Functional Video Games in the CS1 Classroom

Appears in:
Trends in Functional Programming 11" International Symposium
TFP 2010
Norman, OK, USA, May 17-19, 2010
Revised Selected Papers

LNCS 6456, Springer

Marco T. Morazan

Seton Hall University, South Orange, NJ, USA

morazanm@shu.edu

Abstract. Over the past decade enrollments in Computer Science un-
dergraduate programs have drastically dropped while simultaneously see-
ing demand for computer scientists in the job market increase. The reason
for this disconnect is, in part, due to the perception new potential stu-
dents have of programming as a dull activity requiring no creativity, very
little social interaction, and endless hours of coding in front of a mon-
itor. The question then is how can we capture the imagination of new
students and perk their interest in a way that gets them excited while at
the same time giving them a solid foundation in computer programming
and Computer Science. This article puts forth the thesis that develop-
ing video games using functional programming should be a new trend
in the CS1 classroom. The article describes the approach implemented
at Seton Hall University using video game programming and Felleisen
et al.’s textbook How to Design Programs. The first-year programming
curriculum is briefly described and how to get students interested in
programming through the development of a Space-Invaders-like game is
illustrated. The presented development gives the reader a clear sense of
how to use functional video games in the first semester classroom.

1 Introduction

Over the past decade enrollments in Computer Science programs have drastically
dropped up to 70% in some countries [13]. According to CRA’s most recent
Taulbee Survey in the United States and Canada, the number of Computer
Science and Computer Engineering newly declared majors has dropped from a
high around 24,000 in the year 2000 to under 14,000 in the year 2008 [14]. In
addition, the production of Bachelor’s dropped from a high of over 20,000 in
2002 to under 12,000 in 2009. The Taulbee Survey also suggests that retention
rates need to be improved. For example, in 2004 there were about 16,000 newly
declared majors and, four years later, in 2008 there were under 12,000 Bachelor’s
produced.



The drop in enrollment is occurring while seeing demand for computer scien-
tists in the job market increase. According to recent occupational employment
projections for 2008-2018, computer and mathematical occupations are expected
to grow by 22.2% [8]. This rate of growth is over twice as high as the average for
all occupations. Among the fastest growing occupations are computer software
engineers with demand for application developers expected to increase by 34%
and demand for systems software developers to increase by 30.4%. The data
clearly suggests that there is and there will continue to be a high demand for
Bachelor’s in Computer Science. In addition to the expected demand, trends
indicate that Computer Science majors are expected to be amongst the best
paid professionals (e.g., software architects rank 8" with a median salary of
US$117,000), and amongst the professionals with the best quality of life (e.g.,
software developers rank 4" with 59% stating that there job has low stress) [10].

Being a field projected to remain in high demand and promising the potential
for obtaining a high-paying low-stress job is not enough to attract students to
and retain students in Computer Science. This seems counter-intuitive at first
glance and can not solely be explained by the negative outlook caused by the dot
com bust and the recent down turn in the economy. It is necessary to assess the
perspective of students that enroll in the beginning courses. To this end, students
enrolling in the introductory Computer Science course at Seton Hall University
(the home institution of the author) have been interviewed over the past 8 years.
From 2002 to 2007 this course was taught using Java as the language of instruc-
tion following the typical syntax-based approach of most textbooks with little
emphasis on design and problem solving techniques. Uniformly across students,
regardless of whether or not they continued as Computer Science majors, the sen-
timent was that Computer Science and programming were boring and required
little or no creativity and social interaction. Programming was characterized as
spending endless hours in front of a monitor debugging code. These sentiments
were stronger in women which also exhibited lower retention rates. In 2008, the
introductory course was taken over by the author and taught based on Felleisen’s
et. al’s textbook How To Design Programs (HtDP) [4]. The outlook of students
improved as well as retention rates, but students still characterized most of what
they did as boring. Despite focusing on design and problem solving (instead of
syntax), students felt that there was nothing really interesting or special about,
for example, searching a list, computing the value of an integral, or sorting. The
bottom line was that students felt it required no creativity and everyone was
doing exactly the same thing and producing the same code. This sentiment to
some degree is not unlike what students in other disciplines like, for example,
Mathematics and Engineering face: the solution to a problem is the same for
all students. There is, however, a difference with Computer Science that may
signal why retention is harder. The typical assignment in Computer Science has
a component that assignments seen by students in other disciplines do not have.
Computer Science students must design, write, debug, and produce a working
piece of software. That is, they must build an artifact of their discipline. It is a
time-consuming process that beginning students in other disciplines do not have



to face. This is not to say that other disciplines do not offer challenging and en-
lightening exercises to their students, but rarely, if ever, are beginning students
in other disciplines asked to build an artifact of their discipline like beginning
Computer Science students are asked to do on a regular basis. Given that begin-
ning students can easily shop around and switch majors (at least in the USA),
this represents a challenge that must be faced creatively by Computer Science
departments to attract students to the major and to increase their retention.

