
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 4, APRIL 1989 427

A Macroscopic Profile of
Proaam Comtilation and Linlune

U I U

MARK A. LINTON AND RUSSELL W. QUONG

Abstract-To profile the changes made to programs during devel-
opment and maintenance, we have instrumented the mnke utility [11
that is used to compile and link programs. With minor modifications,
we have used make to find out how much time programmers spend
waiting for compiling and linking, how many modules are compiled
each time a program is linked, and the change in size of the compiled
modules.

Our measurements show that most programs are relinked after only
one or two modules are recompiled, and that over 90 percent of all
recompilations yield object code that is less than 100 bytes larger in
size. We are using these results to guide the design of an incremental
programming environment, particularly with respect to an incremen-
tal linker.

Index Terms-Compilation, incremental linking, programming en-
vironment, program size distribution, software development profile.

I . INTRODUCTION
NCREASING programmer productivity requires either I improving the quality of their programs or reducing the

time it takes to produce them. Programmers spend much
of their time modifying and then rebuilding programs,
particularly during the long and costly period of software
maintenance. “Turnaround time” is the time it takes to
rebuild a program, namely, the delay after a source code
change is made before the object code can be executed; it
usually encompasses recompiling, relinking, and starting
a debugger. Since turnaround time is a major component
of programmer “wait” time, reducing it effectively in-
creases productivity.

Our long-term goal is to understand how to build an
environment in which program design time is minimized
and in which programmer wait time is eliminated during
“edit-compile-execute-debug” iterations. Batch-oriented
compilation environments such as UNIX@ [3] force pro-
grammers to wait for the compiler and linker, while in-
terpretive environments such as Smalltalk [2] sacrifice ex-
ecution speed and static type-checking for immediate
feedback. Our goal is to provide both fast turnaround and
fast execution in a programming environment.

Our approach to achieve this end is to use incremental
compilation and linking techniques. These techniques at-

Manuscript received January 2, 1987; revised March 27, 1987. This
work was supported by the SUNDEC project through a gift from Digital
Equipment Corporation.

M . A. Linton is with the Computer Systems Laboratory. Stanford Uni-
versity, Stanford, CA 94305.

R. W. Quong is with the Department of Electrical Engineering, Purdue
University, West Lafayette, IN 47907.

IEEE Log Number 8826225.
W N I X is a registered trademark of AT&T Bell Laboratories.

tempt to recompile and relink only those parts of the pro-
gram affected by the latest change. For small changes.
incremental compilation and linking can be substantially
faster than normal methods.

The effectiveness of these algorithms depends on the
type of modifications programmers make today. Knowing
quantitative distributions of program size, module size,
program turnaround time, and magnitude of object code
changes is critical in the design of incremental algorithms
and data structures. To gather this information, we have
instrumented the UNIX utility make and have been col-
lecting data for several months here at Stanford.

In the remainder of this paper, we describe our data
collection and analysis methods in detail, present the re-
sults of our measurements, and draw conclusions on how
the results affect the design of an incremental program-
ming environment. In particular, we describe how these
measurements have guided the design of an incremental
linker.

11. APPROACH

We chose to obtain our measurements in the UNIX en-
vironment because we are quite familiar with it from
everyday usage. Our familiarity has helped us determine
a simple, efficient method to collect relevant data from
the large community of programmers at Stanford.

We do not claim that our environment is representative
of industrial software development; whether observing
other environments would yield a similar profile is an open
question. However, we do not have a substantial user
community of software developers performing both re-
search programming and maintaining production systems.
Our results are relevant to ourselves and to other groups
conducting similar research. Our approach can be applied
to any UNIX environment, and can be adapted to other
environments with standard conventions for program
compiling and linking.

Our method is novel in that it is macroscopic. Unlike
system accounting of cumulative compiler usage or the
profiling of individual tools, we observe how a program
changes over time as it is rebuilt. We were able to gather
data easily on UNIX because the make utility is normally
used to control the compilation and linking of whole pro-
grams, allowing us to view the entire process in the con-
text of rebuilding a program and not just individual mod-
ules.

Make does not do any compiling or linking itself; in-

0098-5589/89/0400-0427$01 .OO @ 1989 IEEE

428 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 4. APRIL 198’)

stead, it calls appropriate commands to recompile out-of-
date modules based on dependency information supplied
by the user. By installing our own version of make, we
were able to obtain unbiased data automatically and trans-
parently. In addition to recording compilaton and linking
data, we record the host machine, user name, and the cur-
rent file system directory for each make. This information
identifies the session.

