
From Region Inference to von Ne~lmann ~~achines via Region Representation

Inference

Lars Birkedal, Carnegie Mellon University* Mads Tofte, University of Copenhagen

Magnus Vejlstrup, NKT Elektronik~

Abstract

Region Inference is a technique for implementing program-

ming languages that are based on typed call-by-value lambda

calculus, such as Standard ML. The mathematical runtime

model of region inference uses a stack of regions, each of

which can contain an unbounded number of values. This

paper is concerned with mapping the mathematical model

onto real machines. This is done by composing region infer-

ence with Region Representation Inference, which gradually

refines region information till it is directly implementable on

conventional von Neumann machines. The performance of

a new region-based ML compiler is compared to the perfor-

mance of Standard ML of New Jersey, a state-of-the-art ML

compiler.

1 Introduction

It has been suggested that programming languages which

are based on typed call-by-value lambda calculus can be im-

plemented using regions for memory management[l 7]. At

runtime, the store consists of a stack of regions. All values,

including function closures, are put into regions. Region

inference, a refinement of Milner’s polymorphic type disci-

pline, is used for inferring where regions can be allocated

and where they can be deallocated. For each expression

which directly produces a value (such as a constant, a tuple

expression or a lambda abstraction), region inference also

infers a region in which the value should be put. Experi-

ments with a proto-type implementation of region inference

and an instrumented interpreter have suggested that often

it is possible to achieve very economical use of memory re-

sources, even without garbage collection[17].

The potential benefits of region inference are:

“ Work done while at University of Copenhagen Current address:

School of Computer Science, Carnegie Mellon Unlverslty, 5000 Forbes

Avenue, Pittsburgh, PA 15213, USA, emall b1rkedalt2cs cmu,edu,

tAddress: Department of Computer Science (DIKU), University
of Copenhagen, Unlversitetsparken 1, DK-21OO Copenhagen 0, Den-

mark, email tofte@diku dk,

‘Work done while at University of Copenhagen emad

MGV-at_NKTJ3LEKTRONIK@) dscc, dk

Permission to make digital/bard copies of all or part of this material for
personal or classroom use is granted witbout fee provided that the copies
sre not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
;O~publish, to post on servers or to redistribute to tists, requires specific

>ermission andlor fee.
POPL ’96, St. Petersburg FLA USA
~ 1996 ACM 0-89791-769-3195101, .$3.50

1.

2.

3.

Region inference reclaims memory very eagerly and

could hence lead to a (much desired) reduction in space

requirements;

The region information inferred by the region infer-

ence algorithm might be useful to programmers who

are interested in obtaining guarantees about maximal

storage use and maximal lifetimes of data, as is the

case with embedded systems;

If region inference is used without ~arba~e collection

(as ~e have done so far) it eliminates ~idde~ time costs:

all memory management operations are inserted by the

compiler and are constant-time operations. This could

be important for real-time programming.

The purpose of this paper is to report the results of ongoing

efforts to study whether and how this potential can be re-

alised. Based on experience with developing a new Standard

ML compiler which uses regions for memory management,

we propose a way to map the conceptual regions of region in-

ference onto real machines. With the techniques we present

below, we have found that

1. Region inference can result in significant space savings

on non-trivial programs, in comparison with a state-

of-the-art system which uses garbage collection;

2. Region-based evaluation of ML programs can compete

on speed with the garbage-collection-based execution

of a state-of-the-art ML system;

3. In practice, a high percentage of all memory alloca-

tions can take place on a traditional runtime stack

On the downside, it has to be said that region inference

occasionally does not predict lifetimes with sufficient accu-

racy and that tail recursive calls tend to require special pro-

grammer attention. Thus we had to make minor changes to

programs to make them run well with regions.

We are currently building an ML compiler to explore

region inference; it is called the ML Kit with Regions, since

it is built on top of Version 1 of the ML Kit[4].1 The purpose

of this paper is not to describe the Kit, but to describe

solutions to key problems which presented themselves, when

we tried to compile with regions. These solutions are in

the form of additional type-based analyses which refine the

information gained with region inference in ways which are

1For brevity, we shall refer to It as simply “the Kit”, from now on.

171

essential when the target machine has a conventional linear

address space of fixed size words and a number of registers.

The operational region-based semantics presented in [17]

treats all values and regions uniformly: all values are put

into regions and all regions have a potentially unbounded

size. However, we have found that a key factor in achieving

good results with region inference is making more careful

distinctions between different kinds of regions according to

how they should be represented and accessed. The following

three kinds of regions fit naturally with common machine

architectures:

1. Regions that are used for holding values of a type

which fits naturally in a register or a machine word;

such regions are not needed at runtime and can hence

be eliminated. This situation arises for regions that

hold integers and booleans, for example.

2. Rezions for which one can infer a finite maximum size.
at compile time; such regions are conveniently placed

on the runtime stack. This situation often applies to

regions that hold a tuple or a closure.

3. Regions for which it is not possible to infer a size stati-

cally, Such a region can be represented by a linked list

of fixed size pages. This situation typically arises when

a region contains a list, a tree or some other value of

a recursive datatype.

The first analysis we propose is rrzultiplzc!ty wsjererrce, which

infers for each region an upper bound on how many times a

value is put into that region. A bo.rmg analysts then elimi-

nates regions as described above. Next, storage mode analy-

sis infers for each value allocation whether the value should

be put at the top of the region (the normal case) or whether

it is possible to store the value at the bottom, thereby over-

writing any value which the region may already contain.

The storage mode analysis involves a region abusing analy-

sts. The storage mode analysis is essential for handling tail

recursion.

Multiplicity information and representation information

can then be used in physzcal size tn~er-ence which calculates

an upper bound on the physical size of every region.

A key difference between different kinds of regions (be-

sides their sizes) is the way in which they are allocated and

accessed. This plays a central r61e in all the analyses. We use

the term Region Repr-esentutton Inference for the analyses

starting with multiplicity inference and ending with physi-

cal size inference.

The Kit has an Abstract Machine (called the KAM)

which models a RISC architecture except that it has in-

finitely many registers. After Region Representation Infer-

ence, compilation into the KAM is straightforward. Els-

man and Hallenberg[6] have recently completed a backend

from KAM to HP PA-RISC assembly language using proven

techniques such as intraprocedural register allocation based

on graph colouring. A backend generating ANSI C is also

available. The ML Kit currentlv comDiles all of Core ML

(including recursive datatypes, ~efere~ces, exceptions and

higher-order functions); an implementation of Modules is

under consideration.

In the rest of the paper we describe the new region-

specific program analyses, from multiplicity inference to KAM

code generation. Sections 2 and 3 consist mainly of a review

of previous work. We start out by presenting the language

of region-annotated terms.

2 Source Language

Let Var be a denumerably infinite set of program variables,

ranged over by x and j. The language of source expressions,

e, is defined by:

e ::= true I false I z I kr. e] elez

I if e then e else e

I letz=eine end

I letrec ~(r) = e in e end

Although source expressions appear untyped, region infer-

ence is only possible for expressions that are well-typed ac-

cording to Milner’s type discipline[13,5].

We shall use the following program as a running example:

letrec j(z) =

letrec facacc(p) =

let n = fst p in let acc = snd p

in if n=O then p

else facacc(n-i , n*cscc)

end end

in (Ay. facacc y, ~acacc(z+3 ,1))

end

in (fst(f 7))(8,1)

end

Here we have taken the liberty to extend the skeletal

language with pairs, projections (fst and snd), integer con-

stants, and infix binary operations on integers (+, =, -, *).

