
Polling Efficiently on Stock Hardware

Marc Feeley

D6partement d’Informatique et Recherche Opi%ationnelle

Universit4 de Montr&l

C.P. 6128, SUCC. “A”, Montr&l, Canada H3C 3J7

f eeley@iro .umontreal. ca

Abstract

Two strategies for supporting rwynchronous interrupts are:
the use of the processor’s hardware interrupt system and the

use of polling. The advantages of polling include: portabd-
ity, simplicity, and low cost for handling interrupts. Unfor-
tunately, polling has an overhead for the explicit interrupt
checks inserted in the code. This paper describes balanced

polling, a method for placing the interrupt checks which
has a low overhead and also guarantees an upper bound on
interrupt latency. This method has been used by Gambit
(an optimizing native code compiler for Scheme) to support

a number of features including multiprocessing and stack
overflow detection. The overhead of balanced polling is less
than for ca/J-return polling which places interrupt checksat
every procedure entry and exit. The overhead of call-return
polling is typically 70% larger (but sometimes over 40070
larger) than theoverhead of balanced polling.

1 Introduction

In this paper, the term interrupt is defined se an exceptional
event for which some special processing is needed (e.g. a

heap overflow). The handling of an interrupt is done in
three phases. The interrupt is raised when the event occurs.

At some point after this the processor detects the interrupt
and then handles it by invoking the appropriate interrupt
handler. There are two types of interrupts. Synchronous
interrupts can only be raised at well defined locations in the

code (e.g. an arithmetic overflow or invalid pointer derefer-
ence). Asynchronous interrupts can be raised at any loca-
tion (e.g. atimeror user interrupt).

1.1 Detecting interrupts

There are essentially two ways in which interrupts can be

detected. They can be detected automatically by the pro-
cessor’s hardware or by explicit checks inserted in the code.

These will be called implicit and ezplicit detection respec-
tively. On stock hardware, the following interrupts are of-

ten detected implicitly: arithmetic overflows, address align-
ment errors, address translation errors, and user and timer
interrupts. The following interrupts are usually detected

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM-FPCA’93-6/93 /Copenhagen, DK

e 1993 ACM O-89791 -595-XJ931000610’1 79... SI .50

explicitly: stack and heap overflows, read and write barri-
ere (for incremental [3] and generational [10] garbage collec-
tion), and type errore and range errors. This classification
depends on the capabilities of the hardware and other im-

plementation constraints. In principle all interrupts could
be detected explicitly and it is mainly for performance rea-
sons (but sometimes for simplicity) that they are detected
implicitly. Stack overflows can for example be detected im-
plicitly by placing an invalid guard page at the stack’s limit.
This however may be expensive or overly burdensome to do
for a multitasking syetem which must maintain several small
stacks.

There are other reaaons why explicit detection may be

preferable to implicit detection. Implicit detection is less
portable because the trapping mechanism varies from pro-
cessor to processor. Portability can be increased somewhat
by relying on standard libraries such as the UNIX signal .h

routines but this increases the cost of each interrupt and it
only gives access to the most common types of interrupts.

Another problem with implicit detection on stock hard-
ware is the high coet of handling an interrupt. Current

trap architectures enter kernel mode to process the inter-
rupt. This requires that the processor’s state (all of the
registers or some significant eubset) be saved and later re-
stored. If the trap handler is in user space, two additional
transitions between user and kernel space are needed. Ex-
plicit detection has a much lower cost. The main reasons
are that control remains in user space, the call to the in-
terrupt handler can be open coded and/or specialized, and

a minimum number of registers have to be saved (since the
compiler knows which registers are live and possibly which
are clobbered by the handler). Unfortunately, the cost of

detecting the interrupt (Tdetect) applies to all potential in-
terrupt points. Explicit detection will only be more efficient

than implicit detection if interrupts are sufficiently frequent
to make the following inequality true

Tdet..t < p(TamPticat - ‘TexP[icit)

where p ie the probabdity that an interrupt is detected, and

Tamp{acat and Te$pl,.~t are respectively the times to handle
the interrupt in each approach. As a concrete example for
synchronous interrupts, aasume that an arithmetic opera-
tion has to be checked for overflow and that a single “branch
on overflow instruction cam detect this (i.e. Td=tect = l),
Assuming TtmPlic$t – Te=p~,c~t is 100 instructional, explicit

1 Johnson [8] reports a cost of 106 instructions on the SPARC

to take an overfiow trap on the TAD DccTV instruction, This cost

179

detection will be preferable if p >.01, that is if there is an
overflow at least once out of every 100 times the arithmetic

operation is executed.

1.2 Asynchronous Interrupts

The handling of asynchronous interrupts is an issue in many
languages and systems but this paper looks at the issuesin
the context of a Lisp system because Lisp stresses many

problems (e.g. garbage collection and small functions). The
methods described here are however applicable to other lan-
guages.

Because they can be raised at any point in the program,
asynchronous interrupts pose special problems.