There are a numer of ways of measuring how a program
changes: object code size, number of modules, and source
code size. Object code size is important for general mem-
ory allocation considerations when designing incremental
algorithms. More important is how the size of object code
changes. This information is helpful in the design of an
incremental compiler; it is required for the design of an
incremental linker.

The profile of object code size changes is important in
understanding how an incremental linker should manage
memory. In particular, if large changes happen infre-
quently the linker can allocate some extra memory for
each module and only reallocate all of program memory
when a major change is made. Alternatively, if large
changes happen frequently, it may be desirable to use in-
direct addressing for all cross-module references. Ideally,
we should also profile how object code addresses change,
but this data is too expensive to collect.

The number of modules affects the cost of linking. In-
creasing the number of modules increases external refer-
ences and relocation information, which slows down the
linker. On UNIX, the smallest unit of compilation is a
file, thus in this paper a “module” is a file. However,
files are not necessarily logical units; they may comprise
several logical modules or be part of a larger logical mod-
ule.

We did not analyze source code changes because the
size of program source is not meaningful, as it is very
dependent on programmer style (e.g., use of comments,
white space). A minor source code change can generate a
substantial object code change. For example, requesting
a procedure to be compiled inline might make a module
much larger and change the address of every symbol
within it. Finally, analyzing source code is difficult and
expensive to do.

By collecting data on object code size, number of mod-
ules, and turnaround time, we can answer the following
questions:

How many modules are there in the average pro-
gram?

How large is the average module?
How many modules are compiled each time a pro-

How much does a module’s object code size change?
How long does the average program take to compile

How much time passes between make sessions for

How do turnaround time, l ink time, object code size,

gram is linked?

and link?

the same program?

and number of modules correlate with each other?

The remainder of this section describes the two phases
of our experiment in detail. We first describe how we in-
strumented make to gather the desired data, and then how
we have condensed the information to an understandable
form.

A . Collecting the Data
Instrumenting any program consists of three subprob-

lems: detecting when something of interest occurs, ex-
tracting the information of interest, and storing the infor-
mation. Our make records the following commands:

cc UNIX portable C compiler
pc Berkeley UNIX Pascal compiler
f77 Fortran 77 compiler
mod DEC-WRL Modula-2 compiler[4]
CC C + + compiler[5]
Id UNIX linker

Whenever make calls one of the above commands, we
record its name along with the command line arguments,
how long the command ran, the name of the expected ob-
ject file and the size of the object code it generated (text,
data, and symbol table). For each make session, we also
record the machine name, the user name, the full path
name of the current working directory, and when make
started and finished. The following fragment is a sample
of the data we collect:

#Host = derelict #User = quong
#cwd = /al/quong/thesis/analyze
CC -g -c tab1e.c
#user=30.800 #sys=3.840
#objname= tab1e.o
#objsize =23160 (3952,1420,863)
CC -0 newana ana1yze.o uti1.o

hash.0 strtab1e.o session.0
tab1e.o error.0 -1m

#user=7.770 #sys=5.690
#objname = newana
#objsize = 95232 { 22528,5120,3344)
#TotalLuser =38.570 #Total-sys = 9.530
#Start = Wed Sep 10 16:18:31 1986
#Finish=Wed Sep 10 16:20:07 1986

B. Storing the Data
There are a number of concerns in storing the collected

information. Many users on different machines frequently
run make, so write access to the accumulated data must
be synchronized. Since we installed our make for all
users, it had to be indistinguishable from the original
make. Our data collection process could not slow make
down, nor could we change the functionality of make in
any way. For these reasons, and to simplify our imple-
mentation, our make mails the results of each session to
a central mailbox using the standard UNIX mail system.
To avoid waiting for the data to be queued in the mail
system, make spawns a background process which sends
the mail.

LINTON AND QUONG: PROGRAM COMPILATION AND LINKING 429

Using the mail system to store data solved the following
data collection problems.

Cenrruf Dura File: The UNIX mail system allows mail
to be forwarded to a file; thus we could collect all our
data in a single file.

Synchronization: Mail systems already synchronize
access to mailboxes.

Distributed Access: Our make sends data to a mailbox
on a specific host; if make runs on a different host then
the mail system sends the data directly to the desired mail-
box.

Fault Tolerance: If a host is down or temporarily un-
reachable, the mail system queues the data and tries to
resend it later.