The interviews with students at Seton Hall University identified one element
that can help attract and retain students. Students across the board, regardless of
whether or not they continued as Computer Science majors, qualified the design
and implementation of video games (using the DrScheme’s! universe teachpack
[3]) as very interesting, as requiring creativity, and as fun to work in groups. In
addition, students felt that requiring the design and implementation of a large
video game by the end of the semester truly brought everything that they had
to learn into focus which provided a sense of accomplishment and a sense of
satisfaction with majoring in Computer Science. In 2009, the delivery of the
introductory course was redesigned to incorporate more development of video
games as motivation.

This article advocates that the design of functional video games should be
a new trend in introductory Computer Science courses. Having beginning stu-
dents develop functional video games means that they are liberated from reason-
ing about state and the sequencing of statements, because the code that they
develop is assignment-free. Thus, students focus on how to design and imple-
ment a solution without having to focus on the overhead and dangers of using
assignment. Our experience suggests that this approach facilitates the introduc-
tion and the understanding of recursion which usually is a fundamental topic
in Computer Science that students struggle with in introductory courses. The
use of video games has the added benefit that it has a built-in creative outlet.
Students are able to customize their solutions to their personal preferences. The
choice of graphics used, the level of difficulty preferred for the game, and the
speed at which the game advances, for example, can vary from student to stu-
dent. This provides students with the sense that not all solutions to a problem
are the same and that they can creatively inject their own personality in the de-
velopment and implementation of a solution. The reader can contrast this with
the typical word problem found in a Mathematics or Engineering textbook. This
ability to offer students problems with a creative outlet ought to be leveraged to
engage, attract, and retain beginning students in Computer Science. The built-
in creative outlet that video game development and implementation offers, for
example, has proven an especially effective tool to make Computer Science and
programming interesting to female students. Among young female students, the
opportunity to be creative was the highest ranked characteristic. In contrast,
male students ranked the ability to create competitive games the highest with
creativity closely ranked behind it. Finally, the development of functional video
games provides the opportunity to make core lessons in Computer Science and

! DrScheme has recently been renamed DrRacket.



programming (e.g., design, recursion, sorting, and searching) relevant to the pop
culture students are an integral part of. Much of what they learn ceases to be
purely theoretical and can directly be applied to create something that not only
are they interested in, but are also excited about.

The article first outlines the topics taught in the introductory courses at
Seton Hall University and why the use of a functional language is ideal. The
article then demonstrates how the design and implementation of a functional
video game, specifically a Space-Invaders-like game, can be used to motivate and
teach students in CS1. The presentation aims to illustrate how functional video
games can be used in the first-semester classroom and to serve as a road map
that others can follow and adapt to their particular environment and students.
The presentation also aims to demonstrate how relatively easy it is to develop a
functional video game and to integrate functional video game development into
the CS1 classroom. Finally, the article concludes with a discussion of related
approaches and some conclusions.

2 Introduction to Computer Science and Programming

Introduction to Computer Science courses tend to focus on providing students
with a solid foundation in programming [13]. This characteristic is justified,
because teaching students about programming prepares them for the job market,
programming tends to attract more students (both those majoring and those not
majoring in Computer Science), and programming is a prerequisite for many
upper-level Computer Science courses [12]. The debate of what should and what
should not be included in an introduction to Computer Science and programming
rages on. Instead of engaging in the futile exercise of systematically analyzing
the list of potential topics to gain converts, the solution adopted at Seton Hall
University is outlined below. The reader can decide decide if the choices made
make sense for her institution and her environment.

It is noteworthy that this article is not advocating the presented methodology
as absolute or rigid. As Computer Science evolves, so will the technologies, like
video games, used to motivate students in introductory courses. The topics (e.g.,
structures, lists, and sorting) covered in such courses are also subject to change as
Computer Science evolves, but at a much slower pace than vogue technologies.
The primary lesson that should be drawn is that an interesting domain can
be used to make the delivery of a solid foundation in programming fun and
interesting for beginning students. Video game programming is such a domain
for the foreseeable future.

2.1 Topics Covered in CS1 and CS2 at Seton Hall University

At Seton Hall University, all students must complete four years of study to earn a
Bachelor’s degree. During this time, students must fulfill general requirements as
well as the requirements for their major. The Computer Science major requires
53-54 credits with the typical course being worth 3 credits and some courses being



worth 4 credits. During their freshman year (i.e., the first year), students are
expected to pass CS1 and CS2 which allows them to move on in their sophomore
year (i.e., their second year) to courses focusing on designing classes. During their
junior and senior year (i.e., their third and fourth years), students take upper-
level Computer Science requirements as well as Computer Science electives most
of which require programming.

