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Abstract. Suppose we want to eliminate the local go to statements of a Pascal program by replacing 
them with multilevel loop exit statements. The standard ground rules for eliminating go to’s require 
that we preserve the flow graph of the program, but they allow us to completely rewrite the control 
structures that glue together the program’s atomic tests and actions. The go to’s can be eliminated from 
a program under those ground rules if and only if the flow graph of that program has the graph-theoretic 
property named reducibility. 

This paper considers a stricter set of ground rules, introduced by Peterson, Kasami, and Tokura, 
which demand that we preserve the program’s original control structures, as well as its flow graph, while 
we eliminate its go to’s. In particular, we are allowed to delete the go to statements and the labels that 
they jump to and to insert various exit statements and labeled repeat-endloop pairs for them to jump 
out of. But we are forbidden to change the rest of the program text in any way. The critical issue that 
determines whether go to’s can be eliminated under these stricter rules turns out to be the static order 
of the atomic tests and actions in the program text. This static order can be encoded in the program’s 
flow graph by augmenting it with extra edges. It can then be shown that the reducibility of a program’s 
augmented flow graph, augmenting edges and all, is a necessary and sufficient eondition for the 
eliminability of go to’s from that program under the stricter rules. 

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language constructs-control 
structures; F.3.3 [Logics and Meanings of Programs]: Studies of program constructs-controlprimitives 

General Terms: Theory, Verification 
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1. Introduction 

The go to statement was the center of much controversy 15 or 20 years ago [4, 111. 
This controversy spurred several theoretical analyses of the power of the go to 
statement. Given a source program with go to’s, can we produce an equivalent 
target program that renounces go to’s in favor of more structured control con- 
structs? The first step in tackling this question is to settle the ground rules: What 
is the precise meaning of “equivalent,” and which control constructs are allowed 
in the target program? Different ground rules lead to different results, as summa- 
rized in Table I. 

Some of this work was done while the author was employed by the Palo Alto Research Center of the 
Xerox Corporation and appears in the PARC technical report “Deftly Replacing go to Statements with 
exit’s,” CSL-83-10 (Nov. 1983). The arrow-stretching technique for eliminating go to’s that underlies 
the sufficiency result was implemented at PARC as part of an effort to port the document compiler 
TEX from Pascal to Mesa. 
Author’s address: Digital Equipment Corporation Systems Research Center, 130 Lytton Ave., Palo 
Alto, CA 9430 1. 
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TABLE I. NECESSARY AND SUFFICIENT CONDITIONS TO REPLACE THE SOURCE CONTROL 

CONSTRUCT WITH THE TARGET CONSTRUCT UNDER THE STATED POLICY 

Policv Source Target Condition 

retain functional 
equivalence 

retain path equivalence 

- retain flow graph 
equivalence 

retain structural 
equivalence 

use Elimination Rules 
only 

go to’s 

go to’s 

go to’s 

outward 
go to’s 

outward 
go to’s 

one while 
plus if’s 

multilevel 
exit’s 

multilevel 
exit’s 

multilevel 
exit’s 

multilevel 
exit’s 

always 

always 

when flow graph is reducible 

when augmented flow graph 
is reducible 

when go to graph of every 
block has no head-to-heads 

- 
- 

I 

- 
- 

At the outset, let us agree to ignore the nonlocal go to statements of such 
languages as Pascal [8], where a go to may jump all the way out of a procedure 
body to a label in an enclosing procedure, hence causing the activation record of 
the inner procedure to be deallocated. In this paper, “program” means “procedure 
body,” and all go to’s are local. 

Eliminating go to’s is easy if we choose a lenient definition of equivalence. Two 
programs are calledfunctionally equivalent [ 161 if, whenever they are given identical 
inputs, they produce identical outputs. In particular, the policy of functional 
equivalence does not rule out introducing new variables in the target program. By 
introducing one new variable that acts as a program counter, we can replace all of 
the control structures of any program, including its go to’s, with some conditional 
statements inside a single while loop. Hare1 discussed this result as an example of 
a folk theorem [5]; it is often credited to Bohm and Jacopini [3], somewhat 
inaccurately, as Hare1 points out. 

Eliminating go to’s gets more challenging if we adopt a stricter notion of 
equivalence. Two programs are called path equivalent [2, 161 or strongly equivalent 
[ 151 if, given identical inputs, the dynamic sequences of atomic tests and actions 
that the two programs perform are identical. Knuth and Floyd [ 141 showed that 
there are source programs whose go to’s cannot be eliminated if we demand path 
equivalence and allow, in the target, only the three control constructs begin-end, 
if-then-else, and while-do. Some programming languages, such as Modula-2 [22], 
supplement these three with a “do forever” loop, for which we use the keywords 
repeat-endloop, and a single-level exit or break statement, a primitive that forces 
the immediate termination of the innermost enclosing repeat loop. (A tricky case: 
In Modula-2, an exit statement inside a while loop inside a repeat loop terminates 
the entire repeat, not just the while.) Unfortunately, as Kosaraju showed [ 151, there 
are still programs whose go to’s cannot be eliminated under path equivalence, even 
if we allow repeat loops and single-level exit’s in the target. But we can eliminate 
all go to’s under path equivalence if we allow ourselves a multilevel exit in the 
target, a primitive that can terminate any specified enclosing repeat loop [ 15, 181. 
Ada’ is an example of a language that includes multilevel exit’s [20]. Note that, 
once we allow repeat loops with multilevel exit’s, we no longer need to retain 
while-do as a separate primitive, since we can simulate a while-do by using a repeat 
loop whose first statement is a conditional exit. (This simulation does not always 

I Ada is a registered trademark of the U.S. Government (Ada Joint Program Oftice). 
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work with the single-level exit’s of Modula-2 because of the tricky case mentioned 
in the previous parentheses.) 

For completeness, we should note that some researchers chose to study a policy 
called semantic equivalence [ 161 or weak equivalence [ 151, which is just a bit more 
lenient than path equivalence. Semantic equivalence makes the assumption that 
the atomic tests are free of side effects and then loosens the rules by allowing the 
target program to perform redundant or useless evaluations of tests. From our 
point of view, adopting the policy of semantic equivalence gives the same results 
as adopting path equivalence: multilevel exit’s are as powerful as go to’s, but single- 
level exit’s are not [ 151. 

The policy of path equivalence is permissive in the sense that it allows us to 
include, in the target program, as many copies of the tests and actions of the source 
program as we like; that is, it allows replicating code. The policy of flow-graph 
equivalence [2] or very strong equivalence [ 161 closes this loophole. Two programs 
are flow-graph equivalent if their flow graphs are the same, that is, there is a one- 
to-one correspondence between the atomic tests and actions of the two programs 
that respects control flow. (A fine point: Tests and actions in dead code should be 
ignored.) Under this policy, even multilevel exit’s are not powerful enough to 
replace all go to’s. A flow graph is called reducibfe if no simple cycle in it can be 
entered for the first time at two different places [6]. Reducibility precisely charac- 
terizes the power of the multilevel exit statement; that is, every program with exit’s 
has a reducible flow graph [6], and every reducible flow graph is the flow graph of 
some program with exit’s [ 1, 9, 181. Hence, under flow graph equivalence, go to’s 
can be eliminated from a program if and only if that program’s flow graph is 
reducible. 

Two programs that are flow graph equivalent are essentially identical, from the 
point of view of the back end of a compiler. But the structurings of the tests and 
actions with begin-end, if-then-else, and the like in the two programs can be quite 
different. Most of the early eliminators of go to’s had no interest in trying to 
preserve this type of structure. In fact, many of them hoped that eliminating the 
go to’s from a program would be an automatic way to improve its structure [ 11. It 
is an interesting theoretical challenge, however, to understand the interactions 
between go to’s and the other local control constructs. In this paper, we study the 
extent to which the original structure of a source program can be preserved while 
eliminating its go to’s. 

Peterson et al. made a start on this problem [ 181. They introduced a stricter 
notion of equivalence, one that demanded the preservation of the program’s 
structure, as well as of its flow graph. We adopt their notion of equivalence for our 
investigations, christening it structural equivalence. A target program is structurally 
equivalent to a source program if the source and target have the same flow graph 
and we can convert the text of the source program into the text of the target simply 
by deleting all go to statements and the labels that they jump to and inserting 
various exit statements and appropriately labeled repeat-endloop pairs for them to 
jump out of, without rearranging or altering any other statements in any way. (We 
might have to delete or insert various colons and semicolons also, to keep the 
program syntactically valid.) 

Note that the policy of structural equivalence allows us to bracket an existing 
sequence of statements with a new repeat and endloop, thus forming a new loop 
and, in some sense, adding more structure to the program-more levels to the 
parse tree at least. On the other hand, there is not much hope of eliminating 
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go to’s in general if we are not allowed to create new repeat loops. Once go to’s are 
eliminated, repeat loops are the only construct that can effect a backward transfer 
of control, and the source program might not have any repeat loops. Thus, 
structural equivalence is about the strictest policy that leaves much chance of 
widespread success. To what extent can go to’s be eliminated under the policy of 
structural equivalence? 

It is clear at the outset that some go to statements are less respectful of program 
structure than others. The bad ones are the go to’s that jump into the middle of 
some structured statement from outside it: those that jump into a compound 
statement or loop, those that jump into a branch of a conditional, and the like. 
Call such go to statements inward, and call the rest outward. Some languages, such 
as C [lo], permit both inward and outward go to’s; others, such as Pascal [8] and 
Ada [20], permit only the outward ones. There is no hope of eliminating inward 
go to’s in general under structural equivalence. All of the structured control 
constructs, including multilevel exit’s, enforce the restriction that control can enter 
a statement only at its beginning; but inward go to’s allow control to enter a 
statement anywhere. We give up on inward go to’s right away. 

Peterson et al. also gave up on inward go to’s, of course. Among outward go to’s, 
they focused on the forward ones-call a go to statement forward if the destination 
label follows the go to statement itself in the text of the program; else, call it 
backward. Peterson et al. gave a transformation that replaces all of the forward, 
outward go to’s to a particular label with exit’s by introducing one new repeat loop; 
we call this transformation the Forward Elimination Rule. By using this rule 
repeatedly, they were able to eliminate all forward, outward go to’s. (To be precise, 
they also handled certain backward, outward go to’s, but only a few of them: only 
unconditional backward go to’s whose destination label is at the same level of block 
nesting. Such go to’s can be replaced with repeat-endloop pairs in a trivial way.) 
We pick up where they left off. 