Also, we use parentheses for grouping. The above expression

evaluates to the pair (O, 8!) = (O, 40320).

3 Region-Annotated Terms

Tofte and Talpin[17] describe a type-based translation from

source expressions to region-annotated terms (called “target

terms” in [17]). These region-annotated terms cent ain only

that type information which is needed for the evaluation

of such expressions, namely region annotations. However,

in this paper we use the region-annotated expressions as

source expressions for further type-based transformations,

so it is useful also to have an explicitly typed version of

the language. We therefore present both, together with an

erase function from explicitly typed to untyped expressions.

When convenient, we shall present both an untyped and an

explicitly typed version of our intermediate languages; the

untyped version contains only the information which is used

in the dynamic semantics of the language, while the explic-

itly typed expression contains information which is used for

further translation.

3.1 Untyped Region-Annotated Terms

Let RegVar be a denumerably infinite set of regaon variables,

ranged over by p. For any syntactic class, c, let Z denote the

syntactic class defined by

We now introduce syntactic classes of allocation dzrec-

tzves, a, regzon binders, b, and expressions, e, by

a ::= at p b ::= p

172

e ::= truect I falsect] z I (Xz. e)u / elez

if e then e else e

letz=ei.ne end

letregion b in e end

letrec ~[~](z)a = e in e end

f [d]a

This language of expressions will be used as our untyped

language throughout, but we shall gradually refine the defi-

nitions of allocation directives and region binders to provide

more information.

Let us briefly review theevaluation ofregion-annotated

terms. (Details and an operational semantics are found

in [17].) An expression letregion p in e end is evaluated

thus: first a region is allocated and bound to p; then e

is evaluated (probably using the region for storing and re-

trieving values) and then, when end is reached, the region is

deallocated. Anannotation of the format p indicates that

thevalue of the expression preceding the annotation should

be put into the region bound to p. Writing a value into a

region adds the valueat the one end (referred to as the top)

of the region, increasing the number of values held in that

region by one.

A function ~ bound by letrec is region-polymorphic: it

has a (perhaps empty) list of formal region parameters and

may be applied to different actual regions at different call

sites. An expression j [d 1 atp creates a function closure in

region p, in which the formals of ~ have been bound to the

actual regions ii.

We write letregion ~ in e end for

letregion pl

in letregion

end

when ~=pl, pk.

f[atpl,. ... atp~] a.

letregion p

pk in e end . . .

Further, f[pl,pk] a abbreviates

Expressions of the form

in $[pl,p~lat p (e) end

(where p @ {pi,.. .,pk} and pdoes not occur free in e) are
so common that we abbreviate them to just f[pl,pk] e.

A region-annotated expression corresponding to the source

expression in Section 2 is shown in Figure 1.

Aiken, Fahndrich and Levien[l] have developed an analy-

sis which seeks to do the actual region allocation in letregion

p in e end as late as possible after the letregion and which

seeks to do the region de-allocation as early as possible be-

fore the end. In some cases they achieve asymptotic memory

savings over plain region inference (where allocation is done

at letregion and de-allocation is done at end), and the re-

sult can never be worse than without their analysis.

3.2 Typed Region-Annotated Terms

The type system presented in this section is essentially the

one of [17]. The system has its roots in work on effect in-

ference [9, 11,12,16], which is also used in connection with

concurrency [14].

For the region type system, we assume a denumerably

infinite set TyVar of type variables, ranged over by a, and a

denumerably infinite set EffectVar of eflect variables, ranged

over by c.

An eflect, p, is a finite set of atomic effects. An atomic

effect, q, is either a token of the form get(p) or put(p), or

it is an effect variable. Types, r, types and places, p, simple

letregion pe, in

letric f[po, p~, ps ,p9, plO, PII ,

P12$p13 ,p14>p151 ($) at p6=
letreC fCScaCC[P16 ,P17 ,f-hS] (p) at P7=

let n= fst p in let ace= snd p in

letregion p19 in

if letregion p21 in

(n = O at p21) at plg

end then p

else faCCSCC[p16 ,p17 ,p181
(letr_egion pz4 in

(n - i at p24) at ,016

end, (n*acc)at plT)at plt3

end end end

in

((~y. facacc[p13 ,P14 ,m51 y)at P12,

facacc [P9 ,PIO ,plll

(letregion p27 in

(z + 3 at p27) at pll

end, 1 at pIO) at pg) at pb

end

h letregion p28 ,p29 ,p30 ,p31 Pp32 in

(letregion p33 ,p34 ,p35 ,P36 in

fst(letregion p3T in

f [p37 $p31 ,p33 $p34 ,p3.5 ,p36 ,

P32 ,P2S ,p23 ,P30] T at p37

end)

end) (8 at p30 , 1 at p29) d p28

end

end

end

Figure 1: A Region-annotated Expression

type schemes, r, and compound type schemes, rr, take the

form:

p ::= (7-, p)

u ::= r- I Vo’. a I Ve. u

An object of the form c.p (formally a pair (c, p)) on a

function arrow p ~ p’ is called an arrow eflect. Here p

is the effect of evaluating the body of the function.

A finite map is a map with finite domain. The domain

and range of a finite map ~ are denoted Dom(j) and Rng(j),

respectively. When ~ and g are finite maps, f+g is the finite

map whose domain is Dom(~) U Dom(g) and whose value is

g(z), if z E Dom(g), and ~(z) otherwise. ~ J A means the

restriction of .f to A, and .f ~ .4 means .f restricted to the

complement of A.
A type environment, TE, is a finite map from program

variables to pairs of the form (a, p) or (rr, p).
A substitution S is a triple (S”, St, Se), where S’ is a

finite map from region variables to region variables, St is a

finite map from type variables to types and Se is a finite map

from effect variables to arrow effects. Its effect is to carry out

the three substitutions simultaneously on the three kinds of

variables.

For any compound type scheme

173

and type T’, we say that T’ is an instance of ~ (vza S),
written T z #, if there exists a substitution

such that S(7) = r’. Similarly for simple type schemes. The

instance lzst of S, written z1(S), is the triple

More generally, we refer to triples of above form as instance

lists and use ii to range over them. Instance lists decorate

applied (i. e., non-binding) occurrences of program variables.
We now present a type system for explicitly typed region-

annotated terms. It allows one to infer sentences of the form

TE !- e : p, y. Formally, an explicitly typed region-annotated

term is a term e, for which there exist L and y such that

TE + e : p, V. For given TE and e there is at most one such

u and ~ (and at most one derivation proving TE 1- e : p, p).

The type system is essentially the same as the one in [17],

except that we have dropped the source expressions and

added type, region and effect annotations on terms.