It is our perspective that introductory Computer Science courses ought to fo-
cus on problem solving. Students should be empowered by helping them develop
skills that take them from a problem statement to a well-designed solution. The
emphasis is much more on designing the solution to a problem than the actual
implementation of the solution. Although being able to follow through with the
implementation of a solution is an important skill, it is the design of the solution
that makes the implementation possible. Furthermore, it is the ability to de-
sign a solution to a problem that makes a Computer Science education relevant
to other aspects of a student’s life. Stated simply, solution design skills can be
applied to problems beyond those solved using a computer and a programming
language, because they make the thinking process explicit.

In addition to developing problem solving skills, students must also learn
the rudimentary nomenclature of programming. At Seton Hall, there are two
courses, CS1 and CS22, that serve as the introduction to Computer Science and
Programming. Broadly speaking, CS1 covers the following topics (listed to make
the connection with HtDP’s Parts I-IV easy):

— Programming with primitive data (e.g., symbols, numbers, and pictures) and
primitive functions (e.g., symbol equality, addition, and geometric drawing
functions).

— Programmer defined functions and variables.

— Processing finite compound data (e.g., structures).

— Processing arbitrarily large compound data (e.g., structural recursion on
lists, trees, and natural numbers).

— Abstraction (e.g., elimination of code repetition and functions as values)

Broadly speaking, CS2 covers the following topics (listed to make the connection
with HtDP’s Parts V-VIII easy):

— Generative recursion (e.g., quicksort).

— Tteration (i.e., accumulative recursion and loops).

— State-based computations (i.e., design using assignment).
Distributed Computing (not a topic in HtDP).

Readers interested in a rationale for including the above topics in the curricu-
lum for CS1 and CS2 are referred to the appropriate sections in HtDP. The
abstraction techniques studied are specific to functional languages, but the fo-
cus is the reduction of errors by reducing code duplication. Students learn that
common programming patterns can be captured as functions to make code more
readable and less bug-prone. The distributed computing component introduces

2 These courses are actually called Design of Programs I and Design of Programs II.



students to networks, a pervasive technology today, and provides the opportu-
nity to design and implement a distributed application using the same language
and software students have used throughout their first year.

These introductory courses aim to provide the foundation needed for stu-
dents to go on and learn how to design solutions and write programs using
any programming language. In fact, the skills acquired are directly transferable
to designing programs using object-oriented languages such as Java. Although
teaching languages with Scheme-like syntax are used in these courses, the goal is
not teach students Scheme nor is the goal to make them functional programmers.
In the interest of absolute clarity, we are not teaching our students Scheme nor
do we advocate teaching beginning students Scheme. Scheme is a mature and
powerful programming language with native support for many advanced features
(e.g., continuations and hygienic macros) that are not addressed nor used in CS1
and CS2. Equally noteworthy is the fact that the emphasis is not on the syntax of
any particular programming language although, of course, students must learn
some Scheme-like syntax in order to implement solutions. Scheme-like syntax
may not seem natural to students on the first day of class (e.g., prefix instead of
infix notation), but it is useful in distinguishing Scheme from mathematics. Stu-
dents may analyze a problem off-screen using mathematics written using infix
notation, but must translate it into a programming language’s syntax to imple-
ment a program. This is a process that is common to program development in
general. One of the advantages of using Scheme-like syntax is that this trans-
lation is simple enough that it quickly becomes natural to beginning students
using HtDP. Other reasons for using Scheme as the core behind the employed
teaching languages are given in the preface of HtDP [4]. It is our estimation
that the foundation we provide enables students to go on to learn about pow-
erful abstractions provided by other languages (regardless of the syntax used)
such as, for example, monads in Haskell, objects and inheritance in Java, and
continuations and hygienic macros in Scheme.

In addition to the topics above, emphasis is placed on iterative refinement.
It is important for students to understand that designs, solutions, and imple-
mentations evolve through a continuous cycle of enhancements. This lesson is
a difficult one to convey especially when the programs students are asked to
develop are small. Large projects, like the design and implementation of a video
game, provide an excellent vehicle with which to emphasize iterative refinement.

3 The Functional and HtDP Advantages

The choice of a functional language for introductory courses can be controversial
for some faculty members and for some students. This article will not digress too
much into the objections raised by faculty members. These objections mostly boil
down to not teaching a language used in industry and not focusing on teaching
state-based problem solving. Teaching a particular language, even one used in
industry, should not be the goal of an introductory course. Mostly focusing on
teaching state-based problem solving fails to expose students enough to easy-to-



use skills in the design of solutions and programs. In fact, assignment is harmful
at the beginning. In our experience, students that start with state-based problem
solving find it very hard to design solutions or to understand solutions that
fail to mutate variables at every step. The sharp reader will have detected the
concept of step (and sequencing) introduced into this text all of the sudden.
This is precisely how students think of computation if they start with state-
based problem solving: programs are a collection of sequenced assignments. As
any functional programmer knows, nothing can be farther from the truth and
statements to this effect by students should not go unchallenged?.