Sections 2 through 4 develop a sufficient condition for the eliminability of 
go to’s under structural equivalence. In Section 2, we introduce two idealized 
programming languages called GOT0 and EXIT: GOT0 has outward go fo’s, 
while EXIT has multilevel exit’s. Section 3 then presents the Forward Elimination 
Rule as a tool for translating from GOT0 into EXIT under structural equivalence. 
Furthermore, it supplements the Forward Elimination Rule with an analogous 
Backward Elimination Rule, which handles backward, outward go to’s. Both of the 
Elimination Rules involve introducing new repeat loops; in certain cases, these 
requests for new loops can conflict with each other. In Section 4, we define the 
concept of a “head-to-head crossing” in the “go to graph” of a block. We then 
show that the two Elimination Rules can eliminate all of the go to’s from a GOT0 
program if and only if every block in that program has a go to graph that is free of 
head-to-head crossings. Thus, the absence of head-to-head crossings in the go to 
graph of every block is sufficient to guarantee the eliminability of go to’s under 
structural equivalence. 

Sections 5 through 9 sharpen the analysis to yield a condition that is both 
necessary and suflicient. The static order of the atomic tests and actions in the text 
of the program turns out to be the key issue. After reviewing the standard notion 
of a flow graph in Section 5, we define in Section 6 an augmented type of flow 
graph in which there are edges encoding the static order of the atomic elements as 
well as the usual edges representing the dynamic flow of control. Section 7 then 
proves that the augmented flow graphs of EXIT programs are always reducible, 
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augmenting edges and all. Since structurally equivalent programs have the same 
augmented flow graphs, this implies that the reducibility of the augmented flow 
graph is a necessary condition for the eliminability of go to’s under structural 
equivalence. Sections 8 and 9 show that the reducibility of the augmented flow 
graph is also a sufficient condition by presenting an algorithm for eliminating 
go to’s that first uses four phases of simple cleanups to get rid of any spurious head- 
to-head crossings and then applies the Elimination Rules as discussed in Section 4. 

The last two sections address dangling issues. In Section 10, we point out that 
the graph-theoretic property of reducibility simplifies, in the special case of aug- 
mented flow graphs, to a rule prohibiting certain “conflicting” pairs of edges. 
Finally, Section 11 discusses how the ideas in this paper took root during a project 
to translate the sources for Donald E. Knuth’s document compiler TEX from 
Pascal to Mesa. Williams and Chen also found that the desire to mechanically 
translate Pascal programs into other languages led them into developing an algo- 
rithm for eliminating go to’s [21]. But their algorithm is quite different from the 
one in this paper: theirs preserves only functional equivalence. 

2. The Languages GOTO, EXIT, and JUMP 

Local control structure is only one small part of a programming language. In order 
to avoid dealing with the other complexities of real languages, we work with two 
idealized languages called GOT0 and EXIT, which distill the essence of outward 
go to’s and multilevel exit’s. It is convenient to define GOT0 and EXIT as 
sublanguages of a single language called JUMP, which includes both go to’s and 
exit%. In particular, a GOT0 program is a JUMP program that has no exit 
statements, while an EXIT program is a JUMP program that has no go to’s. 

Figure 1 gives the syntax of JUMP in Extended Backus-Naur Form, the 
extensions being the use of curly braces to denote indefinite repetition (zero or 
more times) and square brackets to denote optionality (zero or one times). For 
example, a block in JUMP is a sequence of zero or more statements, terminated 
with semicolons, in which each gap between statements, including the gaps before 
the first and after the last, is labeled with zero or more labels. We refer to the 
statements that form this sequence as the top-level statements of the block, to 
distinguish them from any smaller statements that might be nested inside them. 
(The semicolon after the last top-level statement may be omitted when the final 
gap has no labels.) 

In a real programming language, the atomic actions are explicit commands to 
do something, such as assignment statements, input/output statements, and pro- 
cedure calls. But JUMP is not, strictly speaking, a programming language; it is a 
language in which to write uninterpreted program schemata. Hence, the atomic 
actions in JUMP are uninterpreted action symbols, drawn from the set (action,, 
actionz, . . .I. Similarly, the tests in JUMP are symbols from the set (testI, testz, 

1 The tests in JUMP are not assumed to be free of side effects; thus, evaluating . . . . 
the same test twice in a row may give two different results. 

JUMP has two kinds of jump statements-go to’s and exit’s-each with its own 
flavor of labels. If B is a block in a JUMP program, let us define the gaps of B to 
be the spaces between the top-level statements of B, including the space just before 
the first top-level statement and the space just after the last. A gap label in a JUMP 
program names the gap in which it appears, and a go to statement specifies its 
destination by giving a gap label. A loop label names the loop at the end of which 
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(program) ::= start (block) stop 

(block) ::= {{ (gap label) : } (statement) ; }{ (gap label) : }[ (statement)] 

(statement) ::= (action) 1 (jump) 1 (conditional) 1 (compound) 1 (loop) 

(action) ::= action1 1 action2 1 **a 

(jump) ::= go to (gap label) 1 exit (loop label) 

(conditional) ::= if (test) then (block) endthen [ else (block) endelse ] fi 

(compound) ::= begin (block) end 

(loop) ::= repeat (block) endloop { : (loop label) } 

(test) ::= test1 1 test2 I . . . 

(gap label) ::= A I B I C 1 a.. 

(loop label) ::=&I 91 8 I *a* 

FIG. 1. The syntax of JUMP in Extended Backus-Naur Form. 

it appears, and an exit statement specifies its destination by giving a loop label. 
Note that, with this postfix convention for loop labels, the two types of jumps 
behave the same: They both transfer control to the textual location of the corre- 
sponding label. 

The nonstandard keywords endthen and endelse in a conditional statement are 
not essential, but they will make our construction of the “step graph” of a JUMP 
program in Section 5 work out more neatly. 

The language JUMP has two context-sensitive syntactic restrictions, associated 
with labels. First, all of the gap labels that label gaps of a single block must be 
distinct. Second, every jump statement must be within the scope of a matching 
label, where the scopes of labels are defined as follows. If “G:” labels a gap of 
the block B in a JUMP program, the scope of that G is the entire block B, minus 
any blocks nested inside of B that also have a gap labeled G. Similarly, if “:9” 
labels a repeat loop R in a JUMP program, the scope of that 9 is the block that 
forms the body of R, minus the bodies of any loops nested inside of R that are also 
labeled 2 

Based on these syntactic restrictions, we define the semantic effect of jump 
statements simply by saying that each jump transfers control to the matching label 
in whose scope it lies. Thus, the destination of “go to G” is the unique gap labeled 
G in the innermost enclosing block that includes any such gap, and there must be 
such a block. Note that JUMP allows only outward go to’s, not inward ones. 
Similarly, the destination of “exit 2” is the end of the innermost enclosing loop 
labeled ..Z 

There is a concept about go to’s and their destinations that will be helpful in 
what follows. Suppose that S is a statement in a JUMP program and that T is a go 
to statement contained in S. We say that T is bound in S if the destination label of 
T is also included within S; else, T is free in S. For example, in the nonsensical 
statement 

begin go to G; go to H; G: end, 

“go to G” is bound but “go to H” is free. 

3. The Forward and Backward Elimination Rules 
Suppose that only one of the gaps of a block B in a JUMP program is labeled, say 
by “G:“, and that this gap is only gone forward to. The Forward Elimination Rule 
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actionl; 
actionz; 
if tests then go to G endthen fi; 
actiond; 
if tests then go to G endthen fi; 
actions; 

G: actionr; 

actionl; 
actionz; 
repeat 

if tests then exit 1 endthen fi; 
actiond; 
if tests then exit 1 endthen fi; 
actions; 
exit 1; 

endloop : 1; 
action,; 

FIG. 2. An example of the Forward Elimination Rule. 

is a transformation, introduced by Peterson et al. [ 181, that eliminates all of the 
go to’s to G; Figure 2 gives an example. If JUMP allowed compound statements 
to be labeled and exited as well as loops, we could make the Forward Elimination 
Rule a little simpler by inserting begin-end instead of repeat-endloop and omitting 
the final “exit 9”. But it is traditional to restrict exit to exiting only loops, and we 
stick with that tradition. 

The end of the new loop in the Forward Elimination Rule has to go in the gap 
of B labeled G. But we have some choice about where to put the beginning of the 
new loop. In Figure 2, for example, we could have started the loop either one or 
two statements earlier. In general, we can place the keyword repeat in any gap of 
B that precedes the first top-level statement of B containing a go to whose 
destination is the gap G. If S is a top-level statement of B, note that an instance of 
“go to G” in S that is bound in S is irrelevant at the moment, since its destination 
is a different gap labeled G, a gap of some block nested inside of S. The relevant 
instances of “go to G” are those that are free in the top-level statements of B in 
which they appear. Thus, we apply the Forward Elimination Rule as follows: We 
choose a new loop label, say 2; we insert “exit -E”, endloop :Y;” in the gap G; we 
insert “repeat” in some gap of B that precedes the first top-level statement 
containing a free “go to G”; and we replace with “exit PE”” each “go to G” that is 
free in the top-level statement of B in which it appears. 

If S is a top-level statement of B containing a free “go to G”, note that it does 
not matter where that free go to lies inside of S. The new loop that we introduce 
must contain all of S in order to contain any part of S. 

Suppose next that a block B has only one gap that is labeled, say by “G:“, and 
that this gap is only gone backward to. We can eliminate all of the go to’s to G in 
an analogous way, as shown by example in Figure 3. We call this technique the 
Backward Elimination Rule. We could get away with only one new loop in this 
rule instead of two if JUMP had a multilevel next or continue statement, a primitive 
that could force a new iteration of a specified enclosing loop to begin immediately. 
But, once again, we shall avoid cluttering up JUMP with unnecessary features. 

In the Backward Elimination Rule, it is the location of the beginning of the two 
new loops that is precisely determined: We must insert “repeat repeat” in the gap 
G. The terminating boilerplate, the phrase “exit A; endloop :S?; endloop :A?;“, can 
be placed in any gap of B that follows the last top-level statement of B containing 
a free “go to G”. 

