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Abstract
We address the issue of compiling ML pattern matching to com-
pact and efficient decisions trees. Traditionally, compilation to de-
cision trees is optimized by (1) implementing decision trees as dags
with maximal sharing; (2) guiding a simple compiler with heuris-
tics. We first design new heuristics that are inspired by necessity,
a concept from lazy pattern matching that we rephrase in terms
of decision tree semantics. Thereby, we simplify previous seman-
tic frameworks and demonstrate a straightforward connection be-
tween necessity and decision tree runtime efficiency. We complete
our study by experiments, showing that optimizing compilation to
decision trees is competitive with the optimizing match compiler
of Le Fessant and Maranget (2001).

Categories and Subject Descriptors D 3. 3 [Programming Lan-
guages]: Language Constructs and Features—Patterns

General Terms Design, Performance.

Keywords Match Compilers, Decision Trees, Heuristics.

Note This version includes an appendix, which is absent from
published version.

1. Introduction
Pattern matching is certainly one of the key features of functional
languages. Pattern matching is a powerful high-level construct that
allows programming by directly following case analysis. Cases to
match are expressed as “algebraic” patterns, i.e. ordinary terms.
Definitions by pattern matching are roughly similar to term rewrit-
ing rules: a series of rules is defined; and execution is performed on
subject values by finding a rule whose left-hand side is matched by
the value. With respect to plain term rewriting (Terese 2003), the
semantics of ML simplifies two issues. First, matches are always
attempted at the root of the subject value. Secondly, the matched
rule is unique, thanks to the textual priority scheme.

Any ML compiler translates the high-level pattern matching
definitions into low-level tests, organized in matching automata.
Matching automata fall in two categories: decision trees and back-
tracking automata. Compilation to backtracking automata has been
introduced by Augustsson (1985). The primary advantage of the
technique is a linear guarantee for code size. However, backtrack-
ing automata may backtrack. Therefore, they may scan subterms
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more than once. As a result, backtracking automata are potentially
inefficient at runtime. The optimizing compiler of Le Fessant and
Maranget (2001) alleviates this problem.

In this paper we study compilation to decision trees. The pri-
mary advantage of decision trees is that they never test a given
subterm of the subject value more than once (and their primary
drawback is potential code size explosion). We aim to refine naive
compilation to decision trees, and to compare the output of the re-
sulting optimizing compiler with optimized backtracking automata.

Compilation to decision trees is sensitive to the testing order
of subject value subterms. The situation can be explained by the
example of a human programmer attempting to translate a ML
program into a lower-level language without pattern matching.
Let f be the following function1 that takes three boolean arguments:

l e t f x y z = match x,y,z with
| _,F,T -> 1
| F,T,_ -> 2
| _,_,F -> 3
| _,_,T -> 4

Where T and F stand for true and false, respectively.
Apart from preserving ML semantics (e.g. f F T F should

evaluate to 2), the game has one rule: never test x, y or z more
than once. A natural idea is to test x first, i.e. to write:
l e t f x y z = i f x then fT__ y z e l s e fF__ y z

Where functions fT__ and fF__ are defined by pattern matching:

l e t fT__ y z =
match y,z with
| F,T -> 1
| _,F -> 3
| _,T -> 4

l e t fF__ y z =
match y,z with
| F,T -> 1
| T,_ -> 2
| _,F -> 3
| _,T -> 4

The matchings above are built from the initial matching, by select-
ing the rows that still can be matched once the value of x is known.

Compilation goes on by considering y and z, resulting in the
following low-level f1:
l e t f1 x y z =

i f x then
i f y then

i f z then 4 e l s e 3
e l s e

i f z then 1 e l s e 3
e l s e

i f y then 2
e l s e

i f z then 1 e l s e 3

We can do a little better, by introducing a local function definition
to share the common subexpression if z then 1 else 3.

1 We use OCaml syntax.



But we can do even better, by testing y first, and then x first
when y is true, resulting in the second low-level f2.

l e t f2 x y z =
i f y then

i f x then
i f z then 4 e l s e 3

e l s e 2
e l s e

i f z then 1 e l s e 3

Function f2 is obviously more concise than f1. It is also more
efficient. More specifically, when y is false, function f2 performs
2 tests, whereas function f2 performs 3 tests. Otherwise, the two
functions perform the same tests. Choosing a good subterm testing
order is the task of match-compiler heuristics.

In this paper we tackle the issue of producing f2 and not f1
automatically. We do so first from the point of view of theory, by
defining necessity. Necessity is borrowed to the theory of lazy pat-
tern matching: a subterm (of subject values) is needed when its re-
duction is mandatory for the lazy semantics of matching to yield a
result. Instead, we define necessity by universal quantification over
decision trees: a subterm is needed when it is examined by all pos-
sible decision trees. Necessity provides inspiration and justification
for new heuristics, which we study experimentally.

2. Simplified source language
Most ML values can be defined as sorted ground terms over some
signatures. Signatures are introduced by (algebraic) data type def-
initions. In our context, a signature is thus the complete set of the
constructors for a datatype. We omit type definitions and consider
the following values:

v ::= Values
c(v1, . . . , va) a ≥ 0

An implicit typing discipline is assumed. In particular, a construc-
tor c has a fixed arity, written a above. In the following, we shall
adopt the convention of writing a for the arity of constructor c —
and a′ for the arity of c′ etc. Moreover, one knows which signature
constructor c belongs to. In examples, we omit () after constants
constructors. i.e. we write Nil, true, 0, etc.

We also consider the usual occurrences. Occurrences are se-
quences of integers that describe the positions of subterms. More
precisely an occurrence is either empty, written Λ, or is an inte-
ger k followed by an occurrence o, written k·o. Occurrences are
paths to subterms, in the following sense:

v/Λ = v
c(v1, . . . , va)/k·o = vk/o (1 ≤ k ≤ a)

Following common practice we omit the terminal Λ of non-empty
occurrences. We assume familiarity with the standard notions of
prefix (i.e. o1 is a prefix of o2 when v/o2 is a subterm of v/o1),
and of incompatibility (i.e. o1 and o2 are incompatible when o1

is not a prefix of o2 nor o2 is a prefix of o1). We consider the
leftmost-outermost ordering over occurrences that corresponds to
the standard lexicographic ordering over sequences of integers, and
also to the standard prefix depth-first ordering over subterms.

We use the following simplified definition of patterns:

p ::= Patterns
wildcard

c(p1, . . . , pa) constructor pattern (a ≥ 0)
(p1 | p2) or-pattern

The main simplification is replacing all variables with wildcards.
Formally, a wildcard is a variable with a unique, otherwise irrele-
vant, name. In the following, we shall consider pattern vectors, ~p ,

which are sequences of patterns (p1 · · · pn), pattern matrices P ,
and matrices of clauses P → A:

P → A =




p1
1 · · · p1

n → a1

p2
1 · · · p2

n → a2

...
pm1 · · · pmn → am




By convention, vectors are of size n, matrices are of size m × n
— m is the height and n the width. Pattern matrices are natural
and convenient in the context of pattern matching compilation.
Indeed, they express the simultaneous matching of several values.
In clauses, actions aj are integers. Row j of matrix P is sometimes
depicted as ~p j .