3.1 The Functional Advantage

Liberating students from reasoning about state and the machine, as mentioned
before, is a formidable advantage offered by functional languages. Students are
allowed to think about how to solve problems and do not have to reason about
how to sequence mutations to solve a problem. They can build on their knowledge
of high school algebra to design functions which brings problem solving into a
domain that seems familiar to them. This approach has the added benefit that
it makes mathematics relevant for students [6], improves the grades of students
in mathematics courses [5], and builds on a natural synergy that more and more
looks like an endangered species in the CS curriculum.

Functional languages can also—but not always—present students with a min-
imal amount of syntax that needs to be learned in order to solve interesting
problems. Dynamically typed functional languages, for example, remove all syn-
tax requirements associated with types which are required by statically typed
languages. The observation is simple: the less time we spend discussing syntax
the more problem solving and design principles we can actually teach.

Finally, as pointed out by Felleisen et. al [4], if an interpreted functional
language is used, then Byzantine discussions about input and output are not
necessary. Students do not have to be bogged down with how to input and
output data—which has little or nothing to do with the solution to the problem
they are implementing. Once again, students are liberated from side issues and
allowed to focus on problem solving. Learning how to do I/O should not be a
prerequisite to learn the basics of programming nor to take your first steps into
the world of Computer Science.

3.2 The HtDP Advantage

An HtDP-based curriculum presents two major advantages for teaching intro-
ductory Computer Science and programming courses. The first is that it gives
students a road map to follow from a blank screen to a working solution. This
road map is based on what Felleisen et al. have coined the design recipe. A de-
sign recipe is a series of steps a student can follow in the design of a solution.

3 The author does not recommend challenging or trying to convince faculty members
that express such a view in open debate. Let your results speak for themselves.



In fact, there are several different design recipes all of which are variations on a
theme depending on the type of problem being solved or the type of data being
processed. The basic skeleton for developing a function for all the variations of
design recipes is:

. Problem analysis and data definitions.
. Stating the contract, the purpose, and writing the function header.
. Defining tests showing how a function should work.

=W N =

. Development of a function template (derived from the data being processed)
and an inventory of expressions that can be used to implement the function.

. Defining the function.

o Ot

. Running the tests and making corrections if necessary.

At the beginning, students find the use of the design recipe cumbersome es-
pecially when the programs/functions being designed are small. In fact, many
students feel it is overkill. It is important, however, to encourage them to de-
velop good habits by following the steps in the design recipe even if they can see
the solution before going through all the steps. The assignment of a non-trivial
problem as homework and grading how well students follow the design recipe go
a long way to bringing the point home.

The second major advantage an HtDP-based curriculum presents is that it
is tightly-coupled with the DrScheme programming environment. This environ-
ment comes with a series a successively richer subsets of Scheme-like languages
called the teaching languages. Each part of HtDP is associated with a teaching
language. The teaching languages make available just enough syntax for students
to learn to design solutions to the types of problems that they are being asked
to solve. This hierarchy of teaching languages allows for meaningful error mes-
sages to be generated for mistakes that would otherwise be hard to decipher by
a beginning student [4]. Our experience is that students suffer through much less
frustration when compared to Seton Hall’s old Java-based approach. In addition,
DrScheme also comes with a rich set of libraries/teachpacks that simplify the im-
plementation of solutions for different kinds of problems. One such teachpack is
universe which defines an interface for writing animations (both interactive and
non-interactive). Universe envisions an animation as a series of snapshots of an
evolving world. There is a clock that at every tick displays the next snapshot
of the world. Students must define the elements of the world and define func-
tions for computing the next snapshot of the world when the clock ticks or when
an external event, such as a keystroke or a mouse movement, occurs. Students
must also define functions for drawing the world and for detecting the end of the
animation. The code students develop can be functional (i.e., assignment-free)
and free of any concerns about coordinating the display of snapshots. Readers
interested in more details about the universe teachpack are referred to How to
Design Worlds [3].



& 3 B
k.
ek E
k£
k£
k£
% 33

@

Fig. 1. A snapshot illustrating an implementation of Aliens Attack.

4 Video Games in CS1

Armed with the design recipe and with DrScheme’s universe teachpack, instruc-
tors and (first-year) students can be ambitious and start developing a video
game starting on the first day of class. At the beginning, of course, the video
game is, shall we say, less than interesting. It lacks any real features video games
have, because students still do not know how to do very much. The promise
of developing a video game, however, is used to keep students motivated and
students are encouraged as the process of iterative refinement adds dimensions
to the game.

Our attention will now focus on illustrating how to motivate topics in the
CS1 curriculum by tying them in with the development of a Space-Invaders-like
video game that we shall refer to as Aliens Attack. The presentation will display
a series of different incarnations implemented during the iterative refinement
process. In the game there is a defender at the bottom of the screen that the
player may move left and right to shoot aliens. There are also one or more
aliens in a grid-like formation that are trying to reach the bottom of the screen—
presumably to conquer earth. All aliens move in the same direction—either left
or right—-and when an alien reaches the edge of the screen all aliens move down
and start moving in the opposite direction. The game ends when either all aliens
have been destroyed by the defender or an alien reaches the bottom of the screen.
Figure 1 displays a visual representation of Aliens Attack.

