Context Patterns, Part 11

Markus Mohnen

Lehrstuhl far Informatik 11, RWTH Aachen, Germany
mohnen@informatik.rwth-aachen.de

Abstract. Functional languages allow the definition of functions by pattern
matching, which performs an analysis of the structure of values. However,
the structures which can be described by such patterns are restricted to a
fixed portion from the the root of the value.

Context patterns are a new non-local form of patterns, which allow the
matching of subterms without fixed distance from the root of the value.
Typical applications of context patterns are functions which search a data
structure for patterns and transform it by replacing the pattern.

In this paper we introduce a new construct called extended context, which
allows the definition of transformational functions without superfluous re-
petition of the recursive search.

1 Introduction

This paper is the successor to “Context Patterns in Haskell” [Moh97]. That work de-
scribed a new non-local kind of pattern which allows matching of subterms without
fixed distance from the root of the value. The underlying observation is that stand-
ard patterns allow only the matching of a fixed region near the root of the structure.
Consequently, the resulting bindings are substructures adjacent to the region (see
Figure 1(a)). Tt is neither possible to specify patterns at a non—fixed distance (pos-
sibly far) from the root, nor to bind the context of such a pattern to a variable (see

Figure 1(b)).

match tch
contex ..
. binding
binding
(a) Standard Pattern (b) Context Pattern

Fig. 1. Pattern Matching

Context patterns are a flexible and elegant extension of traditional patterns.
Typical examples of functions using the increased expressive power are functions
which search and transform data structures.

Transformations often replace all occurrences of a pattern without introducing
new occurrences. Such function can traverse a data structure only once. However,
the use of context patterns in combination with recursion imposed an additional
repetition of the recursive search for those parts before the last match.

In this paper, we extend context patterns to overcome this deficiency: We intro-
duce a new construct called eztended context, which gives access to the unvisited
part of a data structure. Recursive calls of a transformation can be placed to visit
these parts only without revisiting the parts before the last match.

Furthermore, we give a formal definition of the static semantics of context pat-
terns.

This paper is organised as follows. In Section 2 we introduce context patterns
by example program and discuss the necessary modification to the approach in
[Moh97]. Section 3 defines syntax and static semantics of context patterns. The
implementation is described by a translation of context patterns to standard Haskell
which is presented in Section 4. Some of the previous work in pattern matching and
topics related to our approach is reviewed in Section 5. Section 6 concludes.

2 Context Patterns by Examples

To demonstrate the basic idea, we start with a toy example. Consider a function
initlast :: [al -> ([al,a) which splits a list into its initial part and its last
element. Informally, we can describe an implementation as a single match:

Take everything up to but not including a one-element list as initial part
and the element of the list as last element.

However, we cannot express this match by using the standard patterns. Instead, the
recursive search must be programmed explicitly:

initlast :: [al -> ([al,a)

initlast [] error "Empty list"

initlast [x] (1,x)

initlast (x:xs) = let (ys,l) = initlast xs in (x:ys,1)

Our extension consists of a single additional pattern called context pattern, with the
syntax:

cpat — wvar paty ... paty

A context pattern matches a value v if there exists a function f and values vy, ..., vg
such that pat; matches v; and f v1 ... vg is equal to v. Furthermore, this function
f is a representation of a constructor contert [Bar85], i.e. a constructor term with
“holes”. The representation consists of modelling the “hole” by the function argu-
ments:

f =My Ahg.Clhy, ... hy

where C' is a constructor context with k& “holes”, which imitates the shape of the
value v. If the pattern matches the value, the function f is bound to the variable
var.

In our example, we can reformulate initlast using context patterns in the
following way:

initlast :: [a]l -> ([al,a)
initlast [] = error "Empty list"
initlast (¢ [x]) = ((c [1), x)

Applying initlast to a list [a1,...,an_1, a,] gives us the following bindings:

[x/an,c/\1->(ay:...(an_1:1)...)]

