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Abstract

This paper describes a flexible type system that combines overloading and higher-order
polymorphism in an implicitly typed language using a system of constructor classes—a natural
generalization of type classes in Haskell. We present a range of examples to demonstrate
the usefulness of such a system. In particular, we show how constructor classes can be
used to support the use of monads in a functional language. The underlying type system
permits higher-order polymorphism but retains many of the attractive features that have made
Hindley/Milner type systems so popular. In particular, there is an effective algorithm that can
be used to calculate principal types without the need for explicit type or kind annotations.
A prototype implementation has been developed providing, amongst other things, the first
concrete implementation of monad comprehensions known to us at the time of writing.

Capsule Review

The author describes a generalization of the Haskell type class concept. He allows not only
to abstract from types in type expressions, but also from type constructors by using higher-
order type variables. This leads to some kind of higher-order polymorphism. However, pure
higher-order polymorphism is, as the author illustrates, hardly useful in practice, because it
is too general. Type classes allow to constrain the higher-order type variables to particular
type constructors. Jones calls these higher-order type classes constructor classes. They enable
to overload a function on different type constructors.

To show the practical usefulness of this feature is the main topic of the paper. In particular,
the author shows how constructor classes support the use of monads in a functional language.
While in former presentations of monad applications the authors always had to rename the
monad functions, depending on the particular monad, in this paper the functions are over-
loaded by using constructor classes. The author presents for example a general notation for
monad comprehensions which generalizes the Haskell list comprehensions. This is especially

f A shorter version of this paper was presented at the Conference on Functional Program-
ming Languages and Computer Architecture, FPCA '93, Copenhagen, Denmark, June 1993.
This version expands on the conference paper, including a wider range of programming
examples, and also some minor corrections.
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2 M.P. Jones

interesting because the comprehension syntax is concise and often used in mathematical
descriptions.

Besides practical applications of constructor classes the author gives an overview of the
formal treatment of the type system. He sketches a type inference algorithm that calculates
principal types, without requiring any type annotations. This feature enables a powerful, but
still manageable programming language.

1 Introduction

There have been many theoretical studies of higher-order polymorphism. In contrast
with the type systems of core-ML and the polymorphic 2-calculus, this allows the
type of a term to include variables that represent arbitrary type constructors of
a particular kind. However, despite the increase in expressiveness, few practical
programming languages have adopted these ideas. This is particularly true for
implicitly-typed languages that rely on type inference rather than the explicit type
annotations used in most formal treatments of higher-order systems. For example,
the Standard ML module system (MacQueen, 1984) provides much of the power of
higher-order polymorphism, but only when expressed in the module language itself
(which requires explicit typing), not directly in the underlying core language.

One reason for this apparent lack of interest is that pure higher-order polymor-
phism is too general for practical applications. For example, it is hard to think of
any useful functions with type Va.Vw.a —> m a, because such a function must be able
to produce values of type m a for any type constructor m. The only possibility is
the function /bc.JL which, apart from having almost no practical use, can be treated
as having the more general type Vayib.a —> b without the need for higher-order
polymorphism.

In fact, there are similar examples involving only ML-style polymorphism. For
example, a function to test for membership in a list should not be treated as having
type Va.a —> List a —> Bool because it relies on the ability to compare values of type
a, and there is no way to define a computable equality function for all such a, in
particular, for those involving function spaces. However, some form of polymorphism
is still appropriate, since the membership function could certainly be used for any
types on which equality has been denned. In Haskell (Hudak et al., 1992), this is
dealt with using type classes, writing the type as Va.Eq a => a —> List a —» Bool.
Equality types provide a similar solution for Standard ML (Milner et al, 1990).

This paper describes an extension of the Haskell type system based on the notion
of constructor classes, a natural generalization of type classes. While retaining the
implicit typing of Haskell, the system supports a combination of higher-order
polymorphism and overloading. A prototype implementation has been developed
and has allowed us to explore a wide range of applications of constructor classes,
some of which are described in the first part of the paper (Sections 2 and 3).
For readers with an interest in more technical details, a second part (Sections 4
and 5) concentrates on a theoretical treatment of the type system. Finally, Section 6
concludes, and outlines areas for future work.
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A system of constructor classes 3

For related work on higher-order polymorphism, we refer the reader to Barendregt
(1991), which provides a general framework for describing a variety of type systems,
including some with higher-order polymorphism, and provides useful pointers to
the literature. The type system we study here is perhaps closest to Barendregt's
Agj or Aeo, except that these systems are explicitly typed and, as a result, they are
considerably more expressive.

2 AD overloaded map function

Many functional programs use the map function to apply a function to each of the
elements in a given list. The type and definition of this function as given in the
Haskell standard prelude (Hudak et al., 1992) are as follows:

map :: (a —» b) —• [a] —> [b]
mapf[] = []
map f (x : xs) = / x : map f xs

It is well known that the map function satisfies the familiar laws:

map id = id
map f . map g = map (f . g)

A category theorist will recognize these observations as indicating that there is a
functor from types to types whose object part maps any given type a to the list type
[a] and whose arrow part maps each function / :: a —* b to the function map f ::
[a] —> [b]. A functional programmer will recognize that similar constructions are
also used with a wide range of other data types, as illustrated by the following
examples:

data Tree a = Leaf a \ Tree a :" : Tree a

mapTree :: (a —> b) —* {Tree a —> Tree b)
mapTree f (Leaf x) = Leaf (f x)
mapTree / ( / : * : r) = mapTree f I :* : mapTree f r

data Maybe a = Just a | Nothing

mapMaybe :: (a —> b) —> (Maybe a —> Maybe b)
mapMaybe f (Just x) = Just (f x)
mapMaybe f Nothing = Nothing

Each of these functions has a similar type to that of map and satisfies similar functor
laws. With this in mind, it seems a shame that we have to use different names for
each of these variants.

A more attractive solution would allow the use of a single name, map, relying
on the types of the objects involved to determine which particular version of
the map function is required in a given situation. For example, it is clear that
map (1 +) [1,2,3] should be a list, calculated using the original map function on
lists, while map (1 +) (Just 1) should evaluate to Just 2 using mapMaybe.

Unfortunately, in a language using standard Hindley/Milner type inference, there
is no way in which to assign a type to the map function that would allow it to be
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used in this way. Furthermore, even if typing were not an issue, use of the map
function would be rather limited unless some additional mechanism was provided
to allow the definition to be extended to include new datatypes perhaps distributed
across a number of distinct program modules.

2.1 An attempt to define map using type classes

The ability to use a single function symbol with an interpretation that depends
upon the type of its arguments is commonly known as overloading. While some
authors dismiss overloading as a purely syntactic convenience, this is certainly not
the case in Haskell, which has a flexible type system that supports both parametric
polymorphism and overloading based on a system of type classes (Wadler and Blott,
1989). One of the most attractive features of this system is that, although each
primitive overloaded operator will require a separate definition for each different
argument type, there is no need for these to be in the same module.

Type classes in Haskell can be thought of as sets of types. The standard example
is the class Eq that includes precisely those types whose elements can be compared
using the (==) function. A simple definition might be:

class Eq a where
(==) :: a —> a —• Bool

The equality operator can then be treated as having any of the types in the set
{ a —• a —• Bool \ a G Eq}. The elements of a type class are defined by a collection
of instance declarations which may be distributed across a number of distinct
program modules. For the type class Eq, these would typically include definitions of
equality for integers, characters, lists, pairs and user-defined datatypes. Only a single
definition is required for functions defined either directly or indirectly in terms of
overloaded primitives. For example, assuming a collection of instances as above, the
member function defined by:

member :: Eq a => a —> [a] —> Bool
member x [] = False
member x (y : ys) = x == y 11 member x ys

can be used to test for membership in a list of integers, characters, lists, pairs, etc.
See Hudak and Fasel (1992) and Wadler and Blott (1989) for further details about
the use of type classes.