Region-Annotated Terms
-

TE H true at p : (bool, ,0), {put(p)}
(1)

TE t- false at p : (bool, p), {put(p)}
(2)

(3)

TEI- el : (p’--$Jp,p), pl, pl
TEI- ez : p’,pz

9 = f40 UPI UP2 U{ C} U{get(P)}

TEFe1e2:p, p
(5)

TE 1- el : (bool, p), pl TE1-e2:p, p2 TEFeg:p,pJ

TE + if el then ez else e3

: P, {get(p)} U PI U 91 U W3

(6)

TE+el : (TI, PI), YI
~1 = VCZ?.71 fv(ti,~ nfv(TE, pl) = 0

TE+{z*[al.ol)}Ee2:u,~Q

TEI- let x:(uI, pI) = el in e2 &d:y, plU~2
(7)

‘r = v~z.z 7/ = vG.7r fv(zi,j’,~) nfv(TE, pl) =0

TE+ {f- (~, p)} E (A” 9’ z : pz.el)at p : (T, p), pI

TE+ {f% (T’, P)} ‘r e2 : p,%

TE 1- letrec f : (n’, p)(z) = el in ez end : p,pl U p2

(8)

TE(f) = (~, P’)

m > ~ via S p = {get(p’), put(p)}

TE\ f,[(S) at P : (T, P), P
(9)

TE F e : p,p fv(~’) nfv(TE, p) = 0
(10)

TE k letregion p’ in e’ end : p, y \ p’

For any semantic object A, frv(A) denotes the set of

region variables that occur free in A, ftv(A) denotes the set

of type variables that occur free in A, fev(A) denotes the

set of effect variables that occur free in A and fv (A) denotes

the union of all of the above.

The erasure of an explicitly typed region-annotated ex-

pression e, written er(e), is an untyped, region-annotated

expression obtained by erasing type and effect information.

We show a couple of the defining equations:

er(letregion p in e end) =

letregion frv p in er(e) end

er(letrec ~ : (V@.r, p) (x) =el in ez end) =

letrec ~ [~] atp=er(el) in er(ez) end

er(f(_,IP,, ,P,l,-)at p) = ~CPl S.. .jpd at P

4 Multiplicity Inference

Multiplicity Inference is concerned with inferring for each

region, how many times a value is put into that region. We

introduce a syntactic class of multzplzcttzes, ranged over by

m:

m::= 011 [03

Addition of multiplicities is defined by:

{

o ifml=rnz=O;

mlemz= 1 if ml = O A m2 = 1 or vice versa

cm otherwise

The maximum of ml and mz, written max(ml, mz), and

the product of ml and mz, written ml @ m2, are defined

similarly.

4.1 Untyped Multiplicity-Annotated Terms

We modify the class of region binders to become:

b::=p:m

Let us assume that every region variable p is only bound

once in any given expression. We then define the multiplicity

Of P, written red(p), to be the multiplicity which occurs in
the binder which binds p, and m otherwise (i.e., if p is free).

Evaluation of multiplicity-annotated expressions can be

defined using an operational semantics which has two region

stacks, namely a stack of regions each of which can accept at

most one write and a stack of regions each of which can ac-

cept an unbounded number of writes. (The dynamic seman-

tics for region annotated terms in [17] has only the second

kind of region stack.)

In an expression of the form

letregion p : m in e end

the multiplicity m is an upper bound on the number of times

a value is put into the region which will be bound to p at

174

runtime. Thus, if m = m we allocate a region on the stack of

unbounded regions and otherwise on the stack of write-once

regions.

In an expression

letrec f[.. .,p:m ,.. .I (*) a=el ine2

the multiplicity m is an upper bound on how many times

the evaluation of the body of ~ (i.e., el) puts a value into p

— including calls that ~ may make to other functions or to

itself. Consider a reference to f (in e] or in ez)

. f[...,,’] ...] .

