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Abstract. The use of video games to teach introduction courses to pro-
gramming and Computer Science is a trend that is currently flourishing.
One of the most successful and promising approaches uses functional
video games to get students interested and engaged in programming.
This approach is successful, in part, because functional video games pro-
vide a domain of interest to most Computer Science undergraduates
and remove the need to reason about designing state-based programs. A
plethora of examples exist that have students develop games exploiting
structural recursion which resemble such classics as Space Invaders and
Snake. Once students master the basics of structural recursion the time
comes to move beyond structural recursion to generative and accumula-
tive recursion. It is up to the instructor to harness the enthusiasm and
appetite that students have to develop more video games. This requires
finding games that require the generation of subproblems in the same
class as the input problem or that require accumulators to be success-
fully played or solved. This article presents a road map to make the
transition from structural recursion to accumulative recursion using the
N-puzzle problem as motivation to capture student enthusiasm and ex-
ploit what they have learned about program design. The N-Puzzle was
also chosen to demonstrate that informed heuristic search strategies, tra-
ditionally the domain of undergraduate courses in Artificial Intelligence,
are within the grasp of CS1 students. With proper guidance, CS1 stu-
dents can reason such an algorithm into existence instead of simply using
a textbook to study such algorithms. If the work described in this arti-
cle is replicated elsewhere, there is no doubt that it will be an exciting
time for Computer Science education and it will elevate the relevance of
functional programming in the minds of future CS professionals.



1 Introduction

Based on the teaching philosophy of program by design (PBD) put forth in the
textbook How to Design Programs (HtDP) [2], the use of functional video games
to teach introduction courses to programming and Computer Science is a trend
that is currently flourishing. At the heart of the PBD philosophy is the design

recipe–a series of steps that students can follow to design and write programs.
These steps include the development of data definitions based on problem anal-
ysis, the development of contracts and function headers, the development of
function templates for all data definitions, the specialization of function tem-
plates to create functions, and the development and running of tests. One of
the most successful and promising implementation approaches to a PBD-based
course uses a hierarchy of successively richer student languages and functional
video games to get students interested and engaged in programming. PLT’s Dr-
Racket [4] integrates such a hierarchy of student languages for use in conjunction
with HtDP. The reader should note that students are not taught Racket, but do
learn Racket-like syntax on a need-to-know basis. This approach is successful, in
part, because the student languages allow for the generation of error messages
that are meaningful for beginners. This approach is also successful, in part, be-
cause functional video games provide a domain of interest to most Computer
Science undergraduates and remove the need to reason about designing state-
based programs. A plethora of examples exist that have students develop games
exploiting structural recursion which resemble such classics as Space Invaders
and Snake [1, 6].

At the beginning of an introduction course, the focus is on solving problems
using primitive data, structures, and structural recursion. Once students master
the basics of structural recursion, the time comes to explore other forms of recur-
sion such as generative and accumulative recursion. In generative recursion, the
subproblems generated are not derived from the data structure employed and
are in the same class as the original problem (a typical example is quicksort).
One of the important consequences of this that beginners must realize is that
programs using generative recursion are not guaranteed to terminate like pro-
grams that employ structural recursion. Thus, generative recursion requires the
development of termination arguments. In accumulative recursion, one or more
accumulators are added as parameters to a function designed using structural
or generative recursion to capture information that, otherwise, would be lost
between recursive calls (a typical example is finding a path between two nodes
in a cyclic graph). An important consequence of this for beginners is that they
must realize that for each accumulator an accumulator invariant must developed
to describe the value of the accumulator. The code students write must guaran-
tee that the accumulator invariant holds for every recursive call. It is up to the
instructor to harness the enthusiasm and appetite that students have to develop
more video games to motivate these topics. This requires identifying games that
can not be played nor solved by only using structural recursion. It is important to
note, however, that the goal is not to make students masters at developing video
games. Instead, the goal is to make students interested in generative and accu-



Fig. 1. A Random 3-Puzzle Board. Fig. 2. Sample Winning 3-Puzzle Board.

mulative recursion by showing them how they are needed and/or used in a video
game. Surprisingly, there are not many examples in an HtDP-based curriculum
of video games that require students to go beyond structural recursion.