Unfortunately, the system of type classes is not sufficiently powerful to give
a satisfactory treatment for the map function; to do so would require a class
Map and a type expression m(t) involving the type variable t such that the set
5 = { m(t) | t G Map } includes (at least) the types:

{a _ b) _* ( [ a ]

(a -> b) ->• (Tree a -> Tree b)
(a —• b) —• (Maybe a —> Maybe b)

for arbitrary types a and b. The only possibility is to take m(t) = t and choose Map
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as the set of types S for which the map function is required:

class Map t where map :: t

instance Map ((a —» b) —»([a] —> [b])) where
instance Map ((a —> b) —> (Tree a —> Tree b)) where
instance Map ((a —» b) —> {Maybe a —* Maybe b)) where

This syntax is not permitted in Haskell but, even if it were, it does not give a
sufficiently accurate characterization of the type of map. For example, the principal
type of map v . map u would be

(Map (a —» c —> e), Map (b —> e —• d)) => c —> d

where a and b are the types of u and v, respectively. This is complicated and does
not enforce the condition that u and v have function types. Furthermore, the type
is ambiguous; the type variable e does not appear to the right of the => symbol or
in the assumptions, and hence there is no way to find its value from the context in
which the term is used. Under these conditions, we cannot guarantee a well-defined
semantics for this expression; see Jones (1992b), for example. Other attempts to
define the map function, for example using multiple parameter type classes, have
also failed for essentially the same reasons.

2.2 A solution using constructor classes

A much better approach is to notice that each of the types for which the map
function is required is of the form:

(a -> b) ^ (f a - > / b)

The variables a and b here represent arbitrary types, while / ranges over the set of
type constructors for which a suitable map function has been defined. In particular,
we would expect to include the list constructor (which we will write as List), Tree
and Maybe as elements of this set which, motivated by our earlier comments, we
will call Functor. With only a small extension to the Haskell syntax for type classes,
this can be described by:

class Functor f where
map :: (a -> b) -»(f a - » / b)

instance Functor List where
mapf[] = []
map f (x : xs) = / x : map f xs

instance Functor Tree where
map f (Leaf x) = Leaf (f x)
map f (I :": r) = map f I :*: map f r

instance Functor Maybe where
map f (Just x) = Just (f x)
map f Nothing = Nothing
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Functor is our first example of a constructor class. The following extract, taken from
a session with the Gofer system (Jones, 1991), which includes support for constructor
classes, illustrates how the definitions for Functor work in practice:

? map (1+) [1,2,3]
[2, 3, 4]
? map (1+) (Leaf 1 :~: Leaf 2)
Leaf 2 :": Leaf 3
? map (1+) (Just 1)
Just 2

Furthermore, by specifying the type of map more precisely, we avoid the ambiguity
problems mentioned above. For example, the expression map v . map u has principal
type Functor f =>/ a —>/ c, provided that u has type (a -» b) and that v has type
{b —* c). To see how this type is obtained, notice that, from the type of map, u and v
must have function types of the form (a —• b) and (d —» c). Thus map u has a type
of the form (f a -* f b) and map v has a type of the form (g d —> g c) for some
instances / and g of the Functor class. For the composition of these two functions
to be well formed, the range of the first, / b, must be the same as the domain of
the second, g d. Hence/ = g, b = d and the composition has type/ a —•/ c, for
any instance/ of Functor.

2.3 The kind system

Each instance of Functor can be thought of as a function from types to types. It
would be nonsense to allow the type Int of integers to be an instance of Functor,
since the type (a —» b) —* (Int a —> Int b) is obviously not well-formed. To avoid
unwanted cases like this, we have to ensure that all of the elements in any given
class are of the same kind. To this end, we formalize the notion of kind, writing * for
the kind of all types and KI —> K2 for the kind of a constructor that takes something
of kind KI and returns something of kind KI. This choice of notation is motivated
by Barendregt's description of generalized type systems (Barendregt, 1991). Instead
of type expressions, we use a language of constructors given by:

C ::= x constants
| a variables
| C C applications

This corresponds very closely to the way that most type expressions are already
written in Haskell. For example, Maybe a is an application of the constant Maybe
to the variable a. Each constructor constant has a corresponding kind. For example,
writing (—>) for the function space constructor and (,) for pairing we have:

Int, Float, () :: *
List, Maybe :: * —* *
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The kinds of constructor applications are described by the rule:

C ::K'^K C" :: K'

C C ::K

The task of checking that a given type expression is well-formed can now be
reformulated as the task of checking that a given constructor expression has kind
*. In a similar way, all of the elements of a constructor class must have the same
kind; for example, a constructor class constraint of the form Functor f is valid only
if/ is a constructor expression of kind * -* *.

The language of constructors is essentially a system of combinators without any
reduction rules. It follows that standard techniques can be used to infer the kinds
of constructor variables, constants introduced by new datatype definitions and the
kind of constructors in any particular class. The important point is that there
is no need—and indeed, in our current implementation, no opportunity—for the
programmer to supply kind information explicitly. We regard this as a significant
advantage, since it means that the programmer can avoid much of the complexity
that might otherwise result from the need to annotate type expressions with kinds.
The process of kind inference is described in more detail in Section 5.

The use of kinds is perhaps the most important aspect of our system, providing
a loose semantic characterization of the elements in a constructor class. This is in
contrast to the system of parametric type classes described by Chen et al. (1992),
which addresses issues similar to those in this paper but relies on a more syntactic
approach that involves a process of normalization. Note also that our system includes
Haskell type classes as a special case; a type class is simply a constructor class for
which each instance has kind *.

3 Monads as an application of constructor classes

Motivated by the work of Moggi (1989) and Spivey (1990), Wadler (1990; 1992)
proposed a style of functional programming based on the use of monads. While the
theory of monads had already been widely studied in the context of abstract category
theory (MacLane, 1971), Wadler introduced the idea that monads could be used as
a practical method for modelling so-called 'impure' features in a purely functional
programming language. This section illustrates how constructor classes can be used
to build a framework for programming in this style, identifying particular families
of monads, and supporting an implementation of Wadler's notation for monad
comprehensions.

3.1 A framework for programming with monads

One useful way to think about monads is as a means of representing computations.
If m is a monad, then an object of type (ma) represents a computation that is
expected to produce a result of type a. The choice of monad reflects the possible
use of particular programming language features as part of the computation; sim-
ple examples include state, exceptions and input/output. The distinction between
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computations of type m a and values of type a reflects the fact that the use of
programming language features is a property of the computation itself, and not of
the result that it produces.

Every monad provides at least two operations. First, there must be some way to
return a result from a computation. We will represent this using a function:

result :: a —> m a

with the intention that result e is the computation that returns the value e with
no further effect. Note that the result function corresponds to the unit function in
Wadler's presentations.

Second, there must be some way to combine computations. Taking the approach
outlined by Wadler (1992), this might be described using a function:

bind :: ma—>(a—nnb)—nnb

Writing bind as an infix operator, a simple way to understand an expression of the
form c 'bind' / is as a computation that runs c, passes its result x of type a to / ,
and runs the resulting computation/ x to obtain a final result of type b. In many
cases, this corresponds to the sequencing of one computation after another.

The description above leads us to the following definition for a constructor class
of monads:

class Functor m => Monad m where
result :: a -* m a
bind :: ma—>(a—nnb)-*mb

The expression Functor m => Monad m in the first line of the class declaration
defines Monad as a subclass of Functor ensuring that, for any given monad, there
will also be a corresponding instance of the overloaded map function. We should
also mention that, for any monad m, the result and bind operators are expected
to satisfy some simple algebraic laws that are not reflected in the class declaration
above. This is described, for example, in Wadler (1992). A slightly more concise
formulation of these properties, expressed in terms of an auxiliary function called
Kleisli composition, will be given in Section 3.5.

One interesting application of monads is to model programs that make use of an
internal state. Computations of this kind can be represented by functions of type
s —* (a,s), often referred to as state transformers, mapping an initial state to a pair
containing the result and final state. To get this into the appropriate form for the
system of constructor classes described in this paper, we introduce a new datatype:

data State s a = ST (s -* (a,s))
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The functor and monad structures for state transformers are as follows:

instance Functor {State s) where
mapf(STst) = ST (\s -> let (x,s') = st s

in {f x,s'))
instance Monad (State s) where

result x = ST (\s ->(x,s))
m'bind'f = ST (\s0 -> let S 7 m' = m

(x,si) = m' s0

ST f = fx
(y,s2) = f si

»n 0>,s2))

For the benefit of those unfamiliar with this notation, we should mention that an
expression of the form \x —> e is just the Haskell concrete syntax for the lambda
expression Xx.e. Notice that the State constructor has kind * — > * - > * so that,
for any state type s, the constructor State s has kind * -> * as required for an
instance of these classes. There is no need to assume a fixed state type as in Wadler's
papers.