Hence, evaluation of the application (¢ [1) on the right hand side. yields the initial
part [a1,...,an_1].

Transformations typically replace all occurrences of a pattern. We can easily
do this by combining context patterns and (tail-)recursion. For instance, replacing
all occurrences of the character a in a string can simply be done by the following
function

rplc_a :: Char -> String -> String
rplc_a x (¢ ’a’) = rplc_a x (¢ x)
rplc_a x s = s

The first rule searches for the first occurrence of the character *a’ in the string.
By the application (¢ x) a new string is created where this occurrence is replaced
by the value of x. The recursive call of rplc_a then replaces all other occurrences
until the context patterns fails and the result is returned in the second rule.

Although this technique is applicable in general, it imposes an additional over-
head for the case that no new occurrences of the pattern are created for the argument
of the recursive call: The portion of the string before the first occurrence of a is
searched again by all recursive calls to rplc_a, although this is not necessary. For
this example, this unnecessary searching results in quadratic complexity of rplc_a,
although only linear complexity is needed.

To overcome this deficiency, we extend the approach. We assume that we have a
purely transformational function, where the result has the same type as the input.
To avoid the searching of the already searched part, we simply have to ensure
that the recursive call is only applied to the unvisited subvalues of same type in
the context. Since the context function does not allow access to these parts, we
introduce another variant of the context function: Assume that we have a context
pattern ¢ pat; ... patg. In addition to the context ¢ with type ¢ty — -+ =t — ¢
an ezxtended context ¢_e of type (t > t) > 11 — -+ = tx — t is available on the
right hand side. The difference is that while ¢ leaves all unvisited subvalues of type
t in the context unchanged, ¢ e applies its functional argument to these subvalues:
We have ¢ = (¢_ e id). By using this extension, we can reformulate rplc_a in the
following way:

rplc_a :: Char -> String -> String
rplc_a x (¢ ’a’) = c_e (rplc_a x) x
rplc_a x s = s

Given the string "snafu", we obtain the following bindings for the context and
the extended context:

c=Az.’s’:’n’ :p++"fu"
c_e=AfAz s n? ix++(f "fu")
Hence, the recursive call applies rplc_a to the string "fu" only.

In addition to the basic syntax of context patterns there a three extras features
which are discussed in more detail in [Moh97]:

— Context wildcards (_) can be used to match contexts which are not used on the
right hand side. For instance, to obtain the last element of a list, we can define:

last :: [a] -> a
last [] = error "Empty list"
last (_ [x]) = x

— Guards introduce additional (non-free) conditions during the recursive search.
An example which uses this feature is an implementation of takeWhile

takeWhile :: (a->Bool) -> [a] -> [al
takeWhile p (¢ (x:_) if (not (p x))) = ¢ []
takeWhile p 1 =1

The first rule matches a context where the head of the remaining list is the first
element which does not satisfy p. By replacing the remaining list by the empty
list in the context, we obtain the longest prefix of elements satisfying p. The
second rule 1s to handle those lists where all elements belong to this prefix.

— FEzxplicit types at the patterns can be used to avoid underspecified context pat-
terns.

3 Syntax and Static Semantics

The syntax of Haskell’s patterns is shown in Figure 2(a) (taken from [HPW92,

pp. 17-18]). For simplicity, we omit as—patterns, irrefutable patterns, infix patterns,

tuple patterns, unit patterns, and n + k patterns. Our extension is in Figure 2(b).
There is one small conflict which arises with this extension: The definition

let x (y:ys) = €1 in ey

can be either a function definition for x using the pattern y:ys, or a context pattern.
In these cases, function definitions are preferred.

pat — apat
| con apaty ... apaty
apat — var
| -
| con
| literal
| (pat)
| [paty,..., pats]

(a) Haskell’s patterns (simplified)

pat — cpat
epat — (var | _) maty ... maty
mat — apat [if (guard)] [:: (type)]

(b) context pattern extension

Fig. 2. Extended Haskell patterns

Type checking of patterns is done by the inference system in Figure 3, which
yields sentences of the form

At pat = (A, 1)

where A is an environment for variables and constructors, pat is a pattern, A’ is
the environment for the variables bound by pat, and 7 is the type of pat. The
combination of environments A J A’ is defined iff A and A’ are identical on shared
entries. For the rule MAT we assume that guard = True if no guard is present and
similarly type = a. To obtain a simpler system, the rules APPL, CP1, and CP2
could be merged into one.