This article advocates the position that video games ought to be used to
motivate the need to study generative and accumulative recursion in the CS1
classroom. It presents an example on how to make the transition from structural
recursion to generative and accumulative recursion using the N-puzzle problem
as motivation to capture student enthusiasm. This road map is used in the
curriculum at Seton Hall University that has been previously described [6]. The
primary goal is to introduce these topics in a context that exploits and reinforces
lessons on program by design, structural recursion, and abstraction. Secondary
goals are to expose students to ideas that they may encounter in upper-level
courses such as heuristics in an Artificial Intelligence course and the use of ran-
dom number generators. Section 2 briefly describes the N-puzzle game. Section 3
describes the first encounter of students with the N-puzzle game in the classroom
and discusses opportunities the game presents to reinforce the lessons of program
by design using structural recursion and abstraction. Section 4 discusses an ini-
tial strategy to finding a solution leading to the need for generative recursion.
Section 5 discusses how the need for accumulators arises and how accumulative
recursion is used in the N-puzzle game. Section 7 discusses related work and
Section 8 draws some conclusions and briefly outlines future work.

2 The N-Puzzle Game

The N-puzzle game is one that is likely to be familiar to an international milieu
of students and is simple enough that students can easily grasp how the game
works. It consists of an N ×N board with N2

− 1 tiles1 and an empty square or
blank space that does not contain a tile. Each tile contains some form of symbolic
or numeric data. Figure 1 displays a sample board using numeric tiles for the

1 The choice of a square board is arbitrary, but facilitates developing a program.



A board is either:

1. empty

2. (cons number b), where b is a board

Template for functions on boards:

(define (f-on-board a-board)

(cond [(empty? a-board) ...]

[else ...(first a-board)...(rest a-board)]))

Fig. 3. Data definition for boards and a template for functions on boards.

3-puzzle2 game in which the empty space is at the center of the board. Every
N-puzzle game must also define a winning board. That is, a board that defines
the solution to the puzzle. Figure 2 displays the traditional winning board for
the numeric 3-puzzle problem.

A player can move tiles by swapping the blank space with one of its neighbors
(i.e., right, left, up, or down). The goal of the game is to make a sequence of
moves that leads to the winning board. A player, of course, at some point during
the game may feel stuck and the game should provide a mechanism, like a help
button, to ask the computer to make the next move. The help button, of course,
requires the program to first solve the puzzle before making a move towards the
solution on behalf of the player.

To make the game more challenging and more interesting the game can be
parameterized with a constant N. In this manner, students are free to make the
board larger or smaller according to the level of the challenge they desire. A CS1
instructor should note, however, that as N increases the effective use of the help
button decreases which can discourage some students.

3 The First Encounter with the N-Puzzle Game in CS1

Students that are presented with the N-puzzle game have gone through the first
four parts of HtDP that cover program by design with structures, structurally
recursive data types, and abstraction. They have experience designing programs
that process, for example, lists and trees as well as familiarity with basic ab-
straction patterns that involve the use of higher-order functions such as map
and filter.

When students are first presented with the N-puzzle game, they are asked
what is changing while the game is played and how it can be represented. This
leads to defining a board as a list of numbers3 and to a template for functions
on boards both of which are displayed in Figure 3. This brings the N-puzzle
game into a realm that is familiar to the students and provides an opportunity
to reinforce lessons on structural recursion.
2 It is also common to refer to this version of the puzzle as the 8-puzzle.
3 The number in position i of the list corresponds the tile in row (quotient i N) and in
column (remainder i N).



To get students started, the first tasks they are asked to solve can be done
using structural recursion and/or abstraction such as building the representation
of the winning board, finding the position of the empty space, and swapping two
tiles (eventually used to make moves). The solutions presented may vary with
some students defining such functions using structural recursion and some stu-
dents using higher-order functions. Typical solutions for the game with numeric
tiles are displayed in Figure 4.

The initial encounter with the N-puzzle game also provides an opportunity
to perform data analysis that leads to the realization that more than structural
recursion is required to implement the help button. Students are asked what
does it mean to find a solution when the player requests the computer to make
the next move. After some discussion, it becomes clear that finding a solution
is finding a sequence of moves from the current board to the winning board.
Students, in general, can grasp without too much trouble the idea that finding
such a sequence of moves for board b means finding a solution for one of the
possible successors of b, childb, obtained by making a single move and adding
the move that takes b to childb. The question then becomes which move will be
chosen to generate the child of b that is to be explored.