From a user's point of view, the most interesting properties of a monad are
described, not by the result and bind operators, but by the additional operations
that it supports. The following examples are often useful when working with state
monads. The first can be used to 'run' a program given an initial state and discarding
the final state, while the second might be used to implement an integer counter in a
State Int monad:

startingWith :: State s a —> s —> a
ST m 'startingWith' v = fst (m v)

incr :: State Int Int
incr = ST (\s -y(s,s + l))

To illustrate the use of state monads, consider the task of labelling each of the nodes
in a binary tree with distinct integer values. One simple definition is:

label :: Tree a —• Tree (a,Int)
label tree = fst (lab tree 0)

where lab (Leaf n) c = (Leaf (n,c),c + 1)
lab (I r:r)c = (/' -r:r',c")

where (l',c') = lab I c
(r',c") = lab r c'

This uses an explicit counter, the second parameter to lab, and great care must
be taken to ensure that the appropriate counter value is used in each part of the
program; simple errors, such as writing c in place of c' in the last line, are easily
made but can be hard to detect.
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One way in which to avoid these problems is to write the definition in a monadic
style:

label :: Tree a -* Tree (a,Int)
label tree = lab tree 'startingWith' 0
where lab (Leaf n) = incr 'bind' \c —»

result (Leaf (n,c))
lab (I :A : r) = lab I 'bind' \V —

lab r 'bind' \r' ->
result (V r : r')

The layout used here follows Wadler (1992), and has a natural reading, with the
result of each computation being passed on to subsequent steps by the bind operator.
While this is a little longer than the previous version, the use of monad operations
ensures that the correct counter value is passed from one part of the program to
the next. There is no need to mention explicitly that a state monad is required: the
use of startingWith and the initial value 0 are sufficient to determine the monad
State Int needed for the bind and result operators. It is not necessary to distinguish
between different versions of the monad operators bind and result as in Wadler
(1992), or to rely on the use of explicit type declarations.

As another example, one of the most frequently used monads in functional
programming is the list constructor, whose monad structure is described by the
following declaration:

instance Monad List where
result x = [x]
xs 'bind' f = concat (map f xs)

The concat function used in the definition of bind is the standard Haskell function
for concatenating a list of lists.

As a model for computations, lists can be used to describe programs that pro-
duce multiple results, corresponding to a simple form of non-determinism. We will
illustrate this with a simple algorithm for enumerating the permutations of a list.
First, consider the task of choosing an arbitrary permutation of a non-empty list.
One way in which to do this is to pick the first element of the permutation from the
values given, and then choose a permutation of the remaining values. The list of all
permutations can be obtained by repeating this process for all possible choices:

perm :: Eq a => [a] —> [[a]]
perm [] = result []
perm xs = pick xs 'bind' \x —>

perm (xs\\ [x]) 'bind' \rest —*
result (x : rest)

Notice that this program uses lists in two ways, both as a data structure and as a
monad. The simplest way to define the pick function used here would be the identity
function on lists. Other choices of pick can be used, with a corresponding effect on
the order in which the permutations are generated. For example, pick = reverse can
be used to generate the permutations in reverse order.
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Readers familiar with the notation of list comprehensions may have expected the
last line in the definition of perm to be written as:

perm xs = [(x : rest) | x <— pick xs, rest <— perm (xs \\ [x])]

It is no coincidence that this looks so similar to the first version using bind and
result; we will see in Section 3.3 that the notation of list comprehensions can be
interpreted more generally in other monads.

The Tree and Maybe datatypes defined in Section 2 can also be used as monads.
For example, the monad structure for the Maybe datatype is given by the following
declaration:

instance Monad Maybe where
result = Just
Just x "bind" f = / x
Nothing 'bind' f = Nothing

This monad can be used to describe computations which may produce a result,
but which may also fail if, for example, an error condition occurs. We will see
applications for similar monads in later sections of this paper. The Maybe monad
is also used extensively in Spivey (1990), motivated by the problem of simplifying
algebraic expressions using rewriting rules.

3.2 Using defaults

While the bind function described in the previous section is often convenient, it is
not the only way to describe the combination of computations in a monad. For
example, Wadler (1990) uses a join function as an alternative to bind. In the current
framework, we can define join as a polymorphic function that can be used with any
monad:

join :: Monad m => m (m a) —> m a
join xs = xs 'bind' id

In some cases, it can be more convenient to define the structure of a monad using the
join function instead of bind. One way to deal with this is to change the definition
of Monad to include both of these functions:

m b

x 'bind'f = join {map f x)
join x = x 'bind' id

The default definitions for bind and join in the last two lines of the declaration
describe how each of these functions may be defined in terms of the other. By
including default definitions for both, only one of these functions, together with a
suitable definition for result, is required to completely define an instance of Monad.

class Functor m
result ::
bind ::
join ::

=> Monad m
a —> m a
m a —> (a -

m (m a) —»

where

-* m b)
• m a

https://doi.org/10.1017/S0956796800001210 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001210


12 M.P. Jones

This is often quite convenient, for example, allowing us to define the monad structure
for lists more concisely as:

instance Monad List where
result x = [x]
join = concat

However, it would be an error to omit definitions for both operators, since the
default definitions are clearly circular. It is also important to realize that such errors
will not be detected by the compiler.

The current implementation also supports the use of default instance declaration
that can be used to define an instance of a class when no other suitable definition
is included in a program. Once again, the convenience that this feature offers must
be tempered with careful use. For example, in the class declarations above, we have
explicitly specified that every instance ofMonad must also be an instance of Functor.
This is a reasonable assumption because the result and bind functions can be used to
obtain a suitable definition for map if necessary; this construction can be expressed
using the declaration:

instance Monad m => Functor m where
map f m = m 'bind' \x —• result (f x)

This default declaration can sometimes save the programmer from the need to
specify both the Functor and Monad structure for a particular type constructor.
However, since the definition for map provided here depends upon the bind function
in the Monad class, we must be careful to ensure that bind does not in turn depend
on map so as to avoid the possibility of circular definitions. Unfortunately, this
means that neither of the two definitions for Monad List given above can be used
in this way; we must either give an explicit definition for Functor List, or rewrite
the definition for Monad List in the form:

instance Monad List where
result x = [x]
U'bmd'f = []
(x : xs) 'bind' f = f x-H-(xs 'bind' f)

In some sense, the process of looping through the individual elements of a list is an
essential part of both the Functor and Monad structures for List.

The examples in this section suggest that, while default definitions can be quite
useful, they can also cause some awkward problems. In practice, it may be better to
exclude join from the definition of the Monad class, or to extend the compiler with
static checks that can be used to detect and avoid some careless errors.

3.3 Monad comprehensions

Several functional programming languages provide support for list comprehensions,
enabling some common forms of computation with lists to be written in a concise
form resembling the conventional mathematical notation for set comprehensions.
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As described by Wadler (1990), the comprehension notation can be generalized to
arbitrary monads, of which the list constructor is just one special case. In Wadler's
notation, a monad comprehension is written using the syntax of a list comprehension
with a superscript to indicate the monad in which the comprehension is to be
interpreted. This is a little awkward, and makes the notation less powerful than
might be hoped, since each comprehension is restricted to a particular monad.
Using the overloaded operators described in Section 3.1, we have implemented a
more flexible form of monad comprehension that relies on overloading rather than
superscripts.

In our system, a monad comprehension is an expression of the form [ e \ gs]
where e is an expression and gs is a list of generators of the form p <— exp. As a
special case, if gs is empty then the comprehension [e | gs] is written as [e]. The
implementation of monad comprehensions is based on the following translation of
the comprehension notation in terms of the result and bind operators described in
Section 3.1:

[e] = result e
[e | p <- exp, gs] = exp 'bind' \p -• [e | gs]

In this notation, the label function from Section 3.1 can be rewritten as:

label :: Tree a —* Tree (a,Int)
label tree = lab tree 'startingWith' 0
where lab (Leaf n) = [Leaf (n,c) | c <— incr]

lab(l:*:r) = [V :A : r' | /' <- lab I, r' <- lab r]

Applying the translation rules for monad comprehensions to this definition yields
the previous definition in terms of result and bind. The principal advantage of the
comprehension syntax is that it is often more concise and, in the author's opinion,
sometimes more attractive.