1.2.1 Critical Sections

To support garbage collection, Lisp systems must maintain
a memory state that can be parsed by the garbage collec-
tor. However, the system’s state can temporarily become
inconsistent in the middle of some code sequences. Storing
a 64 bit pointer into z might for example translate into a
sequence of two 32 blt store instructions. Since immediately
after the first store z does not contain a valid pointer, the
system must insure that z is not accessed, either explicitly
or by the garbage collector, before the second store is per-
formed. Other cases where the system potentially enters
an inconsistent state include: updating system structures,
saving Lisp objects in locations not scanned by the garbage
collector, and saving non Lisp objects in locations scanned

by the garbage collector (e.g. when clearing or extracting a
pointer’s type tag, and “unboxing” numbers). Interrupts are

a problem because they can not be processed in an inconsis-
tent state if the interrupt handler might call the garbage col-

lector or otherwise access the part of the state which is incon-
sistent. This is a definite possibility y if the interrupt handlers
are written in unrestricted Lisp or if the system supports
user interrupts (for entering a break loop) or preemption in-

terrupts (for multitasking). Either the system is carefully
designed to never enter inconsistent states (which precludes
a number of compiler optimizations), or the code sequences
are protected within uninterruptible critical sectionsz.

When interrupts are detected implicitly, a simple imple-
mention of critical sections is to inhibit interrupts for the
duration of the critical section. This can be done by sur-
rounding it with a pair of instructions to disable and enable

the interrupts. Interrupts raised during a critical section will
get handled when the interrupts are reenabled at the end of
the critical section. This approach suffers from a high over-
head for the added disabIe/enable pairs but the overhead
can be reduced somewhat by using a single pair around a
grouping of critical sections.

Techniques that completely avoid the overhead of dis-
able/enable pairs do exist. Maclisp and Lucid Common Lisp
keep the location of all critical sections in a table. When

an interrupt is raised, the address of the interrupted in-
struction is looked up in the table. If the interrupt was
raised inside a critical section, the rest of the critical section

is first executed and then the interrupt handler is called.

does not account for the processing of the overflow, so T*mP,* ~Zt –

‘e?’%=”
will be roughly 100 instructions.

Some systems support user specified cr}tical sections. However,

only critical sections that span a few instructions are considered here

since this functionality is sufficient to support user specified critical

6ecti0ns.

Maclisp achieves this by single stepping the code to the
end of the critical section (by the use of the PDP-10’s XCT
instruction)3. Lucid Common Lisp uses this strategy for the
internal subroutines called by compiled code [14]. T [9] has a

slightly different zero cost strategy that does- not use tables.
When an interrupt is raised, the continuation is modified so
that soon after the critical section is finished the interrupt
handler is called. Another strategy [1], designed specifically

for the problem of allocation in a multitasking system, also
single steps the interrupted code but not on every interrupt.
Instead, it is the garbage collector which single steps each
task if its program counter indicates that it is in the middle

of an allocation.
When interrupts are detected explicitly, critical sections

are easy to implement. The compiler simply has to insure
that interrupt checks are only generated in “safe” places

(i.e. outside critical sections).

2 Polling

The biggest issue with explicit detection of asynchronous

interrupts is the placement of the interrupt checks. Placing
them after every instruction (outside critical sections) would
clearly be too expensive. A more efficient approach consists
of putting interrupt checks at specific places in the code so
that interrupts are checked, or polled, periodically.

A few systems use polling for asynchronous interrupts
(e.g. Gambit [5], MIT-Scheme [12], MultiScheme [11], Alle-
gro Common Lisp, and SML/NJ [2]). Gambit is a Scheme
system with multiprocessing extensions taken from Multil-

isp [7]. Asynchronous interrupts are used to distribute work
among the processors by dynamic partitioning. Idle pro-
cessors send ‘work request” interrupts to other processors
which must respond with a task to run or no task. Polling
was chosen because of the high frequency of work request
interrupts when programs use fine grain parallelism and be-
cause it is important to answer work requests quickly to
minimize the idleness of the processors.

In theory, the compiler could arbitrarily reduce the polling
overhead (Opo ~1) by decreasing the proportion of interrupt

checks executed with respect to the normal instructions exe-
cuted by the program. If all instructions take unit time then

OP.ll a ~PO~Z/Nwastr, where NpO// is the number of inter-
rupt checks executed and N~n~tr is the number of normal
instructions executed. This strategy lowers the frequency of
interrupt checking and consequently incre~es the average
latency of interrupts (i.e. the time between the raising of
the interrupt and the handling of the interrupt). Average
latency (L) and overhead are inversely related by

~ = Npoll + Ntn3tr 1

Npoll
=1+— Opel{

Here latency is expressed in number of instructions. To
account for non-unit time instructions, latency can be ex-

pressed in units of time (or number of machine cycles). Thk
leads to the definitions

3 The actual mechanism used in MacLisp is even more general [13].

It allows annotations on the critical sections that specify whether

interrupts should: be ignored, be deferred to the end of the critical

section, restart the critical section, or invoke a special handler,

180

~ _ TPO1l + T,mw
.,

Jvpoll
(define (for-each f 1)

(if (null? 1)

where Tpoll is the total time spent on interrupt checks and

Tin,t, the time spent on normal instructions. If an interrupt
check takes k time units on average then L == k(l + &).