Axioms:
VAR WILD
A wvar = ([var/7], 7) AF_=(,7)
Standard Rules:
A(con) = 1 CON A(literal) = 1 LIT
Ak con = ([],7) At literal = (], 7)

Ak pat; = (A;,7) (1 <i<n)
AF [paty, ... patg 1 = (A1 U.. .U A, [T])
Afcon) =1 = -1 =17 Al apat; = (A;, 1) (1 <i<n)

LIST

APPL

At con apaty ... apaty = (A1 U...UA,,T)

Context Pattern Rules:
Alwary = = - 51 =17 AbFmat; = (Ai,n) (1< i< n) CP1
Ak wvar mat; ... maty = (AL U...UA,,T)
AkFmat; = (A,) (1 <i<n) CP2

AF _maty ... matp => (A1U...UA, T)

7
At apat = (A',7) AF guard = Bool T = type MAT

A& apat if guard :: type = (A, type)

Fig. 3. Inference Rules for Patterns

Besides type correctness, there are two additional context—sensitive restrictions
for Haskell’s patterns:

CS1: All patterns must be linear, i.e. no repeated variable
CS2: The arity of a constructor must match the number of sub—patterns associated
with it, i.e. no partially applied constructors

However, not all context patter which fulfill these conditions are to be considered
well-formed: If there is no value which can possibly match the context pattern,
then we consider this context pattern to be malformed. Consider the following
(malformed) function definition

foo :: [a]l -> [al
foo (¢ (x:xs) (y:ys)) = exp

Here, we try to find two non—overlapping lists matching (x:xs) and (y:ys) with
a list. However, the matching can never succeed: Obviously, a list cannot contain
two non—overlapping sublists.

To avoid such malformed context pattern, we require that a context pattern
var maty ... maty satisfies the following context—sensitive condition:

CS3: If the context variable var has type m — ... — 7, — 7, then there must
exist a value v of type 7 and values v; of type 7; such that all v; are independent

subexpressions of v and occur in the sequence vq,...,v, in a top—down, left—
to-right traversal of v.

To check this condition, we have to test if it is possible to construct such a value v.
This checking 1s done by the inference system in Figure 4. For a type expression 7
build using type variables tyvar, type constructors tycon, and function types, the
sentences have the form

AT (m,...,)

where A is an environment for (data) constructors and (71,...,7) is a list of
types which are types of independent subvalues of a value of type 7 and occur
in a top—down, left—to-right traversal. If we can derive the sentence A F 7 —
(T, T, Tnt1s- .-, Tngt) for a context variable of type 7 — ... = 7, = 7 then
this is equivalent to the admissibility of the context pattern according to condition

CS3.

——— REF
AT (1)
Alcon) =1 =51 o T TYCON
AT (m,...,m)
Arr—o(n,...,m) Abrmn—=(mi1,...,7im) (1<i<n) COMB
AT o (M, Times - Tady oo Tam,)

Fig. 4. Inference Rules for Condition CS3

Type variables and function types are solely handled by the axiom REF. Type
variables are not expanded which means that no bindings can occur. Functional
types are not decomposed, since no search can go into the components either. For
an algebraic types with k constructors, we have k + 1 possibilities: use rule TYCON
for each constructor and use rule REF. Finally, rule COMB is to combine the results
of adjacent components of constructors. An implementation of the inference system

is described in [MT97].

Example: We use the context pattern (c x y) with type [a] and the environment
A = [Cons/a — [a] — [a], Nil/[a]].

