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Abstract-To profile the changes made to programs during devel- 
opment and maintenance, we have instrumented the mnke utility [ 11 
that is used to compile and link programs. With minor modifications, 
we have used make to find out how much time programmers spend 
waiting for compiling and linking, how many modules are compiled 
each time a program is linked, and the change in size of the compiled 
modules. 

Our measurements show that most programs are relinked after only 
one or two modules are recompiled, and that over 90 percent of all 
recompilations yield object code that is less than 100 bytes larger in 
size. We are using these results to guide the design of an incremental 
programming environment, particularly with respect to an incremen- 
tal linker. 

Index Terms-Compilation, incremental linking, programming en- 
vironment, program size distribution, software development profile. 

I .  INTRODUCTION 
NCREASING programmer productivity requires either I improving the quality of their programs or reducing the 

time it takes to produce them. Programmers spend much 
of their time modifying and then rebuilding programs, 
particularly during the long and costly period of software 
maintenance. “Turnaround time” is the time it takes to 
rebuild a program, namely, the delay after a source code 
change is made before the object code can be executed; it 
usually encompasses recompiling, relinking, and starting 
a debugger. Since turnaround time is a major component 
of programmer “wait” time, reducing it effectively in- 
creases productivity. 

Our long-term goal is to understand how to build an 
environment in which program design time is minimized 
and in which programmer wait time is eliminated during 
“edit-compile-execute-debug” iterations. Batch-oriented 
compilation environments such as UNIX@ [3] force pro- 
grammers to wait for the compiler and linker, while in- 
terpretive environments such as Smalltalk [2] sacrifice ex- 
ecution speed and static type-checking for immediate 
feedback. Our goal is to provide both fast turnaround and 
fast execution in a programming environment. 

Our approach to achieve this end is to use incremental 
compilation and linking techniques. These techniques at- 
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tempt to recompile and relink only those parts of the pro- 
gram affected by the latest change. For small changes. 
incremental compilation and linking can be substantially 
faster than normal methods. 

The effectiveness of these algorithms depends on the 
type of modifications programmers make today. Knowing 
quantitative distributions of program size, module size, 
program turnaround time, and magnitude of object code 
changes is critical in the design of incremental algorithms 
and data structures. To gather this information, we have 
instrumented the UNIX utility make and have been col- 
lecting data for several months here at Stanford. 

In the remainder of this paper, we describe our data 
collection and analysis methods in detail, present the re- 
sults of our measurements, and draw conclusions on how 
the results affect the design of an incremental program- 
ming environment. In particular, we describe how these 
measurements have guided the design of an incremental 
linker. 

11. APPROACH 

We chose to obtain our measurements in the UNIX en- 
vironment because we are quite familiar with it from 
everyday usage. Our familiarity has helped us determine 
a simple, efficient method to collect relevant data from 
the large community of programmers at Stanford. 

We do not claim that our environment is representative 
of industrial software development; whether observing 
other environments would yield a similar profile is an open 
question. However, we do not have a substantial user 
community of software developers performing both re- 
search programming and maintaining production systems. 
Our results are relevant to ourselves and to other groups 
conducting similar research. Our approach can be applied 
to any UNIX environment, and can be adapted to other 
environments with standard conventions for program 
compiling and linking. 

Our method is novel in that it is macroscopic. Unlike 
system accounting of cumulative compiler usage or the 
profiling of individual tools, we observe how a program 
changes over time as it is rebuilt. We were able to gather 
data easily on UNIX because the make utility is normally 
used to control the compilation and linking of whole pro- 
grams, allowing us to view the entire process in the con- 
text of rebuilding a program and not just individual mod- 
ules. 

Make does not do any compiling or linking itself; in- 
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stead, it  calls appropriate commands to recompile out-of- 
date modules based on dependency information supplied 
by the user. By installing our own version of make, we 
were able to obtain unbiased data automatically and trans- 
parently. In addition to recording compilaton and linking 
data, we record the host machine, user name, and the cur- 
rent file system directory for each make. This information 
identifies the session. 