Observe that such a strategy is no longer in the domain of structural re-
cursion. Structural recursion guarantees that the size of the subproblems (i.e.,
finding a solution starting from childb) are smaller than the problem of finding
a solution to the original problem (i.e., finding a solution starting at b) and are
derived from the structure of the input. This is not the case, because in general
some sequences starting at b are infinite as are sequences starting at any childb

and childb is not used to build b. The question then becomes how do you solve
problems that generate subproblems that are not guaranteed to be smaller than
the original problem and are not part of the structure of the original problem.
At this point, students have entered the realm of generative recursion by simply
trying to implement a video game.

4 Finding a Solution

After using the N-puzzle game to discover the need for generative recursion, stu-
dents are given several examples on how to design programs based on generative
recursion. Examples outlined in HtDP include quicksort, fractals, binary search,
Newton’s method, and backtracking algorithms such as traversing a graph to
find a path from node A to node C. Of these, the most relevant to finding a
solution to an N-puzzle are the backtracking algorithms, because traversing a
graph with cycles can lead to a path of infinite length precisely in the same man-
ner that some sequences of moves are infinite in the N-puzzle problem. HtDP
presents a solution to find a path from node A to node C in an acyclic graph
using a depth-first traversal and postpones finding the solution for a graph with
cycles to motivate accumulative recursion.

In the N-puzzle game, of course, we are for the most part unable to restrict
our sequences of moves to those that are finite. Students, in general, are not aware



(define WIN (build-list N (lambda (n)

(cond [(< n (- N 1)) (+ n 1)]

[else 0]))))

; get-blank-pos: board --> number

; Purpose: To find the position of the blank

(define (get-blank-pos l)

(cond [(empty? l) (error ’get-blank-pos "Blank not found")]

[(= (car l) BLANK) 0]

[else (add1 (get-blank-pos (cdr l)))]))

; swap-tiles: board natnum natnum --> board

; Purpose: To swap the given tiles in the given board

(define (swap-tiles w i j)

(build-list N (lambda (n)

(cond [(= n i) (list-ref w j)]

[(= n j) (list-ref w i)]

[else (list-ref w n)]))))

Fig. 4. Auxiliary Functions Developed Using Structural Recursion and Abstraction.

at this point of this and can be led to develop a solution that seems reasonable.
Class discussion is focused on how to choose a successor of the current board to
find a solution. This presents the opportunity to introduce beginning students
to heuristics. A heuristic can be used to choose which child of b is chosen to
explore for a solution. It is important to remark to students that a heuristic
is a rule that estimates how many moves away the current board is from the
winning board and that is used hoping it will lead to a solution. At this point,
most students will have no way to judge this statement and simply trust the
professor. This trust opens the door for reinforcing lessons on the importance of
testing and careful design in programming. As the reader knows, this approach
is destined to immediate failure, but also to triumph after the process of iterative
refinement is started.

There is a simple heuristic students can understand and implement for the
N-puzzle problem. The heuristic chooses to explore the child of b that has the
smallest Manhattan distance. The Manhattan distance of a board is the sum of
how far away each tile is from its correct position. For example, the Manhat-
tan distance of the board in Figure 2 is 0 given that all tiles are in the correct
position. In Figure 1, tile 1 is in the right position and contributes 0 to the Man-
hattan distance while the blank space, in position 4 and whose correct position
is 8, contributes 2 to the Manhattan distance. The code to compute the Man-
hattan distance of a board is displayed in Figure 5. Observe that the code only
requires arithmetic and structural recursion on natural numbers which provides
the opportunity to reinforce material students have already seen and to make
this material relevant to their interests in video games.



; manhattan-distance: board --> number

; Purpose: To compute the Manhattan distance of the given board

(define (manhattan-distance b)

(local

[; distance: number number --> number

; Purpose: To compute the distance between the two tile positions

(define (distance curr corr)

(+ (abs (- (quotient curr (sqrt N)) (quotient corr (sqrt N))))

(abs (- (remainder curr (sqrt N)) (remainder corr (sqrt N))))))

; adder: number --> number

; Purpose: To add all the distances of each tile

(define (adder pos)

(cond [(= pos 0) 0]

[else (+ (distance (sub1 pos)

(correct-pos (list-ref b (sub1 pos))))

(adder (sub1 pos)))]))

; correct-pos: number --> number

; Purpose: To determine the correct position of the given tile

(define (correct-pos n)

(cond [(= n 0) (sub1 N)]

[else (sub1 n)]))]

(adder N)))

Fig. 5. Code for computing the Manhattan distance of a board.