3.4 Monads with a zero

Anyone familiar with the use of list comprehensions will know that it is also
possible to include boolean guards in addition to generators in the definition of
a list comprehension. Once again, Wadler showed that this was also possible in
the more general setting of monad comprehensions, so long as we restrict such
comprehensions to monads that include a special element zero satisfying a small
number of laws. This can be dealt with in our framework by defining a subclass of
Monad:

class Monad m => MonadO m where
zero :: ma

For example, both the List and Maybe monads have zero elements, given by the
empty list and Nothing respectively:

instance MonadO List where zero = []

instance MonadO Maybe where zero = Nothing
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Note that there are also some monads that do not have a zero element and
hence cannot be denned as instances of MonadO. The State s monads described in
Section 3.1 are a simple example of this.

Working in a monad with a zero, a comprehension involving a boolean guard can
be implemented using the translation:

[e | guard, gs] = if guard then [e \ gs] else zero

Notice that, as far as the type system is concerned, the use of zero in the translation
of a comprehension such as [e | x *~ xs, guard] automatically captures the
restriction to monads with a zero. There is no need to introduce any additional
mechanism to deal with this.

The inclusion of a zero element also allows a slightly different translation for
generators in comprehensions:

[e | p <— exp, gs] = exp 'bind'f
where f p = [ e | gs ]

f _ = zero

This corresponds directly to the semantics of list comprehensions in Haskell 1.2 (Hu-
dak et al, 1992). The only time when there is any difference between this and the
translation in Section 3.3 is when p is a refutable pattern which may not always
match values generated by exp. For example, using the original translation, the ex-
pression [x | [x] <— [[1], [], [2]]] evaluates to [7]-H-J_, whereas the corresponding
list comprehension gives [7,2]. To preserve the Haskell semantics for list comprehen-
sions, the current implementation always uses the second translation to implement a
generator containing a refutable pattern. Cases where a refutable pattern is required
without being restricted to monads with a zero are easily dealt with by rewriting the
generator as ~p <— exp; in Haskell, any pattern p can be treated as an irrefutable
pattern by rewriting it as ~p. An alternative approach that we experimented with in
earlier versions of this work (Jones, 1992c) is to use a slightly different syntax for
monad comprehensions so that there is no clash with the semantics of Haskell list
comprehensions.

5.5 Kleisli composition

For any monad, we can define a Kleisli composition operator, similar to the usual
composition of functions except that it also takes care of 'side-effects'. The general
definition is as follows:

(@@) :: Monad m =>{b —• m c) —* (a —*m b) -* (a —> m c)
f @@ g = join . map f . g

Categorists may recognize this from the standard construction of the Kleisli category
of a monad (MacLane, 1971, §VI.5).

For example, in a monad of the form State s, the expression /@@g denotes a
state transformer in which the final state of the computation associated with g is
used as the initial state for the computation associated with / . More precisely, for
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this particular kind of monad, the general definition given above is equivalent to:

(f@@g) x = ST {\s0 -» let ST g' = g x
(y,si) = g's0

STf = fy

in (z,S2))

On the other hand, in the List monad, the Kleisli composition operator can be
expressed using a list comprehension as:

(f@@g)x = [z | y *-g x,z « - / y]

(In fact, if we interpret the right-hand side as a monad comprehension, then this is
equivalent to the general definition of (@@) given above!) The greatest advantage
of a general definition is that there is no need to construct new definitions of (@@)
for every different monad. On the other hand, if specific definitions were required
for some instances, perhaps in the interests of efficiency, we could simply include
(@@) as a member function of Monad and use the generic definition as a default
implementation.

Apart from practical applications, Kleisli composition can also be used to describe
the properties of a monad. We mentioned, in Section 3.1, that the member functions
of the Monad class are expected to satisfy some algebraic laws. An equivalent
formulation using Kleisli composition is that, for any monad and any/, g and h of
suitable types:

f@@result = / , result@@g = g, (f@@g)@@h =f@@(g@@h).

In other words, Kleisli composition is associative with result as both a left and right
identity. This suggests an alternative formulation for the Monad class, with result
and (@@) as member functions. The bind and join operators are easily defined in
terms of (@@) using the equations x 'bind'f = (f@@id)x and join = id@@id.
Note that two distinct instances of the polymorphic id function are used in this
definition of join; id is an identity of standard functional composition, but not of
Kleisli composition. Given the simplicity of the laws above, a definition of Monad
based on (@@) may well be useful for program transformation. However, defining
the translation of the comprehension notation, or equivalent expressions using bind,
in terms of Kleisli composition may be a little more awkward.

3.6 Generic operations on monads

The combination of polymorphism and constructor classes in our system makes it
possible to define generic functions that can be used on a wide range of different
monads. The Kleisli composition function described in the previous section is a good
example of this. Many other examples occur as analogues of standard functions
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such as the map and foldr functions used in list processing:

mapl :: Monad m => (a -* m b) —> ([a] -* m [b])
maplfU = [[]]
mapl f (x : xs) = [y : ys \ y «—/ x, ys «- mapl f xs ]

mfoldr :: Monad m => (a —*b —* m b) —> b —* [a] —* m b
mfoldr f a [] = result a
mfoldr f a (x : xs) = mfoldr f a xs 'bind' (\y - + / x y)

For example, the expression mapl f xs represents a computation whose result is the
list obtained by applying / to each element of the list xs, starting on the left (i.e.
moving from the front to the back of the list). Unlike the normal map function,
the direction is significant because the function/ may produce a 'side-effect'. The
mapl function has applications in several different kinds of monads. For example,
mapl might be used to accumulate statistics (in a state monad) or output messages
to indicate progress (in a monad for I/O) while processing a list of elements. Note
also that there is an obvious dual of mapl in which the elements of the list are
processed in the reverse order, obtained by changing the order of the generators in
the comprehension:

mapr :: Monad m => (a -* m b) —*• ([a] —> m [b])
maprfU = [[]]
mapr f (x : xs) = [y : ys \ ys <- mapr f xs, y <-fx ]

As another useful example, the comprehension notation can also be used to define
a generic version of Haskell's filter function that can be used in any monad with a
zero:

filter :: MonadO m => (a —* Bool) —> m a —> m a
filter p xs = [x | x <- xs, p x]

3.7 A family of state monads

We have already described the use of monads to model programs with state using
the State datatype in Section 3.1. The essential property of any such monad is the
ability to update the state, and we might therefore consider a more general class of
state monads given by:

class Monad {m s)=> StateMonad m s where
update :: (s -* s) —> m s s

An expression of the form update f denotes the computation that updates the state
using/ and returns the old state as its result. For example, the incr function described
above can be defined as update (1 +) in this more general setting. Operations to set
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the state to a particular value or to return the current state are easily described in
terms of update:

set
set v

get
get

:: StateMonad
= update (\s -

:: StateMonad
= update id

m s

• » )

m s

mss

m s s

The StateMonad class has two parameters; the first should be a constructor of kind
(•—•*—> *), while the second gives the state type (of kind *); both are needed to
specify the type of update. The implementation of update for a monad of the form
State s is straightforward and provides us with our first instance of StateMonad:

instance StateMonad State s where
update f = ST (\s -» (s,f s))

A rather more interesting family of state monads can be described using the following
datatype definition:

data StateM m s a = STM (s -> m (a,s))

Note that the first parameter to StateM has kind (* —• *), a significant extension
from Haskell where all of the arguments to a type constructor must be types. This
is another benefit of the kind system.

The functor and monad structure of a StateM m s constructor are given by:

instance Monad m => Functor (StateM m s) where
mapf(STMxs) = STM (\s -» [(/" x,s') \ ~(x,s') <- xs s])

instance Monad m => Monad (StateM m s) where
result x = STM (\s -> [(x,s)])
STM xs 'bind'f = STM (\s -> xs s 'bind1 \(x,s') ->

let STM f = f x

in / ' 5')

Note the condition that m is an instance of Monad in each of these definitions. The
definition of StateM m as an instance of StateMonad is also straightforward:

instance StateMonad (StateM m) s where
update/ = STM (\s -> [(s,f s)])

Some means of starting a computation with a given initial state and returning any
results in the parameterizing monad m is necessary to make use of StateM m s
monads. This can be provided by the runSTM function:

runSTM :: Monad m => s —> StateM m s a —* m a
runSTM s (STM f) = [x | ~(x,s')<-f s]

Closely related to the startingWith function introduced in Section 3.1, we will
illustrate the use of runSTM in Section 3.10.