Clause matrices are an abstraction of pattern matching expres-
sions as can be found in ML programs. Abstraction consists in re-
placing the expressions of ML with integers, which are sufficient
to our purpose. Thereby, we avoid the complexity of describing the
semantics of ML (Milner et al. 1990; Owens 2008), still preserving
a decent level of precision.

2.1 Semantics of ML matching
Generally speaking, value v is an instance of pattern p, written
p ¹ v, when there exists a substitution σ, such that σ(p) = v.
In the case of linear patterns, the aforementioned instance relation
is equivalent to the following inductive definition:

¹ v
(p1 | p2) ¹ v iff p1 ¹ v or p2 ¹ v

c(p1, . . . , pa) ¹ c(v1, . . . , va) iff (p1 · · · pa) ¹ (v1 · · · va)
(p1 · · · pa) ¹ (v1 · · · va) iff, for all i, pi ¹ vi

Please note that the last line above defines the instance relation for
vectors.

We also give an explicit definition of the relation “value v is not
an instance of pattern p”, written p # v:

(p1 | p2) # v iff p1 # v and p2 # v
c(p1, . . . , pa) # c(v1, . . . , va) iff (p1 · · · pa) # (v1 · · · va)

(p1 · · · pa) # (v1 · · · va) iff there exists i, pi # vi
c(p1, . . . , pa) # c′(v1, . . . , va′) with c 6= c′

For the values and patterns that we considered so far, relation # is
the negation of ¹. However this will not remain true, so we rather
adopt a non-ambiguous notation.

DEFINITION 1 (ML matching). Let P be a pattern matrix of
width n and height m. Let ~v be a value vector of size n. Let j
be a row index (1 ≤ j ≤ m).

Row j of P filters ~v (or equivalently, vector ~v matches row j),
when the following two propositions hold:

1. Vector ~v is an instance of ~p j . (written ~p j ¹ ~v ).
2. For all j′, 1 ≤ j′ < j, vector ~v is not an instance of ~p j

′

(written ~p j
′

# ~v ).

Furthermore, let P → A be a clause matrix. If row j of P filters ~v ,
we write:

Match[~v , P → A]
def
= aj

The definition above captures the intuition behind textual priority
rule of ML: attempt matches from top to bottom, stopping as soon
as a match is found.

2.2 Matrix decomposition
The compilation process transforms clause matrices by the means
of two basic decomposition operations, defined in Figure 1. The
first operation is specialization by a constructor c, written S(c, P →



Pattern pj1 Row(s) of S(c, P → A)

c(q1, . . . , qa) q1 · · · qa pj2 · · · pjn → aj

c′(q1, . . . , qa′) (c′ 6= c) No row
×a︷ ︸︸ ︷· · · pj2 · · · pjn → aj

(q1 | q2)

(
S(c, (q1 p

j
2 · · · pjn → aj))

S(c, (q2 p
j
2 · · · pjn → aj))

)

Row pj1 Row(s) of D(P )

c(q1, . . . , qa) No row

pj2 · · · pjn → aj

(q1 | q2)

(
D(q1 p

j
2 · · · pjn → aj)

D(q2 p
j
2 · · · pjn → aj)

)

Figure 1. Matrix decomposition

A), (left of Figure 1) and the second operation computes a default
matrix, written D(P → A) (right of Figure 1). Both transforma-
tions apply to the rows of P → A, taking order into account,
and yield the rows of the new matrices. Generally speaking, the
transformations simplify the initial matrix by erasing some rows,
although or-pattern expansion can formally increase the number of
rows.

Specialization by constructor c simplifies matrix P under the
assumption that v1 admits c as a head constructor. For instance,
given the following clause matrix:

P → A
def
=

(
[] → 1

[] → 2
:: :: → 3

)

we have:

S((::), P → A) =

(
[] → 2
:: → 3

)

S([], P → A) =

(
→ 1

[] → 2

)

It is to be noticed that row number 2 of P → A finds its way into
both specialized matrices. This is so because its first pattern is a
wildcard.

The default matrix retains the rows of P whose first pattern pj1
admits all values c′(v1, . . . , va) as instances, where constructor c′

is not present in the first column of P . Let us define:

Q→ B
def
=

(
[] → 1

[] → 2
→ 3

)

Then we have:

D(Q→ B) =

(
[] → 2
→ 3

)

The following lemma reveals the semantic purpose of decompo-
sition. More precisely, specialization S(c, P → A) expresses ex-
actly what remains to be matched, once it is known that v1 admits c
as a head constructor; while the default matrix expresses what re-
mains to be matched, once it is known that the head constructor
of v1 does not appear in the first column of P .

LEMMA 1 (Key properties of matrix decompositions). Let P →
A be a clause matrix.

1. For any constructor c, the following equivalence holds:

Match[(c(w1, . . . , wa) v2 · · · vn), P → A] = k
m

Match[(w1 · · · wa v2 · · · vn),S(c, P → A)] = k

Where w1, . . .wa and v2, . . . , vn are any values of appropriate
types.

2. Let c be a constructor that does not appear as a head con-
structor of the patterns of the first column of P . For all val-
ues w1, . . . , wa, v2, . . . , vn of appropriate types, we have the
equivalence:

Match[(c(w1, . . . , wa) v2 · · · vn), P → A] = k
m

Match[(v2 · · · vn),D(P → A)] = k

Proof: Mechanical application of definitions. Q.E.D.

3. Target language
Decision trees are the following terms:

A ::= Decision trees
Leaf(k) success (k is an action, an integer)
Fail failure
Switcho(L) multi-way test (o is an occurrence)
Swapi(A) stack swap (i is an integer)

Decision tree structure is clearly visible, with multi-way tests being
Switcho(L), and leaves being Leaf(k) and Fail. The additional
nodes Swapi(A) are not part of tree structure strictly speaking.
Instead, they are control instructions for evaluating decision trees.

Switch case lists (L above) are non-empty lists of pairs consti-
tuted by a constructor and a decision tree, written c:A. The list may
end with an optional default case, written *:A:

L ::= c1:A1; · · · ; cz:Az; [*:A]?

We shall assume well-formed switches in the following sense:

1. Constructors ck are in the same signature, and are distinct.

2. The default case is present, if and only if the set { c1, . . . , cz }
is not a signature, i.e. when there exists some constructor c that
does not appear in { c1, . . . , cz }
For the sake of precise proofs, we give a semantics for evalu-

ating decision trees (Figure 2). Decision trees are evaluated with
respect to a stack of values. The stack initially holds the subject
value. An evaluation judgment ~v ` A ↪→ k is to be understood
as “evaluating tree A w.r.t. stack ~v results in the action k”.