A(Cons)=a—[a]l—[al] A(Cons) = a—[al—[al
A F [a] = (a,[al) AFa—(a) A F [a] = (a,[al)
A+ [a]l — (a,a,[a])

Hence, the variable x must have type a. Possible types for the variable y are [al
or a.

Note that in contrast to the description in [Moh97], the check of condition CS3
does not introduce new bindings of type variables. Since the construction of a value
according to CS3 is non—deterministic, the introduction of new bindings would
also be non—deterministic: Potential type errors caused by the choice of bindings
are completely inexplicable to the programmer. Therefore, we consider context—
patterns where additional choices would have to be made as underspecified. In such
cases additional type information must be provided by the programmer, using a
type signature for the function or explicit types at the patterns.

4 Translation into Haskell

In this section we define the semantics of context patterns in terms of a translation
into a Haskell program without context patterns. The idea is to implement context
patterns by functions that perform the recursive search. The actual matching is
done by applications of these functions.

All pattern matching constructs may appear in several places: lambda abstrac-
tions, function definitions, pattern bindings, list comprehensions, and case expres-
sions. However, the first four of these can be translated into case expressions, so we
only consider patterns in case expressions. Furthermore, we follow [HPW92] and
assume that we have a context pattern in a simple case expression:

case ¢g {c p1 if g1 ... pp if gp -> e ; _ -> €'}

For the top—down left—to-right traversal of a value eg, we have to visit every sub—
expression of ey which may contain one of the patterns p;. Assume that tq,... ¢,
are the types of all sub—expressions of eg such that #y is the type of eg and %, is
the type of the pattern p; (1 < i < n). To traverse all of eg, we provide functions

chky, i targs > 15 > tres_j

for each t;. Each of these functions traverses one type of sub—expression. At top
level, we use chk;, to perform the complete search. Hence, a first approximation of
the top—level structure of the translation looks like this:

case eg of {c p1 if g1 ... pn if gn > € ; _ -> €'}
~> let { (chky,—decl) 5 ... ; (chky —decl) }
in case (chky, (args) eg) of { ... }

Example: In this section, we use the following program as running example. It
implements a function rplc, which is a generalisation of the function rplc_a from
Section 2. Here, the application (rplc x y 1) yields a list where all occurrences of
x wn 1 are replaced by y.

rplc :: Eq a => a -> a -> [a] -> [al
rplc x y (¢ z if (z==x)) = c_e (rplc x y) ¥y
rplexyl=1

For this example, we have only one pattern p; = z and hence to = [a]l and
t1 = a. Therefore, the top—level structure of the translation s

rplc x y 1 = let chkO ... x0 =
chkl ... x0 = ...
in case (chk0 ... 1) of ...

To fill out the dots in this scheme we have to consider which additional arguments
targs and which result ¢,.,_; are to be provided:

(a) The functions chk;; must have information on which pattern p; is to be searched
next.

(b) The result must contain information on whether the match was successful.

(c) The result must contain bindings for the variables in the pattern p;.

(d) The result must contain a binding for the context ¢ and the extended context
c_e. It is sufficient to get a binding for ¢_ e since we have ¢ = (¢_ e id).

We can solve (a) and (b) by using the number of the pattern which is to matched
next as component of both ¢4, and ¢,¢,_;: The match was successful iff the number
returned by chk:, on the top—level is n + 1.

To solve (c), we provide the complete list of variables occurring in the patterns
P1,-- -, Pn as argument and result for each function chk; ;. Please note in this context
that we have a function for each subtype of the argument and not a function for
each pattern. Therefore it is possible that a function chk;; handles more than one
pattern.

Condition (d) requires a slightly different approach: We cannot pass the binding
for the context variable in the same way we passed the other bindings. The compu-
tation of the context function must be performed bottom—up because it depends on
the environment of a sub—expression. Hence, each chk;; has one more result com-
ponent, the local extended context. Such an object is a function taking a function of
type to = to and one argument for each pattern p; and yields a result of type ;.
The local context produced by the top—level evaluation of chk:, is the binding for
the context variable.

