FEATURE

Literate programming
fools let you arrange the
parts of a program in
any order and extract
documentation and code
from the same source
file. The author argues
that language-depen-
dence and feature com-
plexity have hampered
acceptance of these
tools, then offers
simpler alternafive.

NORMAN RAMSEY
Bellcore

reprinted from

LITERATE PROGRAMMING
SIMPLIFIED

n 1983, Donald Knuth introduced

literate programming in the form of
Web, his tool for writing literate Pascal
programs.! Web lets authors interleave
source code and descriptive text in a
single document. It also frees authors
to arrange the parts of a program in an
order that helps explain how the pro-
gram functions, not necessarily the
order required by the compiler.

In the mid-"80s, word spread about
this new programming method as sev-
eral literate programs were published.
In 1987, Communications of the ACM
created a special forum to discuss liter-
ate programming.” Web was adapted
to programming languages other than
Pascal, including C, Modula-2,
Fortran, Ada, and others.® With expe-
rience, however, many Web users

Software

became dissatisfied.” Continued inter-
est in literate programming led to a
frenzy of tool building. In the resulting
confusion, the literate-programming
forum was dropped, on the grounds
that literate programming had become
the province of those who could build
their own tools.”

The proliferation of literate-pro-
gramming tools made it hard for liter-
ate programming to enter the main-
stream, but it led to a better under-
standing of what such tools should do.
Today the field is more mature, and
there is an emerging demand for tools
that are simple, easy to learn, and not
tied to a particular programming lan-
guage.

My own literate-programming tool,
noweb, fills this niche. Freely available

{EEE SOFTWARE

@. IEEE COMPUTER SOCIETY

0740-7459/84 /804 .00 @ 1994 IEEE

@ THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
(3

a7

AN EXAMPLE OF NOWEB: COUNTING WORDS

This example, based on 2 program by Klaus Gunter-
mann and Joachim Schrod and a program by Silvio Levy
and D. E. Knuth, presents the “word count” program
from Unix, rewritten in noweb to demonstrate literate
programming using noweb. The level of detail in this
document is intentionally high, for didactic purposes;
many of the things spelled out here don’t need to be
explained in other programs. The purpose of we is to
count lines, characters, and/or words in a list of files.
The number of lines in 2 file is the number of newline
characters it contains. The number of characters is the
file length in bytes. A word is 2 maximal sequence of
consecutive characters other than newline, space, or b,
containing at least one visible ASCII code. (We assume
that the standard ASCII code is in use.)

Most literate C programs share a commen structure.
It’s probably a good idea to state the overall structure
explicitly at the outset, even though the various parts
could all be introduced in chunks named <+> if we want-
ed to add them piecemeal.

Here, then, is an overview of the file we.c that is
defined by the noweb program we . zw:

<"08a>= 98a
<Hezder files to include 98k>

<Definitions 98>

<Global varizhles 984>

<Functions 1024~

<The main program 99a>

Root chunk {notused in this document).

‘We must include the standard I/Q definitdons because we
want to send formatted output to stdout and stderz.
<Header files to include 98k>=

#include <stdio.h>
This code is used in chunk 982,
The status variable will tell the operating system if the run

was successful or not, and prog. name is used in case there’s an
error message to be printed.

98k

<Definitzons 98c>= 98¢
f#define OK 0
/* status code £for successful run */
fidefine usage error 1
/* status code for improper syntax */
#define cannot_open_ file 2
/* status code for file access error */
Defines:
cannot_open_file, used m chunk 100
OK, used in chunk 284.
usage_error, used in chunk 1024
Uses atatus 984,
“This definition is continued in chunks 1005, 100¢, and 102
This code is used in chunk 98z.
<Global variables 98d>= 984

int status = OK;
/* exdit status of command, intially ORK */
char *prog name;
/* who we axe */
Defines:
prog_name, used in chunks 99z, 700;, and 1024.
status, used in chunks 98¢, 994, 100, and 1024,
Uses OK $8c.

This definition is continued in chunk 1075,

on the Internet since 1989, noweb strips literate programming
to its essentials. Programs are composed of named chunks of
code, written in any order, with documentation interleaved.

To facilitate comparison of Web and noweb, a sample
noweb program appears in the shaded box that runs throughout
this article. I took the text, code, and presentation for this sam-
ple from Knuth’s Literate Programming.

Noweb was developed on Unix and can be ported to non-
Unix platforms provided they can simulate pipelines and sup-
port both ANSI C and either awk or Icon. For example, Kean
College’s Lee Wittenberg ported noweb to MS-DOS. Noweb
Is unique among literate-programming tools in its pipelined,
extensible implementation, which makes it easy for experi-
menters to create new features without writing their own tools.