To simplify the d~cussion, all instructions will be ass~-rned
to take unit time.

3 The Problem of Procedure Calls

Although polling seems simple enough to implement, there
is a complication. Normally, programs are not composed

of a single stream of instructions. If this were the case the
compiler could simply count the instructions it emits and
insert an interrupt check after every so many instructions.
Branches and procedure calls can alter the flow of control in
unpredictable ways and so, it isn’t clear how the compiler
can achieve a constant number of instructions between in-
terrupt checks. A reasonable compromise is to ask of the

compiler to emit interrupt checks such that a given latency
(L~ac) is never exceeded.

3.1 Code Structure

Before exploring the problem further, it is convenient to
introduce a formalism to describe the structure of a proce-
dure’s code. The code of a procedure will be represented by
a graph of basic blocks of instructions. There are two spe-
cial types of basic blocks: entry points and return points.

A procedure hss a single entry point and one return point
for each procedure call in subproblem position.

Branches are only allowed aa the last instruction of a bs
sic block. Four types of branches exist: local branches (pos-
sibly conditional) to other basic blocks of the same proce-

dure, tail calls to procedures (i.e. reductions), non-tail calls
to procedures (i.e. subproblems), and returns from proce-
dures. Local branches and non-tail calls are not allowed to
form cycles and thus they impose a DAG structure to the
code. Following Scheme’s convention, it ia assumed that
loops are always expressed with tail calls.

Note that subproblem and reduction calls always jump
to entry points and that procedure returns always jump to
return points. These restrictions are important to remember
because they simplify the analysis of the control flow.

Figure 1 gives the graph for the procedure for-each
which contains all four types of branches. Returns and tail

calls have been represented with dotted lines because they
do not correspond to DAG edges. Solid lines are used for

subproblem calls to highlight the fact that, just like local
branches, it is known where control continues after the pro-

cedure returns (if it returns at all). The generality of the
DAG is only needed to express the sharing of code. For the

moment, it is sufficient to make the simplifying assumption
that the DAG haa been converted into a tree by duplicat-
ing each shared branch. The handling of shared code is
described in Section 6.

A necessary condition for any polling strategy is that
an inline sequence of more than L~az instructions is never

generated without an intervening interrupt check. The com-
piler can exploit the code structure for this purpose. A lo-

cally connected section is any subset of the basic blocks that
is connected by local branches only (for example, the three
basic blocks at the top of Figure 1 or the bottom one). For
any instruction 1 in a locally connected section, it is easy

*f
(begin

(f (car 1))
(for-each f (cdr l)))))

for-each----- ----------------
t
I
1
1
1
1
1

i
t
1
I
1
t
I
I
1
1
1
I

!=?
(null? 1) ‘“ “ “

~ e]

. . I

1
1
I
I
1
1
1
1
1

Ifi------- “ :
1.

L -----.-~ . I
.!

E

(Cdr 1) : [
. ,

I
L ------- ------ ------ -- J

i

Figurel: The for-each procedure andite corresponding
code graph.

to determine what instructions are on the path to 1 from
thesection’s root. These instructions areexactly those that
are executed at runtime before 1. Thus, for any instruction
in a locally connected section, the compiler can tell how far
back thelast interrupt check occured (assuming there is one
on the same path from that section’s root). The number

of instructions that seperate an instruction from the pre-
vious interrupt check is called the instruction’s delta. For

instructions that are not preceded by an interrupt check in
the same section, the definition of delta will vary according
to the polling strategy. When the delta reaches Lmm, an
interrupt check is inserted by the compiler before the in-
struction. If thk is in the middle of a critical section, the
compiler must move the interrupt check to the end (or be-
ginning) of thecriticrd section.

3.2 Call-Return Polling

Polling strategies differ in how the transition between lo-

cally connected sections is handled. CaJLreturn polling is a
simple strategy that consists of putting an interrupt check

as the very first instruction of each section’s root. Since the
root of a section is either the entry point of the procedure

or the return point of a subproblem call, this corresponds to

polling on procedure call and return.

At first glance, polling on return does not seem neces-
sary since a procedure ia bound to get called at some point.
However, this would mean that there is no upper bound on
the interrupt latency because it is possible to build a con-
tinuation that does not call any procedure for an arbitrarily
long time. For example, the following procedure does not
call any procedure during the unwinding of the recursion.

(define (length-even? lst)
(i:f (and (pair? 1st) (length-even? (cdr 1st)))

#t))

181

u --------------
44

(define (make-person name age gender)
(vector name age gender))

(define (person-nine X) (vector-ref x O))
(define (person-age x) (vector-ref x 1))
(define (person-genderx) (vector-ref x 2))

(define (sum vect 1 h) ; sum vector from 1 to h
(if (= 1 h)

(victor-ref vect 1)
(lete ((mid (quotient (+ 1 h) 2))

(lo (sum vect 1 mid))
(hi (sum vect (+ mid 1) h)))

(+1o hi))))

Figure 2: Twoinstances of short lived procedures.