Evaluation is over at tree leaves (rule MATCH). The heart
of the evaluation is at switch nodes, as described by the two
rules SWITCHCONSTR and SWITCHDEFAULT. Case selection is
performed by auxiliary rules that express nothing more than search
in an association list. In rule CONT, we use the meta-notation [c|∗]
to represent either constructor c or the special constant ∗ that sig-
nals default case selection. Since switches are well-formed, the



Rules for decision trees

(MATCH)
~v ` Leaf(k) ↪→ k

(SWAP)
(vi · · · v1 · · · vn) ` A ↪→ k

(v1 · · · vi · · · vn) ` Swapi(A) ↪→ k

(SWITCHCONSTR)
c ` L ↪→ c:A (w1 · · · wa v2 · · · vn) ` A ↪→ k

(c(w1, . . . , wa) v2 · · · vn) ` Switcho(L) ↪→ k

(SWITCHDEFAULT)
c ` L ↪→ *:A (v2 · · · vn) ` A ↪→ k

(c(w1, . . . , wa) v2 · · · vn) ` Switcho(L) ↪→ k

Auxiliary rules for case selection

(FOUND)
c ` c:A;L ↪→ c:A

(DEFAULT)
c ` *:A ↪→ *:A

(CONT)
c 6= c′ c ` L ↪→ [c|*]:A
c ` c′:A;L ↪→ [c|*]:A

Figure 2. Evaluation of decision trees

search always succeeds. That is, the auxiliary rules for case selec-
tion are complete. It is to be noticed that switches always examine
the value on top of the stack, i.e. value v1. It is also to be noticed
that the occurrence o in Switcho(L) serves no purpose during eval-
uation. At the moment, occurrences are informative tags on switch
nodes. The two rules SWITCHCONSTR and SWITCHDEFAULT dif-
fer significantly concerning what is made of the arguments of v1,
which are either pushed or ignored. In all cases, the value exam-
ined is popped. Decision trees feature a node that performs an
operation on the stack: Swapi(A) (rule SWAP). This trick allows
the examination of any value vi from the stack, by the combina-
tion Swapi(Switcho(L)).

Finally, since there is no rule to evaluate Fail nodes, match
failures and all other errors (such as induced by ill-formed stacks)
are not distinguished by the semantics. Such a confusion of errors
is not harmful in our simple setting.

4. Compilation scheme
Before describing compilation to decision trees proper, we settle
the issue of matching order for or-pattern arguments. As a matter
of fact, the definition of (p1 | p2) ¹ v as p1 ¹ v or p2 ¹ v is
slightly ambiguous in the presence of variables. Consider:

l e t f xs = match ys with (_::ys|ys) -> ys

Without additional specification, the value of f [1 ; 2] can be
either [2] (the first alternative is matched) or [1 ; 2] (the second
alternative is matched). We claim that the first result is more nat-
ural, because it can be expressed as a left-to-right expansion rule.
That is, function f above is equivalent to:

l e t f xs = match ys with
| _::ys -> ys
| ys -> ys

The left-to-right expansion rule serves as a basis for compiling or-
patterns. As a consequence of expansion, ( | p1 | · · · | pn) can be
replaced by before compilation takes place. Moreover, we define
the following generalized constructor patterns:

q ::= Generalized constructor patterns
c(p1, . . . , pa) (pk’s are any patterns)
(q | p) (p is any pattern)

Then, by preprocessing of or-patterns, any pattern is either a gener-
alized constructor pattern or a wildcard.

Compilation scheme CC is described as a non-deterministic
function that takes two arguments: a vector of occurrences ~o and a
clause matrix. The occurrences of ~o define the fringe, that is, the
subterms of the subject value that need to be checked against the

patterns of P to decide matching. The fringe ~o is the compile-time
counterpart of the stack ~v used during evaluation. More precisely
we have vi = v/oi, where v is the subject value.

Compilation is defined by cases as follows.

1. If matrix P has no row (i.e.m = 0) then matching always fails,
since there is no row to match.

CC(~o , ∅ → A)
def
= Fail

2. If the first row of P exists and is constituted by wildcards, then
matching always succeeds and yields the first action.

CC(~o ,




· · · → a1

p2
1 · · · p2

n → a2

...
pm1 · · · pmn → am


)

def
= Leaf(a1)

In particular, this case applies when there is at least one row
(m > 0) and no column (n = 0).

3. In any other case, matrix P has at least one row and at least one
column (m > 0, n > 0). Furthermore, there exists at least one
column of which at least one pattern is not a wildcard. Select
one such column i.

(a) Let us first consider the case when i is 1. Define Σ1 the set
of the head constructors of the patterns in column 1.

Σ1
def
= ∪1≤j≤mH(pj1)

H( )
def
= ∅ H(c(. . .))

def
={ c }

H((q1 | q2))
def
= H(q1) ∪H(q2)

Let c1, . . . , cz be the elements of Σ1. By hypothesis, Σ1 is
not empty (z ≥ 1). For each constructor ck in Σ1, perform
the following inductive call that yields decision tree Ak:

Ak def
= CC((o1·1 · · · o1·a o2 · · · on),S(ck, P → A))

The notation a above stands for the arity of ck. Notice that
o1 disappears from the occurrence vector, being replaced
with the occurrences o1·1, . . . o1·a. The decision trees Ak
are grouped into a case list L:

L def
= c1:A1; · · · ; cz:Az

If Σ1 is not a signature, an additional recursive call is per-
formed on the default matrix, so as handle the constructors
that do not appear in Σ1. Accordingly, the switch case list is



completed with a default case:

AD def
= CC((o2 · · · on),D(P → A))

L def
= c1:A1; · · · ; cz:Az; *:AD

Finally compilation yields a switch that tests occurrence o1:

CC(~o , P → A)
def
= Switcho1(L)

(b) If i > 1 then swap columns 1 and i in both ~o and P ,
yielding ~o ′ and P ′. Then compute A′ = CC(~o ′, P ′ → A)
as above, yielding decision tree A′, and define:

CC(~o , P → A)
def
= Swapi(A′)

Notice that the function CC is non-deterministic because of the
unspecified choice of i at step 3.

Compilation to decision tree is a simple algorithm: inductive
step 3 above selects a column i (i.e. a subterm v/oi in the subject
value), the head constructor of v/oi is examined, and compilation
goes on, considering all possible constructors.

One crucial property of decision trees is that no subterm v/oi is
examined more than once. The property is made trivial by decision
tree semantics — evaluation of a switch pops the examined value.
It should also be observed that if the components oi of ~o are
pairwise incompatible occurrences, then the property still holds for
recursive calls.

We have already noticed that the occurrence o that decorates a
switch node Switcho(L) plays no part during evaluation. We can
now further notice that occurrences oi are not necessary to define
the compilation scheme CC. Hence, we often omit occurrences,
writing CC(P → A) and Switch(L). At the moment, occurrences
provide extra intuition on decision trees: they tell which subterm of
the subject value is examined by a given Switcho(L) node.

Naive compilation is defined by the trivial choice function that
selects the minimal i, such that at least one pattern pji is not a
wildcard. It is not difficult to see that oi is minimal for the leftmost-
outermost ordering on occurrences, among the occurrences ok such
that at least one pattern pjk is not a wildcard.

A real match compiler can be written by following compilation
scheme CC. There are differences though. First, the real compiler
targets a more complex language. More precisely, the occurrence
vector ~o is replaced with a variable vector ~x and the target lan-
guage has explicit local bindings in place of a simple stack. Fur-
thermore, real multi-way tests are more flexible: they operate on
any variable (not only on top of stack). Second, decision trees pro-
duced by the real compiler are implemented as dags with maximal
sharing — see (Pettersson 1992) for a detailed account.

In spite of these differences, our simplified decision trees offer a
good approximation of actual matching automata, especially if we
represent them as pictures, while omitting Swapi(A) nodes.

5. Correctness
The main interest for having defined decision tree semantics will
appear later, while considering semantic properties subtler than
simple correctness. Nevertheless, we state a correctness result for
scheme CC.