Armed with the power of a heuristic, students can now delve into designing
an N-puzzle solver to implement the help button. The basic idea is that given
a board their program needs to return a non-empty list of boards, called a
sequence, that contains all the boards in the sequence of moves from the given
board to the winning board. These ideas lead quite naturally to the design of a
depth-first search algorithm. If the given board is the same as the winning board,
then the solution is trivial: a list containing the given board. Otherwise, create
a list from the given board and the solution generated starting from the best
child of the given board. The function to generate the children of a given board
can either be done using structural recursion or map. It only entails swapping
the blank space with its neighbors. Finding the best board from a list of boards
also only requires structural recursion. A sample implementation is displayed in
Figure 6.

The benefits of using the N-puzzle to reinforce lessons from structural recur-
sion, to motivate generative recursion, and to capture the interest of students
are likely to be self-evident to any instructor at the helm of a CS1 class. Clearly,
this video game also provides the opportunity to introduce CS1 students quite
naturally to depth-first search and to heuristics-based programming which is
quite uncommon as far as the author knows. There are, however, two more ben-
efits that deserve to be mentioned. These are reinforcing the value of testing and
the value of iterative refinement. The instructor can strategically provide initial



; find-solution-dfs: board --> (listof boards)

; Purpose: To find a solution to the given board using DFS

(define (find-solution-dfs b)

(cond [(equal? b WIN) (list b)]

[else

(local [(define children (generate-children b))]

(cons b (find-solution-dfs (best-child children))))]))

; generate-children: board --> non-empty-list-of-boards

; Purpose: To generate a list of the children of the given board

(define (generate-children b)

(local [(define blank-pos (get-blank-sq-num b))]

(map (lambda (p)

(swap-tiles b blank-pos p))

(blank-neighs blank-pos))))

; best-child: non-empty-list-of-boards --> board

; Purpose: To find the board with the board with the smallest Manhattan

; distance in the given non-empty list of boards

(define (best-child lob)

(cond [(empty? (rest lob)) (car lob)]

[else

(local [(define best-of-rest (best-child (rest lob)))]

(cond [(< (manhattan-distance (car lob))

(manhattan-distance best-of-rest))

(car lob)]

[else best-of-rest]))]))

Fig. 6. Code for depth-first search for a solution without backtracking.

boards to test the game and the help button. The code in Figure 6 does, indeed,
find a solution for some test boards while at the same time reveal that it fails to
return a solution for some test boards. This leads to an exploration of why the
program, which seems quite reasonable to most students, fails to return a solu-
tion for some boards and how it can be improved to guarantee that a solution
is always returned (for a legal board).

5 The Need to Remember Leads to Accumulators

The exploration of why the program fails to return a solution to some boards
leads to the discussion of a situation like the one depicted in Figure 7. If the
current board is the one in the root of the tree, it has two children both of
which have a Manhattan distance of 18. The algorithm chooses the right child
as the board to explore. This board has three children that, from left to right,
have Manhattan distances of 20, 20, and 16. The rightmost child is chosen for
exploration as it has the smallest Manhattan distance. At this point, all students



Fig. 7. Illustration of why a depth-first path (dashed) does not lead to a solution.

can see the problem. The algorithm cycles through the same set of boards never
choosing a different board to escape the cycle. In other words, students under-
stand why there is an infinite recursion and why it is impossible to argue that
the algorithm terminates as is required by the design recipe for programs based
on generative recursion. Some readers may argue that developing a termination
argument ought to always be done before implementing an algorithm. At Seton
Hall, we have discovered that this is not always true. Much of it depends on
the CS-maturity that students bring to the classroom. In our CS1 course, it is
assumed that students have little or no background in Computer Science when
they start. For such students, theoretical termination arguments do not easily
flow. Understanding why an implemented algorithm fails, on the other hand,
presents an excellent learning experience and brings home the importance of
developing termination arguments. We conjecture that as students gain experi-
ence it becomes easier for them to visualize, before implementation, termination
arguments.