We spent two man weeks instrumenting make and
added about 430 new lines of code, almost all of which
formed a new module. The changes to the original make
code simply call routines in the new module before and
after make issues a command.

C. Reducing the Data
To process the raw data from the make sessions, we

wrote an analyzer program to extract and accumulate the
information of interest. Given a make session, the first
step is to identify which program is being made. The ana-
lyzer program uses only the full path name of the current
working directory to identify distinct target programs. We
do not use the hostname because our hardware configu-
ration includes several MicroVAXes sharing a common
file server. Thus, a program can be made on any of a num-
ber of machines. We do not use the user name for iden-
tification since several people may be working on the same
program. Our only assumption is that there is one pro-
gram per directory. This identification scheme caused no
problems.

In each make session, the analyzer examines each com-
mand and its arguments. It is impossible to distinguish
between a compile and link solely by the command be-
cause all the UNIX compilers can also link (e.g., “CC a.o
b.o” is a link). Since all the compilers use the “-c” flag
to specify that the link phase should not be performed, the
analyzer considers a command a compile if “-c” is pre-
sent.

If “-c” is not present, the command is considered a
link if none of the arguments is a source file. If the com-
mand contains some object files and some source files
(e.g., “CC a.c b.o”), or all source files (e.g., “CC a.c
b.c”), then it is both a compile and a link. The analyzer
discards such commands because it cannot break down
the time for the command into a compile and link time.

The analyzer computes the number of modules linked
by counting the number of files in the link command. The
analyzer ignores all command arguments beginning with
a “-”, since this is the UNIX convention for a command
line flag. The number of modules actually processed dur-
ing linking is usually higher than the measured number
because modules from libraries are not counted.

The analyzer saves the most recent text and data size of

each program and module. This data is necessary to de-
termine how much object code changes over time. When-
ever a module is recompiled or a program is relinked, the
new size and old size are compared.

The analyzer is approximately 4000 lines of code, and
took two man months to write and refine. For the current
11Mb of session data the analyzer takes about 25 minutes
of CPU time on a MicroVAX-11.

111. RESULTS
We installed our instrumented version of make on a

variety of hosts here at Stanford, and have collected data
over the past 6 months. During this period, 93 distinct
users working on 8 12 different programs ran make 13 ,O 12
times. Of these 93 users, 35 generated around 90 percent
of the runs. Table I shows the frequency of use for the
individual compile and link commands.

Table I also shows that compilation time dominates the
overall cost of making a program. Less than 20 percent
of the CPU time is spent linking versus compiling.

The ratio of CPU time spent compiling versus linking
varies with the number of modules in a program. For small
programs (1-5 modules), 27 percent of the turnaround
time is spent linking; for medium programs (6-15 mod-
ules), the percentage is 17 percent; for large programs
(more than 15 modules), the percentage is 24 percent.

A. Program Size
Fig. 1 shows the distribution of program object code

size (both instructions and data), with the median size at
approximately 30K bytes. Fig. 2 is the distribution of the
number of modules in a program. Approximately 40 per-
cent of the programs consist of 3 modules or less. Al-
though most programs in our data sample are small, Fig.
1 shows two-thirds of the total object code is contained in
one-fifth of the programs, those 128K or larger.

B. Module Recompilation
Fig. 3 shows the actual number of modules recompiled

for individual make sessions. About 20 percent of all
makes were purely links, involving no compiles. Another
50 percent compiled only one module, and about 10 per-
cent compiled two modules. Therefore, approximately 80
percent of all makes compiled two or fewer modules.

Fig. 4 shows the distribution as a percentage of the
modules in a program that were recompiled. Over 60 per-
cent of the makes recompiled less than 20 percent of the
modules in the program. Most of the time, therefore, very
little of the program is recompiled.

Since 40 percent of all programs contain 3 or fewer
modules, we assumed that small programs altered the re-
compiling distribution. However, we found a similar dis-
tribution when considering only programs with 15 or more
modules. Thus, the number of modules recompiled does
not depend on the number of modules in a program.

Fig. 5 shows the distribution of module size. Three-
fourths of the module object code sizes are between 8K
and 128K. The narrowness of this range is partially due

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 4. APRIL 1989

TABLE I
COMMAND USAGE

I I I CPU Time per Use I

0 1Mo loo00 loow0 10000w
I I 4

Ropram textdam size [bytes]

Fig. I . Number of programs by object size

Fig. 2 . Number of modules per program.

to modules being files. Small logical modules are often
merged into a single file to reduce compilation overhead;
large logical modules are often split into several files to
avoid recompiling the whole module for every change.