4.1 Aliens Attack v0.0

On the first day of class, the assumption is made that students have no back-
ground in programming. Therefore, they are stumped by the task of creating



(define HEIGHT 650)
(define WIDTH 900)
(define E-SCENE
(place-image (rectangle (* 2 WIDTH) (* 2 HEIGHT) ’solid ’yellow)
0
0
(empty-scene WIDTH HEIGHT)))

Fig. 2. The code for Aliens Attack v0.0.

a video game despite their enthusiasm to do so. They are told that the game
will be developed using iterative refinement—not all at once, but little by little as
they learn how to design programs. Nonetheless, the first version of aliens attack
is developed. It is simply an empty scene of HEIGHTXxWIDTH computer graphics
coordinates where the game is to be drawn and played. A sample is generated by
the code in Figure 2. Students may be a little disappointed with this first version,
but they are motivated to learn about defining constants, about primitive data,
and about how to place images in a scene. In addition, students are encouraged
to read the documentation to learn more about how place-image works. By the
second class, most students are proud to show how they have modified the color
and the size of the canvas to their liking. The stage is now set to learn about
primitive data and primitive functions.

4.2 Aliens Attack vO0.1

After gaining some programming experience with primitive data, students are
brought back to the video game. The first enhancements tackled are drawing the
defender in a scene and creating a defender in a new position. During problem
analysis, students quickly realize that the defender can be represented by a nat-
ural number, n, such that 0 < n < WIDTH—1. This natural number represents the
x coordinate of the defender. There is no need to represent the y coordinate nor
the image of the defender as variable, because they can be defined as constants.

To draw a defender, students realize they need as input a defender and a
scene and they need to return a scene in which the defender has been drawn
in the given scene. This analysis leads to their contract and drawing function
which may look as follows:

HHH DATA DEFINITION: A defender is a natural number, n,
HEHH such that 0 <= n <= WIDTH - 1

; EXAMPLE

(define OUR-HERO (/ WIDTH 2))

;33 draw-defender: defender scene --> scene
(define (draw-defender a-defender scn)
(place-image DEF-IMG a-defender DEF-HEIGHT scn))



DEF-IMG and DEF-HEIGHT are the constants for the image and the y coordinate
of the defender.

Naturally, the next task that students wish to tackle is getting the defender
to move using keystrokes. This provides an opportunity to introduce students
to conditional statements and booleans as the direction the defender moves in,
if at all, depends on keystrokes. Data analysis reveals that computing a moved
defender requires a defender and a direction* leading to a function to move the
defender:

;;; move-defender: defender string --> defender
(define (move-defender a-defender direction)
(cond [(string=7 direction "right") (+ a-defender DEF-DELTA-X)]
[(string=7 direction "left") (- a-defender DEF-DELTA-X)]
[else a-defender]))

DEF-DELTA-X is a constant representing by how much to move the defender with
each keystroke.

Testing the above function, however, reveals a bug. The defender can move off
the scene driving home early the importance of testing in software development.
Iterative refinement yields an improved function to move the defender:

;;; move-defender: defender string --> defender
(define (move-defender a-defender direction)
(cond [(and (symbol=?7 direction ’right)
(<= (+ a-defender DEF-DELTA-X) (subl WIDTH)))
(+ a-defender DEF-DELTA-X)]
[(and (symbol=7 direction ’left)
(>= (- a-defender DEF-DELTA-X) 0))
(- a-defender DEF-DELTA-X)]
[else a-defender])).

4.3 Aliens Attack v0.2

The next task is to introduce aliens each requiring an x and a y coordinate to
represent their position which motivates the need to represent finite compound
data. Such data is represented using structures. In this part of the course, some
students may stumble given that it is unlikely that they have studied functions
on compound data in any other course. Students start by studying a built-in
structure in DrScheme called a posn to represent a position in a scene. After
posn, students study how to define their own structures and how to design
functions for such structures.

A student’s first attempt to represent an alien will typically define a structure
that only contains posn. The experienced programmer will notice that a struc-
ture definition is unnecessary, but its elimination is an optimization that can

4 Represented as a string corresponding to a keystroke in DrScheme.



pursued as a future refinement. There is nothing inherently wrong with defining
an alien as a structure that contains a posn.

Using compound data requires the development of a function template and
an inventory of expressions that can be used to access and manipulate the com-
ponents of the compound data. For an alien in our video game, for example, the
results may be:

(define-struct alien (position)) ; where position is a posn
; EXAMPLE
(define ALIEN1 (make-alien (make-posn (/ WIDTH 2) (/ HEIGHT 2))))
; f-on-alien: alien —--> 777
(define (f-on-alien an-alien)
; inventory
; (alien-position an-alien) = the posn stored in an-alien
; (posn-x (alien-position an-alien)) = the x-coordinate of

; an-alien
; (posn-y (alien-position an-alien)) = the y-coordinate of
; an-alien

<the body of f-on-alien> )

This template can then be specialized by students to write functions to ma-
nipulate aliens akin to moving and drawing the defender. It is noteworthy to
point out that students are not hacking code nor are they developing code using
a blind trial and error strategy. Instead, they must think explicitly about the
structures they are manipulating and understand that their structures influence
the shape of the code they must develop.