WEB’S COMPLEXITIES

Web’s complexities make it difficult to explore the #des of
literate programming because too much effort is required to
master the zol. To compound the difficulty, different program-
ming languages are served by different versions of Web, each

| with its own idiosyncrasies.

The classic Web expands three kinds of macros, prettyprints
code for typeset output, evaluates some constant expressions,
hacks string support into Pascal, and implements a simple form
of version control. The manual documents 27 control
sequences.” Versions for languages other than Pascal offer
slightly different functions and different sets of control
sequences.

Web uses its Tangle tool to produce source code and its
Weave tool to produce documentation. Web’s original Tangle
removed white space and folded lines to fill each line with

Now we come to the general
function.
<<The main program>>=
main(arge, aIgv)
int arge;
/* # arguments on Unix command line */
char **argv;
/* the arguments, az array of strings */

layout of the [imaini]

<<Variables local to [[main]i>>
preg_name = argvil];
<<Set up option selections>
<<Process all the files>>
<<Print the grané totals if
exit{status};

}

@ %def main arge argv

multiple files>>

If the first argument begins with a “{\tt-}’, the
user is choosing the desired counts and specifyving
the orxder in which they should be displaved.

Figure 1. A noweb source fragment from the example program.

98

SEPTEMBER 1984

tokens, making its output unreadable.” Later adaptations pre-
served line breaks but removed other white space. Web’s
Weave divides a program into numbered “sections,” and its
index and cross-reference information refer to section numbers,
not page numbers. Web works poorly with LaTex: LaTex con-
structs cannot be used in Web source, and getting Weave out-
put to work in LaTex documents requires tedious adjustments
by hand. Weave’s source (written in Web) is several thousand
lines long, and the formatting code is not isolated.

NOWEB’S FEATURES

Noweb’s simplicity derives from a simple model of files,
which are marked up using a simple syntax. Figure 1 shows a
fragment of the noweb source used to generate the boxed sam-
ple program. It shows examples of chunk definidons and uses,
quoted code, and lists of defined identifiers — a// of noweb’s
syntax except escaped angle brackets.

File structure. A noweb file is a sequence of chunks. A chunk
may contain code, in which case it is named, or documentation,
in which case it is unnamed. Chunks may appear in any order.
Each code chunk begins with <<chunk name>>= on a line by itself.
The double-left angle bracket must be in the first column. Each
documentation chunk begins with a line that starts with an @
symbol followed by a space or newline. Chunks are terminated
implicitly by the beginning of another chunk or by the end of the
file. If the first line in the file does not mark the beginning of a
chunk, noweb assumes it is the first line of a documentation
chunk.

As Figure 2 shows, noweb uses its notangle and noweave
tools to extract code and documentation, respectively. When
notangle is given a noweb file, it writes the program on standard
output. When noweave is given a noweb file, it reads it and pro-
duces, on standard output, Tex source for typeset documenta-
ton.

Code chunks. Code chunks contain program source code and
references to other code chunks. Several code chunks may have
the same name; notangle concatenates their definitions to pro-
duce a single chunk

Code-chunk definitions are like macro definitions: Notangle
extracts a program by expanding one chunk (by default the
chunk named <<*>>). The definiton of that chunk contains ref-
erences to other chunks, which are themselves expanded, and so
on. Figure 3 shows part of the boxed sample program as
extracted by notangle. INotangle’s output is readable; it pre-
serves white space and maintains the indentation of expanded
chunks with respect to the chunks in which they appear. This
behavior allows noweb to be used with languages like Miranda
and Haskell, in which indentation is significant.

When double-left and -right angle brackets are not paired,
they are treated as literals. Users can force any such brackets,
even paired brackets, to be treated as literal by using a preced-

“This code is used in chunk 98z
Now we come to the general layourt of the main function.

<The main program $9a>= 99a
main{argc, argv)
int axge;
/* # arguments on Unix command line */
chax **arge;
/* the arguments, ar array of strings */

<Variables local to main 99b>
prog_name = argv[0];
<Set up option selection 99>
<Process all the files 994>
<Print the grand totals if multiple files 1025>
exit (status);
3

Defines:
axge, used in chunks $9¢ and 994,
axgv, used in chunks 9, 100c, and I01e.
main, never used.
Uses prog_name 984 and status 984
This code is used in chunk 98z
If the first argument begins with a “~”, the user is choosing
the desired counts and specifying the order in which they
should be displayed. Each selection is given by the initial char-
acter (lines, words, or characters). For example, “~c1” would
cause just the number of characters and the number of Iines to
be printed, in that order. We do not process this string now; we
simply remember where it is. It will be used to control the for-
matting at output time.

<Variables local to main 99b>= 99
int £ile count;
/* how many files there are */
chax *whick;
/* which counts to print */
Defines:
£ile_count, used in chunks 99, 100c, 101e, and 1025,
which, used in chunks 29, 101e, 1028, and 1024.
This definition is continued in chunks 100z and 100£
This ¢code is used in chunk 992.