In the general case, a block B in JUMP will have several labeled gaps and those 
gaps will be gone to from various places, both by forward go to’s and by backward 
ones. If possible, we would like to eliminate all of the go to’s to all of the gaps of B 
at once by using the Forward and Backward Elimination Rules. That is, we would 
like to group the top-level statements of B into new loops, some possibly nested 
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actionl; 
repeat 

actionl; 
G: actions; 

repeat 

if tests then go to G endthen fi; 
actionz; 

actiond; 
if tests then exit 1 endthen fi; 

if tests then go to G endthen fi; 
action* ; 

actions; 
if tests then exit 1 endthen fi; 

action,; 
exit m; 

endloop 2; 
endloop : m; 
actions; 
action7; 

FIG. 3. An example of the Backward Elimination Rule. 

inside of others, and then replace each go to to a gap of B with an exit of an 
appropriate new loop. If we apply the two Elimination Rules naively to an arbitrary 
block, the resulting requests to introduce new loops may conflict with one another. 
Two simple cases of conflict are shown in Figures 4 and 5. 

In Figure 4, we have two forward go to’s, the first of which jumps into the 
interior of the second, that is, into the middle of the region that the second jumps 
over. A naive attempt to apply the Forward Elimination Rule to both of these 
labels runs into a conflict. But this conflict can be easily resolved by making the 
new loop introduced for the label H longer than it would otherwise have to be- 
in particular, just long enough so that it completely contains the new loop for the 
label G. We call this process stretching the H loop. 

Figure 5 shows a more stubborn case. The two go to’s here jump into each 
other’s interiors. Remember that only one end of each new loop can be stretched. 
In this case, the stretchable ends are both on the outside. Whether we stretch them 
or not, these two requests for new loops will always remain in conflict. 

Diagrams with lines and arrows, as in Figures 4 and 5, are quite helpful in 
studying conflicts between requests for new loops; we shall call them go to graphs. 
More formally, suppose that B is a block in JUMP, some of whose gaps are labeled. 
The go to graph ofB is a directed graph (multiple edges allowed, but no self-loops). 
The vertices of the go to graph correspond to the gaps of B; they are drawn as 
horizontal lines in Figures 4 and 5. The edges, drawn as vertical arrows, are derived 
as follows. For each gap label G that is gone forward to, we add an arrow whose 
head is the gap labeled G and whose tail is the gap just before the first top-level 
statement of B containing a free “go to G”. Similarly, for each gap label G that is 
gone backward to, we add an arrow whose head is the gap labeled G and whose 
tail is the gap just after the last top-level statement of B containing a free “go to 
G”. Each arrow represents the extent of the shortest new loop that we could 
introduce to handle go to’s of that direction to that label. 

Stretching an arrow in a go to graph means moving its tail from one vertex to 
another so as to make the arrow longer. We draw a stretched arrow by a dotted 
extension of the arrow’s shaft. The various stretched versions of an arrow corre- 
spond precisely to the various stretched loops that we could introduce to handle 
the corresponding go to’s. If there is some way to stretch the arrows that gets rid of 
all conflicts, we can use that stretching as a recipe for applying the Elimination 
Rules to eliminate all of the go to’s to gaps of B. 

In general, a JUMP program has lots of blocks. Note that different blocks, 
whether disjoint or nested, don’t interfere with each other at all while we are 
applying the Elimination Rules. For each block B, we build a go to graph, and we 
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actionl; 
if test2 then go to G endthen fi; G i 
if tests then go to H endthen fi; $ IH FIG. 4. A resolvable conflict. 

G: actiond; \1 
H: actions; 

actionl; 
if test2 then go to H endthen fi; H 

FIG. 5. An irresolvable conflict. G: actions; $1‘ 
H: if test& then go to G endthen fi; IG 

actions; 

try to stretch its arrows to get rid of all conflicts. If we succeed in finding such a 
stretching, we group the top-level statements of B into new loops as specified by 
the stretched arrows, and we replace each go to whose destination is a gap of B by 
an equivalent exit of some new loop. This process does not affect any go to’s whose 
destinations are gaps of blocks other than B. It also does not affect any preexisting 
exit’s, unless we are foolish enough to choose, as the label for one of our new loops, 
an identifier that was already in use as a loop label. Therefore, we can translate an 
entire GOT0 program into EXIT under structural equivalence, as long as we do 
not get stumped in stretching the arrows of the go to graph of some block. It 
behooves us to consider the combinatorial problem of stretching arrows. 

4. Stretching Arrows to Get Rid of Crossings 

Abstractly, a go to graph is a directed graph together with a total ordering on its 
vertices. Since self-loops are forbidden, each edge in a go to graph can be classified 
as eitherforward or backward. Each pair of edges can be classified as either disjoint, 
nested, or crossing, as shown in Figure 6. (In this section, we draw our go to 
graphs rotated 90 degrees.) There are four types of crossing pairs, depending upon 
the directions of the two arrowheads. We call them forward-forward, backward- 
backward, head-to-head, and tail-to-tail. Note that, if two edges share an endpoint, 
that pair should count as either disjoint or nested; in order for a pair to cross, four 
distinct vertices must be involved. To see that shared endpoints are not a problem, 
consider the stretched version of the go to graph in Figure 4: It is easy to begin 
both the G loop and the H loop in the same statement gap, as long as we begin 
them in the right order-first H and then G. 

We want to stretch the edges of a go to graph so as to eliminate crossings. As we 
noted above, stretching moves cannot eliminate head-to-head crossings. But it 
turns out that stretching moves are powerful enough to eliminate all other crossings. 

PROPOSITION 4.1. Given a go to graph that is free of head-to-head crossings, it 
is possible to stretch its arrows so as to eliminate all crossings of any kind. 

To see that Proposition 4.1 is not trivial, consider the situation in Figure 7. 
If we were to stretch the tail of the forward arrow f back past the head of the 
backward arrow 6, we would turn a nested pair into a head-to-head crossing. No 
further stretching would ever be able to eliminate that head-to-head. Thus, we 
cannot eliminate all crossings just by stretching arrows heedlessly. 

On the other hand, Proposition 4.1 is not very subtle either. As long as we are 
careful not to introduce any head-to-head crossings, stretching arrows heedlessly 
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FIG. 6. Classifying pairs of edges in a go to graph. 

FIG. 7. A head-to-head crossing caused by careless stretching. 
f, 

b 

does just fine. This observation is due to Susan Owicki (personal communication), 
and it forms the basis of her simpler proof of my Proposition 4.1 .2 

LEMMA 4.2. If a go to graph contains at least one crossing but no head-to-head 
crossings, then some arrow in it can be stretched without introducing any head-to- 
head crossings. 

If we can prove Lemma 4.2, Proposition 4.1 follows at once: just keep applying 
the lemma as often as possible. There are only a finite number of states that we 
could ever reach by stretching moves, since the go to graph contains only a finite 
number of vertices and edges. Furthermore, every stretching move increases the 
sum of the lengths of the edges; therefore, we will not be able to keep applying 
Lemma 4.2 forever. When it no longer applies, the graph must be free of all 
crossings. 

To prove Lemma 4.2, we consider several cases. First, suppose that at least one 
of the crossings that remains is forward-forward, like the crossing off and g in 
Figure 8. In such a situation, we stretch the tail of the arrowfback to meet the tail 
of g. Could this stretching introduce any head-to-head crossings? Any arrow that 
crossed the stretchedfbut not the originalfwould have to have one endpoint in 
the interval (u, w] and the other either less than u or greater than y. In order for 
such a hypothetical arrow to end up head-to-head with the stretched f; it would 
have to be a backward arrow b with its tail at some vertex z with z > y and its head 
at some vertex v with u < v I w. But no such arrow b can exist, since such an 
arrow would have already been in head-to-head conflict with g. Thus, even though 
stretching f may introduce new crossings of various kinds, it can not possibly 
introduce any head-to-head crossings. 

If any backward-backward crossings remain, we proceed symmetrically. 
If there are crossings, but none of them are head-to-head, forward-forward, or 

backward-backward, they must all be tail-to-tail. In this case, we have a lot of 
choice about what to do. To keep things simple, we shall pick one tail-to-tail pair 

’ Susan Owicki also deserves credit for the excellent idea of drawing the vertices of a go to graph as 
parallel lines rather than as dots. 

- 
- 
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FIG. 8. The case of a forward-forward crossing in 
proof of Lemma 2. 

the 

FIG. 9. The case of a tail-to-tail crossing in the proof of 
Lemma 2. 

of arrows, call them a and f as in Figure 9, and stretch the tail off back to the 
head of a. If we wanted, we could stretch a instead, or we could stretch both a and 
f-it doesn’t matter. The advantage of stretchingfis that it makes this case very 
similar to the forward-forward case. Could stretching f introduce any head-to- 
heads? By the same argument as before, the only type of arrow that might cause 
trouble is a backward arrow like b, with its tail at a vertex z with z > y and its head 
at a vertex v with u < v 5 w. But, if such an arrow b existed, it would form a 
backward-backward pair with a, and we would have employed the backward- 
backward case instead. Note that stretching f might very well introduce 
new crossings of other types, such as forward-forward crossings between the 
stretched f and arrows like the reverse of b. But stretching f cannot introduce 
any head-to-heads, and that is enough to complete the proofs of Lemma 4.2 
and of Proposition 4.1. Cl 

COROLLARY 4.3. Let P be a program in GOT0 or, more generally, in JUMP. 
The Forward and Backward Elimination Rules &ice to eliminate all of the go to’s 

from P, producing a structurally equivalent EXIT program, ifand only if the go to 
graphs of all of the blocks of P are free of head-to-head crossings. 

Disclaimer: The presence or absence of head-to-head crossings is not the key 
to writing well-structured programs in GOTO. In fact, it seems quite clear that 
backward-backward pairs are at least as bad as head-to-head pairs in terms of 
program structure-probably worse: Jumping backward into the middle of a loop 
seems at least as ill-advised as jumping forward into the middle of one. Good 
program structure is too subtle a property to be captured by any simple test. 

5. Step Graphs, Flow Graphs, and Reducibility 
It is time for a major change of focus. Corollary 4.3 gives a sufficient condition for 
the eliminability of go to’s under structural equivalence. In this section, we begin 
the groundwork for a condition that is both necessary and sufficient by constructing 
the flow graph of a JUMP program and reviewing some standard results about the 
reducibility of flow graphs. 