There area fewvariations ofcs.ll-return polling. The in-
terrupt check at the return point can be removed if checks

are put onall return branches. Similarly, the interrupt check
at the entry point can be replaced by checks on branches to
procedures (both tail calls andnon-ta.il ca.lls). The four pos-
sible variations give equivalent dynamic behavior (i.e. same
number of interrupt checks executed) but one maybe prefer-
able to the others if it yields more compact code. This de-
pends on the particular code generation techniques used by

the compiler and the programs being compiled. Compact-

ness ofcodeis not ablg issue here so it won’t reconsidered
further.

4 Short Lived Procedures

Unfortunately, call-return polling has poor performance in
certain circumstances. The worst case occurs when proce-
dures are short lived, that ia they return shortly after being
called. At least two interrupt checks are performed per pro-
cedure call in subproblem position (once on entry and once
on exit) and one if it is a reduction. This is a significant
overhead if the procedure contains few instructions. In lan-
guages that promote theuseof large proceduresthk would

not be a serious problem, but in Lisp it is common tostruc-
ture programs into several short procedures.

Two instances of this style, typified by the procedures in
Figure 2, are the implementation of data abstractions and
divide and conquer algorithms. In blnarydivide andconquer
algorithms, at least halfofthe recursive calls correspond to
the base case. If the algorithm is fine grained, such as the
procedure sure, the overhead of polling will be noticeable
because alltheleafca.lls are short lived.

The problem with call-return polling is that it doesn’t
take the structure of the program into account. If it is
known that a procedure P is always called when delta is
equal to n, then the compiler could infer that upon entry
to P, delta is n. This would introduce a “grace period” of

Lm.x – n instructions at l“S entry point during which in-
terrupt checks are not needed. A similar statement holds
for return points. Note that this yields a perfect placement
of interrupt checks if it is carried out at all procedure en-
try and return points. Interrupt checks would occur exactly
every Lmaz instructions.

A more realistic solution is needed to handle the case
where procedures and return points are called in different

contexts. A simple extension to the previous method is to
use m instead of n, where m is the maximum delta of all call
sites to P (and similarly for return points). This “maximal

Rnl lFl[m-km

\

.; ”4 P+”:..”’””” I
\ /pI----------------’

Interrupt checks

Figure 3: The maximal delta method.

delta” method is illustrated in Figure 3 where dark rectan-
gles are used to represent interrupt check instructions. This
is not an ideal solution for two reasons. First, it forces all

control paths through P to have an early interrupt check
(in P) if just one call site to P has a high delta. It would
be much better if each procedure call “paid it’s own way”,
meaning that interrupt checks should be put on the call sites
with high deltas. Not only would this improve P’s grace pe-
riod, it would put the interrupt check where it causes the
led overhead (because a high delta is a sign of a high num-
ber of normal instructions)4.

A second shortcoming of this solution is that the source
and destination of procedure calls has to be known at com-
pile time. This information is not generally available. One
could reasonably argue that with the use of programmer
annotations and/or control flow analysis the destination of
most procedure calls could be inferred by the compiler for
t ypicrd programs. However, the destination of returns is
harder to determine because it would require a full dataflow
analysis of the program and in general a procedure has a
number of possible points to return to. The existence of
higher order functions is another source of difficulty.

5 Balanced Polling

ThE section presents a general solution that does not rely
on any knowledge of the control flow of the program. The
method could be extended with appropriate rules, such as
maximal delta, to better handle the cases where control flow
information is available, but this is not considered here.

The idea is to define polling state invariants for procedure
entry and exit. The polling strategy expects these invariants
to be true at the entry and return points of all procedures
and consequently must arrange for them to be true at pro-
cedure calls and returns.

Specifically, the invariant at procedure entry is that in-
terrupts have been checked at most Lmax – E instructions
ago. Here E is the grace period at entry points and is con-
stant for all procedures. In other words, delta is defined
to be Lmaz - E at entry points. Delta now represents an

upper bound to the distance from the last interrupt check,
The invariant at procedure return is more complex. Elthcr
delta is less than E or, the path from the entry point to the
return instruction is at most E instructions. These invari-

ant are shown in Figure 4. Procedure P has two branches
that illustrate the two cases for procedure return. Note that

a procedure can be exited by a procedure return as well as

4 This assumes that all paths to P are equiprobable

182

~m------------t
instructions

I
I I

P*---------------::,---;:-- ------------,
t

i ~“
t
t ‘i------ ~entryptint ~
I
1
1
I
1
1
1
1
I
1
I
1
1
1

p-+
at most E
instruction

.rl.~

1
1
!
1
1

I
1
1
I

procedure j

return ;
I

I i I
I I
I 1
1 1
I + 1
I 1
I --

~~1 1

i at most E
1
1

1.
I mstructio

1
1

I 1-. procedur~
1 I
I return “ I
1------------- - - - - -- -- ---- > . - - - ----- - -c

; ;

Figure 4: Procedure return invariants in balanced
polling.

a reduction call. For now, reduction calls will be ignored to
simplify the discussion.