<Set up option selection 99c>= 99c
which = "lwe";
/* if po option is given print 3 values */

if (arge > 1 && *argv[l] == =7} {
which = arge{l] + 1;
arge-—;
ATGVH+7

¥

file count = arge - 1;

Uses axge 994, axgv 992, £ile_count 995, and which 995,
‘This code is used in chunk 99a.

Now we scan the remaining arguments and try to open a file,
if possible. The file is processed and its statistcs are given. We
usea do ... while loop because we should read from the
standard input if no file name is given.

<Process all the files 99d>= 99d
arge--;
do {

<If a file is given, try to open * (++axge);
coxntinue if unsuccessfil 100c>

<Initialize pormzers and counters 101a>

<Sean file 101>

<Wrire statistics for file 101e>

<Close file 100d>

<Update grand vorals 102a>

IEEE SOFTWARE

93

<Defmnitions 98c>+=

<Close file 100d>=

<Variables local to matn 99b>+=

/* evan if there is only one file*/
} while (~--axrgc > 0);

Uses arge 99z
"This code is used in chunk 992,

Here’s the code to open the file. A special wrick allows us

to handle input from stdin when no name is given. Recall
that the file descriptor to stdin is 0; that’s what we use as
the default initial value.

<Variables local to main 99bs4=

100z
int £4 = 0;

/* £ile descriptox, initialized to stdin */
Defines:

£&, used in chunics 100e, 1004, and 1014.

1608
#define READ ONLY 0
/* read accegs code for system cpen */

Defines:
READ.ONLY, used in chunk 700c.

<If a file is given, try to open * {++aTgv};

continue if umsuccessful 1000>= 100¢
if (file_count > 0
&& (£d = open (* (++axgv),READ ONLY}) < 0) {
fprintf (stderr,
"%=z: cannot open £ile %s\n'",
Prog name, *argv);
status |[= cannot_ocpen file;
£ile_count--;
continue;
}
Uses argv 99z, cannot_open_=£ile 93, £4 100z, £ile_count
995, prog_name 954, READ ONLY 100k, and status 984
This code is used in chunk 994,

1004

cloge (fd);

Uses £8 100a.
This code is used in chunk 994.

We will do some homemade buffering in order to speed

things up: Characters will be read into the buffexr array
before we process them. To do this we ser up appropriate
pointers and counters.

<Definitions 98co+=

100e
#define buf size BUFSIZ

/* stdio.h BUFSIZ chosen for efficiency */
Defines:

buf_size, used in chunks 100fand 1014,

100f
char buffer[buf size];

/* we read the irput into this array */
register char *ptr;

/* £irst urprocessed character in buffer */
register char *buf end;

/* the first urused position in buffer */
register int c;

/* current char, or # of chars just read */
int in_word

/* are we within a word? */
long word_count, line count, char count;

/* # of words, lines, and chars so far »/
Defines:

buf_exnd, used in chunks 101z and 1014,

buffer, used in chunks 102 and 1014,

char_ count, vsed in chunks 101, 1014, 101e, 1024, and 1024,

in word, used in chunks 1012 and 101c.

Ct—C WEL Id weo...
wee weo Executoble 0. out
A;ﬂg[& WEIW > WEC
wo.nw
nowenve wenw > welex
2 Typeset
wetex lotex we wedvi dviwe documentation
for wc

Figure 2. Using noweb to build code and documentation.

ing @ sign.

Any line beginning with @ and a space terminates a code
chunk. If such a line has the form @D%def identifiers it also
means that the preceding chunk defines the identifiers listed in
identifiers. This notaton provides a way of marking definitions
manually when no automatic marking is available.

Documentation chunks. Documentation chunks contain text that
is ignored by notangle and copied verbatim to standard output
by noweave (except for quoted code). Code may be quoted
within documentation chunks by placing double square brack-
ets around it. These brackets are ignored by notangle but are
used by noweave to give the quoted code special typographic
treatment. For example, in the sample program, quoted code is
set in the Courier font.

Noweave can work with LaTex, or it can use a plain Tex
macro package, supplied with noweb, that defines commands
like \chapter and \section. Noweave can also work with
HTML, the hypertext markup language for Mosaic and the
World-Wide Web. The example simulates the results after
processing by noweave and LaTex.

Noweave adds no newline characters to its output, making it
easy to find the sources of Tex or LaTex errors. For example,
an error on line 634 of a generated Tex file is caused by a prob-
lem on line 634 of the corresponding noweb file.

Index and cross-reference features. Cross-referencing of chunks and
identifiers makes large programs easier to understand. The sample
program accompanying this article shows full cross-reference
information.