Warning: There is some risk of confusion between the go to graphs that we have 
been using so far and the step graphs and flow graphs that we are about to define, 
since they are all directed graphs somehow associated with a program. But there 
are important differences. First, every block in a JUMP program has its own go to 
graph; but the program as a whole has just one step graph and one flow graph- 
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FIG. 10. The GOT0 program While. 
H: if test2 then go to G endthen fi 
stop 

not one per block. Second, a vertex in a go to graph represents a gap of a block; 
but a vertex in a step graph or flow graph represents a token of the program-not 
a space between two adjacent tokens. To avoid confusion, we reserve the words 
vertex and edge for use only when talking about go to graphs. When talking about 
step graphs and flow graphs, we use the words node and arc instead, along with 
path and cycle. 

A flow graph is a labeled, directed graph (multiple arcs and self-loops both 
allowed) with certain properties. The nodes come in three classes: initial, atomic, 
and final. Every flow graph must have precisely one initial node, which must be 
labeled start. This node must have in-degree zero and out-degree one; the unique 
arc leaving the node labeled start must be unlabeled. A flow graph may have one 
or more atomic nodes. Each atomic node must be labeled with a symbol from the 
set (action,, action*, . . . , test,, tests, . . . ). An atomic node labeled “action;” must 
have precisely one outgoing arc, which must be unlabeled. An atomic node labeled 
“testi” must have precisely two outgoing arcs, one labeled “true” and the other 
labeled “false”. A flow graph may have a node labeled stop, and it may have a 
node labeled spin (at most one of each). Thesefinal nodes, if they exist, must have 
out-degree zero. Finally, every node in a flow graph must be accessible by a path 
from the initial node, the node labeled start. 

In what follows, we write a node by putting square brackets around its label. 
Thus, [start] denotes the initial node, and [action11 denotes some node labeled 
“action, “. 

Our definition of flow graphs is standard in most respects. In particular, we are 
following standard practice by demanding that .a11 nodes of the flow graph be 
accessible from [start], that is, that any dead code in a program is not represented 
in that program’s flow graph. Our treatment of [start] itself is rather unusual, 
however. Most definitions of flow graphs indicate where the computation is to 
begin by marking one of the atomic nodes as initial, rather than by adding a 
separate initial node. We need a separate initial node in the next section to anchor 
the beginning of the augmenting path. Our final node [sdin] is also nonstandard. 
We use it to represent a computation that has become trapped in an infinite loop 
without any atomic tests or actions, like the loops in the statements “begin G: 
go to G end” or “repeat endloop”. We refer to such loops as spin cycles. 

The semantics of JUMP associates a unique flow graph with each JUMP 
program, and there are no particular surprises in the rules for constructing that 
flow graph. We formalize those rules as a two-step process. Given a JUMP program, 
we first build a more detailed graph called the step graph of the program; the step 
graph is to the flow graph as an interpreter is to a compiler. We then collapse the 
step graph into the flow graph by a process of path compression. 

Figure 10 shows an example GOT0 program, Figure 11 shows its step graph, 
and Figure 12 shows its flow graph. We name this example program While, since 
its flow graph is the same as that of the non-JUMP program “while test1 do 
action, “. Figure 10 also shows the go to graph of the outer block in Whiie; for 
future reference, note that it includes a head-to-head crossing. 
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FIG. 11. The step graph of the GOT0 program While. 

FIG. 12. The flow graph of the GOT0 program 
While. 

The step graph of a JUMP program is a labeled, directed graph whose nodes are 
almost exactly in one-to-one correspondence with the tokens of the JUMP program. 
The only exception to this one-to-one correspondence is that labels do not have 
nodes of their own: They are grouped together either with the adjacent colon or 
with the preceding go to or exit. 

The nodes of the step graph are partitioned into four classes: initial, atomic, 
final, and glue. The nodes [start] and [stop], corresponding to the first and last 
tokens, are the unique initial and final nodes. In particular, step graphs do not 
have [spin] nodes. The nodes [action;] and [test;] are atomic nodes. All the other 
nodes are glue nodes: [if], [then], [endthen], [else], [endelse], [fi], [begin], [end], 
[repeat], [endloop], [;], [X:], [go to X], [:SY], and [exit Z], where X stands for any 
gap label and SY for any loop label. 

The arcs of the step graph also come in four types: sequential, conditional, 
loopback, and jump. Sequential arcs are unlabeled, and they go from one node to 
the node for the following token. Most nodes in a step graph have a single outgoing 
arc, which is sequential. This rule applies to the initial node [start], to all atomic 
action nodes, and to all glue nodes of the form [if], [then], [else], [fi], [begin], 
[end], [repeat], [;], [X:], or [:ZY]. Conditional arcs are those that take control to the 
proper branch of a conditional statement and then collect it again when that branch 
is done. Each atomic test node has two outgoing arcs, which are conditional: one 
is labeled “true” and goes to the matching [then], the other is labeled “false” and 
goes to the matching [else]. If the else-endelse branch of the conditional is missing, 
the false arc goes to the matching [fi] instead. Nodes of the form [endthen] and 
[endelse] have one outgoing arc: an unlabeled, conditional arc to the matching [fi]. 
Each node of the form [endloop] has a single unlabeled, outgoing arc to the 
matching [repeat]; such arcs are called loopback arcs. Nodes corresponding to 
jump statements have one unlabeled, outgoing arc to the destination label node: 
either from [go to X] to [X:] or from [exit s?] to [:%I; these arcs are called jump 
arcs. Which instance of [X:] or [:Z] is the correct destination of the jump is 
determined by the scoping rules in Section 2. Finally, the node [stop] has no 
outgoing arcs. 

Unlike a flow graph, a step graph may contain nodes that are not accessible from 
[start]. The accessible nodes are called live, and the rest are called dead. The step 
graph in Figure 11 has two dead nodes, both of which are glue nodes: the first [;] 
and the [endthen]. 

In our future work, it is important to know how the arcs of a step graph interact 
with the syntactic structure of the associated program. If S is a set of nodes in some 
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graph, an arc enters S if its head is in S but its tail is not; an arc leaves S if its tail 
is in S but its head is not. 

LEMMA 5.1. Let A be either a statement or a block in a JUMP program P. An 
arc in the step graph of P that enters A must be a sequential arc. An arc that leaves 
A must be either a sequential arc or a jump arc. 

PROOF. Conditional arcs and loopback arcs neither enter nor leave any state- 
ment or block. By the scoping rules of JUMP, jump arcs may leave statements and 
blocks, but they cannot enter them. 0 

By compressing paths through glue nodes in the step graph of a JUMP program 
into single arcs, we can build a flow graph for that JUMP program. The nodes of 
the compressed graph are precisely the live, nonglue nodes of the step graph, plus 
possibly a node [spin]. The arcs of the compressed graph correspond to paths in 
the step graph from one live nonglue node to another through a sequence of glue 
nodes. Since all glue nodes have out-degree one, there is never any choice about 
how to build such a path. There is the possibility, however, that we might get 
caught in a spin cycle, a cycle in the step graph that consists entirely of glue nodes. 
If this ever happens, we add a single node labeled spin to the compressed graph, 
and we represent any path in the step graph that enters any spin cycle as an arc to 
[spin] in the compressed graph. Given a JUMP program, it is straightforward 
to verify that the result of compressing its step graph is a valid flow graph; we 
refer to this compressed graph as theflow graph ofthe JUMP program. 

The following easy proposition verifies that go to’s are powerful enough to 
encode any flow graph. 

PROPOSITION 5.2. Every flow graph is the flow graph of some GOT0 program. 

PROOF. Given any flow graph, label all of its nodes other than [start] with 
distinct gap labels. For each node, we can write a fragment of GOT0 program that 
captures the computation at that node. If the node [action] is labeled G and its 
outgoing arc goes to the node labeled H, we write “G: action; go to H;“. If the 
node [test;] is labeled G and its successors are labeled H and K, we write “G: if 
testi then go to H endthen else go to K endelse fi;“. If a node [spin] is present and 
labeled S, we write “S: repeat endloop;“. Finally, we concatenate these fragments 
in any order and make them into a GOT0 program by preceding them with “start 
go to A;” and following them with “Z: stop”, where A is the label on the successor 
of [start] and Z is the label on [stop] itself. (If the flow graph does not contain a 
node [stop], we omit the label “Z:“.) Cl 

Unlike programs in GOTO, programs in EXIT cannot have arbitrary flow 
graphs. As we noted in Section 1, previous research has shown that the flow graphs 
of EXIT programs are precisely those that have the graph-theoretic property called 
reducibility. The concept of reducibility is blessed with many equivalent definitions 
[7]. We shall use a definition that restricts the ways in which cycles in the graph 
can be first entered. A cycle in a flow graph is called simple if it does not visit any 
node more than once. If v is a node on a simple cycle C, we call v a gateway to C 
if there is some path from [start] to v that avoids all other nodes of C; that is, it is 
possible to enter C for the first time at v. A flow graph is called reducible if no 
simple cycle has more than one gateway. 

Beware: A gateway to a cycle is not the same thing as the head of an arc that 
enters that cycle. Every gateway is also the head of an entering arc, but not every 
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head of an entering arc is a gateway. As Hecht and Ullman noted [6], reducible 
flow graphs, like the example in Figure 13, can have cycles with multiple entry 
nodes: Both of the nodes in the cycle consisting of [action,] and [test*] are heads 
of entering arcs. But only [action, ] is a gateway. 

6. Augmented Flow Graphs 
The GOT0 program While in Figure 11 exemplifies our current ignorance about 
eliminating go to’s under structural equivalence. The go to graph of the outer block 
in While has a head-to-head crossing; therefore, the Elimination Rules by them- 
selves are not powerful enough to eliminate the go to’s from While. On the other 
hand, the flow graph of While, shown in Figure 12, is reducible. Therefore, we 
know from the standard theory that the go to’s of While can be eliminated under 
flow graph equivalence, that is, there do exist EXIT programs with the same flow 
graph as While. The simplest such program is 

start repeat if test2 then action, endthen 
else exit 2 endelse fi endloop :P stop. 

But this EXIT program is not structurally equivalent to While. Can the go to’s be 
eliminated from While under structural equivalence, or not? 

It turns out that they cannot. In the text of While, the atomic element “action, ” 
comes before “tes&“. We prove in the next section that the test comes before the 
action in every EXIT program with the same flow graph as While. Since the static 
order of the atomic elements is one of the flavors of structure preserved by structural 
equivalence, the go to’s in While cannot be eliminated under that policy. 