Fig. 6 shows the distribution of changes to module ob-
ject code size from one compile to the next. The size of

the object code did not change 50 percent of the time, and
increased less than 100 bytes 90 percent of the time. A
module might be recompiled without changing its object
size for one of the following reasons:

an interface file that does not actually affect the mod-
ule is changed

43 I LINTON AND QUONG: PROGRAM COMPILATION AND LINKING

m

lMxI

0

#modules rmrnpiled

Fig. 3. Number of modules recompiled per make.

\ Fig. 4. Percentage of the modules 60 recompiled m X of modules remmpiled 1m

lwo0 1 m o o 1wO
Module text+data segment [bytes]

Fig. 5 . Module size in bytes.

432 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15. NO. 4, APRIL 19x9

d
i 37500
c

15Mx)

b-6 ml-nl
A-A 1 ~ M J . R n p n n l
0- - - 0 mbrgmm .- - -. (~.*.ld..rgmnl

7500

01, -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 ‘Kt
Log2 Size chanw [bytes]

Fig. 6 . Change in module size.

the value of a constant is changed
the module is copied (e.g., checked in and back out

an unused local variable is deleted.
The data segment size changed even less frequently than

code. The data segment size did not change at all 90 per-
cent of the time between compiles, and increased more
than 100 bytes only 1 percent of the time.

These results show that code size and data size usually
do not change much between compiles. An incremental
linker that allocates a small amount of extra space usually
will be able to put the new module exactly where the old
module was. One hundred bytes of extra space per mod-
ule code segment should be adequate; less than that is
necessary for the data segments.

Compilation errors must be handled specially because
a make session will have fewer compiles than it would
have without compilation errors. For example, suppose
three modules need to be recompiled for a program. The
programmer runs make and the first module compiles but
an error is found in the second module. After fixing the
error, the programmer again runs make and the second
module compiles but an error is found in the third module.
After fixing that error, the third module compiles and the
entire program is linked. To the analyzer, these three ses-
sions appear to be recompiling one or two modules each,
whereas there should have been one logical make that re-
compiled the three modules.

To avoid this problem, the analyzer treats such a se-
quence of make sessions as a single logical make and
ignores compiles that fail. If the same module is compiled
more than once without an intervening link, the analyzer
only records the last compile, on the assumption the other
compiles failed. This assumption was necessary because
our make does not send the exit status or output from each
command.

for source code control)

C. Turnaround Time

Fig. 7 shows the distribution of compilation and link
time across make sessions. The mean CPU time was a
minute, although 80 percent of all sessions took less than
a minute. Therefore, while most sessions are relatively
short, a few long sessions take up a substantial portion of
the total CPU cycles.

The time for compilation consistently dominates the
time for linking. The average time for linking is about 10
seconds; the average time for compiling is about 50 sec-
onds.

Fig. 8 shows the distribution of elapsed time between
make sessions. Ignoring the upper third of the curve,
which represents sessions on different days, the mode for
the time between program remakes is 10 minutes. Over
80 percent of the time, programs were remade between 50
seconds and 100 minutes of the last make. This figure
represents the actual time for the “execute-debug-edit’’
portion of the “edit-compile-execute-debug” iteration.

Fig. 9 shows program turnaround time versus program
object code size. For 12K to 200K programs, the turna-
round time increases not quite linearly with object code
size. The data points below 10K are less significant, as
they are not based on many samples. The average turna-
round time for programs 800K bytes or larger was less
than that for 200K programs. It may be that these very
large programs are better organized so that less of the pro-
gram is rebuilt.

Fig. 10 shows program turnaround time versus the
number of modules in a program. On the average, for each
doubling of the number of modules the turnaround time
increases by 20 seconds for programs with 1 to 24 mod-
ules. The turnaround time for larger programs is not cor-
related with the number of modules they have.

Figs. 11 and 12 show average link time versus object

LINTON AND QUONG: PROGRAM COMPILATION A N D LINKING
433

Fig. 7. Total turnaround time.

- H
E 12

i
a lo(

7!

5c

2s

0

lime betmntn renmkas [secs]
Fig. 8. Elapsed time between program remakes.

I lw00 1 o m I

teBn+daB size [bytes)
Fig. 9. Turnaround time versus executable object size.

434

H I
E 3 5

28

21

14

7

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15. NO. 4. APRIL 1989

0
I I I

10 100
#modules

Fig. I O . Turnaround time versus number of modules in the program.