Unlike Web, noweb does not introduce numbered “sections”
for cross-referencing. Noweb uses page numbers. If two or more
chunks appear on a page, say page 24, they are distinguished by
appending a letter to the page number: 24a or 24b, for example.
Readers of large literate programs will appreciate the use of a sin-
gle numbering system.

Like Web, noweb writes chunk-cross-reference information in
a footnote font below each code chunk. Noweb also includes
cross-reference information for identifiers, for example, Defines
file_count, used in chunks 99c, 100c, 1i0le,
and 102b. Noweb generates this by using the @ 0%def mark-
ings in its source code, or by recognizing definitions automatical-
ly. Although noweb can automatically recognize definitions in C
programs, I used @O%def to mark the definitions in the sample
program. This choice not only illustrates the use of @ O%def but

100

SEPTEMBER 13994

it also ensures results compatible with the CWeb version of this
program. Automatically generated indices would differ because
CWeb and noweb use different recognition heuristics. Because
noweb uses a language-independent heuristic to find identifier
uses, it can be fooled into finding false “uses” in comments or
string literals, like the use of status in chunk 98:.

Compiler and debugger support. On a large project, it is essential
that compilers and other tools refer to locations in the noweb
source, even though they work with notangle’s output.” Giving
notangle the -L option makes it emit pragmas that inform
compilers of the placement of lines in the noweb source. It also
preserves the columns in which tokens appear, so that line-and-
column error messages are accurate. If you do not give notan-
gle the -L option, it respects the indentation of its input, mak-
ing its output easy to read.

Formatting features. Noweave depends on text formatters in
two ways: in the source of noweave itself and in the supportng
macros. Neweave’s dependence on its formatter is small and
isolated, instead of being distributed throughout a large imple-
mentation. Noweb uses 250 lines of source for Tex and LaTex
combined, and another 250 for HTML. It uses about 200 lines
of supporting macros for plain Tex and another 300 lines to
support LaTex, primarily because the page-based cross-refer-
ence mechanism is complex. LaTex support without cross-ref-

main{argc, argv)
int arge:
/= # arguments on Unix command line ¥
char **argv;
/* the arguments, an arxray of strings ¥

int file_count;

/* how many files there are ¥
char *which;

/* which counts to print ¥
int £d = 0;

/* file Gescriptor, initialized to stdin ¥
char buffer[buf_sizel;

/* we read the input into this array ¥
register char *ptr;

/* first unprocessed character in buffer ¥
register char *buf_end:;

/* the first unused positicn in buffer ¥
register int C;

/* current char, or # of characters just xread ¥
int in_word;

/* are we within a word? %
long word_count, line_count, char count;

/™ # of words, lines, andé characters so far ¥
prog_name = argvi0l;
which = “lwe";

Figure 3. Part of the example program after extraction by
notangle.

line_count, used in chunks 101, 10c, 101e, 1021, and 1024

ptx, used in chunks 1014, 101, and 1014,

woxd@_couxnt, used in chunks 101z, 101, 101¢, 1024, and 1024.
Uses buf_size 100e.

<Initiglize pointers and counters 101a>= 101a
ptr = buf end = buffer;

line count = word count = char count = 0;

in word = 0;

Uses buf_end 100f, buffer 160f, char count 100,

in woxd I00f, line_count 100f, ptxr I00f,
and word_count I00f

This code is used In chunk 994.

The grand totals must be initialized to zero at the beginning
of the program. If we made these variables local tomain, we
would have 1o do this initialization explicitly; however, C’s
globals are automatically zeroed. (Or rather, “statically
zeroed.”) (Gerit?)

<Global variables 98d>+= 1016

long tot_word count, tot_line_count,
tot_char count;
/* total mumber of words, lines, chars */
The present chunk, which does the counring that is we's 7u7-
son d'étre, was actually one of the simplest to write. We lock at
cach character and change state if it begins or ends a word.

<Sean file 101c>= 101
while (1} {
<Fill buffex if it is empty; breek at end of file 101d>
C = *ptris;
£ {c> 7 7 && ¢ < 0177) {
/* vigible ASCII codes */
3f {(fin_word) {
word_counta+;
in word = 1;
3
continue;
¥
if (¢ == /\n’) line count++;
elge i€ (ci=’ * && ¢ I= ’\t’) contimme;
in word = 0;
/* ¢ is pewline, space, or tab */
¥
Uses in_sroxd 100f, 1ine_cownt J00f, ptr 100f, word count 100f.
This code is used in chunk 994.
Buffered I/O allows us to count the number of characters
almost for free.