There are a numer of ways of measuring how a program 
changes: object code size, number of modules, and source 
code size. Object code size is important for general mem- 
ory allocation considerations when designing incremental 
algorithms. More important is how the size of object code 
changes. This information is helpful in the design of an 
incremental compiler; it is required for the design of an 
incremental linker. 

The profile of object code size changes is important in 
understanding how an incremental linker should manage 
memory. In particular, if large changes happen infre- 
quently the linker can allocate some extra memory for 
each module and only reallocate all of program memory 
when a major change is made. Alternatively, if large 
changes happen frequently, it may be desirable to use in- 
direct addressing for all cross-module references. Ideally, 
we should also profile how object code addresses change, 
but this data is too expensive to collect. 

The number of modules affects the cost of linking. In- 
creasing the number of modules increases external refer- 
ences and relocation information, which slows down the 
linker. On UNIX, the smallest unit of compilation is a 
file, thus in this paper a “module” is a file. However, 
files are not necessarily logical units; they may comprise 
several logical modules or be part of a larger logical mod- 
ule. 

We did not analyze source code changes because the 
size of program source is not meaningful, as it is very 
dependent on programmer style (e.g., use of comments, 
white space). A minor source code change can generate a 
substantial object code change. For example, requesting 
a procedure to be compiled inline might make a module 
much larger and change the address of every symbol 
within it. Finally, analyzing source code is difficult and 
expensive to do. 

By collecting data on object code size, number of mod- 
ules, and turnaround time, we can answer the following 
questions: 

How many modules are there in the average pro- 
gram? 

How large is the average module? 
How many modules are compiled each time a pro- 

How much does a module’s object code size change? 
How long does the average program take to compile 

How much time passes between make sessions for 

How do turnaround time, l ink time, object code size, 

gram is linked? 

and link? 

the same program? 

and number of modules correlate with each other? 

The remainder of this section describes the two phases 
of our experiment in detail. We first describe how we in- 
strumented make to gather the desired data, and then how 
we have condensed the information to an understandable 
form. 

A .  Collecting the Data 
Instrumenting any program consists of three subprob- 

lems: detecting when something of interest occurs, ex- 
tracting the information of interest, and storing the infor- 
mation. Our make records the following commands: 

cc UNIX portable C compiler 
pc Berkeley UNIX Pascal compiler 
f77 Fortran 77 compiler 
mod DEC-WRL Modula-2 compiler[4] 
CC C +  + compiler[5] 
Id UNIX linker 

Whenever make calls one of the above commands, we 
record its name along with the command line arguments, 
how long the command ran, the name of the expected ob- 
ject file and the size of the object code it generated (text, 
data, and symbol table). For each make session, we also 
record the machine name, the user name, the full path 
name of the current working directory, and when make 
started and finished. The following fragment is a sample 
of the data we collect: 

#Host = derelict #User = quong 
#cwd = /al/quong/thesis/analyze 
CC -g -c tab1e.c 
#user=30.800 #sys=3.840 
#objname= tab1e.o 
#objsize =23160 (3952,1420,863) 
CC -0 newana ana1yze.o uti1.o 

hash.0 strtab1e.o session.0 
tab1e.o error.0 -1m 

#user=7.770 #sys=5.690 
#objname = newana 
#objsize = 95232 { 22528,5120,3344) 
#TotalLuser =38.570 #Total-sys = 9.530 
#Start = Wed Sep 10 16:18:31 1986 
#Finish=Wed Sep 10 16:20:07 1986 

B. Storing the Data 
There are a number of concerns in storing the collected 

information. Many users on different machines frequently 
run make, so write access to the accumulated data must 
be synchronized. Since we installed our make for all 
users, it had to be indistinguishable from the original 
make. Our data collection process could not slow make 
down, nor could we change the functionality of make in 
any way. For these reasons, and to simplify our imple- 
mentation, our make mails the results of each session to 
a central mailbox using the standard UNIX mail system. 
To avoid waiting for the data to be queued in the mail 
system, make spawns a background process which sends 
the mail. 
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Using the mail system to store data solved the following 
data collection problems. 