The main tool that we use to carry out this proof is a way of encoding a linear 
order on the atomic nodes of a flow graph into the graph structure itself. Define 
an augmentedflow graph to be a labeled, directed graph whose arcs are partitioned 
into two classes: dynamic and static. If the static arcs are deleted, what remains 
must be an ordinary flow graph. In addition, the static arcs must form a path, 
called the augmenting path, that begins at the node [start] and then visits each 
atomic node exactly once, The augmenting path must not visit any final nodes. 
The augmenting path encodes a linear order on the atomic nodes of the flow graph 
by the order in which it visits them. 

The particular linear order that we are interested in encoding is the static order 
of the corresponding atomic elements in the text of a program. If P is any JUMP 
program, we associate an augmented flow graph with P as follows, naming it the 
augmented j7ow graph of P. First, construct the normal flow graph of P by 
compressing paths in the step graph of P. Then, add static arcs to form an 
augmenting path that visits the atomic nodes of the flow graph in the same order 
that the corresponding live atomic elements occur in the text of P. For example, 
Figure 14 shows the augmented flow graph of the GOT0 program While, with its 
two static arcs drawn dashed. Note that this graph is not reducible; both of the 
nodes in the cycle consisting of [action, ] and [testz] are gateways. Our claim above 
that the test must precede the action in every EXIT program with the same flow 
graph as While will follow from the proof in the next section that every EXIT 
program has a reducible augmented flow graph. 
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FIG. 14. The augmented flow graph of the 
GOT0 program While. 
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FIG. 15. An EXIT program, its augmented flow graph, and the nonreducible graph that 
would result if dead code were included in augmented flow graphs. 

Note that the nonreducibility of the augmented flow graph of While depends 
upon the existence of [start] as a separate node. That is why we defined our flow 
graphs to have separate initial nodes, rather than having one of the atomic nodes 
marked as the place to start. 

There is another fine point in our definitions that deserves comment: the 
treatment of dead code. Our definition of an augmented flow graph states that, if 
all the static arcs are deleted, the remaining graph must be an ordinary flow graph. 
In particular, this means that each node in an augmented flow graph must be 
accessible from [start] by a path consisting entirely of dynamic arcs. An alternative 
would have been to include all the dead code in the augmented flow graph, trusting 
to the augmenting path to make the dead nodes accessible from [start]. The 
problem with this alternative is that some EXIT programs would then have 
nonreducible augmented flow graphs; Figure 15 gives an example. 

Even when we care about the static order of the atomic elements, go to’s remain 
an all-powerful control construct. 

PROPOSITION 6.1. Every augmentedflow graph is the augmentedflow graph of 
some GOT0 program. 

Proof Assemble the program fragments used in the proof of Proposition 5.2 in 
the order specified by the augmenting path. 0 

Just how powerful exit’s are when we care about the static order of the atomic 
elements is the issue addressed by the next three sections. We close this section 
with some remarks about the concept of forward and backward. 

The nodes of the step graph of a JUMP program have a natural linear order, 
coming from the order of the corresponding tokens in the program text. Hence, 
just as the edges in a go to graph can be classified as either forward or backward, 
we can similarly classify the arcs in a step graph. Sequential arcs, conditional arcs, 
and the jump arcs that come from exit’s are all forward; loopback arcs are all 
backward; go to arcs can be either forward or backward. 

If we have constructed a flow graph or an augmented flow graph from a JUMP 
program, we can use the static order of the live atomic elements in that program 
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to define an analogous notion of forward and backward. Two technical points 
arise. First, we make the convention that any arc whose head is [spin] is forward. 
This case is special because spin is not a token in the program text. Second, we 
agree that all self-loops, that is, all arcs of the form p + p, are backward. This 
convention guarantees that every cycle in a flow graph or an augmented flow graph 
must include at least one backward arc. 

On the other hand, we might have a flow graph or an augmented flow graph 
without any associated program. In the augmented case, we can still define forward 
and backward arcs by considering the order of their heads and tails along the 
augmenting path. For an ordinary flow graph with no associated program, however, 
there is no textual notion of forward and backward. It is worth mentioning that 
there is a related graph-theoretic notion, even though we do not need it in this 
paper. Call an arc in a flow graph graph-backward if its head dominates its tail, 
that is, if every path from [start] to its tail passes through its head; otherwise, call 
it graph-forward. In the flow graphs of EXIT programs, it turns out that an arc is 
graph-backward if and only if it goes backward in the program text, that is, the 
graph-theoretic and textual notions of forward and backward agree. The graph- 
theoretic notion is important because it also turns out that a flow graph is reducible 
if and only if it has no cycles consisting entirely of graph-forward arcs [7]. 

7. Exploiting the Structure of exit’s 

Our goal in this section is to prove that the augmented flow graph of any EXIT 
program is reducible. We begin with two technical definitions about step graphs: 
precursor and arrival node. 

Every block in a JUMP program is immediately preceded by either start, then, 
else, begin, or repeat; and every statement is immediately preceded either by one 
of those, by “;“, or by “X:“. If A is either a block or a statement in a JUMP 
program P, we refer to the node in the step graph of P that corresponds to the 
token immediately preceding A as the precursor of A. Note that precursor nodes 
are either initial nodes or glue nodes. From Proposition 5.1, we know that the only 
arc that can enter A is the sequential arc whose tail is the precursor of A. (This arc 
actually does enter A, except in the trivial case where A is an empty .block.) 

If u is an initial or glue node in the step graph of a JUMP program, consider the 
path leaving u. This path is uniquely determined as long as it travels through glue 
nodes, since all glue nodes have out-degree one. If the path leaving u visits some 
glue node twice before visiting any nonglue node, it will be trapped forever in a 
spin cycle; in this case, we say that u never arrives. Otherwise, we say that u arrives 
at v, or that v is the arrival node of u, where v is the first atomic or final node on 
the path leaving u. 

The following lemma is more general than necessary for our current needs; the 
extra generality will be helpful when we use this lemma again in Section 9. 

LEMMA 7.1. Let S be a statement in a JUMP program P with the property that 
every go to statement included in S is free in S. If S contains any live atomic 
elements, then, in the step graph of P, the precursor of S arrives at the leftmost live 
atomic element in S. 

PROOF. By induction on the size of the statements in the program P, we may 
assume that the result of the lemma holds for all statements smaller than S, in 
particular, for all statements T nested inside of S. 
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Let u be the precursor of S, and let x be the leftmost live atomic element in S; 
our goal is to show that u arrives at X. The proof splits into five cases, depending 
upon the form of the statement S: jump, action, conditional, compound, or loop. 

The first three cases are easy. Since S contains the live atomic element x, 
S cannot be a jump statement. If S is an action, we have x = [action;]; if S is 
a conditional, we have x = [testi]. In either case, the precursor u of S will arrive 
at x. 

The last two cases are compounds and loops. Let T, , T2, . . . denote the top-level 
statements of the block that forms the body of S, and suppose that x lies in Tk. 
Since x is a live atomic element, there must be a path in the step graph of P from 
[start] to x; let (Y be such a path. At some point, the path (Y must enter S. By 
Lemma 5.1, each time (Y enters S, it must do so by traversing the sequential arc 
u + v, where v is the leftmost node in S (either v = [begin] or v = [repeat]). 
If we partition (Y the last time that it traverses this arc, we have 

(Y = [start] 4 u +- v $9 x, 

where /3 remains entirely inside of S. We will be done if we can show that x is the 
first nonglue node on p. 

The first thing that ,6 does is to sequence through zero or more gap labels into 
T, . Let us assume for the moment that k > 1. This means that T, has no live 
atomic elements; hence, p must leave T, again before it visits any nonglue node. 
By Lemma 5.1, control must leave T, either by a sequential arc or by a jump arc. 
Control cannot leave T, by a go to arc, because every go to statement in S is free 
in S and would hence take control outside of S. Control also cannot leave T, by 
an exit arc, because any exit arc that left T, would either leave S also or else, in 
the case that S itself is the loop being exited, would transfer control to a loop label 
at the very end of S, after which control would sequence out of S. Therefore, the 
only way that control can leave T, is by sequencing out. After passing through the 
semicolon and zero or more gap labels, the path p will then enter T,. We can argue 
similarly for T2, . . . , Tk-, , until control reaches the precursor of Tk. 

We now apply the inductive hypothesis to T,. Since every go to statement in S 
is free in S, it follows that every go to statement in Tk is free in Tk. Furthermore, 
we know that Tk contains at least one live atomic element, since Tk contains X. By 
induction, the precursor of Tk must arrive at the leftmost live atomic element in 
T,, which is x. Therefore, u also arrives at X. 0 

LEMMA 7.2. Let S be a statement in an EXIT program P, and suppose that S 
contains at least one live atomic element. Every arc in the augmentedflow graph of 
P that enters S has the leftmost live atomic element in S as its head. 

PROOF. Let x denote the leftmost live atomic element in S. An arc in the 
augmented flow graph of P that enters S must be either static or dynamic. Precisely 
one static arc enters S, and its head is x. A dynamic arc that enters S is the result 
of collapsing a path through glue nodes in the step graph. By Lemma 5.1, this path 
must enter S by traversing the sequential arc leaving the precursor of S. Since S 
has no go to statements at all, Lemma 7.1 tells us that the precursor of S arrives at 
X. Hence, every dynamic arc that enters S has x as its head. 0 

PROPOSITION 7.3. Every simple cycle in the augmentedjlow graph of an EXIT 
program contains precisely one backward arc, and the head of that arc is the unique 
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gateway to the cycle. In particular, the augmented flow graph of every EXIT 
program is reducible. 

PROOF. Fix an EXIT program P, and consider some simple cycle C in the 
augmented flow graph of P. Since C is a cycle, it must contain at least one backward 
arc. We show that the head of any backward arc in C is the unique gateway to C. 
Since C is simple, this will imply that C has only one backward arc. 

Let v + u be any backward arc in C, which means that u and v are atomic nodes 
with u I v. Since every backward arc is dynamic, the arc v + u is the result of 
collapsing a path in the step graph of P from v to u through a sequence of glue 
nodes; let (Y denote this path. The path (Y must include at least one backward arc. 
Since the program P has no go to’s, the only backward arcs in the step graph of P 
are loopback arcs; LY must include one or more of them. In fact, one of those 
loopback arcs must transfer control from an [endloop] to the right of v back to a 
[repeat] to the left of v. Let R denote the loop in P delimited by this repeat-endloop 
pair, and note that v lies in R. 