Once students have some experience with structures and have written func-
tions to draw and move the defender as well as the alien, they are ready to
define a structure for the world and write the handlers for the first animation.
The world is a structure that captures the elements that can change. In our
video game there are three changing elements (so far): the defender, the alien,
and the direction (left, right, or down) the alien is traveling. This leads to the
following definition for world and its function template:

(define-struct world (def al dir))

; where def is a defender, al is an alien, and dir is a string
; EXAMPLE

(define INIT-WORLD (make-world OUR-HERO ALIEN1 "right"))

;f-on-world: world --> 777
(define (f-on-world w)
; inventory
; (world-def w) = the defender in w
; (world-al w) = the alien in w
; (world-dir w) = the string for the direction in w
; (alien-position (world-al w)) = the posn of the alien in w
; (posn-x (alien-position (world-al w)))



; draw-world: world --> scene
; Purpose: To draw the world
(define (draw-world w)
(draw-alien (world-al w)
(draw-defender (world-def w) E-SCENE)))

; process-key: world string --> world
; Purpose: To create a new world based on a keystroke
(define (process-key w k)
(make-world (move-defender (world-def w) k)
(world-al w)
(world-dir w)))

; next-world: world --> world
; Purpose: To compute the next world (after a clock tick)
(define (next-world w)
(make-world (world-def w)
(move-alien (world-al w) (world-dir w))
(cond [(and (at-edge? (world-al w))
(not (string=7 (world-dir w) "down"))) "down"]
[(and (over-r-edge? (world-al w))
(string=7 (world-dir w) "down")) "left"]
[(and (over-l-edge? (world-al w))
(string=7 (world-dir w) "down")) "right"]
[else (world-dir w)]1)))

; game-over?: world --> boolean
; Purpose: To determine if the game is over (i.e., the alien has landed)
(define (game-over? w)
(> (+ (posn-y (alien-position (world-al w))) ALIEN-DELTA-Y)
HEIGHT))

Fig. 3. Functions to manipulate the world in Aliens Attack v0.2.

; = the x coordinate of the alien in w
; (posn-y (alien-position (world-al w)))
5 = the y coordinate of the alien in w
<BODY OF f-on-world>)

The game requires four event handlers for the animation: one to draw the world,
one to process key strokes, one to compute the next world every time the clock
ticks, and one to detect the end of the game. The above template is specialized
by students to create the functions displayed in Figure 3 that serve as the event
handlers. The code displayed is fairly easy to understand and uses auxiliary
functions at-edge? to detect if the alien is at either the left or the right edge of
the scene, over-r-edge? to detect if the alien is at the right edge of the scene,
and over-1l-edge? to detect if the alien is at the left edge of the scene.



; DATA DEFINITION

; A list of aliens, loa, is either

;1. empty

; 2. (cons a 1), where a is an alien and 1 is a loa.

; f-on-loa: (listof alien) --> 777
(define (f-on-loa a-loa)
; inventory
; (first a-loa) = the first alien in a-loa
; (rest a-loa) = a-loa minus its first alien
; (f-on-alien (first a-loa)) = the 777 from applying f-on-alien
; to the first alien in a-loa
; (f-on-loa (rest a-loa)) = the 7?77 from applying f-on-loa to
; (rest a-loa)
(cond [(empty? a-loa) ...]
[else (...(f-on-alien (first a-loa))
...(f-on-loa (rest a-loa)))]))

; move-loa: (listof alien) string --> (listof alien)
(define (move-loa a-loa direction)

; inventory

; (first a-loa) = the first alien in a-loa

; (rest a-loa) = a-loa minus its first alien

; (move-alien (first a-loa)) = the first alien moved

; (move-loa (rest a-loa)) = the moved (rest loa)

(cond [(empty? a-loa) emptyl]

[else (cons (move-alien (first a-loa) direction)
(move-loa (rest a-loa)))]))

Fig. 4. Recursive data definition for a list of aliens, recursive template for a list of
aliens, and a specialization of the template to move a list of aliens in Aliens Attack
v0.3.

Finally, students must provide the handlers to the universe interface to run
the game. The syntax to do so is not cumbersome and easy to follow for students:

(big-bang INIT-WORLD
(on-draw draw-world)
(on-key process-key)
(on-tick next-world)
(stop-when game-over?))