It is possible to have mul(p) < cm and rnul(p’) = m, signi-

fying that f contributes a finite number of allocations to an

unbounded region. Also, $ is polymorphic in multiplicities,

in the sense that if we have some other call of ~:

~~~ f[...,,’’,...] ~~~

we need not have mzd(p”) = rnul(p’). This flexibility was

found to be important in practice — without it, too many re-

gions were ascribed multiplicity m. However, it means that

the dynamic region environment has to map region variables

to pairs of the form (r, m), where r is a region name (iden-

tifying the region) and m is the multiplicity of the region.

At runtime, the multiplicity of a region is determined by

the letregion expression which generates it and it never

changes, so (r, m) can be regarded as a region name r with

a multiplicity attribute m.

When storing a value into a letrec-bound pit is now nec-

essary to test at runtime to see what kind of store operation

should be performed. Allocation in the two kinds of regions

is done differently; for unbounded regions we first have to

allocate new space within the region, but for write-once re-

gions, we can write directly knowing that there will be space

for one write. .

4.2 Typed Multiplicity-Annotated Terms

A multiplicity effect is a finite map from atomic effects to

multiplicities; we use @ to range over multiplicity effects.

The extension of @ to a total map which is O outside the

domain of ~ is denoted ++. Let @I and 4Z be multiplicity

effects. The sum of @l and ~2, written @l @ @2, is the

multiplicity effect which has domain Dom(~l ) u Dom(~2 )

and values

(01 @ !J2)(V) = ti:(n) @ 0/(7)

Similarly, the maximum of rJl and qJ2, written ma.z(@l, @2),

is defined by

(max(il, 42))(v)= ma~(+f(v), n(v))

Finally, when ~ is a multiplicity effect and m is a multiplic-

ity, the scalar product, m Q $, is the multiplicity effect with

the same domain as #J and values (m@ +)(q) = m @ (~(q)).

The semantic objects of typed multiplicity-annotated terms

are as those for typed region-annotated terms, except that

effects are replaced by multiplicity effects everywhere. We

shall also use r, S etc. to range over semantic objects with

multiplicities, and then use vertical bars (Irl, ]Sl, . . .) to refer

to the semantic objects obtained by replacing every multi-

plicity effect with its domain, which is an effect, We write

+’ z @ to mean /+’] = I@/ and ~’(~) ~ +(q), for all

v e Dom(dr).
The typjng rules for multiplicity-annotated terms are:

~
Multiplicity-Annotated Terms TE 1- e op @

TE + true at p : (bool, p), {put(p) F-+ 1}
(11)

TE ~ false at p : (bool, p), {put(p) ++ 1}
(12)

TE(.c) = (ajp) u > ~viaS

TEE Z,/(s) : (r, P),{}
(13)

TE+{z+~l}l-e:p2, ~ @@?J’’=?/

TEt-(A’”J’z :pl.e)atp: (fll ~ P2, P), {Put(P) + 1}
(14)

TE 1- el : (bool, p), @l TE k ez : IL,42 TEI-- ez : P,413

TE k if el then e2 else e3

: P){get(p) +-+ 1} @ 41 @ maz(@2, @3)

(16)

TEFel :(rl, pi), ~l

aI = Vd?.rl fv(d, ?) n fv(TE, @l) = IJ
TE+{z+(al, p1)}ke2:P, ~2

TEt- let x:(aI, pI) = el in e2 end:,u, @l @@2
(17)

T = v;;.~ 7r’ = Vci’. ir fv(d, ~, 7) nfv(TE, v,) = 0

TE+ {f* (n, p)} 1- (A’’’+’z : ~~.el)atp : (T, p), @I

TE+ {f w (~’, p)} t- e2 : P,ti2

TE t- letrec ~ : (x’, P)(x) = el in e2 end : p,@l @42

TE(f) = (~,/)
m > r via S @ = {get(p’) ++ l,put(p) * 1}

TE E f,~(sl at P : (T, P), TJ

TEE e : p,@ fv(~’) (T fv(TE, ~) = o

TEE letregion ~’ in e’ end: p,@ ~ I@’1

TEt-e:p, $ @’2ti

TEt-e:p, $’

(18)

(19)

(20)

(21)

Note that union of effects has turned into sum of mul-

tiplicity effects, except at the conditional, where maximum

is used. A more substantial change is in the definition of

what it means to apply substitutions (rules 13 and 19 rely

on this)

A (multiplicity) substitution is a triple S = (Sr, S’, S’),

where St is a map from type variables to types, S’r is a

map from region variables to region variables and Se is a

map from effect variables to multiplicity arrow effects (~.~).

Each of these finite maps extend to total maps — in the case

of Se by mapping each effect variable e outside the domain

of S’ to the multiplicity y arrow effect 6.{}.

175



We define

S’(?J) = !@{put(s’(p)) +- O(put(p)) I Put(P) E 141}

@ @{get(S’(p)) * d(get(p)) I get(p) Gltfl}
@ ~ J EffectVar

S’(IJ) = 4 [ Effectvar EE

@{w8({f’+- 1} @ lb’) I

Moreover, define

Se(c,@) = 6’.(+’63 S’(?J))

where c’. #’ = Se(c). Finally, we define

(S’, S“, S’)(A) = S’(Se(S’(A)))

where A can be an arrow effect, a type or a type and place.

Substitutions can also be applied to type schemes, after re-

naming of bound variables to avoid capture, when necessary.

Finally, a substitution can be applied to a type environment

TE by applying it to every pair (a, p) or (rr, p) in the range

of TE.
We say that a multiplicity-annotated expression e is well-

annotated in TE if there exists a p and a ~ such that TE b

e : p, @. For given TE and e, there exists at most one such

p and ~.

Multiplicity Inference is the following problem: given

TE, e, p and p with TE t- e : p : p according to rules

( 1)-(10) and given a multiplicity type environment TE’ with

ITE’I = TE, find a multiplicity-annotated term e’ which is

well-annotated in TE’ and satisfies \e’ I = e.

When e is closed, there is a trivial solution to the Multi-

plicity Inference Problem: choose all multiplicities to be co.

The object is of course to choose multiplicities as small as

possible.

Vejlstrup’s M. SC. thesis[l 8] contains a multiplicity infer-

ence algorithm and a proof that it is correct and always ter-

minates. The algorithm does not always find minimal mul-

tiplicities. One problem is that substitution and maximum

do not commute; in general one only has S’(maZ(@I, 42 )) z

rnaz(Se(~l ), Se(@2)). In particular, if a lambda-bound vari-

able, ~, occurs in two different conditionals, unification on

the type of of ~ during the multiplicity inference of the sec-

ond conditional can increase the effect of the first condi-

tional:

Jf : ((int, pl)
c, {Pllt(~2jj ,(int, p2), P3).

let z = if true then 1 at p2 else ~(1 at pl)

in if true then (~~,1 at pz) at 03 else ~

Here the effect of evaluating z will end up having two put

effects on p2, although one would be sound.

Judging from experience, however, the algorithm is usu-

ally good at detecting finite regions (see Section 9).

Erasure of a typed multiplicity-annotated term gives an

untyped multiplicity-annotated term. We show some of the

defining equations:

er(letregion V in e end) =

letregion bl...bk in er(e) end

where {pI, . .,p~} = frv(~) and

b, = p, : ~+(put(pt))

fori=l. ..k.

er(letrec ~ : (m’, p)(z) = el in e2 end) =

letrec ~[bl ,, ., b~]atp=er(el) in er(ej) end

where m’ = Vpl,. ... pkd(fi]i] QLL2) and

b, = p, : #+(put(p,)), z = l.. k.

4.3 Removal of get-regions

Consider a declaration of the form

letrec ~[~] (z) a = e in e end

Write ~intheform pl:ml, . . ..p~. rnIfp~{ pl,ljp~}jp~}

is such that there is no put(p) anywhere in the type of ~,

then ~ does not really need p: putting a value into a region

requires region information, but reading a value does not.

Such region variables are called get-regions (of ~). They

can be eliminated from the list of region formals, provided

the corresponding actual arguments in calls of ~ are removed

too.

letregion fJ6 :1 in

letrec j[@:i, @:l, @:~, ~lo:~,pll:~,

P12:I, P13:0, P14:0, P15:O] ($) at f6 =

letrec &acc[/216 :~ ,~17 :@3, ~18 :@] (~) at P7=

let n = fst p in let acc = snd p in

letregion p19 :1 in

if letregion p21 :1 in

(n = O at p21) at p19

end then p

else ~acacc[/?16 ,p17 ,p18]

(letregion p24: 1 in

(n - I at p24) at ~lg

end, (n * ace) at p17) at ~16

end end end

in

((J y. facacc[p13 ,,014 ,p151 y) at p12, (*l*)

facacc [pg , pIO ,pII]

(letregion p2i: 1
(z + s at p2i’) at fhl

end, 1 at plo) at pg) at ps

end

in letregion p2s:@, p2g:C0, p3!3:~, p3~ :1, p32:i

in (letregion p33 : 1,p34 :~, p35 :~ ,p36 :@

in fst (letregion p37: i in

f [p31 ,p33 $p34 ,p35 ,p36 ,
p32 ,p28 ,p29 ,p30] 7 at p37

end)

end) (8 at 030. 1 at ozg ) at PM

end

end

end

Figure 2: After Multiplicity Inference and elimination of