Cenrruf Dura File: The UNIX mail system allows mail 
to be forwarded to a file; thus we could collect all our 
data in a single file. 

Synchronization: Mail systems already synchronize 
access to mailboxes. 

Distributed Access: Our make sends data to a mailbox 
on a specific host; if make runs on a different host then 
the mail system sends the data directly to the desired mail- 
box. 

Fault Tolerance: If a host is down or temporarily un- 
reachable, the mail system queues the data and tries to 
resend it later. 

We spent two man weeks instrumenting make and 
added about 430 new lines of code, almost all of which 
formed a new module. The changes to the original make 
code simply call routines in the new module before and 
after make issues a command. 

C. Reducing the Data 
To process the raw data from the make sessions, we 

wrote an analyzer program to extract and accumulate the 
information of interest. Given a make session, the first 
step is to identify which program is being made. The ana- 
lyzer program uses only the full path name of the current 
working directory to identify distinct target programs. We 
do not use the hostname because our hardware configu- 
ration includes several MicroVAXes sharing a common 
file server. Thus, a program can be made on any of a num- 
ber of machines. We do not use the user name for iden- 
tification since several people may be working on the same 
program. Our only assumption is that there is one pro- 
gram per directory. This identification scheme caused no 
problems. 

In each make session, the analyzer examines each com- 
mand and its arguments. It is impossible to distinguish 
between a compile and link solely by the command be- 
cause all the UNIX compilers can also link (e.g., “CC a.o 
b.o” is a link). Since all the compilers use the “-c” flag 
to specify that the link phase should not be performed, the 
analyzer considers a command a compile if “-c” is pre- 
sent. 

If “-c” is not present, the command is considered a 
link if none of the arguments is a source file. If the com- 
mand contains some object files and some source files 
(e.g., “CC a.c b.o”), or all source files (e.g., “CC a.c 
b.c”), then it is both a compile and a link. The analyzer 
discards such commands because it cannot break down 
the time for the command into a compile and link time. 

The analyzer computes the number of modules linked 
by counting the number of files in the link command. The 
analyzer ignores all command arguments beginning with 
a “-”, since this is the UNIX convention for a command 
line flag. The number of modules actually processed dur- 
ing linking is usually higher than the measured number 
because modules from libraries are not counted. 

The analyzer saves the most recent text and data size of 

each program and module. This data is necessary to de- 
termine how much object code changes over time. When- 
ever a module is recompiled or a program is relinked, the 
new size and old size are compared. 

The analyzer is approximately 4000 lines of code, and 
took two man months to write and refine. For the current 
11Mb of session data the analyzer takes about 25 minutes 
of CPU time on a MicroVAX-11. 

111. RESULTS 
We installed our instrumented version of make on a 

variety of hosts here at Stanford, and have collected data 
over the past 6 months. During this period, 93 distinct 
users working on 8 12 different programs ran make 13 ,O 12 
times. Of these 93 users, 35 generated around 90 percent 
of the runs. Table I shows the frequency of use for the 
individual compile and link commands. 

Table I also shows that compilation time dominates the 
overall cost of making a program. Less than 20 percent 
of the CPU time is spent linking versus compiling. 

The ratio of CPU time spent compiling versus linking 
varies with the number of modules in a program. For small 
programs (1-5 modules), 27 percent of the turnaround 
time is spent linking; for medium programs (6-15 mod- 
ules), the percentage is 17 percent; for large programs 
(more than 15 modules), the percentage is 24 percent. 

A. Program Size 
Fig. 1 shows the distribution of program object code 

size (both instructions and data), with the median size at 
approximately 30K bytes. Fig. 2 is the distribution of the 
number of modules in a program. Approximately 40 per- 
cent of the programs consist of 3 modules or less. Al- 
though most programs in our data sample are small, Fig. 
1 shows two-thirds of the total object code is contained in 
one-fifth of the programs, those 128K or larger. 