PROPOSITION 1. Let P → A be a clause matrix. Then we have:

1. If for some value vector ~v , we have Match[~v , P → A] = k,
then for all decision trees A = CC(P → A), we have ~v `
A ↪→ k.

2. If for some value vector ~v and decision tree A = CC(P → A)
we have ~v ` A ↪→ k, then we have Match[~v , P → A] = k.

Proof: Consequence of Lemma 1 and by induction over A con-
struction. Q.E.D.

It is to be noticed that, as a corollary, the non-determinism of CC
has no semantic impact: whatever column choices are, the produced
decision tree implements ML matching faithfully.

6. Examples
Let us consider a frequently found pattern matching expression,
which any match compiler should probably compile optimally.

EXAMPLE 1. The classical merge of two lists:

l e t rec merge = match xs,ys with
| [],_ -> ys
| _,[] -> xs
| x::rx,y::ry -> . . .

Focusing on pattern matching compilation, we only consider the
following “occurrence2” vector and clause matrix.

~o = (xs ys) P → A =

(
[] → 1

[] → 2
:: :: → 3

)

The compiler now has to choose a column to perform matrix de-
composition. That is, the resulting decision tree will either exam-
ine xs first, or ys first.

Let us first consider examining xs. We have Σ1 = { ::, [] },
a signature. We do not need to consider the default matrix, and we
get:

CC((xs ys), P → A) = Switchxs((::):A1; []:A2)

Where:
A1 = CC((xs·1 xs·2 ys),S((::), P → A))

A2 = CC(ys,S([], P → A))

The rest of compilation is deterministic. Let us consider for in-
stance A1. We have (section 2.2):

S((::), P → A) =

(
[] → 2
:: → 3

)

Only the third column has non-wildcards, hence we get (by compi-
lation steps 3, then 2)

A1 = Swap3(Switchys((::):Leaf(3); []:Leaf(2)))

Computing A2 is performed by a direct application of step 2:

S([], P → A) =

(
→ 1

[] → 2

)
A2 = Leaf(1)

The resulting decision tree is best described as the picture of Fig-
ure 3. We now consider examining ys first. That is, we swap the

xs

1

2

3

[]

ys

(::) []

(::)

Figure 3. Compilation of list-merge, left-to-right

2 In examples, initial occurrences are written as names. Formally we can
define xs to be occurrence 1 and ys to be occurrence 2.



two columns of ~o and P , yielding the new arguments:

~o ′ = (ys xs) P ′ → A =

(
[] → 1

[] → 2
:: :: → 3

)

Specialized matrices are as follows:

S(::, P ′ → A) =

(
[] → 1
:: → 3

)

S([], P ′ → A) =

(
[] → 1
→ 2

)

Finally, compilation yields the decision tree of Figure 4. Notice

ys 1

xs[]

xs

(::)

[]

2*

[]

3

(::)

Figure 4. Compilation of list-merge, right-to-left

that the leaf “1” is pictured as shared, thereby reflecting actual
implementation. The pictures clearly suggest that the left-to-right
decision tree is better than the right-to-left one, in two important
aspects.

1. The first decision tree is smaller. A simple measure of decision
tree size is the number of internal nodes, that is, the number of
switches.

2. The first decision tree is more efficient: if xs is the empty
list [], then the tree of Figure 3 reaches action 1 by performing
one test only, while the tree of Figure 4 always performs two
tests.

In this simple case, all decision trees are available and can be
compared. A compiler cannot rely on such a post-mortem analysis,
which can be extremely expensive. Instead, a compilation heuristic
will select a column in P at every critical step 3, based upon
properties of matrix P . Such properties should be simple, relatively
cheap to compute and have a positive impact on the quality of the
resulting decision tree.

Before we investigate heuristics any further, let us consider an
example that illustrates the implementation of decision trees by
dags with maximal sharing.

EXAMPLE 2. Consider the following matching expression where
[_] is OCaml pattern for “a list of one element” (i.e. _::[]):

match xs,ys with [_],_ -> 1 | _,[_] -> 2

Naive compilation of the example yields the decision tree that is
depicted as a dag with maximal sharing in Figure 5. The dag of Fig-
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*
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*
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[]

*

xs.2

(::) *

1
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Figure 5. Decision tree as a dag with maximal sharing

ure 5 has 2+2 = 4 switch nodes, where a plain tree implementation
has 2 + 2 × 2 = 6 switch nodes. Now consider a simple general-
ization: a diagonal pattern matrix, of size n× n with pii =[_] and
pji = for i 6= j. It is not difficult to see that the dag representation
of the naive decision tree has 2n switch nodes, where the plain tree
representation has 2n+1 − 2 switch nodes. Or-pattern compilation
also benefits from maximal sharing. Let us consider for instance
the n-tuple pattern (1|2),. . .,(1|2). Compilation produces a tree
with 2n − 1 switches and a dag with n switches. One may also re-
mark that, for a clause matrix of one row, such that some of its
patterns are or-patterns, maximal sharing makes column choice in-
different. While, without maximal sharing, or-patterns should bet-
ter be expanded last. As a conclusion, maximal sharing is a simple
idea that may yield important savings in code size.

Finally, here is a more a realistic example.

EXAMPLE 3. This example is extracted from a bytecode machine
for PCF (Plotkin 1977) (or mini-ML). Transitions of the machine
depend upon the values of three items: accumulator a, stack s and
code c. The heart of a ML function that implements the machine
consists in the following pattern matching expression:

l e t rec run a s e c = match a,s,c with
| _,_,Ldi i::c -> 1
| _,_,Push::c -> 2
| Int n2,Val (Int n1)::s,IOp op::c -> 3
| Int 0,_,Test (c2,_)::c -> 4
| Int _,_,Test (_,c3)::c -> 5
| _,_,Extend::c -> 6
| _,_,Search k::c -> 7
| _,_,Pushenv::c -> 8
| _,Env e::s,Popenv::c -> 9
| _,_,Mkclos cc::c -> 10
| _,_,Mkclosrec cc::c -> 11
| Clo (cc,ce),Val v::s,Apply::c -> 12
| a,(Code c::Env e::s),[] -> 13
| a,[],[] -> 14

Compiling the example naively yields the decision tree of Fig-
ure 6. There is no sharing, except at leaves. For the sake of clar-
ity, all leaves are omitted, except Leaf(4). There are 56 switches
in the decision tree of Figure 6. As to runtime efficiency, all paths
to Leaf(4), are emphasized, showing that it takes 5 to 8 tests to
reach action 4. Figure 7 gives another decision tree, constructed by
systematic exploration of column choices. The size of the resulting
tree (17 switches) is thus guaranteed to be minimal (as a tree not
as a dag with maximal sharing). The tree of Figure 7 is also more
efficient at runtime: it takes only 4 tests to reach action 4.

It is in fact not difficult to produce the minimal tree by local
column choices only: the first initial choice should be to examine c,
then a second choice should be to examine c.1 when c is a non-
empty list. In both cases, the right choice can be made by selecting
a column i such that no pattern pji is a wildcard for 1 ≤ j ≤ m.

In the rest of the paper we generalize the idea, and then experi-
mentally check its validity.

7. Necessity
Figures 3 and 4 give all the possible decision trees that result from
compiling example 1. Now, let us examine the paths from root to
leaves. In both trees, all paths to Leaf(2) and Leaf(3) traverse two
switch nodes. By contrast, the paths to Leaf(1) traverse one switch
node in the tree of Figure 3 and two switch nodes in the tree of
Figure 4. We can argue that the first tree is better because it has
shorter paths.