get-regions

In what follows, we always use the more aggressive erase

operations which removes both type information and get-

regions. The erasure of a typed multiplicity-annotated ex-

176



pression which corresponds to the region annotated exam-

ple in Figure 1 is shown in Figure 2. Notice that most re-

gion binders have been given finite multiplicity and that ~

has had the get-region PO removed. The ly.facacc y in line

(*I*) is put into a write-once region ( p3Z ), which eventually

is stack-allocated, even though the closure “escapes”.

5 Unboxed Values

In the plain region inference scheme[17], every value is repre-

sented “boxed”, i.e., by a pointer to the actual value, which

resides in a rezion. However, it is not necessary to box val-

ues whose natural size is not bigger than what a register

can hold. Let us refer to such values as word-sized. In the

ML Kit, the word-sized values are conservatively defined to

be precisely the integers and the booleans. Storing a word-

sized value allocates no space in memory; it just stores the

value in a register,

Let r be a region at runtime. If all put operations on r

are putting word-sized values, then no values at all are put

into r, and r could be eliminated altogether. Z’hZs holds,

even if there are rnultzple put operations to the region. For

every storage operation vat p in the program, enough of the

type of v is known statically to decide the appropriate repre-

sentation (boxed/unboxed). This relies on the fact that v is

a syntactic value. Detecting whether all storage operations

to p store word-sized values requires a simple region flow

analysis, which we describe in this section. If p is a formal

parameter of some letrec-bound function, $, and all stores

to p are stores of word-sized values, then p is removed from

the list of formal parameters of ~, and all the corresponding

actuals in applications of ~ are removed too. l“hs zs true

even if the rnultzplicity zn the binder of p is not finite. This

removes many region parameters in practice.

In ML, all functions take one argument; “multiple” ar-

guments are represented by a tuple which in the Kit always

is a boxed tuple. This is simple but inefficient. No doubt,

careful data representation analysis[10,15,8] would be very

useful with regions. This has not yet been explored, how-

ever.

5.1 Modified Syntax

We extend allocation directives to become

a ::= at p \ ignore

In examples, we abbreviate v ignore to v.

In the dynamic semantics, evaluating v ignore just re-

sults in v without performing any allocation in any region.

5.2 Boxity Constraints

Let RegionTyVar be a denumerably infinite set of region

type vartables, ranged over by r. We introduce region types

rt

rt::=ll word I T I r

Ground region types are ordered by J_~ word ~ T. In-

tuitively, a region can be given type word if all the values

stored in it are word-sized. (The region need not have finite

multiplicity. ) Top (T) stands for all types that are not of

word size, e.g., record types and function types. Bottom ( l-)

is the type of region variables p for which no atp occurs in

letregion p6 :1 in

letrec f[p~:i,ps:~,pg:~,

,012:1, P13:O] (Z) d. p6 =
letrec faWX[p16 : ~] (~) at P7 =

let n= fst p in let ace= snd p in

ifn=Othenp

else ~@XZcc[p16] ((n–l, n*acc)at p16)

end end

in

(( Ay. facacc[p131 y) at p12,

facacc[pg] ((~ + 3, l)at Pg))atP6
end

in letregion p2s :~ ,p31 :1 ,p32 :1 in

(letregion p33 :1 ,pw :ca in

fSt(f [p31 ,pst ,p,~ ,p32 ,p28] 7)

end) ((8, 1)at p2/3)

end

end

end

Figure 3: After elimination of word-typed regions

the program. (Get-regions of region-polymorphic functions

have region type 1, if they are not removed.)

The type system of region types is monomorphic in that

every region variable is assigned a ground region type.

The analysis which assigns region types to region binders

is a simple constraint-based analysis. A constraint takes one

of the two forms r~ rt or r~r’. A finite set of constraints

has a minimal solution (with respect to Q). It can be shown

that this solution can be found in time which is linear in the

number of constraints in the set.

Constraints are generated as follows: every binder p : m

is associated with a fresh region type variable, written r(p).

For every subexpression tyue at p or false at p of e, we

generate a constraint r(p)~word. For all other at p in e we

generate a r(p)~T constraint. Furthermore, if f is declared

by

letrec $[p~ :rnl, . . ..pj :rnk] (z) at p = el in e2

then for every reference to ~:

f_bI). ... Pkl at P

we generate the k constraints r(p,)~r(p~ ), 1 < ~ < ~.

Once the minimal solution has been found, every region

binder p : m which has been assigned region type word or

less is removed from the program, thus reducing the num-

ber of letregions and the number of parameters to region-

polymorphic functions. Furthermore, all allocation direc-

tives at p (for the p in question) are changed into ignore.

When a formal region parameter is removed, all correspond-

ing actuals must of course be removed too.

The result of removing word regions from Figure 2 is

shown in Figure 3. Notice that by now, all letregion-bound

region variables with infinite multiplicity, except p2s and

P34, have been eliminated. At runtime, there will be just
two infinite regions.

6 Storage Mode Analysis

The purpose of storage mode analysis was explained in the

Introduction. It operates with the following allocation di-

177



rectives and binders

a ..—..— atp I attopp I atbotp I satp

In the input expression, all allocation directives take the

form atp; in the output, every at has been turned into

attop, atbot or sat. The idea is that one can transform

at p into atbot p at some program point p, if and only if,

whenever p is reached during evaluation, the rest of the eval-

uation does not use a value which has already been stored

into the region to which p is bound. Storage mode attop

should be used when it is certain that the region will contain

live values; sat (“somewhere at” ) should be used when the

decision about storage mode should be delayed till runtime

(typically when p is letrec-bound).

Storage Mode Analysis is based on statically inferred

Iiveness properties. Liveness analysis has to take tempo-

rary values into account. Inspired by the A-Normal Form

of Flanagan et al[7], we shall therefore assume that the in-

put expression to the storage mode analysis conforms to the

following grammar of regzon annotated K-Normal Form ex-

pressions:

e ..—..— Xd I Va I X2i~d I .ftf[~l m Zd

I if $,1 then e else e

I letz:(cr, p)=eine

I letrec .f : (m, pII)[~I (x) aO = e

in e end

I letregion b in e end

v ::= true I false I Az : y.e

The key idea is that every intermediate result of the com-

putation is bound to a variable. The type information (a,x

and ~) in K-Normal Forms is provided by region inference.

Transformation into K-Normal Form can be done in linear

time and does not affect the runtime behaviour of the ex-

pression. (Unlike Flanagan et al we do not linearise let

bindings, as this would affect region inference in a negative

way. )

To enable region polymorphic functions to be applied in

contexts that allow different degrees of region overwriting,

we pass the storage mode itself along with the region at

runtime. Thus we have not only multiplicity polymorphism

(Section 4) but also storage mode polymorphism (since we

found that not having it made too many regions too big).

At runtime, a region may be accessible via more than

one region variable, if it is passed as actual argument to a

region polymorphic function. This is called regzon abasing.

Storage Mode Analysis must take region aliasing into ac-

count. We propose the following global, higher-order region

flow analysis. A directed graph G is built. There is one

node in G for every region variable and every effect variable

which occurs in the (K-normalised) program. (Thus, we can

identify variables with nodes. ) Whenever the program has

a letrec-bound program variable ~ with type scheme