Apply Lemma 7.1 to the loop statement R. Since v lies in R, the loop R does 
contain a live atomic element. Since R is a statement in an EXIT program, it has 
no go to’s at all. Hence, we may conclude that the precursor of R arrives at the 
leftmost live atomic element in R. The path from the precursor of R to the leftmost 
live atomic element in R passes through the node [repeatR], and the path (Y from 
v to u also passes through [repeah]. Since both paths are paths through glue nodes, 
we deduce that u must be the leftmost live atomic element in R. 

Furthermore, we claim that every node of the entire cycle C must lie in R. If 
not, let w be a node of C outside of R whose successor along the cycle C lies in R. 
Note that w # v, since v lies in R. The arc in the augmented flow graph from w to 
its successor along C enters R; by Lemma 7.2, its head must be the leftmost live 
atomic element in R, which is u. But u cannot be the successor of w, since u is 
already the successor of v and C is a simple cycle. 

Since every node of C lies in R, any path from [start] to any node of C must 
enter R. By Lemma 7.2, the head of the first arc on such a path that enters R must 
be u. Therefore, u is the unique gateway to C. Cl 

COROLLARY 7.4. The reducibility of the augmented flow graph of a GOT0 
program (or, more generally, of a JUMP program) is a necessary condition for the 
eliminability of go to’s from that program under structural equivalence. 

PROOF. Two programs that are structurally equivalent must have the same 
augmented flow graph, and Proposition 7.3 showed that the augmented flow graph 
of every EXIT program is reducible. Cl 

8. Dealing with Circuitous go to’s 
Our next goal is to prove that the reducibility of the augmented flow graph is also 
a sufficient condition for the eliminability of go to’s under structural equivalence. 
Given a program in JUMP whose augmented flow graph is reducible, the most 
interesting part of the task of eliminating its go to’s will involve stretching arrows 
and applying the Elimination Rules, as discussed in Section 4. Unfortunately, that 
theory is not enough as it stands. There are various annoying ways that a program 
in JUMP can have head-to-head crossings in the go to graphs of certain of its 
blocks, despite having a reducible augmented flow graph. 
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The most obvious source of such spurious head-to-head crossings is jumps to 
jumps. Suppose that the destination of the jump statement “go to G” is itself an 
unconditional jump of the form “G: go to H;“. We wouldn’t change the augmented 
flow graph at all if we replaced the statement “go to G” with “go to H”. But this 
change might easily get rid of a head-to-head. 

There are at least three other, more devious sources of spurious head-to-head 
crossings. First, one of the go to’s involved in a head-to-head might be dead. 
Second, one of the go to’s in a head-to-head might jump to a label G that labels a 
spin cycle, as in “G: repeat endloop;“. In this case, we might as well dive off the 
deep end right away, replacing the statement “go to G” with “repeat endloop’?. 
Third, the two labels involved in a head-to-head crossing might arrive at the same 
atomic element even though they label different gaps, as in the example 

. - . go to H . . . G: begin end; H: action1 ; . . . go to G . . . . 

We can get rid of this spurious head-to-head by replacing “go to G” with 
“go to H”. 

All spurious head-to-heads can be dealt with while preserving structural equiva- 
lence; unfortunately, the proof, in this section and the next, is a bit tedious. In this 
section, we describe four preprocessing phases that can be applied to a JUMP 
program. In the next section, we shall prove that those four phases get rid of all of 
the head-to-head crossings in any JUMP program whose augmented flow graph is 
reducible. Once the spurious head-to-heads are gone, the Elimination Rules can 
finish the job of translating into EXIT. 

Phase 1 just cleans up the program somewhat, so that later phases will not be 
bothered by scoping problems in which a single identifier is used more than once 
as a gap label. To keep things as simple as possible, we begin Phase 1 by labeling 
every gap of every block with a brand-new gap label. (If the last statement of a 
block is not followed by a semicolon, we must insert one before we can label the 
gap following that statement; the policy of structural equivalence allows us to insert 
semicolons.) We then replace the old label in each go to statement with the 
corresponding new label. Finally, we delete all of the old labels. This leaves us with 
a GOT0 program in which every gap has exactly one label and all of the labels are 
distinct. Strictly speaking, of course, the policy of structural equivalence does not 
allow us to insert new gap labels or to replace one go to statement with another. 
But we intend to delete all of the go to’s and all of the gap labels before we are 
done, so it does not matter what we do with them in the meantime. 

The task of Phases 2 and 3 is to make go to statements arrive at their final 
destinations by a route that is reasonably direct. Recall that the arrival node of a 
glue node x in a step graph is the first nonglue node on the path leaving x. Call a 
go to statement looping if it never arrives, halting if it arrives at [stop], and atomic 
if it arrives at an atomic node. Phase 2 deals with the looping and halting go to’s, 
while Phase 3 handles the atomic ones. 

Phase 2 is easy. Let Z be the label that Phase 1 gave to the rightmost gap in the 
outermost block, the gap immediately preceding stop. Note that the scope of Z is 
the entire program since we chose the new labels in Phase 1 to be distinct. If “go 
to G” is a halting go to, Phase 2 replaces it with “go to Z”. If “go to G” is a looping 
go to, Phase 2 replaces it with “repeat endloop”. Recall that the policy of structural 
equivalence does allow us to insert new repeat-endloop pairs. 

Phase 3 is trickier, because the prohibition of inward go to’s in JUMP means 
that it cannot succeed as crisply as Phase 2. In particular, a go to can arrive at an 
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atomic element that is hidden inside a nested block, as in the example 
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. . . go to G -. . G: begin action, ; . . . end; . . . . 

The only way to jump directly to [action, ] would be to use an inward go to, which 
the rules of JUMP forbid. Thus, Phase 3 has to settle for enforcing some weaker 
standard of directness. 

Call an atomic go to statement “go to G” concise if its arrival node lies somewhere 
inside the statement immediately following the gap G; Phase 3 adopts conciseness 
as its standard. In some cases, this standard is even weaker than it would have to 
be. Note that the statement “go to G” in the example 

. . . .G: begin H: action, ; . . . go to G . . . end; . . . 

is concise, even though replacing it with “go to H” would make control arrive at 
[action, ] more directly, without violating the rules of JUMP. Note also that making 
all atomic go to’s concise does not necessarily eliminate all instances of jumps to 
jumps. Both of the go to’s in the following example are concise: 

. . . go to G . . . G:begingotoH; . . . H:action,; .*-end; .-.. 

It turns out, however, that making all atomic go to’s concise does s&ice to get rid 
of all the spurious head-to-head crossings. 

By convention, let us say that a halting go to is concise only if it jumps directly 
to the rightmost gap in the outermost block, and let us say that no looping go to is 
ever concise. With these conventions, Phase 2 made all the nonatomic go to’s 
concise. Phase 3 will make all the atomic go to’s concise by repeating a reduction 
process as often as necessary. Given an atomic go to that is not concise, Phase 3 
will reduce it by replacing it with another go to that arrives at the same atomic 
node and passes through fewer glue nodes along the way. 

How do we reduce a go to? Suppose that the jump “go to G” arrives at the 
atomic node g. Let BG be the block one of whose gaps is labeled G. Note that the 
statement “go to G” must lie in BG, since Bc is the scope of G. The gap labeled G 
is either the last gap in BG or it’s not. 

Suppose first that the gap labeled G is not the last gap in BG. Let SC be the 
statement immediately following the gap labeled G, and let y be the path through 
glue nodes in the step graph from the node [go to G] to its arrival node g. If the 
arrival node g lies in So, the jump “go to G” is already concise. If not, then y must 
leave SC somehow, in order to get to g. By Lemma 5.1, y must leave So by 
traversing either a sequential arc or a jump arc. If y leaves So by traversing a 
sequential arc, we can reduce the jump “go to G” by replacing it with “go to H”, 
where H is the label of the gap immediately following So. Since we chose the new 
labels in Phase 1 to be distinct, the scope of H will be all of Bc, the same as the 
scope of G, so it will include the jump that we are reducing. If y leaves So by 
traversing a go to arc, say [go to K] -+ [K:], we can reduce the jump “go to G” by 
replacing it with “go to K”. Since performing a “go to K” inside of So causes 
control to leave So, the label K must label a gap either of the block BG or of some 
larger block containing BG; in either case, the go to that we are reducing will lie in 
the scope of K. Finally, if y leaves So by traversing an exit arc, say “exit L?“, we 
can reduce the jump “go to G” by replacing it with “go to L”, where L is the label 
of the gap immediately following the loop labeled 2 As before, the jump “go to 
G” must lie inside the scope of L. (One might be tempted to rush ahead and simply 
replace “go to G” with “exit 2” in this case; but that might not work because of 
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name conflicts among the loop labels. Note that Phase 1 only cleaned up the gap 
labels, not the loop labels.) 

On the other hand, the gap labeled G might be the last gap in the block BG. We 
then consider the context that surrounds BG. It cannot be the case that BG is 
surrounded by start-stop, since [go to G] arrives at the atomic node g, not at [stop]. 
If BG is surrounded by begin-end, we can reduce the jump “go to G” by replacing 
G with the label of the gap immediately following this entire compound statement. 
Similarly, if Bc is surrounded by then-endthen or by else-endelse, we can jump to 
the gap following the entire conditional. Finally, if BG is surrounded by repeat- 
endloop, we can jump to the first gap in BG instead of the last. We conclude that 
every nonconcise atomic go to can be reduced, which shows that Phase 3 can make 
all of the atomic go to’s concise. 

Phase 4 is quite simple: We get rid of the dead go to’s by replacing each dead go 
to statement in the program with “repeat endloop”. Why “repeat endloop”? We 
have to insert some statement in order to keep the program syntactically valid, and 
the policy of structural equivalence does not give us much choice about what to 
insert. We waited until Phase 4 to get rid of the dead go to’s because the rewriting 
involved in making go to’s concise might cause formerly live go to’s to become 
dead. 

9. Proving the Absence of Spurious Head-to-Heads 
In this section, we prove that the rewriting done by the four phases described in 
Section 8 is enough to eliminate all spurious head-to-head crossings. 

PROPOSITION 9.1. If all of the go to’s in a JUMPprogram P are live and concise, 
and ifthe augmented flow graph of P is reducible, then every block in P has a go to 
graph that is free of head-to-head crossings. 

PROOF. Suppose that all of the go to’s in P are live and concise, but that the go 
to graph of some block in P has a head-to-head crossing. We show that the 
augmented flow graph of P must then have a simple cycle C with two gateways. 