<Fill buffex if it is empty; break at end of file 101d>= 1014

if (ptr >= buf end) {
ptr = buffex;
¢ = read(fd, ptr, buf size);
if {c <= 0) break;
char coumt += ¢
uf end = buffer + ¢;
3}

Uses buf_end 100f, buffexr 100f, buf_size 100, char count
100f, £ 100z, xd ptx 100f
This code is used in chunk 101
I’s convenient 1o outpur the stadstics by defining a new
function we_print; then the same function ¢an be used for
the totals. Additionally we must decide here if we know the
name of the file we have processed or if it was just stdin.

<Write statistics for file 101e>= I01e

we_print(whick, char count, word count,
line count);
if (file coumt)

|EEE SOFTWARE

101

printf (" %s\n", *argv); /* not stdin */

else .

printf ("\n%); /* stdin */

Uses axgy 992, char_count 100f £ile_count $95,
line_count JOJf, we_pxrint 1024, whick 998,
woxd_count [00f

This code 15 used in chunk 994.

<Update grand totals 102a>=
tot_line count += line count;
tot_word_count += word_ count;
tot_char count += char count;
Uses chax_count [00f line_count [00f word _count 00
This code is used in chunk 994.

‘We might as weil improve 2 bit on Unix’s we by displaying
the number of files too.

<Print the grand rorals if multiple files 102b>=
if (file commt > 1) {
we_print(which, tot_char coumt,
tot_woxrd_count, tot_line count);
printf (" total in %d files\n",file count);
}
Uses file_count 995, wo_print 1024, which 995,
This code is used in chunk 994.

The functon below prints the vahues according to the speci-
fied options. The calling routine should supply 2 newline. If an
invalid option character is found we inform the user about
proper use of the command. Counts are printed in eight-digit
ficlds so they will line up in columns.

102z

1026

<Definitions 98c>+= 102
#define print count(n) printf("%81d", n)
Defines:
print_count, used in chunk 71024,
<Functions 102d>= 1024
wo_print(which, char commt, word count,
line count)
char *which; /* which counts to print/
long char count, word count, line count;
/* given totals */
{
while (*which)
switch (*which#++) {
case ‘l’: print count(line count);
break;
case ‘w’: print count(word gount);
bresk;
case ‘c’: print count(char count);
breal;
defanit:
if ((status & usage error) = 0) {
forintf (stdery,
"\riDsage: %s [-Iwc] [filerame ...1\n",
Drog_nmma);
status |= usage error;
}
}
¥
Defines:

we_print, used in chunks I101e and 1025

Uses char_count 100f, line_count [00f print count J02,
prog_name 954, status 984, usage exrror 98, whick 995,
and word_count J00f.

This code is used in chunk 98z.

A test of this program against the system we command on a
SparcStation showed the “official” we was slighdy slower.
Although that we gave an appropriate error message for the
optons -abe, it made no complaints about the options -1abe!
Dare we suggest the system routine might have been better had
its programmer used a more iterate approach?

erencing requires only 34 lines of source and no supporting
macros. HTML requires no supporting macros.

Uncoupling files and programs. The mapping between noweb
files and programs is many-to-many; the mapping between files
and documents is many-to-one. You combine source files by
listing their names on notangle’s or noweave’s command line.
Notangle can extract more than one program from a single
source file by using the ~R command-line option to identify
the root chunks of the different programs.

The simplest example of one-to-many program mapping is
that of putting a C header and program in a single noweb file.
The header comes from the root chunk <header>, and the pro-
gram from the default root chunk, <*>. The following Unix
commands extract files we.h and we.c from noweb file we.nw.

notangle -L wc.nw > wc.c
notangle -Rheader wc.nw | cpif -ne wc.h

The > in the first command directs notangle’s output to the file
we.c. The | in the second command directs notangle’s output to
the cpif program, which is distributed with noweb. cpif -ne
we . h compares its input to the contents of file we.h; if they dif-
fer, the input replaces wc.h. This trick avoids touching the file
we.h when its contents have not changed, which avoids trigger-
ing unnecessary recompilations.

Because it is language-independent, noweb can combine dif-
ferent programming languages in a single literate program.
This ability makes it possible to explain // of a project’s source
in a single document, including not just ordinary code but also
things like make files, test scripts, and test inputs. Using literate
programming to describe tests as well as source code provides a
lasting, written explanation of the thinking needed to create the
tests, and it does so with little overhead. If not documented at
the time, the rationale behind complex tests can easily be lost.

IMPLEMENTING NOWEB

Untl now we have discussed noweb from a user’s point of
view, showing that it is simple and easy to use. Noweb’s imple-
mentation is also worth discussing, because noweb’s extensible
implementation makes it unique among literate-programming
tools. Noweb tools are implemented as pipelines. Each pipeline
begins with the noweb source file. Successive stages of the
pipeline implement simple transformations of the source, until
the desired result emerges from the end of the pipeline.