and whenever there is an applied occurrence of ~:

there is an edge from p, to P; and from c~ to .c$. Similarly

for let-bound variables. Finally, for every effect c.p occur-

ring anywhere in the program, there is an edge from ( to

every region and effect variable which occurs free in ~. In

the graph that arises thus, letregion bound variables are

always leaf nodes and region variables only lead to region

variables. For every node n in G, let (n) denote the set of

variables that are reachable in G starting from n, including

n itself.

Let p be a region variable and let e be a region annotated

expression which first binds p and then refers to p. The stor-

age mode analysis depends on a distinction between whether

there is a A between the binder of p and the use of p, or not.

To be able to make this distinction precise, we introduce

three kinds of contexts. Two of these are local, meaning

that they do not allow going under lambda (or letrec). A

local expression context, L, takes the form

L ::= []

] if z,~ then L else e,

I if tit then e2 else L

\ let x:(a, p) = L in ez

I let r:(cr, p) = el in L

I letrec ~ : (iT, po)[;] (z) ao = el

in L end

I letregion b in L end

Next, local allocation contexts, R, are given by

R ::= L[v []]

I L[~,l[al,..., al,[], a,+l,l, a~l, a~l aox,{]

I L[f,i [d] [ ] x,1]

I L[letrec .f : (rr, pO)[;l (x) [] = e,

in e2 end]

The last of the three kinds of context is a (global) expression

context, which allows one to single out an arbitrary subex-

pression:

E ::= L

I L[let x : (alp) = (Ax : p.E)a in e end]

I L[letrec f : (n-, p) [;] (z) a. = E in e2 end]

Given a local context L we say that a program variable

z is live at the hole of the conted if it is a member of the

set LV(L), defined by:

LV([ ]) = 0

LV(if Zzl then L else e~) = LV(L)

LV(if Z,l then .2 else L) = LV(L)

LV(let z : (CT,p) = L in e2 end) =

LV(L) U (FV(eZ) \ {z})

LV(let x : (a, p) = el -in L end) = LV(L)

LV(letrec ~ : (~, po)[b] (z) ao = el

in L end) = LV(L)

LV(letregion b in L end) = LV(L)

Here FV(e) means the set of program variables that occur

free in e.

f([...p], [?],[?e;[...e;9;...])

178



The definition is extended to local allocation contexts,

R, as follows:

LV(L[V []]) = FV(V) U LV(L) (22)

LV(L[~,i [al, . . . . a,_l, [], a,+I, . . . ,a~] ao z,,])= LV(L)

(23)

LV(L[f,l[d] [] Ztl]) = {f, z} U LV(L) (24)

LV(L[letrec ~ : (r, po)[~] (z) [] =elin ez end]) =

(FV(eI) \ {~, z}) U (FV(ez) \ {~}) uLV(L)

Intuitively, a variable is live at a hole in a local context, if

the variable is in scope at the hole and is used by the compu-

tation up to end of the context. In (22), v can be a lambda

abstraction; the free variables of v are considered live at the

allocation Doint. since thev must be Dut into the closure for

v after memory ‘for the cl&ure has ~een allocated. In (23),

the set of live variables is just LV(L), since the storage mode

which is passed to ~ indicates whether the region contains

values that are used after f returns. In (24). however. f
“ \ ,/ . .

is considered live at the allocation point: at runtime, first

space for the closure is allocated and then the closure is cre-

ated by appling ~ to the actual regions. ) Similarly, in the

case for letrec. f is not considered live at the hole. since

the space for the “region closure representing ~ is allocated

before the closure is created.

Let e be an expression in K-normal form. For simplic-

ity, we assume that e has no free program variables, that

all bound program variables are distinct and that every

region-polymorphic function has at precisely one region pa-

rameter. (The generalisation to many region parameters is

straightforward. ) Let z be a program variable which oc-

curs in e. Let (T, p) be the type annotation of the binding

occurrence of x j where T takes one of the forms ~, a or m, de-

pending on how x is bound (see the definition of K-normal

forms). We define the Zive region variables of z, written

h-v(z), to be the set {(p) I p c frv(T, p)} U {(c) (l RegVar I

c c fev(T)}. Next, when X is a set of variables occur-

ring in e we define b-v(X) = U{hw(z) I z c X}. Let C

be an allocation context of the form E[R]. We say that

a region variable p is bound non-locally m G’, if C cannot

be written in the form E’[letregion p : m in R’end] or

E’[letrec ~ : (m, PO) [p : m] (z)u=R’ in ez end] for any E’

and R’. (In other words, p is bound non-locally in C, if there

is an incomplete A or letrec between the binder of p and

the hole of the context. ) The following rules make it possi-

ble to change every atp occurring in e into attop p, atbot p

or sat p.

p @ h-v(LV(R))

E[letregion p : m in R[at p] end] +
(25)

E[letregion p : m in R[atbot p] end]

p G bw(LV(R))

E[letregion p : m in R[at p] end] +
(26)

E[letregion p : m in R[attop p] end]

lrv(LV(R)) n (p) = 0

E[letrec f[p : m] (z)a=R[at p] in ez end] +
(27)

E[letrec f[p : m] (z)a=R[sat p] in ez end]

b.J(Lv(R)) n (P) # 0

E[letrec f[p : m] (z)a=R[at p] in ez end] ~
(28)

E[letrec f[p : m] (z)a=R[attop p] in ez end]

letregion p6 :1 in

letrec f[@’:i$ps:i,pg:~,

P12 : i,p13 :0] (Z) atbot p6 =

letrec facacc[p16: m] (p) sat pT =

let n= fst p in let ace= snd p in

ifn= O then p

else ~acacc[sat p16]

((n-l, n*acc) sat p16)
end end

(*:) (( Ay. facacc[attop p131y)sat p12,
(*2*) facacc[sat p9] ((z + 3, I)sat pg)

) at P8

end

in letregion pz6 : ~ ,p31 : i, p32 :1 in

(letregion p33 :1 ,p34 : co in

fst(f [atbot p31 , atbot PSS,
(*3*) atbot p3J , atbot p32 ,

atbot pza] 7)

(*4*) end) ((8, i) attop pza)

end

end

end

Figure 4: After storage mode analysis

p bound non-locally in E[R]

I?[R[at p]] + EIR[attop p]]
(29)

For brevity, we have shortened f : (n, PO) to f in (27) and

(28). In (25), atbot is justified by the fact that no value

which is used up to the point where the region is de-allocated

resides in p. (Here it is essential that R is a local context. )

In (27), sat is justified by the fact that neither p nor any

region with which it may be aliased contains a value which

is needed by the rest of the body of $. Finally, in (29), we

conservatively use attop, if p is bound outside the closest

surrounding function.

Rules 25-29 have been implemented and tested in the

Kit, but not proved correct.

Figure 4 shows the result of applying storage mode anal-

ysis to the expression in Figure 3. At line (*I*) notice

that we get attop p13, by (29). Thus pairs will pile up in

p26 during the evaluation of the application in line (*Q*).

By contrast, we get sat P9 in line (*z?*), by (27). In line

(*s*), p34 k passed as region actual corresponding to p9.

This happens with mode atbot, using (25), so that this “in-

finite” region P3A will only ever hold one pair.

7 Physical Size Inference

At every value allocation v@p (where @ c {attop, atbot, sat}),

the size of the value can be computed statically. (Every

function is represented by a “flat” closure which contains

the values of the free variables of the function.) Also, the

multiplicity of the region is known. In case the multiplicity

is finite, the physical size of the region is to be the maxi-

mum size of values that may be stored at p or at any region

variable with which p can be aliased. This maximum can be

found using the graph G computed in Section 6.

179



8 The Kit Abstract Machine

The KAM has a runtz’me stack, an infinite number of reg-

u-ters and a region heap. The operations of the KAM are

similar to those of Appel[2], extended with operations for

allocating and deallocating regions and for allocating mem-

ory in regions. Region names (Section 4.1) are represented

as 32 bit words, with the two low order bits being used for

storing the region size (finite/infinite) and the storage mode

(attop/atbot). The KAM has operations for setting and

testing these bits. The region operations are implemented

by a runtime system written in C.

A region of unbounded size is represented by a linked

list of fixed-size blocks of contiguous memory in the region

heap. Regions with finite size are implemented on the run-