Let t,z5 be a tuple of the types of all variables in the pattern p;. We can now
give the complete type of chky,

chky,:: (Int,tpgs) -> tj => (Int,tp,, (to->tg) ->t1->. . .=>t,->1;)

To initialise the arguments for bindings which are not yet found we use the
undefined value of arbitrary type: undefined = error "'" as defined in the pre-
lude. The complete top-level structure of the translation now looks like this (we
abbreviated undefined by L):

case ey of {c py if g1 ... pp if gn -> € ; _ -> €'}
~ let { (chky,—decl) ; ... ; (chky —decl) }
in case (chk:y, (1,L,...,1) eg) of {
(n+1,211,..,%pk,,c_€) -> let { ¢ =c_e id } in e;
> e}

where z; 1, ..., %; &, are the variables in p;.
Example: (continued) For rplc we have only one variable z in the pattern py:

rplc x y 1 = let chkO ... x0 = ...
chkl ... x0 = ...
in case (chk0 (1,undefined) 1) of
(2,z,c_e) -> let ¢ = c_e id
in c_e (rplc x y) ¥y
-> 1

The implementation of chk;; checks the number of the next pattern and handles
each of the cases. Let n* be new variables, y* := 4 4, ... > Yn ke be vectors of unused
variables, one variable for each variable in the patterns, and z := 21, ...,2, be a
vector of variables for the arguments of a context function:

(chky,~decl) ~ chky; (n°,3°) x = case n® of 1 -> (chky, 1)

n -> (chk, n)
n+1 -> (rchk;)

If all patterns are found (the last case) then what remains to be done is the
search for all parts of type ¢o. The right hand side (rchk;,) is essentially the same as

(chky, ;) would be for a pattern p; = x of type ¢y except that the number of patterns
found is not increased and the functional parameter of the context is applied to the
parts. We suspend the explanation of (rchk;,) until we have finished (chk;, ;).

For the realisation of the right hand side <chktjyi> which checks for pattern p;,
we distinguish whether p; can be found in a value of type ¢;. Using the inference
system from the last section, we can formalise this by AFt; — (... t,,,...) .

If it cannot be found, the implementation of (chky, ;) is trivial, because there is
no need for recursive search. Doing so would only violate the laziness, because it
would force the evaluation. All we have to do is to create a trivial context. Note
that in contrast to the case that all patterns are found, we do not search for part
of type tg inside this component: The extended context applies its argument to the
unvisited parts only.

However, if the pattern can occur is this sub—expression, (chk;, ;) proceeds in
two steps:

L. Tt checks whether the pattern can occur directly (done by (p;—chk:,)).
2. It performs a recursive search in the sub-expressions (done by (r:,—chk)).

Hence, we can define (chk;, ;) in the following way:

case 2 of {
<Pi*0hktj>
(re,—chk)
(chky, ;) ~ _ = L,y \f->\z->29)
} ifAf_tj—)(...,tpl,...)

G,y°,\f->\z->2%) otherwise

If ¢; is the type of p; then the pattern can occur directly; Otherwise, there is nothing
to do in (p;—chk;,). Hence the code (p;—chk;;) is defined as

pi | g -> Ci+1, ift; =4
y?,1’~~~:y?—1,k,_1:
(pi—chky) ~ xé’l’.“’mi’ké’
Yit115-- 2 Ynk,»
\f->\Z->2;);
€ otherwise

The value consist of the following entries: the number of the next pattern (i 4+ 1),
updated bindings for variables in the patterns, and an extended context func-
tion returning the i — th argument (\f->\2z->z;). The updated bindings consists
of three groups: the unchanged values of the variables in the preceding patterns
(y?,u . "y?—l,kl_l)’ the values of the variables in the current pattern (z;1,...,2; &),
and the unchanged values of the variables in the succeeding patterns (3/?+1,1a~ . .,ygykn)
(which are all equal to L). Note that each value in the vector is updated only once,
because they are indexed by the number of the current pattern, which strictly in-
creases. The construction of the context function is correct because by matching
pattern p; in the expression this sub—expression is “chopped” away.