Users change or extend noweb not by recompiling but by
inserting or removing pipeline stages; for example, noweave
switches from LaTex to HTML by changing just the last
pipeline stage. Noweb’s extensibility enables its users to create
new literate-programming features without having to write
their own tools.

Noweb’s syntax is easy to read, write, and edit, but it is not
easily manipulated by programs. Markup, which is the first
stage in every pipeline, converts noweb source to a representa-

102

SEPTEMBER 15884

tion easily manipulated by common Unix tools like sed and
awk, greatly simplifving the construction of later pipeline
stages. Middle stages add information to the representation.
Notangle’s final stage converts to code; noweave’s final
stages convert to Tex, LaTex, or HTML.

In the pipeline representation, every line begins with @
and a keyword. The most important possibilities appear in

Table 1. Markup brackets chunks by @begin ... @end, and it |

uses the noweb source to identify text and newlines, defini-
tons and uses of chunks, and quoted code, which can all
appear inside chunks. It also preserves information about file
names and defined identifiers. Other index and cross-refer-
ence information is inserted automatically by later pipeline
stages. The details of noweb’s pipeline representation are
described in the Noweb Hacker’s Guide, which is distributed

with noweb.
EXTENDING NOWEB

Noweb lets users insert stages into the notangle and
noweave pipelines, so that they can change a tool’s existing
behavior or add new features without recompiling. Even lan-
guage-dependent features like formatted output and auto-
matic index generation have been added to noweb without
recompiling.

Stages inserted in the middle of a pipeline both read and
write noweb’s pipeline representation; they are called filters,
by analogy with Unix filters, which are used in the Unix
implementation.

Filters can be used to change the way noweb works; for
example, a one-line sed script makes noweb treat two chunk
names as identical if they differ only in their representation
of white space, as in Web. A 55-line Icon program makes it
possible to abbreviate chunk names using a trailing ellipsis.
To share programs with colleagues who don’t enjoy literate
programming, I use a filter that places each line of docu-
mentation in a comment and moves it to the succeeding
code chunk. With this filter, notangle transforms a literate
program into a traditional commented program, without
loss of informadon and with only a modest penalty in read-
ability.

Filters can be used to add significant features. Noweave’s
cross-reference and indexing features use two filters, one
that finds uses of defined identifiers and one that inserts
cross-reference information. In most cases, programmers
must mark identifier definitons by hand, using @uU%def,
but in some cases a third, language-dependent filter can be
used to mark idenufier definitions, making index generadon
completely automatic.

Kostas Oikonomou of AT&T Bell Labs, Kaelin
Colclasure of Bridge Information Systems, and Conrado
Martinez-Parra of the Universidad Politecnica de Catalunya
in Barcelona have written noweb filters that add prettyprint-
ing for Icon, C++, and Dijkstra’s language of guarded com-

mands, respectively.

Noweb turns a World-Wide-Web browser like Mosaic
into a hypertext browser for literate programs. For example,
you can click on an identifier or chunk name to jump to the
definition of that identifier or chunk. You can find a hyper-
text version of the boxed sample program at fip://bellcore.
com/pub/norman/noweb/we.html.

EVALUATING NOWEB

Reviewers have had many expectations of literate-pro-
gramming tools.” 'Y We expect to be able to write code
chunks in any order. We expect to develop code and docu-
mentation in one place. Finally, we expect automatically
generated cross-reference and index information. Like the
original Web, noweb provides all these features, but in sim-
pler form.

Web does provide features that noweb lacks, but existing
Unix tools can substitute for most of these. Although noweb
contains no internal support for macros, Unix supplies two
macro processors that can work with noweb: the C pre-
processor and the m4 macro processor. The xstr program
extracts string literals, and the patch program provides a
form of version control similar to Web’s change files.

Indexing and cross-referencing make noweb less simple
than it could be. I need complex LaTex code to compute
page numbers for use in cross-reference lists and in the
index. The ability to use page numbers justifies this com-

TABLE 1
NOWEB PIPELINE REPRESENTATION

Keyword Definition

@begin kind Start a chunk

@end kind End a chunk

@text string string appeared in a chunk

@nl A newline appeared in 2 chunk

@defn name The code chunk named name is being
defined

@use name A reference to code chunk named name

@quote Start of quoted code in a document
chunk

@endquote End of quoted code in a document
chunk

@file filename Name of the file from which the
chunks came

@index defnident The current chunk contins a
definition of ident

@index ... Auromatcally generated index
information

@xref ... Automadcally generated cross-
reference informadon !

IEEE SOFTWARE

103

plexity, especially since it can be hid-
den from most users. You do need to
understand the LaTex code if you
want to customize the appearance of
your noweb documents while retain-
ing noweb’s use of page numbers for
cross-reference. Most literate-pro-
gramming tools forbid customization,
but not all users will aceept such a
restriction. I have compromised
between simplicity and
customizability by add-
ing LaTex options for a
dozen of the most com-
monly requested cus-
tomizations. Users can
choose from among
these options without
understanding noweb’s
LaTex code.