time stack. That is, upon evaluating letregion p : k in e

end, where k is a finite physical size, the variable p is bound

to the current stack pointer which is then increased with k
words. Then e is evaluated and the stack ~ointer decreased

by k words.

!3 Experimental Results

The purposes of the experiments were (a) to assess the feasi-

bility of region-based execution by comparing the time and

space requirements of object programs produced by the Kit

to time and space requirements of object programs produced

by a first-rate ML compiler, namely Standard ML of New

Jersey, and (b) to assess the importance of multiplicity in-

ference and storage mode analysis.

The benchmarks fall into two categories: (1) small pro-

grams designed to exhibit extreme behaviour (fib, reynolds2,

reynolds3, dangle and tailloop); and (2) non-trivial pro-

grams based on the Standard ML of New .Tersey distribution

benchmarks (life, mandelbrot, knuth-bendix and simple);

the largest benchmark is simple (approx. 1150 lines of

SML). The smallest benchmarks are shown in Section 9.3.

In tables, we separate small benchmarks from other bench-

marks by a horizontal line.

All benchmarks were executed as stand-alone programs

under the ML Kit (using the PA-RISC code generator) and

Standard ML of New Jersey[3], version 93 on an HP PA-

RISC 9000s700 computer, All running times are in seconds

(user time, measured by the UNIX time program). Space

is maximum resident memory in kilobytes (measured by the

UNIX top program).

9.1 Comparison with Standard ML of New

Jersey

The numbers presented here must be read with caution,

since the two compilers are very different. Howeverj the

numbers do give a rough indication of the feasibility of region-

based execution.

Figure 5 shows a comparison of space usage. There can

be dramatic differences between using region inference and

using a ( reference tracing) garbage collector. These differ-

ences will be explained in Section 9.3.

Figure 6 shows running times in seconds, still on the HP

PA-RISC 9000s700. The numbers are Unix “user time”.

The relatively poor performance of the Kit on simple is

probably due to the fact that this benchmark makes inten-

Kit, s NJ93, sg~ -
.*lu u”/,

life I 376 I 1,952 I 24%

mandelbrot I 352 ’852 41%

knut h-bendix 4)000 2,300 174% I
simple 2,100 I ~,~oo 95%

fib I 92 I 1,000 I 9%

reynolds2 96 1,212 8%

reynolds3 40,000 1,204 3,322%

dangle 224 45,000 0.5%

taiiloop 96 880 I 11 %

Figure 5: Comparison of space between the ML Kit and

SML/NJ version 93. All numbers are in kilobytes and indi-

cate maximum resident memory used.

Kit, t NJ93, tg~ —t*loo%

life 14.2 12.3 115!4 %

mandelbrot 43.4 24.9 174.370

knuth-bendix 32.4 27.8 116.5 ~0

simple 62.2 17.4 357.570

f lb 10.8 27.9 38.7 %

reynolds2 16.7 29.2 57.2%

reynolds3 23.8 27.7 85.9%

dangle 1.56 14.4 10.8%

tailloop 4.79 1.96 244 %

Figure 6: Comparison of running times (in seconds)

sive use of floating point numbers, which are implemented

very inefficiently in the Kit.

Considering that the Kit compiles programs very naively,

apart from everything that has to do with regions, it ap-

pears that neither the extra cost associated with allocating

into multiple regions nor the overhead of runtime region pa-

rameters are prohibitive in practice.

9.2 Region Representation Inference

Figure 7 summarises the static results of region representa-

tion inference. In all the benchmarks, except tailloop, at

least three out of four region variables were found not to

belong on the region heap.

letregions word stack heap

life 469 23% 56 ‘% 2070

mandelbrot 112 Zyyo 58 % 14%

knuth bendix 1014 17% 66 % 16%

simple 2648 21% 66 % 11%

fib 14 72% 28% 0%

reynolds2 85 21% 58 % 20%

reynolds3 85 20% 57 % Zzyo

dangle 13 38% 46 % 15%

tailloop 9 0‘z. 6670 33’%

Figure 7: For each program, the table shows how many le-

tregion binders the region-anuotated program contains, and

the partitioning of these according to how they will be allo-

cated at runtime.

Figure 8 shows the distribution of allocations amongst

stack and heap at runtime. In all cases, except dangle, at

least 85% of allocations were stack allocations. Remarkably,

the largest of the programs, simple, had more than 99’% of

180



all allocations happen on the stack. The difference between

the number of heap allocations for
reynolds2 and reynolds3 shows that the static frequency of

infinite letregionsis not necessarily a good indication ofdy-

namic behaviour (compare Figure 7). Notice that although

reynolds3 “spaceleaks” in the Kit, thespaceleak ison the

heap and the vast majority of allocations arestill stack al-

locations and cause no space problems. This fits with our

general experience that space leaks with region inference

tend to stem from fewisolated spotsin the program. (This

experience is based on the fact that we have built a region

profiler which can trace region sizes, )

To assess the importance of multiplicity inference, the

benchmarks were also compiled and run on a version of the

Kit in which all multiplicities were set to infinity (while all

other analyses were left enabled), see Figure 9. For all the

benchmarks, multiplicity inference gives speedups of more

than 200Yo: allocation into a region of finite multiplicity is

cheaper than allocation into a region of unbounded multi-

plicity. Multiplicity inference does not always yield big space

savings; it depends on whether many regions exist at the

same time.

To assess the importance of storage mode analysis, the

benchmarks were then compiled and run on a version of the

Kit in which all storage modes were selected to attop (while

all other analyses were left enabled), see Figure 10. With

storage mode analysis enabled, tailloop runs in constant

space, but without storage mode analysis, a memory over-

flow occurs. For life, the storage mode analysis ensures

that at most two generations of the game are alive at the

same time. (Without storage mode analysis, all generations

pile up in the same regions. ) That there are many cases

where storage mode analysis does not bring down the max-

imal space usage is not surprising: maximal space usage is

not necessarily reached by the kind of iterative computations

for which storage mode analysis is intended.

Multiplicity inference appears to give significant time

savings, across all benchmarks. Storage mode analysis is

more erratic: it serves an important purpose for some “iter-

ative” computations, but these do not necessarily dominate

overall space usage.

Judging from the very high proportion of allocations that

happen on the stack in the Kit, optimisations that move

stackable regions into registers could be very important. The

stack al-

loca-

tions, S

life 28,269,922

mandelbrot 158,376,021

Irnuth bendi.x 51,962,334

simple 96,903,575

f i.b 1

reynolds2 25,165,846

reynolds3 42,991,640

dangle 2,002,002

tailloop 4,004,004 *

340 > 99.9%

8,684,852 86%

728,713 99.2%

o 100 0

91 > 99.9%

4,194,393 91%

4,007,008 33%

4,004,006 50%

Figure 8: For each ~ro~ram, the table shows how manv
.W

.

allocations of objects were done in total at runtime (not

including objects of runtime type word) and the partitioning
of these according to whether they were done on the stack

or the heap.

Space, .m.~~~% ‘lime, ~m*~~~%

-$CO s tm t
life 548 138% 50.4 355%

mandelbrot I 9,988 2,837~o ~~3 514%

Irnuth-bendix 6,612 165% 77.9 240% I
simple 3,860 I 184% I 296 I 476%

f lb 116 I 129% I 32.4 I 300%

reynolds2 120

reynolds3 40,000

dangle 1,732

tailloop 96

125% 50.4 301%

100% 86.8 365%

687% 4.83 310%

100% 10.2 208%

Figure 9: Space and time used in the Kit when all multi-

plicities are set to cm. The numbers are compared with the

~esults from Figures 5 and 6.

s~*loo$%

--%7%
100%
116%

101%

-

100%

100%

107%

tT
14.8

45.9

38.3

76.2

11.4

18.5

25.2

1.70

~

tT*loo Yo
t

104 0

106%

118%

123%

105 0

111%

106%

109%

Figure 10: Space and time used in the Kit when all storage

modes are set to attop. The numbers are compared with