A path in a decision tree is an ordinary path from root to leaf.
When a path traverses a node Switcho(L) we say that the path tests
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the occurrence o. In the example, we note that xs is tested by all
paths to Leaf(1), while ys is not.

DEFINITION 2 (Necessity). Let P be a pattern matrix. Let ~o be
the conventional occurrence vector, s.t. oi = i, and let A be
the conventional action vector, s.t. aj = j. Column i is needed
for row j when all paths to leaf Leaf(j) in all decision trees
CC(~o , P → A) test occurrence i. If column i is needed for all
rows j, 1 ≤ j ≤ m, column i is needed (for matching by P ).

Necessity-based heuristics will favor needed columns over non-
needed ones, based upon the simple idea to perform immediately
work that needs to be performed anyway. From this idea, we expect
decision trees with shorter paths. Additionally, we may expect that
decision trees with shorter paths also are smaller. In the list-merge
example the following matrix summarizes necessity information:

N =

( •
• •
• •

)

Where nji = •, if and only if column i is needed for row j. It is
intuitively clear (and we shall prove it), that if pji is a constructor
pattern, then nji = •. However, this is not a necessary condition
since we also have p2

1 = and n2
1 = •. It is worth observing that,

here, column 1 is needed, and that by selecting it we produce a
decision tree with optimal path lengths (and optimal size).

More generally we can make the following two remarks:

1. Let P be a matrix with a needed column i and a non-needed
column i′. LetA andA′ be some trees resulting from selecting i
and i′ respectively. Obviously, all paths in A test oi, while
all paths in A′ test oi′ . Moreover, by Definition 2, all paths
in A′ test oi, whereas there may exist some paths in A that
do not test oi′ . In fact, as a consequence of the forthcoming
proposition 2, at least one such a path exists. Thus, selecting i
seems to be a good idea.

2. Let a column made of constructor patterns only be a strictly
needed column. If at every critical compilation step 3, we dis-
cover a strictly needed column and select it, then the resulting
decision tree will possess no more switch nodes than the num-
ber of constructors in the original patterns. The remark is obvi-
ous since no pattern is copied during compilation.

Of course, these remarks are not sufficient when several or
no needed columns exist. In any case, necessity looks like an
interesting basis for designing heuristics. However, we should first
be able to compute necessity from matrix P .

7.1 Computing necessity
The first step of our program is to relate the absence of a switch
node on a given occurrence to decision tree evaluation. To that aim,
we define a supplementary value  (reading “crash”), and consider
extended value vectors ~v , such that exactly one component is  .
That is, there exists an index ω, with vω =  and vi 6=  for
i 6= ω.

The semantics of decision tree evaluation (Fig. 2) is left un-
changed. As a result, if the top of the stack v1 is  , then the eval-
uation of Switcho1(L) is blocked. We rather express the converse
situation:

LEMMA 2. Let P → A be a clause matrix with at least one row
and at least one column (n > 0,m > 0). Let ~o be a vector of
pairwise incompatible occurrences. Let finally A = CC(~o , P →
A) be a decision tree. Then we have the equivalence: there exists
an extended vector ~v with vω =  and an action k such that
~v ` A ↪→ k, if and only ifA has a path to Leaf(k) that does not
test oω

Proof: See appendix Q.E.D.

The second step of our technique to compute necessity is to re-
late decision tree evaluation and matching for extended values. By
contrast with decision tree semantics, which we left unchanged, we
slightly alter matching semantics. The instance relation ¹ is ex-
tended by adding the following two rules to the rules of section 2.1:

¹  
(p1 | p2) ¹  iff p1 ¹  

Clearly, we have p ¹  , if and only if p is not a generalized
constructor pattern, that is, given our preprocessing phase that
simplifies ( | p) as , if and only if p is a wildcard. The two rules
above are the only extensions performed, in particular p #  never
holds, whatever pattern p is. It is then routine to extend definition 1
of ML matching and lemma 1 (key properties of decompositions).

We now alter the correctness statement of compilation (Propo-
sition 1) so as to handle extended values.

LEMMA 3. Let P → A be a clause matrix. The following two
implications hold:

1. Let ~v be an extended value vector such that Match[~v , P →
A] = k. Then, there exists a decision tree A = CC(P → A)
such that ~v ` A ↪→ k.

2. If for some extended value vector ~v and decision tree A =
CC(P → A) we have ~v ` A ↪→ k, then we also have
Match[~v , P → A] = k.

Proof: See appendix Q.E.D.

Item 1 above differs significantly from the corresponding item in
Proposition 1, since existential quantification replaces universal
quantification. In other words, if an extended value matches some
row in P , then all decision trees may not be correct, but there is at
least one that is.

Finally, one easily relates matching of extended values and
matching of ordinary values.

LEMMA 4. Let P be a pattern matrix with rows and columns
(m > 0, n > 0). Let ~v be an extended vector (vω =  ), then
row j of P filters ~v , if and only if:

1. Pattern pjω is not a generalized constructor pattern.
2. And row j of matrix P/ω filters (v1 · · · vω−1 vω+1 · · · vn),

where P/ω is P with column ω deleted:

P/ω =




p1
1 · · ·p1

ω−1 p1
ω+1· · ·p1

n

p2
1 · · ·p2

ω−1 p2
ω+1· · ·p2

n

...
pm1 · · ·pmω−1 pmω+1· · ·pmn




Proof: Corollary of Definition 1 (ML matching). Q.E.D.

Finally, we reduce necessity to usefulness. By usefulness we
here mean the usual usefulness notion diagnosed by ML compilers.

PROPOSITION 2. Let P be a pattern matrix. Let i be a column in-
dex and j be a row index. Then, column i is needed for row j, if
and only if one of the following two (mutually exclusive) proposi-
tions hold:

1. Pattern pji is a generalized constructor pattern.
2. Or, pattern pji is a wildcard, and row j of matrix P/i is useless3.

Proof: Corollary of the previous three lemmas. Q.E.D.

3 redundant, in the terminology of Milner et al. (1990).



The proposition above not only makes necessity computable in
practice, but also ensures equivalence with the necessity of lazy
pattern matching (Maranget 1992, Lemma 5.1).

Consider again the example of list merge:

P → A =

(
[] → 1

[] → 2
:: :: → 3

)

From the decision trees of Figures 3 and 4 we found that column 1
is needed for row 2. The same result follows by examination of the
matrix P/1:

P/1 =

(
[]
::

)

Obviously, the second row of P/1 is useless, because of the ini-
tial wildcard. One could also have considered matrix P directly,
remarking that no extended value vector ~v = ( v2) matches the
second row of P , because ~v not being an instance of the first row
of P (i.e. ([] ) # ( v2)) implies [] #  , which is impossible.

Here is a slightly subtler example.

EXAMPLE 4. Let ~o and P be the following occurrence vector and
pattern matrix.

~o = (x y) P =

(
true 1
false 2

)
N =

( • •
• •
•

)

N is the necessity matrix.

