2 3.3 3.2 1.00 5 9 5 6

compress 18 1052 2.3 2.6 2.5 1.09 27 42 24 31

tomcatv 7 317 1.1 1.2 1.1 1.00 14 29 14 21

FSM 12 53 2.5 3.3 3.0 1.20 23 45 19 34

lex 5 1670 0.42 0.50 0.46 1.10 22 16 16 11

cq 1 5760 3.0 3.2 3.1 1.03 1 3 1 3

par 59 1665 0.57 0.65 0.62 1.09 189 266 187 170

whetstone 31 433 10.8 11.3 11.1 1.03 63 128 63 83

frac 6 56 0.16 0.21 0.17 1.06 7 18 7 17

Table 2: Experimental Measurements

Next, consider the expense of the restructurer as

measured by the number of transformation applied,

and the number of new statements introduced. First,

we note that we apply around 2 to 3 transformations

per goto eliminated. This means that we apply 1 or

2 movement transformations per goto. Also, we see

that we introduce about 3 statements per goto (giving

a net increase of 2 statements per goto). These results

are consistent with the results of a study done by Bal-

lance and Maccabe [5], that indicated that only 2.9%

of 119,000 functions examined use gotos. Of those

gotos, 68% can be characterized as simple gotos: one

target label per function, with one or more associated

gotos, where the goto and label are siblings or the

goto is an exit from a control structure.

We can summarize by stating that our results show

that applying a small number of simple transforma-

tions eliminates all goto statements, and on most

benchmarks the e�ect on execution speed is minimal.

Thus, for the vast majority of programs, we can ex-

ploit structured representations for designing compil-

ers while paying only a minimal penalty due to re-

structuring.

5 Related Work

One of the �rst approaches to restructuring was

given by Bohm and Jacopini [6]. Their restructuring

method was done in the context of normalizing ow

graphs (where the ow graph represented mappings

of a set onto itself). This result is mostly of historical

and theoretical interest and does not give a complete

algorithm, but rather presents a set of pattern match-

ing rules and transformations.

There have been several approaches to restructur-

ing program owgraphs. Peterson et al. present a

proof that every owgraph can be transformed into

an equivalent well-formed owchart(loops and condi-

tionals are properly nested and can only entered at

the beginning) [14]. They present a graph algorithm

to do such a transformation using a technique of node-

splitting and they proved the transformation was cor-

rect. William and Osher also use node-splitting, but

they present the problem as recognizing �ve basic un-

structured sub-graphs, and show how to replace these

sub-graphs with equivalent structured forms [17, 16].

Ashcroft and Manna tackled the problem of restruc-

turing by presenting two algorithms for converting

program schemas into while schemas. Rather than

using node-splitting they use extra logical variables to

achieve these transformations [10].

All of the previous methods were intended to re-

structure all ow charts. However, there have also

been approaches suggested that are used to restruc-

ture programs in order to expose the natural structure

of the program, leaving some gotos unstructured. The

�rst such method was given by Baker as a method for

restructuring Fortran programs [4] in order to make

them more understandable. Since her goal was un-

derstandable Fortran programs, she only restructures

in situations where there is a clear use of a structured

construct and leaves some gotos in the program. This

is of historical interest, but since she leaves some gotos

in the program, her method is not applicable to the

complete restructuring of programs for the purposes

of compilation. More recently, Cifuentes has presented

an algorithm for restructuring in the context of decom-

pilation [7]. This work is similar in spirit to Baker's

problem in that she only structures the parts of the

program that correspond naturally to structured con-

trol constructs.

More relevant to our work are the structuring meth-

ods proposed by Allen et al for vectorizing compil-

ers [2], and the work by Ammarguellat for parallelizing

compilers [3].

Allen et al present the IF conversion method that

converts control dependences into data dependences

by eliminating goto statements and introducing log-

ical variables to control the execution of the state-

ments. The goal of this work is to vectorize state-

ments in loops which contain conditional transfers in

Fortran programs. But although the goal is not the

same as ours, this method can also be applied for

restructuring, and in fact has similar characteristics

to ours. Their method can be divided in three dif-

238

ferent steps: First they categorize the branches into

three types: exit branches (exits from a loop), forward

branches and backward branches. Then, according to

this branch classi�cation , IF conversion uses two dif-

ferent transformations to eliminate the branches in

the programs: branch relocation and branch removal.