4.4 Aliens Attack v0.3

Once students have a running video game with a moving alien and a defender
that responds to keystrokes, the desire to add multiple aliens and shooting ca-
pabilities quickly arises. Student analysis reveals that there can be zero aliens, if
all have been destroyed by the defender, or there can be one or more aliens that



still need to be destroyed. Thus, the introduction of multiple aliens motivates
the need for data of arbitrary size and leads to the study of lists (and other re-
cursively defined data definitions like trees). During this study, students design
and implement, for example, searching, sorting, accumulating (e.g., summing
the elements of a list), and filtering algorithms. Throughout, it is emphasized
that students exploit the structure of their data to determine the structure of
their code. For example, a self-reference in the data definition translates to a
recursive call in their function. In this manner, students learn quite naturally
how to exploit structural recursion.

Armed with some experience processing data of arbitrary size, students re-
turn to the design of the video game and create the recursive data definition
and function template for a list of aliens displayed in Figure 4. It is noteworthy
that students realize that a function that consumes an alien must be applied to
the first alien in the list and that a function that consumes a list of aliens must
be applied to the rest of the list. Furthermore, the reason for a recursive call
is not a mystery—the self-reference in the data definition for loa translates to a
recursive call-and students know in advance of writing any code that such will
be the case. Figure 4 also displays a specialization of the function template to
move a list of aliens. Students can now be charged with changing their definition
of the world structure to incorporate the list of aliens and to incorporate shots.
Such an exercise reinforces the lessons on designing structures as well as filtering
and list processing in general given that shots and aliens that are hit and shots
that go off the screen must be eliminated from the game.

4.5 Aliens Attack v0.4

The final component of CS1 introduces students to abstraction. At this point
in the course, students have added shots to their video games and will have
functions to move a list of aliens and to move a list of shots. Typically, a function
to move a list of shots will look as follows:

; move-los: (listof shot) —--> (listof shot)
(define (move-los a-los)
(cond [(empty? a-los) emptyl]
[else (cons (move-shot (first a-loa))
(move-los (rest a-los)))]))

Structurally, this function is similar to move-loa in Figure 4 and most students
grow tired of having to write similar code as this over and over. This presents
the opportunity to introduce students to abstraction using elimination of code
duplication and code reuse as motivation to create shorter programs. After an
introduction to abstraction, students return to the design of the video game and
re-implement as follows:

; move-loa: (listof alien) string --> (listof alien)
(define (move-loa a-loa direction)
(map (lambda (a) (move-alien a direction)) a-loa))



; move-list: (X --> X) (listof X) --> (listof X)
(define (move-list f a-list) (map f a-list))

; move-loa: (listof alien) string --> (listof alien)
(define (move-loa a-loa direction)
(move-list (lambda (a) (move-alien a direction)) a-loa))

; move-los: (listof shot) --> (listof shot)
(define (move-los a-los) (move-list move-shot a-los))

Fig. 5. Abstract function to move a list of X and concrete functions to move a list of
aliens and a list of shots.

; move-los: (listof shot) —--> (listof shot)
(define (move-los a-los) (map move-shot a-los)).

When seen side-by-side, students realize that these new functions are structurally
similar and apply the design recipe for abstraction to them. This process yields
the code in Figure 5. Students realize that the first function in Figure 5 is an
abstract function to move a list of anything which can be used in the development
of other video games and appreciate that it is short (i.e., one line of code), that
it is not recursive, and that it is easy to use. In fact, most students can not
believe how easy moving a list of anything is made through abstraction.

5 Related Approaches

There have been a several approaches to the use of video game programming
in conjunction with functional languages to motivate beginning students. The
developers of DrScheme and HtDP have described the technical implementation
of I/O in the universe teachpack and have outlined how to implement, both
non-distributed and distributed, small simulations based on that description [5].
Naturally, the work described in this article builds on the work done by the
developers of HtDP and the universe teachpack. In contrast, the work presented
in this article sets aside the technical discussion of I/O and presents a more
detailed road map for the actual use of video games in the CS1 classroom. In
essence, the work described in this article is for educators “in the trenches”
focusing on the actual deployment of a functional video game strategy in the
classroom. In addition to describing a larger more realistic application in a CS1
setting, the work described here closely knits together the use of video games in
conjunction with CS1 topics.

Soccer-Fun, developed using Clean, aims to motivate students by having them
write programs to play soccer games [1]. It has successfully been used in a
sophomore-level course aimed to teach functional programming to students with
imperative and object-oriented programming experience and in a high school



setting to attract students to Computer Science. The developers of Soccer-Fun
report no experience with it in CS1. Although soccer is the most popular sport
on the planet, it is unclear if such a platform is effective with students that are
not fans of the sport.

Yampa is a language embedded in Haskell used to program reactive systems
such as video games [2]. Yampa, in fact, has been used to implement a Space-
Invaders-like game. As Soccer-Fun, Yampa is mostly intended to help those al-
ready familiar with imperative/OO programming to learn functional program-
ming techniques. Both Soccer-Fun and Yampa, nonetheless, have been effectively
used to motivate students.