The first two rows of N are easy, because all the corresponding
patterns in P are constructor patterns. To compute the third row
of N , it is enough to to consider the following matrices:

P/1 =

(
1
2

)
P/2 =

(
true
false

)

The third row of P/1 is useful, since it filters value 3 for instance;
while the third row of P/2 is useless, since { true, false } is a
signature. Hence the necessity results for the third row: column x
is not needed, while column y is. These results are confirmed
by examining the paths to Leaf(3) in the two decision trees of
Figure 8. One may argue that the second tree is better, since action 3
is reached without testing x when y differs from 1 and 2.

In the general case, it should probably be mentioned that the
usefulness problem is NP-complete (Sekar et al. 1995). Neverthe-
less, our algorithm (Maranget 2007) for computing usefulness has
been present in the OCaml compiler for years, and has proved ef-
ficient enough for input met in practice. The algorithm is inspired
by compilation to decision trees, but is much more efficient, in par-
ticular with respect to space consumption and situations where a
default matrix is present.

8. Heuristics
8.1 Heuristic definitions
We first recall the heuristics selected by Scott and Ramsey (2000),
which we adapt to our setting by considering generalized con-
structor patterns in place of constructor patterns. We identify each
heuristic by a single letter (f, d, etc.) Each heuristic can be defined
by the means of a score function, (also written f, d, etc.) from col-
umn indices to integers, with the heuristics selecting columns that
maximize the score function. As regards the inventors and justifica-
tions of heuristics we refer to Scott and Ramsey (2000), except for
the first row heuristic below, which we understand differently.
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Figure 8. The two possible decision trees for example 4

First row f Heuristic f favors columns i such that pattern p1
i is

a generalized constructor pattern. In other words, the score
function is f(i) = 0 when p1

i = , and f(i) = 1 otherwise.
Heuristic f is based upon the idea that the first pattern row has
much impact on the final decision tree. More specifically, if p1

i

is a wildcard and column i is selected, then all decompositions
will start by a clause with action a1. As a result, every child
of the emitted switch includes at least one leaf Leaf(a1) and a
path to it. Selecting i such that p1

i is a constructor pattern results
in the more favorable situation where only one child includes
Leaf(a1) leaves. Baudinet and MacQueen (1985) describe the
first row heuristic in a more complex way and call it the “rel-
evance” heuristic. From close reading of their descriptions, we
believe our simpler presentation to yield the same choices of
columns, except, perhaps, for the marginal case of signatures of
size 1 (e.g. pairs).

Small default d Given a column index i let v(i) be the number of
wildcard patterns in column i. The score function d is defined
as −v(i).

Small branching factor b Let Σi be the set of the head construc-
tors of the patterns in column i. The score b(i) is the negation
of the cardinal of Σi, minus one if Σi is not a signature. In
other words, b(i) is the negation of the number of children of
the Switchoi(L) node that is emitted by the compiler when it
selects column i.

Arity a The score a(i) is the negation of the sum of the arities of
the constructors of the Σi set.

Leaf edge ` The score `(i) is the number of the children of the
emitted Switchoi(L) node that are Leaf(ak) leaves. This infor-
mation can be computed naively, by first swapping columns 1
and i, then decomposing P (i.e. computing all specialized ma-
trices, and the default matrix if applicable), and finally count-
ing the decomposed matrices whose first rows are constituted
by wildcards.

Rows r (Fewer child rule) The score function r(i) is the negation
of the total number of rows in decomposed matrices. This infor-
mation can be computed naively, by first swapping columns 1



and i, then decomposing P , and finally counting the numbers
of rows of the resulting matrices.

We introduce three new heuristics based upon necessity.

Needed columns n The score n(i) is the number of rows j such
that column i is needed for row j. The intention is quite clear:
locally maximize the number of tests that are really useful.

Needed prefix p The score p(i) is the larger row index j such that
column i is needed for all the rows j′, 1 ≤ j′ ≤ j. As the
previous one, this heuristics tends to favor needed columns.
However, it further considers that earlier clauses (i.e. the ones
with higher priorities) have more impact on decision tree size
and path lengths than later ones.

Constructor prefix q This heuristic derives from the previous one,
approximating “column i is needed for row j” by “pji is a
generalized constructor pattern”. There are two ideas here: (1)
avoid usefulness computations; and (2), avoid pattern copies.
Namely, if column i is selected, then any row j such that pji is
a wildcard is copied. As a consequence, the other patterns in
row j may be compiled more than once, regardless of whether
column i is needed or not. Heuristic q can also be seen as a
generalization of heuristic f.
Observe that heuristic d is a similar approximation of heuristic n.

It should be noticed that if matrix P has needed columns, then
heuristics n and p will select these and only these. Similarly, if
matrix P has strictly needed columns, then heuristics d and q will
select these and only these. Heuristics n and p will also favor
strictly needed columns but they will not distinguish them from
other needed columns.

8.2 Combining heuristics
By design, heuristics select at least one column. However, a given
heuristic may select several columns. Ties are broken first by com-
posing heuristics. For instance, Baudinet and MacQueen (1985)
seem to recommend the successive application of f, b and a, which
we write fba. For instance, consider a variation on example 4.

P =

(
true 1
false 2 []

::

)

Heuristic f selects columns 1 and 2. Amongst those, heuristic b
selects column 1. Column selection being over, there is no need
to apply heuristic a. The combination of heuristics is a simple
technique to construct sophisticated heuristics out of simple ones.
It should be noticed that combination order matters, since an early
heuristic may eliminate columns that a following heuristics would
champion.

Even when combined, heuristics may not succeed in selecting
a unique column — consider a matrix with identical columns. We
thus define the following three, last-resort, pseudo-heuristics:

Pseudo-heuristics N, L and R These select one column i amongst
many, by selecting the minimal oi in vector ~o according to var-
ious total orderings on occurrences. Heuristic N uses the left-
most ordering (this is naive compilation). Heuristics L and R
first select shorter occurrences, and then break ties left-to-right
or right-to-left, respectively. In other words, L and R are two
variations on breadth-first ordering of the subterms of the sub-
ject value.

We call N, L and R pseudo-heuristics, because they do not examine
matrix P and thus more rely on accidental presentation of match-
ings than on semantics. Varying the last-resort heuristic permits a
more accurate evaluation of heuristics.

9. Performance
9.1 Methodology
We have written a prototype compiler that accepts pattern matrices
and compiles them with various match compilers The implemented
match compiler includes compilation to decision trees, both with
and without maximal sharing and the optimizing compiler of Le
Fessant and Maranget (2001), which is the standard OCaml match
compiler. The prototype compiler targets matching automata, ex-
pressed as a simplified version of the first intermediate language of
the OCaml compiler (Leroy et al. 2007). This target language fea-
tures local bindings, indexed memory reads, switches, and local
functions. Local functions implement maximal sharing or back-
tracking, depending upon the compilation algorithm enabled. We
used the prototype to produce all the pictures in this paper, switch
nodes being pictured as internal nodes, variables binding memory
read expressions being used to decorate switch nodes, and local
function definitions being rendered as nodes with several ingoing
edges.

The performance of matching automata is estimated as follows:

1. Code size is estimated as the total number of switches.

2. Runtime performance is estimated as average path length. Ide-
ally, average path length should be computed with respect to
some distribution of subject values that is independent of the
automaton considered. In practice, we compute average path
length by assuming that: (1) all actions are equally likely4

and (2), all constructors that can be found by a switch are
equally likely5.