B. Module Recompilation 
Fig. 3 shows the actual number of modules recompiled 

for individual make sessions. About 20 percent of all 
makes were purely links, involving no compiles. Another 
50 percent compiled only one module, and about 10 per- 
cent compiled two modules. Therefore, approximately 80 
percent of all makes compiled two or fewer modules. 

Fig. 4 shows the distribution as a percentage of the 
modules in a program that were recompiled. Over 60 per- 
cent of the makes recompiled less than 20 percent of the 
modules in the program. Most of the time, therefore, very 
little of the program is recompiled. 

Since 40 percent of all programs contain 3 or fewer 
modules, we assumed that small programs altered the re- 
compiling distribution. However, we found a similar dis- 
tribution when considering only programs with 15 or more 
modules. Thus, the number of modules recompiled does 
not depend on the number of modules in a program. 

Fig. 5 shows the distribution of module size. Three- 
fourths of the module object code sizes are between 8K 
and 128K. The narrowness of this range is partially due 
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TABLE I 
COMMAND USAGE 

I I I CPU Time per Use I 

0 1Mo loo00 loow0 10000w 
I I 4 

Ropram textdam size [bytes] 

Fig. I .  Number of programs by object size 

Fig. 2 .  Number of modules per program. 

to modules being files. Small logical modules are often 
merged into a single file to reduce compilation overhead; 
large logical modules are often split into several files to 
avoid recompiling the whole module for every change. 

Fig. 6 shows the distribution of changes to module ob- 
ject code size from one compile to the next. The size of 

the object code did not change 50 percent of the time, and 
increased less than 100 bytes 90 percent of the time. A 
module might be recompiled without changing its object 
size for one of the following reasons: 

an interface file that does not actually affect the mod- 
ule is changed 
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Fig. 3. Number of modules recompiled per make. 
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Fig. 5 .  Module size in bytes. 
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Fig. 6 .  Change in module size. 

the value of a constant is changed 
the module is copied (e.g., checked in and back out 

an unused local variable is deleted. 
The data segment size changed even less frequently than 

code. The data segment size did not change at all 90 per- 
cent of the time between compiles, and increased more 
than 100 bytes only 1 percent of the time. 

These results show that code size and data size usually 
do not change much between compiles. An incremental 
linker that allocates a small amount of extra space usually 
will be able to put the new module exactly where the old 
module was. One hundred bytes of extra space per mod- 
ule code segment should be adequate; less than that is 
necessary for the data segments. 

Compilation errors must be handled specially because 
a make session will have fewer compiles than it would 
have without compilation errors. For example, suppose 
three modules need to be recompiled for a program. The 
programmer runs make and the first module compiles but 
an error is found in the second module. After fixing the 
error, the programmer again runs make and the second 
module compiles but an error is found in the third module. 
After fixing that error, the third module compiles and the 
entire program is linked. To the analyzer, these three ses- 
sions appear to be recompiling one or  two modules each, 
whereas there should have been one logical make that re- 
compiled the three modules. 

To avoid this problem, the analyzer treats such a se- 
quence of make sessions as a single logical make and 
ignores compiles that fail. If the same module is compiled 
more than once without an intervening link, the analyzer 
only records the last compile, on the assumption the other 
compiles failed. This assumption was necessary because 
our make does not send the exit status or output from each 
command. 

for source code control) 

C.  Turnaround Time 

Fig. 7 shows the distribution of compilation and link 
time across make sessions. The mean CPU time was a 
minute, although 80 percent of all sessions took less than 
a minute. Therefore, while most sessions are relatively 
short, a few long sessions take up a substantial portion of 
the total CPU cycles. 

The time for compilation consistently dominates the 
time for linking. The average time for linking is about 10 
seconds; the average time for compiling is about 50 sec- 
onds. 