The use of Haskell itself to program a video game, inspired in the classical
game Asteroids, has also been reported successful at motivating students [9]. The
authors report that the popularity of their approach was due, in part, to the use
of animated graphics. Furthermore, the authors report that students made great
efforts to embellish their solutions with fancy graphics. This may be the earliest
indicator that providing students a creative outlet to personalize solutions to
problems is an important pedagogic technique in Computer Science education.
As with Soccer-Fun and Yampa, the scope of the efforts was to teach functional
programming.

Outside the realm of functional programming, Python is poised amongst the
most popular languages used to motivate students using games. Python presents
students with an interpreter for easy interaction, but is an object-oriented lan-
guage that naturally carries all the difficulties of designing and implementing
programs using assignment. Furthermore, textbooks using Python require al-
most immediately the use of assignment and looping constructs (e.g., see [7,
11]). Thus, programming quickly moves away from the familiar domain of high
school algebra.

6 Concluding Remarks

This article puts forth the thesis that programming functional video games
should become a trend in the CS1 classroom. The strongest proof that can be
presented for why this should be a new trend is two-fold. On one side, the reader
hopefully agrees that the development of functional video games is an imagina-
tive approach that is not beyond the scope of beginning students as evidenced
by the development presented in this article. On the other side, although not
quantified, we have the enthusiasm and interest in programming that develop-
ing video games sparks in students. It is the belief of the author that functional
video games can be an effective tool to once again make Computer Science an
attractive and popular major for beginning college students.

Unlike previous efforts in the classroom to use functional languages to pro-
gram video games, the goal is not restricted to teaching functional programming
to students with programming experience. Instead, the goals of using functional
video games are to motivate a student’s interest in programming and to pro-
vide a sound vehicle for the dissemination of a solid foundation in programming.



Essential to such an effort in the CS1 classroom is providing an interface with
minimal syntax and an easy to understand semantics. It is the expectation of the
author that the described development of a functional video game, using HtDP
and DrScheme’s universe teachpack, has demonstrated how easily a solid pro-
gramming foundation can be imparted to students using a domain they consider
fun and interesting.

Future work includes demonstrating how functional video games can be an
effective pedagogical tool for motivating and teaching generative recursion, ac-
cumulative recursion (i.e., iteration), state-based computations, and distributing
programming. The approach will assume that students have a foundation using
structural recursion as well as abstraction as outlined in this article.

7 Acknowledgements

The author thanks the plt-scheme and the plt-edu mailing list community for
the many frank and eye-opening discussions about teaching programming, about
HtDP, and about interesting programming projects for students. Special thanks
are extended to Matthias Felleisen and Shriram Krishnamurthi for frequently
and kindly engaging me in frank discussions about teaching programming to
beginning students. I trust that our public discussions on the mentioned mailing
lists have been mutually beneficial.

References

1. Peter Achten. Teaching Functional Programming with Soccer-Fun. In FDPE
’08: Proceedings of the 2008 international workshop on Functional and declarative
programming in education, pages 61-72, New York, NY, USA, 2008. ACM.

2. Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa Arcade. In
Haskell ’03: Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, pages
7-18, New York, NY, USA, 2003. ACM.

3. Matthias Felleisen, Robert Bruce Findler, Kathi Fisler, Matthew Flatt, and Shri-
ram Krishnamurthi. How to Design Worlds. http://world.cs.brown.edu/1/, 2008.

4. Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. How to Design Programs: An Introduction to Programming and Comput-
ing. MIT Press, Cambridge, MA, USA, 2001.

5. Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. A functional i/o system or, fun for freshman kids. In Graham Hutton and
Andrew P. Tolmach, editors, ICFP, pages 47-58. ACM, 2009.

6. Matthias Felleisen and Shriram Krishnamurthi. Viewpoint: Why Computer Science
Doesn’t Matter. Communications of the ACM, 52(7):37-40, 2009.

7. Andy Harris. Game Programming. The L Line, The Express Line to Learning.
Wiley Publishing, Inc., Hoboken, NJ, USA, 2007.

8. T. Alan Lacey and Benjamin Wright. Occupational Employment Projections to
2018. Monthly Labor Review, pages 82—123, November 2009.

9. Christoph Liith. Haskell in Space: An Interactive Game as a Functional Program-
ming Exercise. J. Funct. Program., 13(6):1077-1085, 2003.

10. Money Magazine and Salary.com. Best Jobs in America. Money Magazine, 2009.



11.

12.

13.

14.

Will McGugan. Beginning Game Development with Python and Pygame: From
Nowice to Professional. Apress, Berkeley, CA, USA, 2007.

The Joint Task Force on Computing Curricula. Computing Curricula
2001 Computer Science.  http://www.acm.org/education/education /educa-
tion/curric_vols/cc2001.pdf, December 2001.

CS2008 Review Taskforce. Computer Science Curriculum 2008: An Interim
Revision of CS 2001. http://www.acm.org//education/curricula /Computer-
Science2008.pdf, December 2008.

Stuart Zweben. 2007-2008 Taulbee Survey. Computing Research News, May 2009.