Experimenting with
noweb is easy because
the tools are simple. If
the experiment is unsat-
isfying, it is easy to a-
bandon, because notan-
gle’s output is readable,
and documentation can
be preserved as embed-
ded comments. Noweb is simpler than
Web and easier to use and under-
stand, but it does less. 1 argue, howev-
er, that the benefit of Web’s extra
features is outweighed by the cost of
the extra complexity, making noweb
better for writing literate programs.
Few of Web’s remaining features will
be missed; for example, many compil-
ers evaluate constant expressions at
compile time. Noweb users are most
likely to miss pretty-printing, but it
may be more trouble than it is
worth.”

In my own work, I have used
noweb for code written in various lan-
guages, including assembly language,
awk, Bourne shell, C, Icon, Modula-3,
Promela, Standard ML, and Tex.
These projects have ranged in size
from a few hundred to twenty thou-
sand lines of code. Information about
other programs written using noweb
is hard to find. Noweb is provided

free of charge, generating no sales

LANGUAGE-
INDEPENDENT
TOOLS LIKE
NOWEB ARE
SIMPLER AND
EASIER TO
USE THAN
TRADITIONAL
COMPLEX
TOOLS.

records. Programs created with noweb
may be delivered in the form of ordi-
nary source code, leaving no clue that
noweb was used. The only way for me
to find out about uses of noweb is to
appeal for information on the
Internet. In this way I have learned
about significant noweb projects in
C++, Modula-2, Occam, parallel C,
Perl, Prolog, and Scheme.

David Hanson and
Chris Fraser are using
noweb to write a book
describing the design and
implementation of a retar-
getable C compiler. Tip-
ton Cole & Company use
Noweb in their consultng
business, which focuses on
writing database applica-
tions on DOS platforms.
They find that noweb
helps compensate for
some of the deficiencies in
DOS database tools, and
that literate programming
helps when a customer
requests a change in a
program that hasn’t been
touched in a year. A customer-sup-
port group at Sun Microsystems is
using noweb to help teach their cus-
tomers how to work with aspects of
the Solaris operating system like
threads and device drivers. The liter-
ate-programming paradigm makes it
possible to extract working code from
the same source used to create techni-
cal reports and newsletters.

OTHER TOOLS

A survey of literate-programming
tools is beyond the scope of this art-
cle, but we can still sketch noweb’s
place in the context of other tools.
Most literate-programming tools are
language-dependent and complex.
You must change tools when chang-
ing programming languages, repeat-
ing effort spent mastering a tool.

Newer tools, like noweb, are lan-
guage-independent. The three most
prominent are noweb, nuweb, and

Funnelweb.

To users, Noweb and nuweb look
very similar. There are minor syntac-
tic differences, and nuweb uses
markup within the source file instead
of command-line options to show
things like the names of output files,
but both are simple and easy to mas-
ter. Funnelweb is a complex tool that
includes its own rudimentary typeset-
ting language and command shell.

Many of the similarities between
noweb and nuweb arise by design.
Nuweb’s initial design borrowed from
noweb, and later versions of each tool
have incorporated ideas from the
other.

Noweb and nuweb differ substan-
tively in implementation. Nuweb
is not pipelined; it is a single, mono-

| lithic C program. This structure

makes nuweb easy to port, since only a
C compiler is needed, and it makes
it faster, since no parts are interpret-
ed and the overhead of creating a
pipeline is eliminated, but it also
makes nuweb hard to extend. Noweb's
pipeline makes it easy to extend, and
different stages of the pipeline can
be implemented in different pro-
gramming languages, depending
on which language is best for which
job. Extensibility is particularly valu-
able to those interested in pushing
the frontiers of literate programming,
who would otherwise have to write
their own tools from scratch.

I advocate language-independent
tools for two reasons. First, after mas-
tering one such tool, you can write
almost anything as a literate program,
including things like shell and perl
scripts, which often benefit dispropor-
tionately from a literate treatment.
Second, two of these tools — noweb
and nuweb — are much simpler, and
therefore much easier to master, than
any of the language-dependent tools.
Those who use one language exclu-
sively may, however, prefer a lan-
guage-dependent tool, since it pro-
vides pretty-printing, which when
done well can make the printed liter-
ate program easier to read.