Branch relocation moves branches out of loops until

the branch and its label are nested in the same num-

ber of do loops. This is accomplished by introducing

guard expressions to enforce conditional execution of

statements. Branch removal takes place after remov-

ing all the forward branches. They do not eliminate

backward branches.

Their method is similar to ours in that both meth-

ods consist of step-by-step transformations applied to

a structured intermediate representations of the pro-

gram, that result after each transformation in a more

structured code. The idea of the branch relocation

and branch removal are somewhat similar to our goto-

movement and goto-elimination. We both use logical

variables to guard the execution of statements. Dif-

ferences between the methods include the fact that

we restructure C programs (and thus treating break,

continue, and switch statements) rather than For-

tran programs. Furthermore, we are interested in re-

moving all gotos, not just those associated with for-

ward branches. Another di�erence is in the way in

which we introduce guards into the code. Since they

were interested in vectorization they introduced a new

conditional for each action statement whereas in our

method it is preferable to introduce one conditional

for each block of statements. A potential advantage

of our approach is that we only have to make one pass

through the program collecting information about go-

tos and labels, and then we can directly modify the

intermediate representation of the program. Their ap-

proach requires several passes through the program for

the di�erent stages of branch categorization, branch

relocation and branch removal.

The method presented by Ammarguellat, which she

calls control-ow normalization, is the closest work in

terms of the goals of restructuring. That is, we both

wish to fully restructure programs in order to facili-

tate program transformations, program analysis and

automatic parallelization. However, the intermediate

representations that we restructure are quite di�erent.

We are restructuring a high-level representation of C

programs that directly supports break and continue,

while Ammarguellat restructures a lisp-like intermedi-

ate representation and she requires that all loops have

a single exit.

Ammarguellat's approach to the problem is very

di�erent from ours. She converts the program into

a system of simultaneous equations whose unknowns

represent the continuations associated with the pro-

grams labels. By transformations applied to the sys-

tem of equations: precalculation, if distribution, fac-

torization , derecursivation and substitution and elim-

ination , she solves this system of continuation equa-

tions. The quality of the normalizing form of the pro-

gram in terms of code duplication, code size and run-

ning time of resolution process depends on the order in

which unknowns are eliminated. To study this order

she has to consider the control ow of the program,

eliminate the back and cross edges of the graph and

sort the resulting graph in a topological order.

In Figure 17(a) we present an example of an ir-

reducible loop. We can compare the result of Am-

marguellat's control-ow normalization (Figure 17(b))

and our goto-elimination (Figure 17(c)). As illus-

trated by this example, the results are similar in that

we both create new logical variables to store condi-

tions and to guard the execution of the statements

and we both create cycles of control ow when there is

an implicit cycle. However, Ammarguellat replicates

code in the case of irreducible loops and in the case

she does not study the best order of the unknowns.

In the cases of backward branches that do not imply

cycles, we introduce a loop where Ammarguellat does

not. However, this loop will not execute more times

than the original program will, and it does not imply

an increase in the execution time of the program.

Another distinction is that we do not require single-

exit loops because our compiler analysis framework

easily handles continue and break statements. How-

ever, we can easily modify our approach to force single-

exit loops if this is required. It appears to us that our

method is easier to explain and more straight-forward

to implement as we only need a set of simple trans-

formations, and we do not require the collection or

solution of equations.

6 Conclusions and Future Work

In this paper we have presented a structured ap-

proach to eliminating all goto statements in C pro-

grams. The goal of this transformation is to provide a

structured and compositional intermediate represen-

tation that is amenable to structured approaches to

analysis, optimization and parallelization.

The method is straight forward and can be easily

implemented directly on an abstract tree representa-

tion of C programs. The approach is built upon a

set of goto-elimination and goto-movement transfor-

mations. Each goto statement is removed by using

the goto-movement transformations to move the goto

to the same statement sequence and then applying the

appropriate goto-elimination transformation.

We completely implemented our method on the

SIMPLE intermediate representation of the McCAT

parallelizing/optimizing compiler, and we have pre-

sented experimental measurements for 10 benchmark

programs using this implementation. It appears

239

{

if (x) goto L2;

L1: stmt_1;

L2: stmt_2;

if (y) goto L1;

}

{ pred_50=x;

if (pred_50) {

stmt_2;

pred_52=y;

}

if (!pred2_50 && (!pred_52)) {

do {

stmt_1;

stmt_2;

pred_52=y;

} while (pred_52==1)

}

}

{ goto_L2=x;

do {

if (!goto_L2) {

goto_L1=0;

stmt_1;

}

goto_L2=0;

stmt_2;

goto_L1=y;

} while(goto_L1)

}

(a) an irreducible loop (b) control ow normalization (c) our method

Figure 17: A comparison of methods for an irreducible loop

that most C programs use goto statements relatively

sparsely and on such programs the restructured pro-

grams have similar execution speeds as the original

programs. Thus, for most programs, the restructur-

ing does not have a performance penalty, while at the

same time allowing us to use structured analysis and

transformations in the latter phases of the compiler.