It is also worth noting how a StateM m s monad can 'inherit' properties from
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the parameterizing monad m. For example, if m has a zero element, then so does
StateM m s.

instance MonadO m => MonadO (StateM m s) where
zero = STM (\s -* zero)

Support for monads like StateM m s seems to be an important step towards solving
the problem of constructing monads by combining features from simpler monads,
in this case combining the use of state with the features of an arbitrary monad m.
Of course, we would prefer a more general method for combining arbitrary monads,
but it does not seem that this is possible. However, given a large enough collection
of examples like StateM that can be used to extend the features of an arbitrary
monad with those of another specific kind of monad, it should still be possible to
construct a wide range of combined monads in a fairly straightforward manner. See
King and Wadler (1992), Jones and Duponcheel (1993) and Steele (1994) for related
work in this area.

3.8 When computations fail: a class of error monads

Just as we denned a class of state monads by capturing the essential feature of
such monads—the ability to update the state—we will introduce a class of monads
for describing computations that might fail with a string as an error message or
diagnostic:

class Monad m => ErrorMonad m where
fail :: String —> m a

The Error datatype denned below, a variation on the Maybe datatype used in
previous sections, together with a collection of instance declarations describing its
Functor and Monad structure, provides one simple instance of the ErrorMonad
class:

data Error a = Done a | Err String

instance Functor Error where
map f (Done x) = Done (f x)
map f (Err s) = Err s

instance Monad Error where
result = Done
Done x 'bind' f = f x
Err msg 'bind1 f = Err msg

instance ErrorMonad Error where
fail = Err

In fact, further instances of ErrorMonad can be obtained for any monad with a
zero by mapping any computation of the form fail msg to the zero element of the
monad. Of course, the error message msg is lost in this process. This construction
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can be described by the following instance declaration:

instance MonadO m => ErrorMonad m where
fail msg = zero

This declaration is treated as a default, used in a similar way to the definition of
instances of Functor from instances of Monad in Section 3.2.

Another useful property is that, if a fail function has been denned for the monad
m, then there is a natural way to define a fail function for the parameterized state
monad StateM m s introduced in the previous section:

instance ErrorMonad m => ErrorMonad {StateM m s) where
fail msg = STM (\s -> fail msg)

For example, a constructor of the form StateM Error Int can be used to describe
the combination of an integer state with the features of an ErrorMonad. This will
be particularly useful in Section 3.10.

3.9 Monads and substitution

Up to this point, we have concentrated on the use of monads to describe compu-
tations. In fact, monads also have a useful interpretation as a general approach to
substitution. This in turn provides another application for constructor classes.

Suppose that a value of type m v represents a collection of terms with 'variables' of
type v. Then a function of type w —> m v can be thought of as a substitution, mapping
variables of type w to terms over v. For example, consider the representation of
a simple language of types constructed from type variables and the function space
constructor using the datatype:

data Type v = TVar v | Fun (Type v) (Type v)

The corresponding instances of Functor and Monad are as follows:

instance Functor Type where
map f (TVar v) = TVar (f v)
map f (Fun d r) = Fun (map f d) (map f r)

instance Monad Type where
result v = TVar v
TVar v 'bind' f = f v
Fun dr 'bind'f = Fun (d 'bind' f) (r 'bind' f)

In this setting, the map function gives a systematic renaming of the variables in a
term (there are no bound variables), while the result function corresponds to the null
substitution that maps each variable to the term that represents it. If t :: Type v and
s is a substitution of type v —> Type v, then t 'bind' s gives the result of applying the
substitution s to the term t, replacing each occurrence of a variable v in t with the
corresponding term s v in the result. In other words, application of a substitution
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to a term is captured by the function:

apply :: Monad m => (v —> m w) —> (m v —* m w)
apply s t — t 'bind' s

Note also that the Kleisli composition (@@) operator described in Section 3.5 gives
the standard composition of substitutions. The fact that composition of substitutions
is associative with the null substitution as both a left and right identity is a special
case of the laws for Kleisli composition. Furthermore, using the same laws, and the
definition for bind in terms of (@@), it is a simple exercise to show that:

apply result = id and apply (s@@t) = apply s . apply t

for any s and t of the appropriate types. In particular, for any monad m and any type
v, the apply function is a monoid homomorphism from (v —> m v, (@@), result) to
(m v -*mv, (.),id).

In most cases, the same type will be used to represent variables in both the domain
and range of a substitution. We introduce a type synonym to capture this and to
make some type signatures a little easier to read.

type Subst m v = v —• m v

Note that Subst has kind (*—>•)—>*—>•*; we do not restrict the arguments of
a type synonym to be constructors of kind *. On the other hand, unlike datatype
constructors, it is an error to use a type synonym constructor without the correct
number of arguments. These issues are discussed in more detail in Section 5.2.

One of the simplest kinds of substitution, which will be denoted by v *-> t, is a
function that maps the variable v to the term t but leaves all other variables fixed:

(i—>) :: (Eq v, Monad m) => v —* m v —* Subst m v
(v i—> t) w = if v = = w then t else [w]

The type signature shown here is the principal type for the (i—>) operator, and could
also have been inferred automatically by the type system. The class constraints
(Eq v, Monad m) indicate that, while (i—>) is denned for an arbitrary monad, it
can be used only in cases where the values representing variables can be tested for
equality.

The following definition gives an implementation of the standard unification
algorithm for values of type Type v. This illustrates the use of monads both as a
means of describing substitutions and as a model for computations, in this case, in
an ErrorMonad:

unify (TVar v) (TVar w) = if v == w then [result] else [v i—> TVar w]
unify (TVar v) t = varBind v t
unify t (TVar v) = varBind v t
unify (Fun d r) (Fun e s) = [s2@@s\ | Si *- unify d e,

s2 <- unify (apply si r)
(apply sx s)]

The only way that unification can fail is if we try to bind a variable to a term that
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contains that variable. A test for this condition, often referred to as the occurs check,
is included in the auxiliary function varBind:

varBind v t | occurs v t = fail "unification fails"
| otherwise = [v *—* t]

wiiere occurs v (TVar w) = v = = w
occurs v (Fun d r) = occurs v d 11 occurs v r

The types of unify and varBind were not included in the definitions above, but can
be inferred by the type checker, giving:

unify :: (Eq v, ErrorMonad m) =*• Type v —» Type v -* m (Subst Type v)
varBind :: (Eq v, ErrorMonad m) => v —> Type v —> m (Subst Type v)

In both cases, the class constraint Eq v reflects the use of the (==) operator to
compare values used to represent variables. The second constraint, ErrorMonad m,
occurs as a result of the use of the/ai/ function in varBind. As a result of the call
to varBind, the same constraint is propagated into the type of unify.

3.10 A simple application: type inference

To illustrate how some of the classes and functions introduced above might actually
be used in practice, this section describes an implementation of Milner's type
inference algorithm iV. We will not attempt to explain in detail how the algorithm
works or to justify its formal properties since these are already well-documented, for
example in Milner (1978) and Damas and Milner (1982).

The purpose of the type checker is to determine types for the terms of a simple
A-calculus represented by the data type:

data Term = Var Name variables, v
| Ap Term Term applications, M N
| Lam Name Term abstractions, Xv.M

The names of term variables are represented by values of type Name; this will
typically be a synonym for String. For the types themselves, we use the representation
introduced in the previous section, with type variables represented by integer values
so that it is easy to generate 'new' type variables as the algorithm proceeds. For
example, given the identity function represented by Lam x (Var x) :: Term, we expect
the type inference algorithm to produce a result of the form Fun n n :: Type Int for
some (arbitrary) type variable of the form n = TVar m.

At each stage, the type inference algorithm maintains a collection of assumptions
about the types currently assigned to free variables. The simplest way to represent
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this is using an association list of type Assoc Name {Type Int) with the following,
more general, implementation:

data Assoc v t

empty
empty

= Assoc [(v, t)]

:: Assoc v t
= Assoc []

extend :: v —> t -> Assoc v t —> Assoc v t
extend v t (Assoc as) = Assoc {(v,t) : as)

lookup :: (Eq v, ErrorMonad m) => v —»• Assoc v t —• m t
lookup v (Assoc as) = foldr find (fail "unbound variable") as

where find (w,t) alt | w ——v = [t]
| otherwise = alt

instance Functor (Assoc v) where
map f (Assoc as) = Assoc [(a,f b) | (a,b) <— as]

As the names suggest, empty represents the empty association list, extend is used to
add a new binding, and lookup- is used to search for a binding, raising an error if
no corresponding value is found. We have also defined an instance of the Functor
class that allows us to apply a function to each of the values held in the list, without
changing the keys.