104

SEPTEMBER 1984

oweb probably culminates one
kind of evolution in literate pro-
gramming: the trend toward greatest
simplicity. No significantly simpler
tool could do much. Noweb also
begins another kind of evolution,
toward greater extensibility and flexi-
bility. Further evolution might involve
replacing Unix shell scripts and
pipelines with an embedded language
having special data types to represent
pipelines, chunks, and literate pro-
grams. This step would make it easier
to port noweb to nonUnix platforms,
and it could make noweb run much
faster. Other developments might
include constructing new pipeline
stages to support language-dependent
operations like macro processing,
pretty-printing, and automatic iden-
tifier cross-reference.
These changes would extend no-
web's capabilities, but noweb is already

quite capable of supporting complex
programs and documents. It and relat-
ed tools are less capable of supporting
a modern word-processing style. The
word processors noweb currently
supports, Tex, LaTex, and HTML,
all use the old batch model of word
processing. Today, many authors
prefer WYSIWYG word processors
like Framemaker, WordPerfect, or
Microsoft Word. Kean College’s
Wittenberg has developed a noweb-
like system called WinWordWeb
based on Word. Because of Word’s
limitations, including its secret propri-
etary data format, he could not reuse
any of noweb’s implementation, but
the design is the same.

The challenge for literate pro-
gramming today is getting it into use.
Noweb helps by eliminating clutter
and complexity. Supporting modern
word processors would eliminate

ACKNOWLEDGEMENTS

REFERENCES

ra

[)

1989, pp. 1051-1055.

o

Computer Journal, 1986, pp. 201-211.

Experience, July 1991, pp. 677-683.

<o

Mark Weiser's invaluable encouragement provided the impetus far me to write this
paper, which I did while visiting the Computer Science Laboratory of the Xerox Pala Alto
Research Center. David Hanson suggested and provided the cpif program. Preston Briggs
developed many of the ideas used in noweb’s indexing, and he contributed code used in one
of the pipeline stages. Bill Trost wrote the first HTMLpipeline stage. Dave Love provided
much-needed LaTex expertise. Comments from Hanson and from the anonymous referees
stimulated me to improve the paper. The development of noweb was supported by a
Fannie and John Hertz Foundation Fellowship.

1. D.E. Knuth, Literate Programming, Stanford University, Stanford, Calif., 1992,

. I]. Denning, “Announcing Literate Programming,” Comm. ACM, July 1987, p. 593.

. K. Guntermann and J. Schrod, “Web Adapted to C,” TUGBoar, Oct. 1986, pp. 134-137.

. 5. Levy, “Web Adapted to C, Another Approach,” TUGBeat, April 1987, pp. 12-13.

. N. Ramsey, “Literate Programming: Weaving a Language-Independent Web,” Comm, ACM, Sept.

H. Thimbleby, “Experiences of ‘Literate Programming’ Using CWeb (a Variant of Knuth’s Web),"
7. N. Ramsey and C. Marceau, “Literate Programming on a Team Project,” Software — Practice ¢
. €. J. Van Wyk, “Literate Programming: An Assessment,” Comm. ACM, Mar. 1990, pp. 361-365.

D.E. Knuth, “The Web System of Structured Documentadon,” Tech. Report 980, Computer
Science Dept., Stanford Univ,, Stanford, Calif,, 1983,

another barrier, making it possible to
write literate programs without first
learning a new word-processing lan-
guage like LaTex or HTML.

More must be learned about suit-
able ways of structuring literate pro-
grams, about whether hypertext is a
useful alternative, and about what
other kinds of documents literate pro-
grams should resemble. What place
does literate programming have for
the majority of programmers, wha are
not writing for publication? In the
near term, I suspect the best use for
literate programming will be to sup-
port rapid prototyping, providing a
simple and reliable way of document-
ing the design decisions made in, and
the lessons learned from, the proto-
type. In the long term, I hope that
simple, extensible tools like noweb
will lead everyone to appreciate the
benefits of literate programming. 4

Norman Ramsey is a
research scientist at
Bellcore. His research
interests are the construc-
tion of software that is easy
to understand and to retar-
et to different machines.
His recent work includes a
retargetable debugger and
a toolkit that helps build
debuggers and other programs that manipulate
machine code.

Ramsey received a PhD in computer science
from Princeton University. He is a member of
ACM.

Address questions about this article to Ramsey ac
Bellcore, 445 South Street, Morristown, NJ 07960;
norman@bellcore.com. Noweb can be obtained by
anonymous ftp from CTAN, the Comprehensive
Tex Archive Network, in directory web/noweb.
CTAN replicas appear on hosts fip.shsu.edu,
ftp.tex.ac.uk, and ftp.uni-stuttgart.de. Noweb's
World-Wide-Web page is located at
ftp://bellcore.com/pub/norman/noweb.

IEEE SOFTWARE

Copyright © 1994 The Institute of Electrical and Electronics Engineers, Inc.

105

Reprinted with permission from IEEE SOFTWARE,
10662 Los Vaqueros Circle, Los Alamitos, CA 90720