To feed the prototype, we have extracted pattern matching ex-
pressions from a variety of OCaml programs, including the OCaml
compiler itself, the Coq (Coq) and Why (Filliâtre 2008) proof as-
sistants, and the Cil infrastructure for C program analysis (Necula
et al. 2007). The selected matchings were identified by a modified
OCaml compiler that performs match compilation by several algo-
rithms and signals differences in number of switch generated —
more specifically we used the standard OCaml match compiler and
naive CC without sharing.

We finally have selected 54 pattern matching expressions, at-
tempting to vary size and programming style (in particular, 35
expressions do not include or-patterns). The test of a heuristic
consists in compiling the 54 expressions twice, ties left by the
heuristic being broken by the pseudo-heuristics L and R. Each of
these 108 compilations produces two pieces of data: automata size
and average path length. We then compute the geometric means
of data, considering ratios with respect to OCaml match compiler
(base 100.0). Table 1 gives the results of testing single heuristics,
figures being rounded to the nearest integer.

Results first demonstrate that sharing is mandatory for decision
trees to compete with (optimized) backtracking automata as regards
code size. Even more, with heuristics q, p and f, decision trees win
over (optimized) backtracking automata. As regards path length,
decision trees always win, with necessity heuristics p, q and n,
yielding the best performance, heuristic f being quite close. Over-
all, heuristic q and p are the winners, but no clear winners.

For all cost measures, the pseudo-heuristics that base their
choice on fringe occurrences only (i.e. N, L and R) behave poorly.
Thus, to improve performance, real heuristics that analyze matrix P
are called for. As a side note, the results also show a small bias of
our test set against left-to-right ordering, since right-to-left R per-
forms better then left-to-right L and N.

4 Paths to Fail leaves are not considered.
5 Except for integers, where the default case of a switch is considered as
likely as the other cases.



q p f r n b a ` R d N L

Size (maximal sharing) 93 95 98 100 101 102 105 105 108 109 115 115
Size (no sharing) 122 124 129 122 126 151 161 134 135 138 150 168
Average path length 86 86 87 91 86 97 94 88 89 89 91 94

Table 1. Testing single heuristics
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Table 2. Performance of combined heuristics, distribution by steps of 2.0.

9.2 Estimation of combined heuristics
We test all combinations of heuristics up to three heuristics, dis-
carding a few combinations. Discarded combinations yield the
same results as simpler combinations. For instance, qf and fq are
equivalent to q. Overall, we test 507 combined heuristics. We sum-
marize the results by the histograms of Table 2, showing the dis-
tribution of results. For instance, there are 12 combined heuristics
that produce trees with sizes (as dags) in the range 86–88. These
are qb[a`], fb[ad`r], fr, and fr[abd`n].

The results show that combining heuristics yields significant im-
provements in size and little in path length. Good heuristics are the
ones with performances in the best ranges for both size and path
length. Unfortunately, no heuristic belongs to both ranges 86–88
for size and 84–88 for path length. We thus extend the accept-
able size range to 86–90 and compute the intersection with the
path length range 84–86. The process yields the unique cham-
pion heuristic pba. Intersecting size ranges 86–90 and path length
range 84–88, yields 48 heuristics: fd[br], fnr, fr, fr[abd`n], pb,
pb[ad`nqr], pd[br],pnr, pq[br], pr, pr[abd`nq], qb, qb[ad`npr],
qdr, qn[br], qp[br], qr, and qr[abd`np]. From those results, we
draw a few conclusions:

1. Good primary heuristics are f, p and q. This demonstrates the
importance of considering clause order in heuristics.

2. If we limit choice to combinations of at most two heuristics, r is
a good complement to all primary heuristics. Heuristic b looks
sufficient to break the ties left by p and q.

3. If we limit choice to heuristics that are simple to compute, that
is if we eliminate n, p, r and `, then good choices are fdb, qb
and qb[ad]. Amongst those, qba is the only one with size in the
best range.

As a personal conclusion, our favorite heuristic is the cham-
pion pba. If one wishes to avoid usefulness computations, we
consider qba to be a good choice. To be fair, heuristics that are
or were used in the SML/NJ compiler are not far away. From our
understanding of its source code, the current version of the SML/NJ
compiler uses heuristic fdb, earlier versions used fba. Heuristic fdb

First PCF term
N qba

ocamlc/ia32 149 91
ia32 114 93
ocamlc/amd64 156 95
amd64 110 89

Second PCF term
N qba

163 95
114 93
151 96
119 96

Table 3. Running times for the PCF interpreter (ratios of user time)

appears above, while fba misses it by little, with size in the range
86–88 and path length in the range 88–90.

9.3 Relation with actual performance
We have integrated compilation to decision trees (with maximal
sharing) into the OCaml compiler.

Measuring the impact of varying pattern match compilation on
actual code size and running time is a frustrating task. For instance,
compiling the Coq system twice, with the standard OCaml match
compiler and with CC guided by heuristic qba yields binaries which
sizes differ by no more than 2%. Although some differences in
the size of individual object files exist, those are not striking.
This means that we lack material to analyze the impact of low
level issues, such as how switches are compiled to machine code.
Differences in compilation time and in running times of target
programs are even more difficult to observe.

However, we cannot exclude the possibility of programs to
which pattern matching matters. In fact we have one such pro-
gram: an interpreter that runs the bytecode machine of example 3.
As in previous experiments, differences in code size are dwarfed
by non-pattern matching code. Differences in speed are observable
by interpreting small PCF terms that are easy to parse and com-
pile, but that run for long. We test two such terms, resulting in the
ratios (still w.r.t. standard OCaml) of Table 3. Experiments are per-
formed on two architectures: Pentium 1.4 Ghz and Xeon 3.0 Ghz,
written ia32 and amd64. For each architecture, the PCF interpreter
is compiled to bytecode (by ocamlc) and to native code. For refer-



ence, average path length are 4.02 for the OCaml match compiler,
6.33 for N, and 3.14 for qba (ratios: 157 for N and 78 for qba).
We see that differences in speed agree with differences in average
path length. Moreover, running times are indeed bad if heuristics
are neglected, especially for compilation to bytecode.

10. Related work
Maximal sharing can be achieved by the easy to implement and
well established technique of hash-consing — see e.g. Filliâtre and
Conchon (2006). With hash-consing, the asymptotic cost of pro-
ducing the dag is about the same as the one of the tree. Some (Sekar
et al. 1995; Nedjah and de Macedo Mourelle 2002) advocate an-
other technique that do not suffer from this drawback. More pre-
cisely, they compute some key from the match compiler arguments,
such that key identity implies tree identity. Such keys are also use-
ful for establishing upper bounds on the size of the dag. In practice,
hash-consing seems to be sufficient, both for the prototype and for
the modified OCaml compiler.

Needed columns exactly are the directions of Laville (1988);
Puel and Suárez (1989); Maranget (1992). All these authors build
over lazy pattern semantics, adapting the seminal work of Huet and
Lévy (1991). They mostly focus on the correct implementation of
lazy pattern matching. By building over decision tree semantics,
our present work leads more directly to heuristic design. Sekar
et al. (1995) claim to have proved that selecting one of their indices
(our needed columns) yields trees with shorter path lengths and
smaller breadth (number of leaves in plain tree representation).
Their results need a careful formulation in the general case, but are
intuitively clear on example 4. The result on tree breadth is wrong,
as demonstrated by the trees of Figure 8. The second decision tree
is built by selecting needed columns and has breadth 5 (count edges
to leaves), whereas the breadth of the first tree is 4. We conjecture
the result on path lengths to be significant.