The type inference algorithm behaves almost like a function taking assumptions
a and a term m as inputs, and producing a pair consisting of a substitution s and a
type t as its result. The intention here is that t will be the principal type of m under
the assumptions obtained by applying s to a. The complete algorithm is given by
the following definition, with an equation for each different kind of Term:

infer

infer

infer

a (Var

a (Lam

a (Ap I

v)

v e)

r)

= lookup v a
result (result, t)

= new Var
infer (extend v (TVar b) a) e
result (s, s b 'Fun' t)

= infer a I
infer (map (apply s) a) r
new Var
unify (apply t It) (rt 'Fun' TVar b)
result (u@@t@@s, u b)

lbind'\t ->

'tofid'V> -»

'bind\(s,t)

'bind'\(s,lt)
'bind'\(t,rt)
'bind\b ->
'bind'\u -»

The reason for writing this algorithm in a monadic style is that it is not quite func-
tional. There are two reasons for this; first, it is necessary to generate 'new' variables
during type checking. This is usually dealt with informally in presentations of type
inference, but a more concrete approach is necessary for a practical implementation.
For the purposes of this algorithm, we use a StateMonad with an integer state
to represent the next unused type variable. New variables are generated using the
function newVar — update (1 +).
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The second reason for using the monadic style is that the algorithm may fail,
either because the term contains a variable not bound in the assumptions a, or
because the unification algorithm fails.

Both of these are reflected by the class constraints in the type of infer, indicating
that an instance of both StateMonad and ErrorMonad is required to use the type
inference algorithm:

infer :: (ErrorMonad (m Int),StateMonad m Int) =>
Assoc Name {Type Int) —»

Term —•

m Int (Subst Type Int, Type Int)

On the other hand, the constraints do not single out any particular monad satisfying
these conditions. This is important because we may want to be able to use infer as
part of a larger program that requires other features such as I/O. In specific cases,
it is often possible for the type system to determine which monad is required as a
result of the non-generic monad operators that are involved. The typecheck function
defined below illustrates this point:

typecheck :: Term —• Error String
typecheck = map (show . snd) . runSTM 0 . infer empty

In this case, given the use of Error in the type assigned to typecheck and of runSTM
in the body of the definition, it follows that the infer function in this definition will
require a monad of the form StateM Error Int. To make the output from typecheck
more readable, we apply the show function to each output type which has been
defined so that, for example, Fun (TVar 0) (TVar 0) will be displayed as the string
"0 -> 0".

Now suppose that we also have a function parse :: String —> Error Term that
attempts to parse its argument string as a term t, returning Done t if successful,
or Err 'syntax error' if not. It is easy to define such a function using standard
techniques such as combinator or monadic parsers. A natural application of Kleisli
composition is to combine parsing with typechecking:

typeOf :: String —> Error String
typeOf = typecheck @@ parse

The following extracts are taken from a session with Gofer, showing how these
definitions work in practice. In the first two examples, we ask the system to calculate
types for the identity function Xx.x and the S combinator, Xx.Xy.Xz.x z (y z):

? typeOf "(Wx.x)"
Done "0 -> 0"

? typeOf "(\\x y z.(x z (y z)))"
Done "(2 -> 4 -> 5) -> (2 -> 4) -> 2 -> 5"

More interesting, perhaps, are the following examples, illustrating each of the
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different ways that an error can occur during either parsing or type checking:

? typeOf "(x"
Err "syntax error"
? typeOf "x"
Err "unbound variable"

? typeOf "(\\x.(x x))11

Err "unification fails"

The type checker described here implements a very simple form of the standard type
inference algorithm; we have not made any attempt to deal with local definitions
introduced by let constructs, with instantiation and generalization of polymorphic
types or with any form of overloading. However, it should be clear that this
implementation can be modified to deal with these extensions. We should also
mention that most practical implementations of type inference are based on Milner's
algorithm £ since this can be implemented using a single substitution that is
only modified during unification. This, too, can be dealt with using the techniques
described here, with a state type (Int, Subst Type Int) that records both the next
'new' variable and the current substitution.

4 A formal treatment of the type system

Up to this point, we have concentrated mostly on the applications of constructor
classes. In this section and the next, we turn our attention to providing a more formal
description of the underlying type system. In particular, we show how constructor
classes can be supported in a language where type inference is used to replace the
need for explicit type annotations. This is particularly interesting from a theoretical
point of view, since the type system includes both overloading and higher-order
polymorphism, for example, allowing universal quantification over constructors of
kind * -> *.

For reasons of space, many of the technical details have been omitted from this
paper. However, the definitions and overall approach used here are very closely
based on our earlier work with qualified types, except that we allow predicates
over type constructors in addition to predicates over types. This previous work is
described in Jones (1992a) and documented more fully in Jones (1992b).

4.1 Constructors, substitutions and predicates

For the formal work with the system of constructor classes it is convenient to
annotate each constructor expression with its kind. Thus for each kind K, we have
a collection of constructors CK, including constructor variables ccK, given by the
grammar:

CK : := xK constants

| ccK variables

| CK'~fKC^ applications
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The apparent mismatch between these explicitly kinded constructors and the implicit
kinding used in the preceding sections will be addressed in Section 5. Note that,
other than requiring that the function space constructor —»• be included as an element
of C •-**-»*, we do not make any assumption about the constructor constants /K in
the grammar above.

A substitution is a mapping from variables to constructors. Any such function can
be extended in a natural way to give a mapping from constructors to constructors.
For the purposes of this work, we will restrict ourselves to the use of kind-preserving
substitutions that map each variable to a constructor of the same kind. A simple
induction shows that each of the collections CK is closed with respect to such
substitutions.

A constructor class represents a set of constructors or, more generally, when
the class has multiple parameters, a relation between constructors. The kinds of
the elements in the relations for a given class P are specified by a tuple of kinds
(xi,...,Kn) called the arity of P . For example, any standard type class has arity (*),
the Functor and Monad classes have arity (*—>*) and the StateMonad class has
arity (* —• * —> *, *). A predicate, or class constraint, is an expression of the form
P C\ .... Cn (where each C, € C K>'•) representing the assertion that the constructors
C\,...,Cn are related by P.

The properties of predicates are captured abstractly by an entailment relation
P H- Q between finite sets of predicates. The only restrictions that we make on the
H- relation are that it is transitive, closed under substitution and monotonic in the
sense that P H- Q whenever P 2 Q. (In practice, some additional restrictions on the
definition of H- are necessary to ensure decidability of type checking. We will return
to this point in Section 4.5.) The precise definition of entailment is determined by
the class and instance declarations that appear in a given program. The following
examples are based on the definitions given in the preceding sections:

0
{Monad m*—
{StateMonad i

}
H-
H-

s*} If

{Functor
{Functor
{Monad

List, Monad
}

List}

The first of these axioms expresses the fact that List is an instance of the Functor and
Monad classes, while the remaining two examples appear as a result of superclass
declarations. For example, the second axiom indicates that every instance of the
Monad class must also be an instance of Functor. Unlike some descriptions of type
class based type inference, there is no need for any special encoding of superclasses
since these already fit naturally into our framework.

4.2 Types and terms

Following the definition of types and type schemes in ML, we use a structured
language of types, with the principal restriction being the inability to support
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functions with either polymorphic or overloaded arguments:

T ::= C types
p : := P => z qualified types
a ::= VT.p type schemes

The symbols P and T used here range over finite sequences of predicates and
constructor variables, respectively.

It will also be convenient to introduce some abbreviations for qualified types and
type schemes. In particular, if p = (P => T) and a = V7\/>, then we write n => p and
Va.o- as abbreviations for {{%} U P ) = > T and V({a} U T).p, respectively.

For program terms, we use the standard Core-ML language based on simple
untyped /l-calculus with the addition of a let construct to enable the definition and
use of polymorphic/overloaded terms:

E ::= x | EF | Xx.E | let x = E in F.

The symbol x ranges over a given set of (term) variables.