After understanding why the algorithm does not always terminate, students
are guided to think that a solution to this problem requires that all sequences
starting at the given board must be explored instead of choosing to only explore
the sequence of best children. This requires that all paths explored so far be
remembered. Through this analysis, students have entered the realm of accumu-
lative recursion and this is used as motivation to return to HtDP and study how
to design programs that exploit this new kind of recursion.

One of the functions students can develop while exploring how to design
programs that use accumulative recursion is a function to present a player with
an initial board to solve in the N-puzzle problem. This presents an interesting
task, because not all possible orderings of tiles in a board are valid boards in
the N-puzzle game. In the 3-puzzle game, for example, the ordering that has



1, 2, 3 in the 0th row, 4, 5, 6, in the 1st row, and 8, 7, 0 in the 2nd row is
an invalid board. The challenge, therefore, is to design a strategy to compute
an initial board that does not simply randomly assign tiles to positions in the
board. After some discussion, a natural strategy to follow is to start from the
winning board and randomly make k valid moves. This strategy is a good one
to choose in CS1 for three reasons. The first is that it provides students at this
early stage in their studies with an example of where the use of randomness is
useful. The second is that it requires an accumulator to “remember” the board
created so far. That is, after every random move a new board is created and
the new board needs to be used to make any further moves. The third is that it
brings accumulative recursion into the domain of structural recursion on natural
numbers–a familiar world for students that have followed an HtDP-based cur-
riculum. This approach, for example, is implemented by students as displayed in
Figure 8. The function make-moves is written using the design recipe for struc-
tural recursion on natural numbers to which an accumulator has been added.
As per the design recipe for designing functions using accumulative recursion,
students must develop an accumulator invariant. Although the invariant in this
case may seem straightforward to an experienced programmer, its development
by beginning students usually requires some coaching. One effective strategy is
to have students trace an example, before writing any code, to help them visual-
ize what characteristics of the parameters remain unchanged for every recursive
call. For the function make-moves in Figure 8, for example, the parameter b is an
accumulator. Initially, students are led to reason that b is the board obtained by
making a number of random moves starting from WIN. This reasoning is then re-
fined to precisely define the number of moves: (- NUM-INIT-MOVES nummoves).
Students can now argue that for every recursive call a move is made and the
number of moves is reduced by 1. Thus, they can conclude that the accumulator
invariant holds for every recursive call and that when nummoves is 0 the initial
board has been computed.

5.1 Developing a Breadth-First Solution

The heuristic-based depth-first N-puzzle solver assumed a solution can be found
by always exploring the best successor of the current board. This assumption is
removed and all possible sequences starting at a given board are explored. This
requires that a list of all sequences generated so far be maintained. It is important
during the exploration of this idea in the classroom to have students realize
that this list of sequences must be maintained in order by length. Otherwise,
the strategy may degenerate into a depth-first search that leads to an infinite
recursion. The experienced reader will recognize that such a list is, in essence,
a queue. It presents an opportunity to develop an interface for queues, but our
success with having students reason about queues is mixed. CS1 students need
to work on several queue-based solutions to different problems to internalize
what a queue is. Therefore, we usually only mention queues in passing and allow
students to structure their reasoning using a list of sequences ordered by length.



; make-moves: natnum board --> board

; Purpose: To create a board by making the given number of moves

; in the given board.

; ACCUMULATOR INVARIANT: b is the board created by making

(- NUM-INIT-MOVES nummoves) moves from WIN

(define (make-moves nummoves b)

(cond [(= nummoves 0) b]

[else (make-moves (sub1 nummoves) (make-a-move b))]))

; make-a-move: board --> board

; Purpose: To make a random move in the given board

(define (make-a-move b)

(local [(define blank-index (get-blank-index b))

(define neighs-indices (neighs-of blank-index))

(define move-to-index

(list-ref neighs-indices (random (length neighs-indices))))]

(swap-tiles w move-to-index blank-index)))

(define NUM-INIT-MOVES 200)

(define INIT-BOARD (make-moves NUM-INIT-MOVES WIN))

Fig. 8. An implementation for creating an initial N-puzzle board.