Among the blocks of P that include head-to-head crossings, choose a block B 
that is minimal in the sense that all of the blocks nested inside of B are free of 
head-to-heads. Let G and H be the labels of gaps of B that are involved in a head- 
to-head crossing of the form 

. . . go to H . . . ; G: . . . ; H: . . . go to G . . . . 

Neither [go to G] nor [go to H] can be a looping go to, since they are concise by 
assumption. Neither of them can be halting, since a concise halting go to jumps to 
the rightmost gap of the outermost block and neither G nor H is the rightmost gap 
in B. Thus, both [go to G] and [go to H] must be atomic go to’s. Let y and 7 
denote the paths through glue nodes in the step graph of P from the nodes 
[go to G] and [go to H] to the corresponding atomic arrival nodes g and h. Let So 
be the top-level statement of B immediately following the gap G, and similarly for 
SH; by conciseness, the atomic element g lies in SG and h lies in S,. 

Strategy: The cycle C is going to consist of the static arcs along the augmenting 
path from g to k, where k is an atomic element just before [go to G], followed by 
the dynamic arc from k back to g via the jump [go to G] + [G:]. The node h is 
going to be the second gateway to C. We begin by trying to find k. 

Since the node [go to G] is live, we can choose a path (Y in the step graph of P 
from [start] to [go to G]. The path (Y must enter the block B at some point. By 
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Lemma 5.1, it must do so by traversing the sequential arc from the precursor u of 
B to the leftmost token v in B. If we decompose ctz the last time that it traverses 
this arc, we have 

CY = [start] A u + v $ [go to G], 

where /3 lies entirely within B. 
The path ,6 might traverse go to arcs of the form [go to K] ---) [K:]; we claim, 

however, that 0 must visit some atomic node after traversing any go to arc. Suppose, 
on the contrary, that /3 had the form 

/3 = v A [go to K] + [K:] $ [go to G], 

where 6 is free of atomic nodes. From the node [go to G], the path y takes us 
through glue nodes to the atomic node g; hence, the node [go to K] arrives at g. 
By conciseness, the label K must label the gap immediately preceding some 
statement Sk containing g. The statements Sk and SC cannot be disjoint, since 
they both contain g. Could we have Sk C S,? If so, the node [G:] would lie outside 
of Sk. This would mean that the path starting at [go to K] would jump to [K:], 
then enter Sk, then leave Sk somehow to get to [G:], then reenter Sk again to get 
to g. But a path through glue nodes cannot enter the same statement twice without 
being caught in a spin cycle, which would preclude ever arriving at g. Therefore, 
we must have Sk 3 So. But this cannot happen either. Since So is a top-level 
statement of B, the relation SK 3 SC would imply [K:] 4 B, contradicting the fact 
that /3 lies entirely in B. 

Our next claim is that the path ,f3 must visit at least one atomic node and that 
the last atomic node it visits must lie after [H:] within B. To see this, note that fl 
manages to get from v to [go to G] while remaining within B. In particular, it starts 
to the left of [H:] and ends to the right of [H:]. Consider the last time that /3 crosses 
from the left of [H:] to its right; it is enough to show that /3 must visit some atomic 
node after this last cross. To achieve this cross, /3 must either sequence through 
[H:] or else jump forward across [H:] by traversing a go to arc, since a conditional 
arc or an exit arc that jumped forward across a gap of B would have its head 
outside of B. If ,8 visits [H:] itself on the last cross from its left to its right, it must 
then follow the path v through glue nodes to the atomic node h before continuing 
on to [go to G]. Thus, in this case, p does visit an atomic node after the last cross. 
Suppose, on the other hand, that ,6 achieves the last cross by jumping over [H:] 
with a forward go to. By the result in the last paragraph, p must visit some atomic 
node after traversing this go to arc, so our claim holds once again. 

Let k denote the last atomic node that p visits; we have just shown that 
[H:] < k. Let C denote the simple cycle in the augmented flow graph of P that 
consists of the static arcs from g to k followed by the dynamic arc k + g. The 
augmenting path shows that g is one gateway to the cycle C. We intend to show 
that the node h lies on C and is a second gateway to C. 

Since the cycle C consists exactly of the nodes from g through k inclusive, the 
problem of proving that h lies on C reduces to the problem of showing that 
g 5 h I k. We know, in fact, that g < h, so the first inequality holds. We also know 
that [H:] < k, which means that k lies either in the statement 2% or in some 
succeeding top-level statement of B. If k does not lie in S,, we must have h < k. 
Suppose, on the other hand, that both h and k lie in S,. By the choice of B, any 
blocks nested inside of SH have go to graphs that are free of head-to-head crossings. 
Hence, we can apply the Elimination Rules to SH to replace all of the go to’s in SH 
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that are bound in SH with exit’s, without changing the augmented flow graph. After 
doing so, the only go to’s remaining in & will be free in Sn, so we can apply 
Lemma 7.1 to conclude that the node h, which is the arrival node of the precursor 
[H:] of Sn, is also the leftmost live atomic element in S,. Since k is a live atomic 
element that lies in SH by assumption, we deduce that h 5 k in this case also. Thus, 
in either case, the node h lies on the cycle C. 

It remains to show that h is a second gateway to C, for which we shall use the 
fact that [go to H] is live. Let t be a path in the step graph of P from [start] to 
[go to H], and, as before, partition E the last time that it enters the block B; we 
have 

c = [start] 4 u ---, v $ [go to H], 

where { remains entirely in B. Recall that the path 9 leads through glue nodes from 
[go to H] to h. The collapsed version of the combined path ET in the augmented 
flow graph of P is almost enough to show that the node h is indeed a second 
gateway to C. The only problem is that !: might visit atomic nodes of C. We 
consider two cases. If { does not visit any atomic nodes at all, it certainly does not 
visit any nodes of C, and we are done. So suppose { visits at least one atomic node, 
and let j-be the last atomic node that { visits. By the same argument that worked 
for p, we can see that { must visit some atomic node after traversing any go to arc. 
Hence, after visiting its last atomic node 1; the path r cannot traverse any go to 
arcs. We claim thatf< [G:]. Otherwise, the path { would have to move backward 
across [G:] to get fromfto [go to H]. The only backward arcs in a step graph other 
than go to arcs are loopback arcs. But looping back around a loop nested inside of 
B could not carry us back across the gap label [G:], and looping back around a 
larger loop in which B was nested would involve leaving B. Thus, we must have 
f < [G:]. This means that the augmenting path from [start] tofavoids all nodes of 
C. Hence, we can show that h is a second gateway to C in this case by following 
the augmenting path from [start] to f and then the dynamic arc from f to h. At 
long last, the proof of Proposition 9.1 is complete. 0 

COROLLARY 9.2. The reducibility of the augmented flow graph of a GOT0 
program (or, more generally, of a JUMP program) is sufficient to ensure that all 
go to’s can be eliminated from that program under structural equivalence. 

COROLLARY 9.3. Every reducible augmentedflow graph is the augmentedjlow 
graph of some EXIT program. 

PROOF. First produce a GOT0 program with the given augmented flow graph 
by the construction in Proposition 6.1; then apply Corollary 9.2 to that GOT0 
program. Cl 

I 

- 

- 

10. Testing the Reducibility of Augmented Flow Graphs 
Our theoretical investigations are almost complete, but there is one more point 
worth making. We have been studying two regularity conditions for programs in 
JUMP: the reducibility of the augmented flow graph (RAFG) and the absence of 
head-to-head crossings (AHHC) in the go to graphs. These two conditions differ a 
little in strength: RAFG is both necessary and sufficient for the eliminability of 
go to’s under structural equivalence, whereas AHHC is sufficient but not necessary. 
But they also differ in another way. AHHC is a first-order condition-that is, it 
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FIG. 16. Two examples of conflicting pairs of arcs in an 
augmented flow graph. 

can be defined simply by quantifying over edges. But RAFG seems more subtle 
and higher order: All the standard definitions of reducibility talk about complicated 
things like cycles or reduction algorithms or arc partitions. In fact, this latter 
difference is an illusion. The notion of reducibility in general is subtle, but the 
linear order inherent in an augmented flow graph allows us to rephrase the 
reducibility of those graphs as a first-order condition, in fact, as the prohibition of 
certain “conflicting” pairs of arcs. 

We say that two arcs w + y and z + x in an augmented flow graph conflict if 
the nodes involved occur on the augmenting path in the order w < x c y 5 z. Two 
examples of conflicting pairs of arcs are shown in Figure 16. When y < z, a 
conflicting pair in an augmented flow graph looks just like a head-to-head crossing 
in a go to graph. The case y = z is special: It counts as a conflict even though it 
would not count as a head-to-head. 

PROPOSITION 10.1. An augmented flow graph is reducible if and only if it 
contains no conflicting pairs of arcs. 

PROOF. If there is a conflicting pair of arcs, it is easy to see that the augmented 
flow graph is not reducible: The simple cycle composed of the augmenting path 
arcs from x to z followed by the backward arc z += x has both x and y as gateways. 

Conversely, suppose that C is a simple cycle in the augmented flow graph ‘with 
more than one gateway; we must show that some conflicting pair of arcs exists. 
Note that no final node can appear on C itself, nor can any final node appear on 
any path from [start] to any node of C; hence, we may ignore the final nodes. The 
augmenting path imposes a linear order on the nominal nodes of the flow graph. 
Let u be the smallest node of the cycle C in this order, and let v be the largest 
nonfinal node of the entire graph from which it is possible to reach u without 
visiting any node smaller than U. All of the nodes of C must lie in the interval 
[u, v]. The node u will be one gateway to C. By assumption, C has some gateway 
other than u. The path from [start] to this second gateway must enter the interval 
[u, v] by traversing an arc t + h with h E [u, v] and t 4 [u, v]. Could we have 
t > v? Note that we can get from t to u without visiting any node less than u as 
follows: traverse the assumed arc from t to h, follow the augmenting path from h 
to v, and then do whatever v does to get to u. Since v was chosen as the largest 
node with this property, the existence of such a node t with t > v would be a 
contradiction. Hence, we must have t < U. Follow the path from v to u that does 
not visit any node less than u, and consider the first arc p + q on that path whose 
head q satisfies q < h; such an arc must exist since u < h. We have 
t < u 5 q < h 5 p; this implies that the arc t + h forms a conflicting pair with the 
arcp + q. 0 
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11. A Case Study of Arrow Stretching 

LYLE RAMSHAW 

The results in this paper are mostly of theoretical interest. But it is possible to 
imagine unusual practical situations where the Elimination Rules and arrow 
stretching would come in handy. In fact, it was just such a situation that started 
me thinking about the problem of preserving structure while eliminating go to’s. 