5.1 Subproblem Calls

These invariants have important implications. To begin
with, short lived procedures are handled well because there
is no need to check interrupts on any path that returns
shortly without a call to another procedure (i.e. with less
than Enon-call instructions). Th~corresponds tothe right-
most path in Figure 4.

Moreover it allows the delta at return points to be defined
as~plus thedelta forthecorresponding ballpoint. This can

be confirmed by considering the two possible cases. Assume
procedure PI does a subproblem call to procedure Pz which
eventually returns back to PI via a procedure return in P2:

s. bp,. blexn Pr=.d--=
C*U

PI ~ P2 - PI

Either the last interrupt check waa in PZ, so by definition
delta at the return point (in PI) is less than E. Alterna-

tively, Pz was short lived and didn’t check interrupts, so
there are at most E instructions that seperate the call site
(in PI) from the return point (in PI). As far sa polling is
concerned, a procedure called in subproblem position can be
viewed w an interrupt check free sequence of E instructions.
The compilation rule here is that if delta at a call point ex-
ceeds L max - E then an interrupt check ia inserted at the
call.

This rule means that up to lLm~ /Ej subproblem pro-
cedure calls can be done in sequence without any interrupt

checking. To see why, consider the scenario where the first
call is immediately preceded by an interrupt check. At the

return point, delta is equal to E. If the instructions for argu-

ment setup and branch are ignored, delta at the nth return

point is n x E. Only when this reaches Lma is an interrupt
check needed.

5.2 Reduction Calls

As described, the polling strategy does not handle reduction
procedure calls (tail calls) very gracefully. The case to con-
sider here is when a subproblem call is to a procedure which
exits via a series of tail calls, finally ending in a procedure

return:

.-bproblem r.dnctim reduction P.o..dU..

An interrupt check must always be put at a reduction call
point to guard against the case where the called procedure
returns shortly without checking interrupts (sa in Pn_I call-
ing Pn). Note that the return point in P1 can have a delta

as low as E. Note also that P. can execute aa many aa E

interrupt check free instructions before returning to the re-
turn point in PI. Thus, it is not valid for P.-1 to jump to
Pn with a delta greater than O because this might violate

the polling invariant at the return point in PI.
The treatment of reductions can be improved by intro-

ducing a new parameter (R) and consequently adjusting the
polling invariants to support it. R is defined as the largest

admissible delta at a reduction call. Thus, an interrupt
check ia put on any reduction cdl whose delta would other-

wise be greater than R. The same polling behavior aa before
is obtained by setting R to 0. The polling constraints for
reduction calls can be relaxed by increming the value of R.

R is at most Lma= - E because a reduction call might be
to a procedure that doesn’t check interrupts for as many as
E instructions.

A new invariant for return points has to be formulated
to accommodate R. The delta at return points must now be
at lesst E + R to account for the case explained previously.
That is, on return to PI there could be up to E instructions
in P. plus as much as R instructions at the tail of Pn_l since
the last interrupt check. When the compiler encounters a
subproblem procedure call it sets the delta at the return
points to E plus the largest value between R and the delta
for the corresponding call point. Of course, if this value is
greater than L~az an interrupt check is first put at the call
site and the delta at the return point is set to E + R. The
introduction of R also makes it possible to relax the invariant

for procedure returns. Since the delta for return points is
at least E + R, a procedure return’s delta as high aa E + R

can be tolerated without requiring an interrupt check. With
these new invariants, there can be up to [(LmaS - R)/E]
subproblem procedure calls in sequence without interrupt
checks. This polling strategy will be called balanced polling.

A summary of the compilation rules for balanced polling is
given in Figure 5.

The two constants E and R must be chosen carefully
to achieve good performance. Small values for E and R
increase the number of interrupt checks for short lived pro-
cedures and tail recursive procedures respectively. On the
other hand, high values increase the number of interrupt

checks in code with many subproblem procedure calls (e.g. re-
cursive procedures). Choosing E = R = \.Lmaz /k] is a

183

Location Action

Entry point A + Lma$ – E

Non-branch if (A z ham - 1) then
instruction add interrupt check

A-O

AtA+l (for next instruction)

sum
~------ ------- ------- -,
I
I

I (= 1 h)

I

I

I

I

I

I

I

I

I
I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I
I
I
I
I
I
I
I

I
I

t ,/ \ I
Subproblem if (A z Lmax - E) then
call add interrupt check

A+O
A +- E + max(R, A) (for return point)

I

I \ .
Y l(vector-refl I(quotlent

U=w-lw,~
I I I IReduction if (A z R) then

call add interrupt check I

I

I

I

I

I

I

I

t

SW-
I

t

---- ----
I

L---- ----J

=

Procedure if (A ~ E + 1?) and there are interrupts

return on path from entry point then

add interrupt check

Figure 5: Compilation rules for balanced polling. I

I I t

SW.––- -----
I

I J
I
I

I

I

~ ‘E&I

reasonable compromise and a value of k = 6 gives good per-
formance in practice. This suggests that there are typically

less than 6 subproblem procedure calls per procedure in the
benchmark programs (see Section 8).