Fig. 8 shows the distribution of elapsed time between 
make sessions. Ignoring the upper third of the curve, 
which represents sessions on different days, the mode for 
the time between program remakes is 10 minutes. Over 
80 percent of the time, programs were remade between 50 
seconds and 100 minutes of the last make. This figure 
represents the actual time for the “execute-debug-edit’’ 
portion of the “edit-compile-execute-debug” iteration. 

Fig. 9 shows program turnaround time versus program 
object code size. For 12K to 200K programs, the turna- 
round time increases not quite linearly with object code 
size. The data points below 10K are less significant, as 
they are not based on many samples. The average turna- 
round time for programs 800K bytes or  larger was less 
than that for 200K programs. It may be that these very 
large programs are better organized so that less of the pro- 
gram is rebuilt. 

Fig. 10 shows program turnaround time versus the 
number of modules in a program. On the average, for each 
doubling of the number of modules the turnaround time 
increases by 20 seconds for programs with 1 to 24 mod- 
ules. The turnaround time for larger programs is not cor- 
related with the number of modules they have. 

Figs. 11 and 12 show average link time versus object 
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Fig. 7. Total turnaround time. 
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Fig. I O .  Turnaround time versus number of modules in the program. 
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Fig. 13. Object code size versus number of program modules. 
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Fig. 14. Number of program modules versus object code size. 

code size and number of modules, respectively. On the 
average, link time increases four seconds for each dou- 
bling of the object code size for 12K to 768K programs. 
This result indicates that link time grows as the logarithm 
of object code size. Link time also grows as the logarithm 
of the number of modules, increasing four seconds for 
every doubling of the number of modules in a program. 
This result is somewhat misleading since the number of 
modules does not include libraries linked implicitly and 
counts an entire user library as a single module. Thus, 
programs in these figures with 1 user module probably 
have 6 or 7 modules; programs with 20 user modules 
probably have 30 to 40 modules when the libraries are 
counted. 

Figs. 13 and 14 compare average object code size with 
the average number of modules. Fig. 13 shows that object 
code size increases not quite linearly as the number of 
modules, with a high correlation between the two mea- 
sures. Fig. 14 shows that as the object code size in- 

creases, the number of modules also increases, but the 
correlation is not as strong as in the previous figure. 

IV. CONCLUSIONS 
With a small amount of effort, we have instrumented 

the UNIX make utility to give us information about pro- 
grams and how they are developed. Our approach has 
given us a broad, macroscopic perspective on the size and 
magnitude of changes to programs in our environment. 
We have obtained information about program turnaround 
time and its breakdown into compile and link time. 

Our results indicate that usually a program is remade 
by compiling a small number of modules no matter how 
large the program is, and that these modules rarely change 
by more than 100 bytes. The implication is that an incre- 
mental compilation and linking environment is feasible 
because most changes are already incremental in nature. 

We are using these measurements to guide the design 
of an incremental linker. The relatively small changes in 
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modules for each link indicate that the linker should al- Proc ACM SIGPLAN ‘84 Symp. Compiler Construction. in SICPLAN 
Notices. vol. 19, no. 6, June 1984. 

Addison-Wesley, 1986. 

locate more ’pace than the size Of the mod- 151 B ,  Stroustmp, The C+ + Programming Language. Reading, MA: 
d e .  The infrequent changes to global data and the rela- 
tively small number of modules -recompiled indicate that 
incremental linking should be effective. In particular, we 
see no reason to use indirection through a table of ad- 
dresses for procedure calls and global data references. The 
time for an incremental link should be minimal compared 
to the total turnaround time. 

Our measurements also show that compilation is the 
dominant component of turnaround time, taking almost 
four times as much CPU time as linking. Much of the cost 
will be eliminated by performing syntactic and semantic 
analysis interactively, perhaps with a structure editor. We 
also plan to investigate further how the costs of compiling 
can be reduced in an incremental environment. 
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