the results from Figures 5 and 6. tailloop crashes with

memory overflow.

most obvious candidate is to allow more than one function

argument register and more than one function result reg-

ister. Also, the Kit (quite unnecessarily) represents every

function by a closure, even when all the call sites are known.

Finally, improved in-lining might help. The Kit evaluates a

comparison like i=O by building a tagged tuple, passing it to

the equality function of the prelude, which takes apart the

tuple, calls the polymorphic equality function in the runtime

system, which eventually returns an integer, which is then

compared against an integer, resulting in a branch and store

in a register. We believe that this could be improved.

9.3 Discussion of extreme behaviour

In this section we analyse some of the small benchmarks,

which were designed to exhibit extreme behaviour. Here is

reynolds2:

dat at ype ‘a tree =

Lf

I Br of ‘a * ‘a tree * ‘a tree

fun mk.tree O = Lf

I rnk.tree n = let val t = mk_tree(n-1)

in Br(n, t,t)

end

fun search p Lf = false

I searchp (Br(x, tl, t2)) =

if p x then true

else search (fn y => y=x orelse p y) tl

181



orelse

search (fn y => y=x orelse p y) t2

val it = search (fn _ => false) (mlr.tree 20)

The program reynolds3 is obtained by replacing the search

function ofreynolds2 by:

fun member(x, []) = false

I nrernber(x,x’ ::rest) =
x=~~ orelse rnernber(~, rest)

fun search p Lf = false

I searchp (Br(x,tl,t2)) =

if member(x,p) then true

else search (x: :p) tl orelse

search (x::p) t2

Irrespective of whether region inference or garbage collection

is used, the running time is exponential in n, where n is

the argument to mk_tree. (n is 20 in the example. ) In

reynolds2, the polymorphic recursion of region inference

separates the lifetimesofp and (fn y => y=x orelse p y).

In reynolds3, however, p and x::p are put in the same

region, for region inference does not distinguish between a

list and its tail. With region inference, space consumption

is linearin running time with reynolds3 and logarithmicin

running time with reynolds2. With garbage collection, it

is logarithmic in both cases.

Here is dangle:

fun mklist O = []

I mklist n = n :: mklist(n-1)

fun cycle(p as (m,f)) =

if m=O then p

else cycle(m-1,

let val x = [(m, mkli.st 2000)]

in fn () => #l(hd x) + fo

end )

val r = cycle(1000, fno => O);

Region inference ensures that the list lproducedbymklist

2000 is discarded immediately after the closure for fn ()

=> #l(hd x) + fo is produced; note that the function will

not access 1 — in fact the closure will contain a dangling

pointer[17]. In garbage collected systems which do not allow

dangling pointers, the space usage is O(rn x n), where m and

n are the arguments to cycle andmklist, respectively (here

m = 1000 and n = 2000). With region inference, the space

usage is just O(m).

Finally, here is tailloop:

val x =

let

val maxint = 2000
val zero = (0,0)

fun is_zero(O,O) = true

I is_zero _ = false

fun sub (m,n) =

if n=O then (m-l, maxint)

else (m, n-1)

fun loop (x as (m,n)) =

if is.zero x then x

else loop(sub x)

fun loop’ p = (loop p;

“\ndone\n”)

in

output(std_ out,

“\nlooping.. .\n” );

output(std_out ,

loop’ (maxint,maxint ))

end;

Integers themselves are unboxed, but without storage mode

analysis, the integer pairs fill up the memory.

10 Conclusion

We have presented a series of region-based analyses for map-

ping an abstract stack ofregions onto real machines. All of

these analyses were devised tosolve needs which became ev-

ident from practical experiments. The combination of anal-

ysespresented here often works well in practice, but we have

also shown examples whichsuggest that it mightbe useful to

provide garbage collection as a supplement to region infer-

ence, to handle those cases where the various static analyses

cannot cope. (Such cases will always exist, forundecidablity

reasons. ) It is noteworthy, however, that all the benchmarks

we tried from the SML/NJ test suite could be made to run

relatively well, even without garbage collection and without

many of the optimisations one expects to find in a mature

compiler.

Acknowledgements

We wish to thank Martin Elsman and Niels Hallenberg for

their work on the Kit, Raph Levien for finding mistakes

in earlier versions of the storage mode analysis and Greg

Morrisett for good advice on code generation. This work

is funded by the Danish National Research Council, in the

form of a Ph.D. scholarship for the first author and the DART

grant for the second author.

References

[1] Alexander Aiken, Manuel Fahndrich, and Raph Levien.

Better static memory management: Improving region-

based analysis of higher-order languages. In Proc. of

the ACM SIGPLAN ’95 Conference on Programming

Languages and Implementation (PLDI), pages 174-185,

La Jolla, CA, June 1995. ACM Press.

[2] Andrew W. Appel. Compding with Continuations.
Cambridge University Press, 1992.

[3] Andrew W. Appeland David B. MacQueen. A Stan-

dard ML compiler, In Gilles Kahn, editor, Functional

Programming Languages and Computer Arclutecture,

ACM) Springer-Verlag, Sept 1987.

[4] Lars Birkedal, Nick Rothwell, Mads Tofte, and

David N. Turner. The ML Kit (Version I). Technical

Report DIKU-report 93/14, Department of Computer

Science, University of Copenhagen, Universitetsparken

1, DK-2100 Copenhagen, 1993.

[5] L. Damas and R. Milner. Principal type schemes for

functional programs. In Proc. 9th Annual ACM Symp,
on Principles of Programming Languages, pages 207–
212, Jan. 1982.

182



[6] Martin Elsman and Niels Hallenberg. An optimizing

backend for the ML Kit using astack of regions. Stu-

dent Project, Department of Computer Science, Uni-

versity of Copenhagen (DIKU), July 5 1995.

[7] Cormac Flanagan, Amr Sabry, Bruce F. Dubs, and

Matthias Felleisen. The essence of compiling with con-

tinuations. In Proc. of the A CM’ SIGPLAN ’93 Confer-

ence on Programming Language Deszgn and Implemen-

tation (PLDI), June 1993.

[8] Fritz Henglein and Jesper J@rgensen. Formally opti-

mal boxing. In Conference Record of POPL ’94: 21st

.4 CM SIGPLAN-SIGA CT Symposium on Principles of

programming Languages, pages 213-226. ACM Press,

January 1994.

[9] P. Jouvelot and D.K. Gifford. Algebraic reconstruction

of types and effects. In Proceedings of the 18th ACM

Symposium on Princ~ples of Programming Languages

(POPL), 1991.

[10] Xavier Leroy. Unboxed objects and polymorphic typ-

ing. In Conference Record of the Nineteenth Annual

ACM SIGPLAN-SIGA CT Symposium on Principles of
Programming Languages (POPL), pages 177-188. ACM

Press, January 1992.

[II] J. M. Lucassen. Types and Effects, towards the zntegra-
tton of functional and imperative programming. PhD

thesis, MIT Laboratory for Computer Science, 1987.

MIT/LCS/TR-408.

[12] J.M. Lucassen and D.K. Gifford. Polymorphic effect

systems. In Proceedings of the 1988 ACM Conference

on Principles of Programming Languages, 1988.

[13] R. Milner. A theory of type polymorphism in program-

ming. J. Computer and system Sciences, 17:348-375,

1978.

[14] Hanne Riis Nielson and Flemming Nielson. Higher-

order concurrent programs with finite communication

topology. In Conference Record of POPL ’94: 21st A CM

SIGPLAN-SIGA CT Symposium on Principles of Pro-

gramming Languages, pages 84–97. ACM Press, Jan-

uary 1994.

[15] Zhong Shao. Compiling Standard ML for E@cient Ex-

ecution on Modern Machines. PhD thesis, Princeton

University, 1994. (Also available as Research Report

CS-TR-475-94).

[16] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic

type, region and effect inference. Journal of Functional

Programming, 2(3), 1992.

[17] Mads Tofte and Jean-Pierre Talpin. Implementing the

call-by-value lambda-calculus using a stack of regions.

In Proceedings of the fist ACM SIGPLAN-SIGA CT
Symposium on Principles of Programming Languages,

pages 188-201. ACM Press, January 1994.

[18] Magnus Vejlstrup. Multiplicity inference. Master’s the-

sis, Dept. of Computer Science, Univ. of Copenhagen,

September 1994,

183