I I 1

1

l--—-.--$- -- —---- -—. —— --- -,

T T
5.3 Minimal Polling

The choice of L~4~ is also an issue. A high Lrnac W~
give a low polling overhead. However, it iS important to
realize that there is a limit to how low the polling overhead
can be made by increasing the value of Lmm. Th~ is due

to the conservative nature of the strategy. Whatever the
values of L mar, E and R are, at le~t one interrupt check is

generated between the entry point and the first procedure
call. Delta is Lmar – E on entry to a procedure, so clearly
the first call (reduction or subproblem) must be preceded by
an interrupt check. Similarly, there is at least one interrupt
check between any return point and the exit of the procedure
(return or reduction call) because delta at any return point
is at least E + R. These two types of paths are the only
ones that are necessarily part of any unbounded length path.
Thus, it is sufficient to have one interrupt check on each
of these paths to guarantee that all possible control paths
have a bounded number of instructions between interrupt
checks. This minimal polling strategy is useful because its
overhead is a lower bound that can be used to evaluate other
techniques.

An example of minimal polling for the procedure sum

tr-sum
---- —--- ---- ---- ---- --—
I I

I
I

I

I

I

!

I

I
I

1
I
I

I

I

I

I

I

L -- ----- ---- ---- ---- ---J

(define (tr-sum vect s i)
(if (< i O)

s
(tr-sum

and the tail recursive variant tr-sum is presented in Fig- vect
(+ s (vector-ref vect i))

(- i l))))
ure 6. For the call (sum v 1 h) there are exactly 2 x (h – /)
interrupt checks executed or nearly one interrupt check per
procedure call (assuming h – 1 + 1 is a power of two). By
comparison, checking interrupts at procedure entry and exit
would require two interrupt checks per procedure call. How-
ever, for the tail recursive procedure tr-sum both methods
are essentially equivalent with one interrupt check per iter-
ation.

It is interesting to note that balanced polling is more

Figure 6: Minimal polling for the recursive procedure
sure and a tail recursive variant.

184

general than minimal polling and call-return polhng. These
can be emulated by judiciously choosing E, R and L mar.
Minimal polling is obtained when O < E = R < Lmaz
(i.e. E and R are arbitrarily large and L~~ is arbitrar-

ily larger). An interrupt check is put at the first cdl and
another one is put at the return or reduction call that fol-

lows the last return point. Call-return polling occurs when
O= E< R= Lmox. This places interrupt checks at all
entry points and return points.

6 Handling Join Points

It has been assumed that the code of procedures is in the
form of a tree. However, the compilation of conditionals

(i.e. and, or, if and cond) in subproblem position introduces
join points that give a DAG structure to the code. Certain
optimization techniques, s,uch as common code elimination,

can also produce join points to express the sharing of iden-
tical code branches. Join points can be handled with the

maximal delta method. That is, the delta at the join point
is the maximum delta of all branches to the join point.

7 Polling in Gambit

Polling is a general mechanism that can serve many pur-
poses. Gambit is a Lisp system for shared memory multi-
processors. Gambit uses polling for

Stack overflow detection

Preemption interruption (for multitasking)

Inter-processor communication (for work distribution)

Inter-task communication (for killing tasks)

Barrier synchronization (e.g. for synchronizing all pro-
cessors for a garbage collection and to copy objects and
load code to the private memory of every processor)

A special technique is used to check all these csaes with
a single test. The interrupt flag is really a pointer that is
normally set to point to the end of the area available for
the stack. Note that because stack overflows are detected
asynchronously, the stack extends a little further than this
limit. An interrupt check consists of comparing the flag
to the current stack pointer, and to jumping to an out of
line handler when the stack pointer exceeds the limit. A
processor can be interrupted by setting the flag to a value
that forces this situation (e.g. O). The interrupt handler then
uses some other flags to discriminate between the possible
sources of interrupt. SML/NJ [2] uses a similar approach
based on the heap allocation pointer.

Although it can be done with a single test, the inter-
rupt check may still be relatively expensive. Because all
processors must have access to a processor’s interrupt flag,
it is located in shared memory (which can’t be cached eas-

ily). Increasing LmG= is not a viable solution because the
polling frequency can’t be lowered beyond a certain point.
To provide a finer level of control, interrupts can be checked
intermittently. Polling instructions generated by the com-

piler represent “virtual” interrupt check points and an ac-
tual check of the interrupt flag occurs once every n virtual

checks. This is easily implemented by a private counter that
is decremented at every virtual check. When it reaches zero

it is reset to n and the interrupt check is performed. The
average cost of an interrupt check will thus be the cost of

updating and checking the private counter plus l/nth the
cost of checking the interrupt flag.

An interesting optimization occurs here. Balanced polling

hss a tendency to put the interrupt checks at branch points.