In 1982, when I was at the Computer Science Laboratory of the Xerox Palo Alto 
Research Center, I decided that I would like to import the Pascal version of Knuth’s 
document compiler TEX [ 121 into the PARC/CSL computing environment. The 
easiest way to do so involved translating it from Pascal to Mesa [ 171, the systems 
programming language used in PARC/CSL. As it happened, Edward M. McCreight 
(personal communication) had already taken advantage of the family resemblance 
between Pascal and Mesa by building a Pascal to Mesa source translation tool. I 
decided to port TEX using McCreight’s translator. 

Unfortunately, Pascal allows outward go to’s-and Knuth used them fairly 
heavily in TEX-while Mesa does not. Ironically, Knuth is partly to blame for the 
absence of full-fledged outward go to’s in Mesa. The language designers at PARC/ 
CSL were just deciding what local control structures to put into Mesa when Knuth’s 
influential article [ 1 I] appeared. In this article, Knuth proposed a restricted form 
of the go to statement based on Zahn’s “event indicator” scheme. The designers of 
Mesa adopted Knuth’s proposal. In terms of expressive power, Zahn-Knuth 
go to’s [ 1 l] are essentially the same as multilevel exit’s; either construct can 
simulate the other while preserving program structure. Thus, I had a practical 
interest in replacing outward go to’s with multilevel exit’s. 

The standard technique for doing so would involve computing flow graphs and 
testing them for reducibility; this looked unattractive for several reasons. First, 
most of the go to’s that Knuth used in TEX were part of simple, well-structured 
idioms-computing flow graphs seemed like overkill. Second, Knuth was going to 
a lot of work to make the sources of TEX of publishable quality. It seemed a shame 
not to preserve as much of Knuth’s program structure as possible in the Mesa 
version. Third, I was planning to debug the resulting Mesa program by reading 
Knuth’s beautifully typeset and indexed listings of the Pascal code [ 131. This plan 
would be feasible only if the two programs corresponded quite closely. 

So, I added code for stretching arrows and applying the Elimination Rules to 
McCreight’s translator. Using the beefed-up translator, Michael F. Plass and I 
successfully translated version 0.8 of TEX into Mesa early in 1983. With the 
compile-time switch debug turned off, that version of TEX had 395 go to’s and 162 
labels. There were 109 blocks whose go to graphs included at least one arrow. Of 
these, 69 had more than one arrow; twenty had at least one crossing pair of arrows; 
one included backward-backward crossings; but none had any head-to-heads. Later, 
when other circumstances caused us to turn on the debug switch, we discovered 
that a single head-to-head had been hiding in the debugging routine debug-help. 
The ordinary flow graph of debug-help was reducible, but its augmented flow 
graph was nonreducible. Its statement order had been contorted so that a label 
where the user was encouraged to set a breakpoint would appear at the beginning 
of the procedure body. In the next version of TEX, Knuth rewrote debug- help to 
get rid of this head-to-head. 

Given any go to graph without head-to-heads, we proved in Section 4 that its 
edges can be stretched so as to eliminate all crossings; but we did not give an 
efficient stretching algorithm. Figure 17 shows the algorithm that I implemented. 
Each edge is represented as a record with the three fields head, taif, and newtail, 
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-S + the empty stack; 
for each vertex t, in increasing order do 

for each forward edge f with f.head = u in decreasing order of f.tail do 
while f.tail < top(S) do 

I 

tJJ + pop(S); 
for each backward edge b with b.head = w in any order do 

[if b.tail > v then error({f, b} are head-to-head) else b.newtail t- w; 
fmewtail +- top(S); 

push v onto S; 
while S is not empty do 

w + pop(S); 
for each backward edge b with b.head = w in any order do 

[ b.newtail + the last vertex; 
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FIG. 17. An algorithm that stretches the edges of a go to graph. 

the last of which stores the tail of the edge after it has been stretched. The variable 
S denotes an auxiliary stack, used to store those vertices where yet-to-be-processed 
forward edges could end without crossing previously-processed forward edges. This 
algorithm has antisymmetric preferences about stretching arrows: It stretches 
forward edges as little as possible and backward edges as much as possible. As far 
as eff%ziency is concerned, McCreight’s translator parsed the Pascal source with 
recursive descent and built up the Mesa target as a tree of program fragments. The 
additional time needed to stretch arrows and apply the Elimination Rules in that 
context is linear in the length of the program text, if we ignore the cost of 
maintaining a symbol table in which to insert and lookup labels. 

Another practical issue that deserves comment is the handling of the nonlocal 
go to’s of Pascal, the go to’s that jump out of a procedure body to a label defined 
in an enclosing procedure. Executing a nonlocal go to involves returning from one 
or more procedures and deallocating their activation records. As it happens, Mesa 
has an exception-handling mechanism that can achieve this effect. Unfortunately, 
nonlocal go to’s have another problem as well: It is hard to predict where they are 
going to come from. Think about a nonlocal go to from the point of view of the 
destination label G, which labels a gap of some block B. A nonlocal “go to G” does 
not occur textually within B at all. Instead, there is a call on some procedure Q 
within B, and the “go to G” appears in the body of Q or in the body of some 
procedure that Q calls. We say that a nonlocal go to is forward if the call on the 
procedure Q occurs before the label “G:” in B, else backward. By proper use of the 
Mesa exception machinery, we can prepare for either forward or backward nonlocal 
go to’s to G. In each case, we introduce a new block that is enabled to handle the 
exceptional condition. One end of this new block must be in the gap labeled G, 
while the other end must be far enough away so that no nonlocal go to’s to G will 
escape being handled. Unfortunately, we need at least global flow analysis and 
perhaps theorem proving to determine how large these new blocks have to be. If 
we try to duck the issue by making them as large as possible, we quickly generate 
head-to-head crossings. 

I do not know of any good solution to the problem of nonlocal go to’s. In 
McCreight’s translator, I chose to assume that no backward nonlocal go to’s would 
ever happen, but that forward nonlocal go to’s might come from anywhere. This 
worked fine for TEX, since TEX has only one nonlocal go to statement in it: a 
forward nonlocal jump from the routine that handles fatal errors out to the end of 
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the program. But this simple strategy would clearly fail on programs that made 
more extensive use of nonlocal go to’s. 

ACKNOWLEDGMENTS. I would like to thank John Hershberger and Greg Nelson 
for helpful conversations and Alfred Aho for revealing to me, early in this 
investigation, my embarrassing ignorance about flow graph reducibility. 

REFERENCES 

1. BAKER, B. S. An algorithm for structuring flowgraphs. J. ACM 24, 1 (Jan. 1977), 98-120. 
2. BAKER, B. S., AND KOSARAJU, S. R. A comparison of multilevel break and next statements. 

J. ACM 26, 3 (July 1979), 555-566. 
3. B~HM, C., AND JACOPINI, G. Flow diagrams, Turing machines, and languages with only two 

formation rules. Commun. ACM 9, 5 (May 1966), 366-37 1. 
4. DIJKSTRA, E. W. Go to statement considered harmful. Commun. ACM II, 3 (March 1968), 

147-148 (the second instance of pages 147-148). 
5. HAREL, D. On folk theorems. Commun. ACM 23, 7 (July 1980) 379-389. 
6. HECHT, M. S., AND ULLMAN, J. D. Flow graph reducibility. SIAM J. Comput. I, 2 (June 1972), 

188-202. 
7. HECHT, M. S., AND ULLMAN, J. D. Characterizations of reducible flow graphs. J. ACMZI, 3 (July 

1974) 367-375. 
8. JENSEN, K., AND WIRTH, N. Pascal User Manual and Report, 3rd ed. revised for the IS0 Pascal 

Standard by A. B. Mickel and J. F. Miner. Springer-Verlag, New York, 1985. 
9. KEOHANE, J., CHERNIAVSKY, J. C., AND HENDERSON, P. B. On transforming control structures. 

SIAM J. Comput. II, 2 (May 1982), 268-286. 
10. KERNIGHAN, B. W., AND RITCHIE, D. M. The C Programming Language. Prentice-Hall, Engle- 

wood Cliffs, N.J., 1978. 
11. KNUTH, D. E. Structured Programming with go to Statements. Comput. Surv. 6, 4 (Dec. 1974), 

261-301. 
12. KNUTH, D. E. The Tflbook, vol. A of Computers and Typesetting. Addison-Wesley, New York, 

1984. 
13. KNUTH, D. E. Tfl: The Program, vol. B of Computers and Typesetting. Addison-Wesley, New 

York, 1986. 
14. KNUTH, D. E., AND FLOYD, R. W. Notes on avoiding “go to” statements. Zni Process. Lett. I, 1 

(Feb. 1971) 23-31 and 177. 
15. KOSARAJU, S. R. Analysis of structured programs. J. Comput. System Sci. 9, 3 (Dec. 1974), 

232-255. 
16. LEDGARD, H. F., AND MARCOTTY, M. A genealogy of control structures. Commun. ACM 18, 11 

(Nov. 1975), 629-639. 
17. MITCHELL, J. G., MAYBURY, W., AND SWEET, R. Mesa language manual. Tech. rep. CSL-79-3. 

Xerox Palo Alto Research Center, Palo Alto, Calif., Apr. 1979. 
18. PETERSON, W. W., KASAMI, T., AND TOKURA, N. On the capabilities of while, repeat, and exit 

statements. Commun. ACM 16,s (Aug. 1973) 503-5 12. 
19. RAMSHAW, L. Problem 83-1, J. Algorithms 4, 1 (Mar. 1983) 85-86. 
20. UNITED STATES DEPT. OF DEFENSE. Reference Manual for the Ada Programming Language. 

Springer-Verlag, New York, 1983. 
21. WILLIAMS, M. H., AND CHEN, G. Restructuring Pascal programs containing goto statements. 

Comput. J. 28,2 (May 1985) 134-137. 
22. WIRTH, N. Programming in Modula-2, 2nd edition. Springer-Verlag, New York, 1983. 

RECEIVED DECEMBER 1983; REVISED MARCH 1985, NOVEMBER 1987; ACCEPTED DECEMBER 1987 

- 

Journal of the Assxiafion for Computing Machinery. Vol. 35. No. 4. October 1988 