The additional context pattern guard following the keyword if is implemented
by the normal pattern match guard.

Example: (continued)} For the rplc example, the pattern p1 = z can occur directly
in expressions of type t1 = a, but not recursively. Hence, the complete definition of
chk1 is:

chkl (n0,xb0) x0 = case n0 of
1 -> case x0 of
z | z==x -> (2,z,\f->\z->z2)
_ -> (1,xb0,\f->\z->x0)
2 -> (2,xb0,\f->\z->x0)

What remains is the implementation of the recursive search, which is performed
if the pattern cannot match directly, or does not match. We have to know all
constructors of type ?; to handle all possible values. Let Ki;1,...,K;; n; be all
constructors of type t; and let a;; be the arity of constructor Ky, ;. The expressions
<rtjfchk> which perform the recursive search have the following form (with w; new
variables):

(re,~chk) ~ Ki, 1 w1 ... wa;, -> (chkreky; 1) ;

Kijn; w1 ... Wa; . -> (chkrek:; n.)s

All values of type t; will match exactly one of these cases. To define the right
hand side <chkrektj’k) we abbreviate K := Ki, ; and a := aj ;. This expression must
traverse all sub—expression w; and create new context functions from the results. If
a = 0 then there is nothing to. Otherwise, all sub—expressions are traversed from left
to right and the resulting context functions are combined by using the constructor

K. Let t;,,...,1, be the argument types of constructor K, and let ¢_e’, n’, x be
new variables. We define:
(n?, 50 ,\f->\z->20) ifa=0

let (nl,yl,c_el) = chky (n%3y°)
(chkreky, gy~ 4 o Y0os ity ANLY W

.. herwi
(n%,y% c_e®) = chky, (n*"Ly" 1) w, crhenvise

in (n%, 7% ,\f->\z -> K (c_e' f z) ... (c_e® f %))

Finally, we have to define (rchk;,), which performs the search for all unvisited
parts of type tg. This is done as soon as all pattern have matched and here the
functional parameter for the extended context is used. We define

(n+1,5° \f->\z->(f 2%)) ift; =g
(rchki;) ~ § (ry,~chk) ift; £tog, Abt; = (.. t0,...)
(n+1,3° ,\f->\z->2%) otherwise

Example: (continued) For chk0, the function which checks sub—expressions of type
[al in the rplc program, we obtain the following definition:

chk0 (n0,xb0) x0 = case n0 of
1 -> case x0 of
[] -> (n0,xb0,\f->\z->x0)
(wi:w2) -> let (n1,xbl,c1)=chkl (n0,xb0) wi
(n2,xb2,c2)=chk0 (ni,xbl) w2
in (n2,xb2,\f->\z->((c1 f z):(c2 £ 2)))
_ -> (1,xb0,\bsf->\bsz->x0)
2 -> (2,xb0,\f->\z->(f x0))

In summary, the complete program for rplc s

rplc x y 1 = let
chk0 (n0,xb0) x0 = case n0 of
1 -> case x0 of
] -> (n0,xb0,\f->\z->x0)
(wi1:w2) -> let (n1,xbl,cl)=chkl (n0,xb0) wil
(n2,xb2,c2)=chk0 (n1,xbl) w2
in (n2,xb2,\f->\z->((c1 £ z):(c2 £ 2)))
_ -> (1,xb0,\bsf->\bsz->x0)
2 -> (2,xb0,\f->\z->(f x0))
chkl (n0,xb0) x0 = case n0 of
1 -> case x0 of
z | z==x -> (2,z,\f->\z->z)
_ -> (1,xb0,\f->\z->x0)
2 -> (2,xb0,\f->\z->x0)
in case (chk0 (1,undefined) 1) of
(2,z,c_e) -> let ¢ = c_e id
in c_e (rplc x y) ¥y
-> 1

5 Related Work

Patterns beyond the scope of the Haskell pattern have been studied in [Hec88, Fer90,
Wil90] in the context of Trafola, a functional languages for program transforma-
tions. Their insertion patterns allow an effect similar to our context patterns, but
instead of modelling a context as a function they introduce special hole constructors
@n to denote the position where a match was cut from the context. Additionally,
they introduce several other special purpose patterns for lists, and allow non—linear
patterns, which may interfere with lazy evaluation [Pey87, p. 65]. Pattern matching
usually results in a list of solutions.