4.3 Typing rules

A type assignment is a (finite) set of pairs of the form x : a in which no term
variable x appears more than once. If A is a type assignment, then we write
dom A = {x | (x : a) e A }, and if x is a term variable with x $. dom A, then
we write 4 , x : a asan abbreviation for the type assignment A U {x :a}. The type
assignment obtained from A by removing any typing statement for the variable x is
denoted Ax.

A typing is an expression of the form P \ A \- E :a representing the assertion that
a term E has type a when the predicates in P are satisfied and the types of free
variables in £ are as specified in the type assignment A. The set of all derivable
typings is defined by the rules in Fig. 1. Note the use of the symbols x, p and a to
restrict the application of certain rules to specific sets of type expressions.

Most of these are similar to the usual rules for Core-ML; only the rules (=>/)
and (=>£) for dealing with qualified types and the (V7) rule for polymorphic
generalization involve the predicate set. An expression of the form CV{X) denotes
the set of constructor variables appearing free in X. For example, in rule (V7), the
condition <xK ^ CV(A) U CV(P) is needed to ensure that we do not universally
quantify over a variable that is constrained either by A or P.

4.4 Type inference

The rules in Fig. 1 are useful as a means of explaining and understanding the type
system, but they are not suitable as a basis for a type inference algorithm: There are
many different ways in which the rules might be applied to find the type of a given
term and it is not always clear which (if any) will give the best result. An alternative
set of rules that avoids these problems is presented in Section 4.4.2 following a
preliminary description of constructor unification.
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(x :a)eA

^ar> P\AY-x:a

P\A\-E :T' - » I
P | / l h F :T'

l ^ £ j P | i h £ F : t

P\A\- E :n=> p

P\h{n}

(=>E> P AX-E :p

P\AVE :VaK.(j
C GCK

™ PIA,E:[C/^

P\A\-E :a
Q\Ax,x:a\-F :x

(let) p\jQ\A\-Qetx =E in F) :x

Pvl{n\\A\- E : p
{=>l) P\A\- E :?r => p

P\A\- E :a
aK <£CV(A)UCV(P)

^1} P\A\-E :VaK.<T

Fig. 1. ML-like typing rules for constructor classes.

4.4.1 Unification of constructor expressions

Unification algorithms are often required in type inference algorithms to ensure
that the argument type of a function coincides with the type of the argument that
it is applied to. In the context of this paper, we need to deal with unification of
constructors which is a little more tricky than unification of simple types since
we need to keep track of the kinds of the constructors involved. Nevertheless, the
following presentation follows the standard approach, as introduced by Robinson
(1965), extended to deal with the use of kind-preserving substitutions.

We begin with two fairly standard definitions. A kind-preserving substitution S is
a unifier of two constructors C, C e CK if SC = SC. A kind-preserving substitution
U is called a most general unifier for the constructors C, C' G CK if:

• U is a unifier for C and C , and
• every unifier S of C and C can be written in the form RU for some kind-

preserving substitution R.

Writing C~KC for the assertion that U is a unifier of the constructors C,C € CK,
the rules in Fig. 2 define a unification algorithm that can be used to calculate a
unifier for a given pair of constructors. It is straightforward to verify that any
substitution U obtained using these rules is indeed a unifier for the corresponding
pair of constructors.

Notice that there are two distinct ways in which the unification algorithm may
fail; first in the rules (bindVar) and (bindVar') where unification would result in
an infinite constructor (i.e. producing a regular tree). Second, the unification of a
constructor of the form CC with another constructor of the form DD' is possible
only if C and D can be unified which in turn requires that these two constructors
have the same kind, which must be of the form K1 —> K. This is a consequence of the
fact that there are no non-trivial equivalences between constructor expressions. This
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(idVar)

(idConst)

(bindVar)

(bindVar')

(apply)

id

id

aiC~\c a^CK(C)

c[C^K« «tcv(C)

C~^KD SC'~^SD'

CC'S~KDD'

Fig. 2. Kind-preserving unification.

property would be lost if we had included abstractions over constructor variables
in the language of constructors, requiring the use of higher-order unification and
ultimately leading to undecidability in the type system.

With these observations, we can use standard techniques to prove:

Theorem 1
If there is a unifier for two given constructors C,C e CK, then C~KC using the
rules in Fig. 2 for some U and this substitution is a most general unifier for C and
C'. Conversely, if no unifier exists, then the unification algorithm fails.

The rules in Fig. 2 require that the two constructors involved at each stage in
the unification must have the same kind. In practice, however, it is only necessary
to check that the constructor C has the same kind as the variable a in the rules
{bindVar) and {bindVar'), ensuring that the substitution [C/a] in these rules is
kind-preserving.

The process of finding the kind of the constructor C to compare with the kind of
the variable a to which it will be bound can be implemented reasonably efficiently.
Suppose that C = H C\ ... Cn where H is either a variable or a constant. Since C
is a well-formed constructor, H must have kind of the form K\ —> ... —* Kn -* K
where K, is the kind of the corresponding constructor C,. It follows that C has kind
K. Thus the only information needed to find the kind of C is the kind of the head
H and the number of arguments n that it is applied to. There is no need for any
more sophisticated form of kind inference in this situation.

The need to check the kinds of constructors in this way certainly increases the
cost of unification. On the other hand, we would expect that, in many cases, this
would be significantly less than that of the occurs check—a ^ CV{C)—which will
typically involve a complete traversal of C.

4.4.2 A type inference algorithm

The rules in Fig. 3 provide an alternative to those of Fig. 1 with a single rule for
each syntactic construct in the language of terms. Each judgment is an expression
of the form P | TA *r E : % where P is a set of predicates, T is a (kind-preserving)
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(var)™

(-£)w

(-»/)"

(letr

P\TA

P\

F E

TAP

T

E

( x : V

Q

P\T(,

I

: T

P' |3

0.1'.P =

TTA\

PUQ)

-TAP

>x)eA

? F :x'

| UT'T/

')¥ E

Xx.E :

(,etx =

: T

Ta

= E

f}*1 new

a* new T'x~.x' —> a*

£F : I/a*

a* new

* —* x

n(TA,P =>T))F F :T'

in F) : t'

Fig. 3. Type inference algorithm W.

substitution, A is a type assignment, £ is a term and x is an element of C*. The
Gen function used in the rule (let)1" is denned by Gen(A,p) = V(CF(p) \ CV(A)).p
and is used to calculate the generalization of a qualified type p with respect to the
assumptions A.

These rules can be interpreted as an algorithm for calculating typings. Starting
with a term £ and an assignment A, we can use the structure of £ to guide the
calculation of values for P , T and x such that P \TA)r E : x. The only way that
this process can ever fail is if E contains a free variable that is not mentioned in A
or if one of the unifications fails.

The type inference algorithm has several important properties. First of all, the
typing that it calculates is valid with respect to the original set of typing rules:

Theorem 2
If P | TA F E : x, then P | TA \-E : x.

Given a term E and an assignment A it is particularly useful to find a concise
characterization of the set of pairs (P | a) such that P | A h E : a. This information
might, for example, be used to determine if E is well-typed (i.e. if the set of pairs is
non-empty) or to validate a programmer supplied type signature for E.

Following the approach of Damas and Milner (1982), this can be achieved by defin-
ing an ordering on the set of all pairs (P | a) to describe when one pair is more general
than another. We can then show that the set of all (P | a) for which a given term is
well-typed is equal to the set of all pairs that are less than a principal type, calculated
using the type inference algorithm. This allows us to establish the following theorem:

Theorem 3
Let £ be a term and A an arbitrary type assignment. The following conditions are
equivalent:

• £ is well-typed under A.
• P \TA \r E : x for some P and x and there is a substitution R such that

RTA = A.
• £ has a principal type under A.
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The definition of the ordering between pairs (P | a) and the full proof of the above
theorem are essentially the same as used in Jones (1992b), to which we refer the
reader for further details.

4.5 Coherence and decidability of type checking

Up to this point, we have not made any attempt to discuss how programs in the
current system of constructor classes might be implemented. One fairly general
approach is to find a translation for each source term in which overloaded functions
have additional evidence parameters that make the use of overloading explicit.
Different forms of evidence values can be used. For example, in theoretical work,
it might be sensible to use predicates themselves as evidence, while practical work
might benefit from a more concrete approach, such as the dictionary passing scheme
proposed by Wadler and Blott (1989).