0
1MXx)

I , , I l l 1 1 I I , 1 , , 1 1 1
IOOOOO 1030003

textdata size [bytes]

Fig. I I . Link time versus executable object size.

0 I 1 J

a of d”lU in a Poor”
1w 10

Fig. 12. Link time versus number of program modules.

LINTON AND QUONC: PROGRAM COMPILATION AND LINKING 435

0 1 I I i
10 100

a of modules

Fig. 13. Object code size versus number of program modules.

0
100 lo00 lDo00 1 oom 1 woow

I I I 8 1 1 1 1 1 I I

Iexlrdata size [bytes]

Fig. 14. Number of program modules versus object code size.

code size and number of modules, respectively. On the
average, link time increases four seconds for each dou-
bling of the object code size for 12K to 768K programs.
This result indicates that link time grows as the logarithm
of object code size. Link time also grows as the logarithm
of the number of modules, increasing four seconds for
every doubling of the number of modules in a program.
This result is somewhat misleading since the number of
modules does not include libraries linked implicitly and
counts an entire user library as a single module. Thus,
programs in these figures with 1 user module probably
have 6 or 7 modules; programs with 20 user modules
probably have 30 to 40 modules when the libraries are
counted.

Figs. 13 and 14 compare average object code size with
the average number of modules. Fig. 13 shows that object
code size increases not quite linearly as the number of
modules, with a high correlation between the two mea-
sures. Fig. 14 shows that as the object code size in-

creases, the number of modules also increases, but the
correlation is not as strong as in the previous figure.

IV. CONCLUSIONS
With a small amount of effort, we have instrumented

the UNIX make utility to give us information about pro-
grams and how they are developed. Our approach has
given us a broad, macroscopic perspective on the size and
magnitude of changes to programs in our environment.
We have obtained information about program turnaround
time and its breakdown into compile and link time.

Our results indicate that usually a program is remade
by compiling a small number of modules no matter how
large the program is, and that these modules rarely change
by more than 100 bytes. The implication is that an incre-
mental compilation and linking environment is feasible
because most changes are already incremental in nature.

We are using these measurements to guide the design
of an incremental linker. The relatively small changes in

436 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15. NO. 4, APRIL 1989

modules for each link indicate that the linker should al- Proc ACM SIGPLAN ‘84 Symp. Compiler Construction. in SICPLAN
Notices. vol. 19, no. 6, June 1984.

Addison-Wesley, 1986.

locate more ’pace than the size Of the mod- 151 B , Stroustmp, The C+ + Programming Language. Reading, MA:
d e . The infrequent changes to global data and the rela-
tively small number of modules -recompiled indicate that
incremental linking should be effective. In particular, we
see no reason to use indirection through a table of ad-
dresses for procedure calls and global data references. The
time for an incremental link should be minimal compared
to the total turnaround time.

Our measurements also show that compilation is the
dominant component of turnaround time, taking almost
four times as much CPU time as linking. Much of the cost
will be eliminated by performing syntactic and semantic
analysis interactively, perhaps with a structure editor. We
also plan to investigate further how the costs of compiling
can be reduced in an incremental environment.

Mark A. Linton received the B.S.E. degree from
Princeton University, Princeton, NI , in 1978, and
the M . S . and Ph.D. degrees in computer science
from the University of California, Berkeley, in
1981 and 1983. respectively.

He is an Assistant Professor in the Computer
Systems Laboratory of the Department of Electri-
cal Engineering at Stanford University. His cur-
rent research interests are in programming envi-
ronments, user interfaces, workstations, and
database systems.

Russell W. Quong received the B S degree from
the California Institute of Technology, Pasadena,
in 1983, and the M S and Ph D degrees in elec-
trical engineering from Stanford University. Stan-
ford, CA, in 1985 and 1988, respectively

He is an Assistant Professor in the Department
of Electrical Engineering at Purdue University in

West Lafayette, IN HIS current research IS in the
field of programming languages and the analysis
of algorithms

REFERENCES
[I] S 1 Feldman, “Make-A program for mdintaining computer pro-

grams,” Software Practice and Erperrence, vol 9, no 3, pp 255-
265, Mar 1979

[2] A Goldberg. Smalltalk-80 The Inreractive Programming Envrron-
tnent Reading. MA Addison-Wesley, 1984

131 B Kernighan and J Mashey, “The Unix programming environment,”
Compurer, vol 14, no 4 , Apr 1981.

14) M L. Powell. “A portable optimizing compiler for Modula-2.” in