An even more general approach was taken in [HL78] where second-order schemes
are used to describe transformation rules. These allow the specification and selection
of arbitrary subtrees but are not integrated in a functional language.

The language Refal [Tur86] which is used a the basis for supercompilation has
strings as data structure and allows patterns like s; e, s; where s; is a string and
e, 1s a character.

In [Que90] patterns with segment assignments and their compilation are studied
in the context of Lisp. The segments allow the access to parts of a matched list,
e.g. the pattern (?7x 7?7y ?x) matches all lists which start and end with x. The
inner part of the list can be accessed via y.

A different extension of pattern matching is to use unfree data types, where the
matching or a pattern i1s done by evaluation of a used—defined function. Different
approaches based on this idea are Miranda’s laws, Wadler’s views [Wad87], and
Erwig’s active patterns [Erw97].

Another root of our work can be seen in higher—order unification [Hue75, SG89,
DJ95]. The general approach is to synthesise A—terms in order to find bindings for
free function variable in applications, such that equations g-reduce to equal terms.
In general, this problem is undecidable [Gol81]. However, for certain subclasses
of generated A—terms and equations, this problem becomes decidable [Pre94]. Es-
pecially in our case, where only the pattern can contain unbound variables, i.e.
unification becomes matching, the problem is decidable [Hue75].

The representation of context by functions are related to [Hug86], where lists
of type [a] are represented by a function of type [al->[a]. Given a list 1, the
representation is obtained by append 1. In our setting such functions can occur as
a special case, where the “hole” is the rest of the list.

6 Conclusions and Future Work

In [Moh97] we have presented an extension of pattern matching called context pat-
terns, which allow the matching of regions not adjacent to the root and their corres-
ponding contexts as functional bindings. Typical examples of functions using this in-
creased expressive power are functions which search and transform data structures.
For special cases of transformations, however, this approach caused a superfluous
repetition of the recursive search.

In this paper, we have introduced a new construct called ezxtended context, which
allows the definition of transformational functions without this additional overhead.

Furthermore, we have formally defined the static semantics of context patterns
by an inference system and explained the translation into Haskell in detail.

As future research we plan to gain more experience in the use of context patterns
and to validate the usefulness of context patterns for transformations. Therefore,
we want to re-implement (parts of) the Simplifier, which is a component of the
Glasgow Haskell Compiler performing simple performance—enhancing source code
transformations.

To allow even finer access to the parts of the context further extensions of context
patterns may be necessary.

Another possible future work can be based on the observation that a context
function ¢ and an associated extended context function ¢_ e differ only in the pres-
ence of an argument, namely the functional argument: We have ¢ = (¢_e id). The
distinction between these two context functions could be avoided if the type system
would support function types with optional argument and default values, similar
to imperative languages like C++ or Ada. For our case, we would have only one
context function, whose first parameter is an optional argument with default value
id.

We have integrated context patterns in the Glasgow Haskell Compiler, based
on version 2.01. The implementation is described in more detail in an accompa-
nying paper [MT97]. However, the extension presented in this paper are not yet
included. The source code can be obtained from the URL http://www-i2.informatik.
rwth-aachen.de/~markusm/CP/.

References

[Bar85] H. P. Barendregt. The Lambda Calculus: Its Syntaz and Semantics, volume 103
of Studies in Logic and The Foundations of Mathematics. North—Holland, 1985.