To justify this approach, it is important to show that any two potentially distinct
translations of a given term are semantically equivalent. Following Breazu-Tannen
et al. (1989), we refer to this as a coherence property of the type system. As we hinted
in Section 2.1, the same problem occurs in Haskell unless we restrict our attention
to terms with unambiguous type schemes. Fortunately, the same solution works for
the system described in this paper; we can show that, if the principal type scheme
Va,.P => p of a given term satisfies {a,} n CV(P) £ CV(p), then all translations of
that term are equivalent.

This restriction also simplifies the conditions needed to ensure decidability of type
checking. In particular, we can show that type checking for terms with unambiguous
principal types is decidable if and only if, for each choice of P and Q, the task of
determining whether P ft- Q is decidable. Simple syntactic conditions on the form
of instance declarations can be used to guarantee this property. The same approach
is used in the definition of Haskell (Hudak et al., 1992).

Once again, we refer the reader to Jones (1992b) for further details and background
on the issues raised in this section.

5 Kind inference

The biggest difference between the formal type system described in Section 4 and its
'user interface' described in the opening sections of the paper is the need to annotate
constructor variables with their kinds. As we have already indicated, we regard the
fact that the programmer does not supply kind information explicitly as a significant
advantage of the system. At the same time, this also means an implementation of
this systems needs to be able to determine:

1. The kind of each user-defined constructor x-
2. The arity of each constructor class P.
3. The kind of each universally quantified variable in a type scheme. This is

necessary so that we can generate new variables of the appropriate kind when
a type scheme is instantiated using (vary.
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Fortunately, given the simple structure of the languages of constructors and kinds,
it is relatively straightforward to calculate suitable values in each of these cases
using a process of kind inference. Treating the set of constructors as a system
of combinators, we can use standard techniques—analogous to type inference—to
discover constraints on the kinds of each object appearing in a given (unannotated)
constructor expression and solve these constraints to obtain the required kinds.

Item (1) will be dealt with more fully in Sections 5.1 and 5.2. To illustrate the
basic ideas for an example involving items (2) and (3), recall the definition of the
constructor class Functor from Section 2.2:

class Functor f where
map :: (a —>• b) -> (f a —*f b)

Using the fact that (—>) ::*—>*—>*, and that both a and b are used as arguments
to —> in the expression (a —> b), it follows that both of these variables must have
kind *. By a similar argument, / a also has kind * and hence / must have kind
* —» * as expected. Thus map has type:

Vf'-".Va'.Vb'.Functor f => (a - • b) -> (f a - > / b)

and the Functor class has arity (* —> *).

5.1 Datatype definitions

Many programs include definitions of new datatypes and it is important to determine
suitable kinds for the corresponding type constructors. The general form of a
datatype declaration in Haskell is:

data i a\ ... am = constr\ \ ... \ constrn

This introduces a new constructor i that expects m arguments, represented by the
(distinct) variables a;, . . . , am. Each constr on the right-hand side is an expression
of the form F xt ... xn that allows the symbol F to be used as a function of type
T/ —>... -*• xn —* x ai • • • am to construct values of the new type.

In our more general setting, we can treat x as a constructor of kind:

where /cj,... ,/cm are kinds for a/ , . . . , am, respectively, calculated by the kind inference
process.

We have already seen several examples above for which the kind of the type
constructor may be determined by this process. In some cases, the definition of a
type constructor does not uniquely determine its kind; just as some A-terms can
be assigned polymorphic types, some type constructors can be treated as having
polymorphic kinds. For example, given the definition:

data Fork a = Prong \ Split {Fork a) (Fork a)

we can infer that Fork has kind K —* * for any kind K. In the current implementation,
we avoid the need to deal with polymorphic kinds by replacing any unknown part
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of an inferred kind with *. Hence the Fork constructor will actually be treated as
having kind * —> *. This is consistent with the interpretation of datatype definitions
in Haskell where all variables are expected to have kind *.

5.2 Synonym definitions

In addition to defining new datatypes, it is common for a program to introduce new
names for existing types using a type synonym declarations of the form:

type x a\ • • • am = rhs

The intention here is that any type expression of the form x Cj ... Cm abbreviates
the type obtained from rhs by replacing each occurrence of a variable at with
the corresponding constructor C;. We do not allow a type synonym constructor
X to be used without the full number of arguments. This ensures that we do not
invalidate the conditions needed to establish the coherence property described in
Section 4.5. In addition, following the definition of Haskell, it is not permitted to
define mutually recursive type synonyms without an intervening datatype definition.
These conditions guarantee that it is always possible to expand any given type
expression to eliminate all type synonyms. However, for practical purposes, it is
sensible to calculate a kind for each synonym constructor x and hence avoid the
need to expand synonyms during kind inference. For example, given the definitions:

type Church a = (a —> a) -* (a —> a)

type Subst t v = v —> t v

we find that, for the purposes of kind inference:

Church :: * -> *
Subst :: (*->»)->•*->•*.

6 Conclusions and future work

Based on the examples in this paper and our initial experience with the prototype
implementation, we believe that there are many useful applications for a system of
constructor classes. Of course, since the use of constructor classes is likely to lead
to a greater use of overloading in typical programs, further work to investigate new
techniques for the efficient implementation of type and constructor class overloading
would be particularly useful.

The use of constructor classes is compatible with the current treatment of type
classes in Haskell, but some further extensions to the language may also be helpful.
For example, the ability to generate instances of the Functor class automatically
would certainly be useful, extending the 'derived instance' mechanism in Haskell
(Hudak et al., 1992, Appendix E). Some small extensions are necessary to support
separate compilation. In particular, if a module exports a datatype constructor x
without any value constructor functions, then it will not be possible to infer the
kind of x- The obvious solution is to include the kind of / explicitly as part of the
module interface specification.
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There are two noticeable restrictions in the current system. First, while the decision
to exclude any form of abstraction from the language of constructors is essential to
ensure the tractability of the whole system, it also places some limitations on the
programmer. For example, having denned:

data State s a = ST (s -» (a,s))

we were able to define State as a functor in its second argument. This would not
have been possible if the two parameters s and a on the left-hand side been written
in the reverse order. Of course, this problem can always be avoided by defining a
new data type. Indeed, this was precisely the motivation for originally introducing
the State data type, since the constructor expression s —• (a,s) is not in a suitable
form. Nevertheless, it would certainly be useful to find a less cumbersome technique.

The second problem can be illustrated by considering the task of building a class
of set constructors. One possible class declaration for this might be:

class Functor set => Set set where
emptySet :: set a

singleton :: a —> set a

union, intersect :: set a —* set a —• set a

member :: a —» set a —• Bool

setToList :: set a —> List a

Unfortunately, this declaration does not reflect the fact that, for some concrete
implementations of sets, additional constraints must be placed on the type of values
that can be held in a set. For example, if si :: ListSet a is a set, represented by a list
of values, then the member function can be used to test for membership in si only
if a is an instance of Eq. On the other hand, if st :: TreeSet a is a set, implemented
using a binary search tree, then a stronger condition, requiring a to be an instance of
the class Ord so that its values can be ordered, is necessary. Since these constraints
are properties of the individual constructors rather than the class, it is appropriate
that they should be reflected as part of the datatype definitions:

data Eq a => ListSet a = ...
data Ord a => TreeSet a = ...

Our intention here is to view Eq and Ord as new kinds, each a subkind of *, and
to treat ListSet and TreeSet as having kinds Eq -* * and Ord —* *, respectively
(in fact, this syntax is already supported in Haskell, but with a somewhat different
interpretation). Extending these ideas to the type system described in this paper
would require some form of subkinding. We hope that experience with the current
implementation will allow us to decide whether examples like the Set class above
occur sufficiently often in practice to warrant the additional complexity.

The system of parametric type classes proposed in Chen et al. (1992) also addresses
some of the problems that we have described in this paper. The most important
feature of parametric classes is their ability to express particular forms of dependency
between the parameters in a multi-parameter class. This might, for example, provide
us with an alternative solution to the Set class problem described above, using
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instance declarations of the form:

instance Eq a => ListSet a :: Set a where . . .

Nevertheless, we believe that the ability to express dependencies between constructors
is largely orthogonal to our use of higher-order constructor variables. It seems
reasonable to expect that a system of parametric classes could be extended along
the lines described in this paper to obtain a system of parametric constructor classes
that supports the features of both systems.
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