The implementation builds on the work done for the heuristic-based depth-
first N-puzzle solver. The function find-solution-bfs takes as input a board, b,
and returns a sequence from b to WIN. To accomplish this, a helper function,
search-paths, is called that takes as input an accumulator that stores the list of
all sequences generated so far. Initially, this list of sequences contains a single
list that contains b. The function search-paths is a combination of generative
recursion and accumulative recursion. Each time the function is called, it checks
if the first board in the first sequence is WIN and, if so, it returns the first
sequence. Otherwise, the successors of the first board in the first sequence are
generated and a new sequence is generated for each successor by adding it to
the front of the first sequence. To maintain the accumulator invariant, the list
of sequences that does not include the first sequence is appended with the new
sequences generated for the recursive call. A sample implementation is displayed
in Figure 9.

Students must develop an accumulator invariant as well as an argument for
termination. The accumulator invariant is developed, as mentioned above, during
the exploration of the idea to search all possible sequences. The argument for
termination hinges on having students realize that as paths get longer the number
of moves required for one or more paths to reach the winning board gets smaller.
Thus, the number of moves required to reach the winning board will eventually
reach 0 for some path and the algorithm returns the appropriate sequence as
long as the initial board is valid.



; find-solution-bfs: board --> lseq

; Purpose: To find a solution to the given board

(define (find-solution-bfs b)

(local

[; search-paths: lseq --> seq

; Purpose: To find a solution to b by searching all possible paths

; ACCUMULATOR INVARIANT:

; paths is a list of all seqs generated so far starting at b from

; from the shortest to the longest in reversed order

(define (search-paths paths)

(cond [(equal? (first (first paths)) WIN) (car paths)]

[else

(local [(define children (generate-children

(first (first paths))))

(define new-paths (map (lambda (c)

(cons c (first paths)))

children))]

(search-paths (append (rest paths) new-paths)))]))]

(reverse (search-paths (list (list b))))))

Fig. 9. A breadth-first N-puzzle solver.

5.2 Refining the Solution: Deriving an A*-like Algorithm

The breadth-first N-puzzle solver does find a solution for any given board, but
students soon discover that the help button is very sluggish and in some cases
extremely so. The problem, of course, is that exploring all possible sequences
starting at a given board is a great deal of work. Students can be led to realize
that the number of sequences being searched surpasses 29 after 10 moves and
surpasses 219 after 20 moves4. This provides an opportunity to expose students to
the problems of exponential growth. At this point, students are asked if searching
all possible sequences and searching all possible sequences at the same time is
necessary. This is a difficult question for them to answer. Most students will say
yes to both questions, because all possible sequences must be searched. In other
words, most students at this level are unlikely to realize on their own that not
all sequences need to be searched and that not all sequences that ought to be
searched have to be simultaneously searched.

There are two main ideas that must be planted in students’ minds. The first
idea is that not every sequence needs to be explored. We draw on the experience
obtained from the depth-first N-puzzle solver. If any successor, s, of a given
board, b, has been explored (i.e., the successors of s have been generated), then
the path through b to s need not be explored. The reason is that a sequence, of
equal or shorter length, to s has already been generated. The second idea is that
we can choose to explore the most “promising” sequence first instead of blindly

4 29 and 219 are, respectively, the number of leaves in a binary tree that describes the
search space after 10 and 20 moves if all boards only had two successors.



(define (find-solution-a-star b)

(local

[(define (find-best-seq seqs)

(cond [(empty? (rest seqs)) (first seqs)]

[else

(local [(define best-of-rest (find-best-seq (rest seqs)))]

(cond [(< (manhattan-dist (first (first seqs)))

(manhattan-dist (first best-of-rest)))

(first seqs)]

[else best-of-rest]))]))

(define (search-paths visited paths)

(local [(define bstseq (find-best-seq paths))]

(cond [(equal? (first best-path) WIN) bstseq]

[else

(local

[(define children

(filter (lambda (c) (not (member c visited)))

(generate-children (first bstseq))))

(define new-seqs (map (lambda (c) (cons c bstseq))

children))]

(search-paths

(cons (first bstseq) visited)

(append new-seqs (rem-path bstseq paths))))])))]

(reverse (search-paths ’() (list (list b))))))

Fig. 10. An A* N-puzzle solver.

exploring all possible sequences at the same time. This leads the class discussion
back to the Manhattan distance heuristic as a mechanism for deciding which
sequence is the most promising. The idea to always explore the most promising
sequence first is one that students in CS1 can grasp and implement.