For programs that are dense in goto statements (i.e.

C programs produced by scanner-generator tools like

lex), there is some performance penalty, and it may

be worth studying further optimizations for the re-

structuring methods. For example, we may want to

study the best order of eliminating gotos and look at

the elimination of redundant conditional checks and

initializations.

We feel that a major advantage of our approach is

that restructuring method itself is straight-forward to

integrate into any C compiler using a structured inter-

mediate representation. Furthermore, as shown by our

experimental results, the approach is very e�cient, ap-

plying only a small number of simple transformations

per goto statement. Finally, it has been our experi-

ence that the presence of a restructuring phase that

can always eliminate gotos allows us to develop more

e�cient and simpler analyses and transformations in

the remainder of the compiler.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers|

Principles, Techniques, and Tools. Addison-Wesley

Pub. Co., corrected edition, 1988.

[2] J. R. Allen, Ken Kennedy, Carrie Porter�eld, and Joe

Warren. Conversion of control dependence to data

dependence. In Conf. Rec. of the POPL-10, pages

177{189, Austin, Texas, Jan. 1983.

[3] Zahira Ammarguellat. A control-ow normalization

algorithm and its complexity. IEEE Trans. on Soft-

ware Eng., 18(3):237{250, 1992.

[4] B. Baker. An algorithm for structuring owgraphs.

Journal of the ACM, 24(1):98{120, 1977.

[5] Robert A. Balance and Arthur B. Maccabe. Program

dependence graphs for the rest of us. Technical report,

The University of New Mexico, Oct. 1992.

[6] C. Bohm and G. Jacopini. Flow diagrams, Turing ma-

chines and languages with only two formation rules.

Comm. of the ACM, 9(5):366{371, May 1966.

[7] C. Cifuentes. A structuring algorithm for decompi-

lation. In XIX Conferencia Latinoamericana de In-

form�atica, pages 267{276, Buenos Aires, Argentina,

2-6 August 1993. Centro Latinoamericano de Estu-

dios en Inform�atica.

[8] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,

Mark N. Wegman, and F. Kenneth Zadeck. E�-

ciently computing static single assignment form and

the control dependence graph. ACM Transactions on

Programming Languages and Systems, 13(4):451{490,

Oct. 1991.

[9] E. W. Dijkstra. Go to statement considered harm-

ful. Communications of the ACM, 11:147{148, March

1968.

[10] E.Ashcroft and Z. Manna. Translating programs

schemas to while-shemas. SIAM J. Comput, 4(2):125{

146, 1975.

[11] L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani,

and B. Sridharan. Designing the McCAT compiler

based on a family of structured intermediate represen-

tations. In Conf. Rec. of the 5th Work. on Languages

and Compilers for Parallel Computing, pages 261{

275, New Haven, Conn., Aug. 1992. Dept. of Comp.

Sci., Yale U. Also available as ACAPS 46, Sch. of

Comp. Sci., , Montr�eal, Qu�e.

[12] L. J. Hendren, G. R. Gao, and V. C. Sreed-

har. ALPHA: A dependence-based intermediate rep-

resentation for an optimizing/parallelizing C com-

piler. ACAPS Tech. Memo 49, Sch. of Comp. Sci.,

McGill U., Montr�eal, Qu�e., Nov 1992.

[13] D. E. Knuth. Structured programming with go to

statements. Computing Surveys, pages 261{302, Dec

1974.

[14] W.W. Peterson, T. Kasami, and N. Tokura. On

the capabilities of while, repeat and exit statements.

Comm. of the ACM, 16(8):503{512, 1973.

[15] P. Wegner. Programming languages - the �rst 25

years. IEEE Transactions on Computers, pages 1207{

1225, Dec 1976.

[16] M.H. Williams. Generating structured ow diagrams:

The nature of unstructuredness. Comput. J, 20(1):45{

50, 1977.

[17] M.H. Williams and H.L. Ossher. Conversion of un-

structured ow diagrams to structured. Comput. J,

21(2):161{167, 1978.

240