An interrupt check itself involves a branch instruction so in
many cases it is possible to combine the two branches into

a single one. Moreover, several machines have a combined
‘decrement and branch” instruction that helps reduce the

cost even further. All these ideas are implemented in Gam-
bit. Below is an example showing the M68020 assembly code
generated by Gambit for the tail-recursive procedure last.
The boxed part is the interrupt check sequence (note that

n = 10 and that register a5 always contains a pointer to the
stack limit pointer).

(define (last lst)
(let ((rest (cdr lst)))

(if (pair? rest)
(last rest)
(car lst))))

LI : ; entry: dl=lst & aO=ret adr

MOV1 dl, al ; rest <- (cdr lst)
movl ai@- ,d2

btst d2 ,d7 ; (pair? rest)
bne L2

movl d2 ,di ; lat <- rest

dbra d6 ,Li ; decrement and test counter
moveq *9, d5 ; reset counter
cmpl a5~, sp ; is sp beyond the limit?
bcc L1 ; no interrupt if sp>=limit
jsr handler ; call interrupt handler

bra Li ; reduction call to last

L2 :
movl di, al ; result <- (car lst)
movl alQ, dl

jmp aO@ ; return

8 Results

To have a better idea of the polling overhead that can be
expected from these polling methods, it is important to mea-
sure the overhead on actual programs. Two situations are
especially interesting to evaluate: the overhead on typicaJ
programs and on pathological programs that are meant to
exhibit the best and worst performance.

Several programs and polling methods were tested. The
programs were compiled by Gambit in four different ways:
with no interrupt checks, with minimal polling, with call-
return polling and balanced polling. For balanced polling,

Lmaz was set to values from 10 to 90 and E and R were
set at lL ma= /6]. A value of n = 10 was used for polling
intermittently. The average runtime on ten runs was taken

for each situation. The overhead of minimal polling over
the program compiled with no interrupt checks is reported
in the first column of Table 1. The overhead for the other
polling methods is expressed relative to the overhead of min-

imal polling. Thus a relative overhead of 2 means that the
overhead is twice that of minimal polling.

The program tight, shown below, was designed to ex-
hibit worst-case behavior.

(define (tight n)
(if (> n O)

(tight (- n l))))

185

M:~.~ call-
return Balanced polling

Opoll polling Rel. OV. when E = R = [.Lmaz /6j and Lm.= k

Program (%) Rel. OV. 10 20 30 40 50 60 70 80 90

tight 83.9 1.0 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

unfolded 6.1 0.9 10.8 6.5 4.2 3.5 3.7 3.9 2.3 2.3 2.3

boyer 21.5 1.4 1.7 1.1 1.0 1.0 1.1 1.0 0.9 0.9 0.9

browse 14.7 1.1 1.6 1.1 0.8 1.0 1.7 1.2 1.0 1.0 0.9

Cpstak 10.9 1.2 1.9 1.5 1.2 1.0 1.1 1.0 1.0 1.0 1.1

dderiv 9.0 1.6 2.1 1.4 1,6 1.2 1.0 1.3 1.3 1.2 1.3

deriv 8.1 1.4 1.8 1.4 1.8 1.1 0.9 1.0 1.0 1.1 1.2

destruct 21.3 1.1 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

div 14.1 1.0 1.3 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0

puzzle 14.5 0.9 2.1 1.7 1.2 1.0 1.0 1.0 0.9 0.9 0.9

t ak 8.7 4.6 3.9 1.4 1.8 1.2 1.0 1.0 1.0 1.0 1.0

t akl 29.3 0.9 1.5 1.0 1.1 1.0 0.9 0.9 0.9 0.9 0.9

traverse 16.9 1.5 2.5 1.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9

triangle 3.9 3.7 6.0 6.0 3.2 3.8 2.4 2.1 2.3 1.0 2.0

compiler 14.4 1,8 2.3 1.3 1.1 1.0 1.0 1.0 1.1 1.0 1.0
conform 10.5 2.5 2.8 1.7 1.3 1.1 1.2 1.4 1.3 1.4 1.2

earley 6.4 1.5 2.3 1.6 1.5 1.0 1.1 2.1 0.8 1.1 1.2

peval 9.7 1.7 2.2 1.5 1.0 1.1 1.1 1.3 1.0 1.0 1.1

abisort 11.4 1.3 2.5 1.7 1.4 1.4 1.0 1.1 1.1 1.0 1.0

allpairs 4.4 1.0 3.9 2.6 2.0 2.0 2.0 0.5 1.8 1.0 1.0

fib 18.7 2.1 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

mm 4.7 1.1 3.0 2.7 3.0 1.6 2.2 2.2 0.8 0.9 0.9

mst 10.5 1.6 2.2 1.5 2.1 1.0 1.2 1.0 0.8 1.1 1.0

qsort 12.3 1.3 1.9 1.3 1.0 1.3 1.0 1.0 1.0 1.0 1.0

queens 15.2 1.4 3.0 1.5 1.5 1.5 1.4 1.3 1.3 1.2 1.3

rantree 11.4 2.5 2.2 1.2 0.9 1.4 1.1 1.3 1.0 1.0 0.9

scan 6.6 2.4 3.5 2.0 0.8 0.8 1.2 1.0 1.0 1.0 1,0

sum 11.8 1.8 2.5 1.4 0.7 0.5 0.9 1.0 0.8 0.9 0.8

tridiag 1.6 2.7 7.9 4.5 4.3 4.2 3.4 3.7 3.9 3.0 3.6

Table 1: Overhead of polling methods on benchmark programs.