[DJ95] D. J. Dougherty and P. Johann. A Combinatory Approach to Higher-Order FE-
Unification. Theoretical Computer Science, 139(1-2):207-242, March 1995.

[DM90] P. Deransart and J. Matuszyniski, editors. Proceedings of the 2nd International
Workshop on Programming Language Implementation and Logic Programming
(PLILP), number 456 in Lecture Notes in Computer Science. Springer—Verlag,
1990.

[Erw97] M. Erwig. Active Patterms. In Kluge et.al. [KIu97], pages 21—40.

[Fer90] C. Ferdinand. Pattern Matching in a Functional Transformational Language using
Treeparsing. In Deransart and Maluszynski [DM90], pages 358-371.

[Gol81] W. D. Goldfarb. The Undecidability of the Second-Order Unification Problem.
Theoretical Computer Science, 13(2):225-230, February 1981.

[Hec88] R. Heckmann. A Functional Language for the Specification of Complex Tree
Transformations. In H. Ganzinger, editor, Proceedings of the 2nd European Sym-
posium on Programming (ESOP), number 300 in Lecture Notes in Computer Sci-
ence, pages 175-190. Springer—Verlag, 1988.

[HL78] G. Huet and B. Lang. Proving and applying Program Transformations Expressed
with Second Order Patterns. Acta Informatica, 11:31-55, 1978.

[HPW92] P. Hudak, S. L. Peyton Jones, and P. Wadler et. al. Report on the Programming
Language Haskell — A Non-strict, Purely Functional Language. Research Report
1.2, Department of Computer Science and Department of Computing Science,
March 1992.

[Hue75] G. Huet. A Unification Algorithm for Typed A-Calculus. Theoretical Computer
Science, 1:27-57, 1975.

[Hug86] R. J. M. Huges. A Novel Representation of Lists and Its Apllication to the Func-
tion “reverse”. Information Processing Letters, 22(3):141-144, March 1986.
[KIu97] W. Kluge et.al., editor. Selected Papers of the 8th International Workshop on
Implementation of Functional Languages (IFL), number 1268 in Lecture Notes in

Computer Science. Springer—Verlag, 1997.

[Moh97] M. Mohnen. Context Patterns in Haskell. In Kluge et.al. [Klu97], pages 41-58.

[MT97] M. Mohnen and S. Tobies. Implementing Context Patterns in the Glasgow Haskell
Compiler. Technical Report AIB-97-04, RWTH Aachen, 1997. to be published.

[Pey87] S. L. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice-Hall, 1987.

[Pre94] C. Prehofer. Decidable Higher-order Unification Problems. In A. Bundy, ed-
itor, Proceedings of the 12th International Conference on Automated Deduction
(CADE), number 814 in Lecture Notes in Computer Science, pages 635-649.
Springer—Verlag, 1994.

[Qued0] C. Queinnec. Compilation of Non-Linear, Second Order Patterns on S-
Expressions. In Deransart and Maluszyriski [DM90], pages 340-357.

[SG&9] W. Snyder and J. Gallier. Higher Order Unification Revisited: Complete Sets of
Tranformations. Journal of Symbolic Computation, 8(1 & 2):101-140, 1989. Spe-
cial issue on unification. Part two.

[Tur86] V. F. Turchin. Program Transformation by Supercompilation. In H. Ganzinger
and N. Jones, editors, Programs as Data Objects, number 217 in Lecture Notes in
Computer Science, pages 257—281. Springer—Verlag, 1986.

[Wad87] P. Wadler. Views: A Way for Pattern-matching to Cohabit with Abstraction.
In Proceedings of the 14th Symposium on Principles of Programming Languages
(POPL), pages 307-313. ACM, January 1987.

[Wil90] R. Wilhelm. Tree Transformations, Functional Languages, and Attribute Gram-
mars. In P. Deransart and M. Jourdan, editors, Attribute Grammars and their
Applications, number 461 in LNCS, pages 116-129. Springer—Verlag, 1990.