Figure 10 displays an implementation of this strategy5. The function search-
paths requires two accumulators each with its own invariant. The accumulator
visited is a list of all the boards whose successors/children have been generated.
The accumulator paths is a list of all the sequences starting at b that may need
to be explored and that have no repeated boards in them. Both invariants,
with some guidance, can be developed by students. The development of these
invariants is likely to be the most time-consuming exercise in class. The rest of
the implementation flows faster. The code finds the best sequence in paths. If the
winning board has been reached by the best sequence, then the best sequence
is returned. Otherwise, the program filters the successors of the last board6 in
the most promising sequence to remove boards that have already been explored.

5 Due to figure size limitations, all comments including contracts, purpose statements,
and accumulator invariants have been omitted.

6 Note that sequences are reversed making the last board in the sequence the first in
the list.



New sequences are generated using map to add each remaining successor to the
most promising sequence. Notice that both of these computations are achieved by
reinforcing lessons on abstraction that students have been exposed to in the near
past. Finally, to maintain the two accumulator invariants, the last board of the
most promising sequence is added to visited and the new sequences are appended
with sequences obtained from removing the most promising sequence from paths.
The only remaining tasks students must implement is finding the most promising
sequence and removing a sequence from a list of sequences. The first can be done
either by using accumulative recursion with an accumulator that remembers
the best sequence so far or using structural recursion. The implementation in
Figure 10 displays the latter and redesigning such a function using accumulative
recursion is left as an exercise to give students more practice. The second is a
straightforward exercise using structural recursion7.

The algorithm developed is in essence an A*-like algorithm [8, 9]. That is,
it is a combination of a breadth-first strategy and a depth-first with backtrack-
ing strategy. Such algorithms are commonly referred to as informed heuristic

search strategies [9]. What is most noteworthy is the fact that the development
flows naturally from following the steps of the design recipe and iterative refine-
ment. Students reason the algorithm into existence instead of being told about
an algorithm. Such a development challenges the tacit assumption that A*-like
algorithms are too complex for beginning students to understand and, therefore,
are left as material restricted to more advanced courses such as an Introduction
to Artificial Intelligence. There is, of course, one important observation about
the N-puzzle domain that allowed us to simplify the design. Once a board is en-
countered there is no need to change its predecessor, because the cost of reaching
it through the sequence of a previous encounter is always as good or better than
the cost through the new sequence. In a full-fledged A* algorithm, the costs of
the different sequences to a board must be examined to always maintain the
sequence with the least cost.

6 Facilitating Deployment in the Classroom

The most important computational components of the presented N-puzzle solver
have been developed in this article. The remaining components have to deal
with the development of the interface with a player. The developers of HtDP
have implemented a library (or teachpack as referred to by HtDPers), called
universe, that allows students to easily develop interactive programs such as a
video game [3]. Universe envisions an animation as a series of snapshots of an
evolving world. There is a clock that at every tick displays the next snapshot of
the world. Students must define the elements of the world and define functions
for computing the next snapshot of the world when the clock ticks or when an
external event, such as a keystroke or a mouse movement, occurs. Students must
also define functions for drawing the world and for detecting the end of the
game/animation.

7 This function does not appear in Figure 10 due to space limitations for figures.



It is important to carefully gauge the amount of work that beginning students
are asked to do. Although the universe library truly simplifies the development of
video games, sometimes students feel overburdened by the fine details of deciding
on what tile a mouse click has occurred or of drawing the N-puzzle with a help
button. If such is the case, invariably students get bogged down by writing
drawing and mouse processing functions which leads them to relegate to the
back burner the important lessons about generative and accumulative recursion.
After all, in the mind of a beginning student nothing makes sense if you can
not play the game. When faced with such a problem, the best course of action
may be to eliminate the need for students to develop these low-level functions.
This can be achieved by writing a library/teachpack specifically for the N-puzzle
problem. The teachpack ought to include all the functions necessary for drawing
the puzzle with the help button and for processing mouse events as well as
the interface with the universe teachpack. In this manner, students can focus on
the important lessons of generative and accumulative recursion. The downside of
this approach, of course, is that it reduces the opportunities to reinforce previous
lessons. An instructor must decide what the right balance is for the students in
the classroom.