Scott and Ramsey (2000) study heuristics experimentally. We
improve on them by designing and testing the necessity-based
heuristics, and also by considering or-patterns and maximal shar-
ing. We also differ in methodology: Scott and Ramsey (2000) count
switch nodes and measure path lengths, as we do, but they do so for
complete ML programs by instrumenting the SML/NJ compiler. As
a result, their experiments are more expensive than ours, and they
could not conduct systematic experiments on combination of three
heuristics. Furthermore, by our prototype approach, we restrict the
test set to matchings for which heuristics make a difference. There-
fore, differences in measures are more striking. Of course, as re-
gards actual compilation, we are in the same situation as Scott and
Ramsey (2000): most often, heuristics do not make such a differ-
ence. However, heuristics matter to some of the tests of Scott and
Ramsey (2000) (machine instruction recognizers). It would be par-
ticularly interesting to test the effect of necessity heuristics and of
maximal sharing on those matchings, which, unfortunately, are not
available.

11. Conclusion
Compilation to decision trees with maximal sharing, when guided
by a good column heuristic, matches the performance of an op-
timizing compiler to backtracking automata, and can do better on
some examples. Moreover, an optimizing compiler to decision trees
is easier to implement than our own optimizing compiler to back-
tracking automata (Le Fessant and Maranget 2001). Namely, max-
imal sharing and simple heuristics (such as qba) are orthogonal
extensions of the basic compilation scheme CC. Thus, the resulting
optimizing match compiler remains simple.

Designing optimizing match compilers that preserve more con-
strained semantics is a worthwhile direction for future research. In

particular, a match compiler for Haskell must preserve the termina-
tion behavior of Augustsson (1985). Another example is the com-
pilation of the active patterns of Syme et al. (2007). To that aim,
the match compiler of Sestoft (1996) may be a valid starting point,
because its definition follows ML matching semantics very closely.
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A. Some proofs
A.1 Lemma 2
By induction on the construction of A.

1. The case m = 0 is excluded by hypothesis.

2. If the first row of P consists of wildcards, then we have A =
Leaf(a1). Then observe, on the one hand, that for any (ex-
tended) value vector ~v , we have ~v ` A ↪→ a1 (rule MATCH,
Fig 2); while, on the other hand, the only path to Leaf(a1) is
empty and thus does not traverse any Switchoω (· · ·) node.

3. A is produced by induction. There are two subcases.

(a) If A is Switcho1(L). We first prove the direct way. That is,
let us assume the existence of an extended vector ~v , with
vω =  and ~v ` A ↪→ k. Then, by the semantics of
decision trees (rule SWITCHCONSTR or SWITCHDEFAULT
from Fig. 2), we have ω 6= 1 and there exists a decision
tree A′ from the case list L and a value vector ~v ′, such that
~v ′ ` A′ ↪→ k. By construction of A, the decision tree
A′ is CC(~o ′, Q → B), where Q → B is a decomposition
(defined in Section 2.2) of P → A. From ω 6= 1, vector ~v ′

is an extended vector, that is there exists a unique index ω′,
with v′ω′ =  — more precisely, either ω′ = a+ω−1 when
Q→ B is the specialization S(c, P → A), or ω′ = ω − 1
when Q → B is the default matrix. In both cases, again by
construction of A, we further have o′ω′ = oω . Besides, the
components of ~o ′ are pairwise incompatible occurrences,
as the components of ~o are. By applying induction to A′,
there exists a path in A′ that reaches Leaf(k) and that does
not test o′ω′ = oω . We can conclude, since o1 and oω are
incompatible and thus a fortiori different.
Conversely, let us assume the existence of a path in A that
reaches Leaf(k) and that does not test oω . Then, we must
have ω 6= 1, since A starts by testing o1. The path goes on
in some of A child, written A′ = CC(~o ′, Q → B), as we
already have defined above — in particular there exists ω′,
with o′ω′ = oω . By induction there exists ~v ′ (whose size
n′ is the width of Q), with v′ω′ =  and ~v ′ ` A′ ↪→ k.
We then construct ~v with vω =  and ~v ` A ↪→ k
and thus conclude. Exact ~v depends on the nature of Q →
B. If Q → B is the specialization S(c, P → A), we
define ~v as (c(v′1, . . . , v

′
a) v′a+1 · · · v′n′). Here we have

ω = ω′ − a + 1, noticing that we have ω′ > a (from
o′ω′ = oω). Otherwise, Q → B is the default matrix and
there exists a constructor c that does not appear in L. Then,
we construct ~v = (c(w1, . . . , wa) v′1 · · · v′n′), where
w1, . . . , wa are any values of the appropriate types. Here
we have ω = ω′ + 1.

(b) IfA is Swapi(A′) whereA′ is Switchoi(L) = CC(~o ′, Q→
A), the arguments ~o ′ and Q being ~o and P with columns 1
and i swapped. We can conclude by induction, having
first observed that assuming either the existence of ~v with
vω =  and ~v ` A ↪→ k, or the existence of a path that
does not test oω both imply i 6= ω.

A.2 Lemma 3
We prove item 1 by induction over the structure of P .

1. The case m = 0 is impossible, since then P has no row at all,
and hence no row that can filter values.

2. If the first row of P consists in wildcards. Then A must
be Leaf(a1) and is appropriate.

3. Otherwise, by hypothesis there exists an extended vector ~v
(vω =  ) that matches some row of P in the ML sense. We

first show the existence of a column index i, such that i 6= ω and
that one of the patterns in column i is a generalized constructor
pattern. There are two cases to consider.

(a) If ~v matches the first row of P , then, ~p 1 ¹ ~v . Since we are
in case 3 of compilation, there exists a column index i such
that p1

i is not a wildcard. By the extended definition of ¹
we have i 6= ω.

(b) If ~v matches some row of P other than the first row, then,
by definition of ML matching, we have ~p 1 # ~v . Thus, by
definition of # on vectors, there exists a column index i, such
that p1

i # vi. Since p #  never holds, we have vi 6=  (and
thus i 6= ω). Furthermore, p1

i is a generalized constructor
pattern, since , for any valuew, (q1 | q2) # w implies q1 # v;
and that # w never holds.

Now that we have found i, compilation can go on by decompo-
sition along column i. Additionally, we know that there exists
constructor c with v1 = c(w1, . . . , wa).

(a) If i equals 1. Then, there are two subcases, depending on
whether c is a head constructor in the first column of P
or not (i.e. c ∈ Σ1 or not). Let us first assume c ∈ Σ1

Then, by lemma 1-1, we get ~v ′ = (w1 · · · wa v2 · · · vn),
such that Match[~v ′,S(c, P → A)] = k. Notice that
~v ′ is an extended value vector. Hence, by induction, there
exists a decision tree A′ with ~v ′ ` A′ ↪→ k. The other
decompositions of P can be be compiled in any manner.
Finally, we build a case list L and define A = Switch(L).
The case where c 6∈ Σ1 is similar, considering ~v ′ =
(v2 · · · vn) and the default matrix.

(b) If i differs from 1. Then, we swap columns 1 and i in both
~v and P and reason as above.

We omit the proof of item 2, which is by induction over the struc-
ture of P , using lemma 1 in the other direction.