186

It is a tight loop that doesn’t do anything except update
a loop counter. There are only two instructions executed

on every iteration: an increment and a conditional branch.
Interrupt checks will clearly add a high overhead to this.

For most polling methods the overhead is about 80%. In
the case of bsJanced polling with Lmm = 10 the overhead
is roughly twice that because two interrupt checks get added
to every loop.

The program unfolded is the same loop as tight but
unfolded 80 times. Thus, it is a long inline sequence of

80 decrements followed by one conditional branch instruc-
tion. The polling methods do well on this program (about
6% for minimal and call-return polling) because procedure

calls are relatively infrequent and it is easy to handle the

irdine sequence of instructions. As expected for balanced
polling, increasing Lmaz decreased the overhead, down to
about 1470. Lm~c would have to be greater than 90 to re-
duce the overhead to that of minimal polling (at L~~ = 90
there are two interrupt checks per loop).

The other programs are split in three groups. The first
group contains programs from the Gabriel benchmark suite
[6]. The second group contains more realistic applications
that have not been designed with benchmarking in mind.
They are fairly sizeable with at least 500 lines of code (15,000

for compiler). The last group contains parallel programs
taken from [4]. These programs are written in Multilisp

but were compiled as sequential programs (i.e. with FUTURE

and TOUCIi operations removed) to factor out the overhead
of supporting parallelism.

The results show that minimal polling outperforms csU-
return polling in nearly all cases. Sometimes by as much as a
factor of four, but by a factor closer to 1.7 on average. The
largest differences occur for fine grain recursive programs

(e.g. tak and fib) and programs with a profusion of data

abstraction procedures (e.g. conform). The performance of
balanced polling is rather poor for small values of Lmm, two
to three times the overhead of minimal polling when Lmaz =

10. However, balanced polling gives performance close to
minimal polling when Lmm is high. With Lm~ = 90 the

overhead ranges from 5% to 25%. The highest overheads

are for fine grain recursive programs. Overall, the average
overhead for balanced polling is about 15% for values of

Lmu higher than 50.

Acknowledgements

I wish to thank the following people for their help in un-
derstanding the interrupt handling mechanism of particular

systems: Guy L. Steele Jr. and Jonathan Rees for Maclisp;
Jon L. White for Maclisp and Lucid Common Lisp; David

Kranz for T; and Guillermo J. Rozaa for MIT-Scheme. I
also wish to thank the reviewers for their help.

References

[1]

[2]

[3]

A. W. Appel. Allocation without locking. Software
Practice and lkperience, 19(7):703-705, July 1989.

A. W. Appel. Compiling with continuations. Cambridge
University Press, 1992.

H. Baker. List processing in reaJ time on a serial com-

puter. Communications of the ACM, 21(4):280-294,
April 1978.

[4] M, Feeley. An EfFcient and General Implementation
of Futures on Large Scale Shared Memory Multiproces-

sors. PhD thesis, Brandeis University Department of

Computer Science, 1993,

[5] M. Feeley and J. S. Miller. A parsllel virtual machine
for efficient Scheme compilation. In Proceedings o,f the

2990 ACM Conference on Lisp and Functional Pro-
gramming, Nice, France, June 1990.

[6] R. P. Gabriel. Performance and Evaluation o,j Lisp Sys-
tems. Research Reports and Notes, Computer Systems
Series. MIT Press, Cambridge, MA, 1985.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

R. Halsteacl. Multilisp: A language for concurrent sym-
bolic computation. In ACM Trans. on Prog. Languages
and Systems, pages 501–538, October 1985.

D. Johnson. Trap architectures for Lisp systems. In
Proceedings of the 1990A CM Conference on Lisp and
Functional Programming, Nice, France, June 1990.

D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and
N. Adams. Orbit: An optimizing compiler for Scheme.
In ACM SIGPLAN ’86 Symposium on Compiler Con-
struction, pages 219-233, June 1986.

H. Lieberman and C. Hewitt. A real-time garbage col-
lector based on the lifetimes of objects. Communica-
tions of the ACM, 26(6):419429, June 1983,

J. S. Miller. Implementing a Schemc+baaed parallel pro-
cessing system. International Journal of Parallel Pro-
cessing, 17(5)} October 1988.

G. J. Rozss. Liar, an Algol-like compiler for Scheme.
S. b. thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technol-
ogy, January 1984.

G. L. Steele Jr. Private Communication, December
1992.

J. L. White. Private Communication, December 1992.

187