7 Related Work

The most closely related work on teaching generative and accumulative recur-
sion to beginners is presented in HtDP. HtDP presents generative recursion as
programs that have recursive calls that do not operate on part of the input. In-
stead, they generate a new instance of the problem. The examples used include,
among others, moving a ball across a canvas, quicksort, fractals, and the compu-
tation of the greatest common divisor (gcd) of two numbers. Of these, the only
example that truly captures the imagination of students is fractals. The reason
is that fractals allow for a student to personalize their solutions to problems.
Problems like quicksort and gcd, although important to be exposed to, do not
permit for the personality of the student to be incorporated into their programs.
Fractals and the N-puzzle video game, allow students to personalize solutions
to their liking and that seems to be a great motivator by giving students a cre-
ative outlet to distinguish themselves and their work. The important lesson is
to strike a balance between problems that allow personalization and those that
do not. Both need to be included in a CS1 course. Problems that do not allow
personalization, force students to focus on the lessons of designing functions that
use generative recursion. Once those lessons have been presented and practiced,
it is important to give students a chance to have a little fun with problems that
allow personalization like the N-puzzle problem. In the N-puzzle problem, stu-
dents can personalize the board (e.g., letters, number, images, etc.), the color of
the tiles, and the definition of the winning board.

HtDP introduces accumulative recursion as a solution to the loss of knowledge
between recursive calls. This can lead to efficiency issues in the case of programs
designed using structural recursion or to problems not being solved in the case of



generative recursion. The examples developed include finding a path in a graph
and reversing a list. HtDP also outlines exercises that, like the work presented
in this article, require students to combine skills to design programs that exploit
structural, generative, and accumulative recursion. None of the problems are
video-game-based, but, in fairness, HtDP was published before the development
of the universe teachpack.

To the best knowledge of the author, there have been no published attempts
to have beginning students work on the N-puzzle problem nor on developing A*-
like algorithms. The N-puzzle game has been used to motivate topics in Artificial
Intelligence and Machine Learning [5]. In addition to using the N-puzzle in an
undergraduate AI course, the authors report using the N-puzzle game in a data
structures and an algorithms course. In contrast, the approach presented in this
article targets beginning students.

8 Concluding Remarks

The teaching philosophy of program by design put forth by HtDP when applied to
the design of functional video games is a powerful combination that allows CS1
students to receive a solid introduction to programming while at the same time to
become enthusiastic about the field of Computer Science. The enthusiasm comes
from seeing in practice that what they are learning in the classroom is directly
applicable to a domain that is of interest to them. In addition, the video game
domain allows students to personalize solutions which means that students are
not all producing the exact same solution to problems. Contrast this to solving
problems in a Mathematics, Physics, or Chemistry course and it is easy to see
why students find working with video games fun, personally rewarding, and
enlightening. There are examples in the literature that illustrate how to design
animations and video games that require the use of primitive data, structures,
and structural recursion. The work described in this article is an example of
how, in the CS1 classroom, to make the transition from structural recursion
to generative and accumulative recursion using a video game as motivation to
capture student enthusiasm. The choice of game, the N-puzzle, was made to also
demonstrate that informed heuristic search strategies, traditionally the domain
of undergraduate courses in Artificial Intelligence, are within the grasp of CS1
students. Students do not simply study such an algorithm. Instead, the full
power of program by design allows CS1 students to reason such an algorithm
into existence. If this work is replicated elsewhere, there is no doubt that it
will be an exciting time for Computer Science education and it will elevate the
relevance of functional programming in the minds of future CS professionals.

Future work includes demonstrating how functional video games can be an
effective pedagogical tool for motivating and teaching distributed/parallel pro-
gramming to CS1 students. Functional programming has been identified as pro-
viding a clear and concise way to program parallel computers and distributed
computations [7, 10]. It is time for this knowledge to reach down to the CS1 class-
room. The approach will assume that students have a foundation using different



forms of recursion as well as abstraction and will use the universe teachpack as
in the work described in this article. A second line of future work is to extend the
work presented in this article to other, more complex, games such as checkers
and chess. The biggest challenge in this second line of future work is identifying
heuristics that can be understood and implemented by CS1 students. Finally, a
third line of future work focuses on the impact the use of video games in CS1
has on detecting plagiarism. The hypothesis underlining this line of work is that
a programming medium that allows for the personalization of solutions, such as
the development of video games, may make it easier for instructors to detect
plagiarized code.
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