In: 8th Int. WS on Implementation of Functional Languages, 1996, LNCS 1268, 21-40.

Active Patterns

Martin Erwig

FernUniversitat Hagen, Praktische Informatik IV
58084 Hagen, Germany
erwig@fernuni-hagen.de

Abstract. Active patterns apply preprocessing functions to data type
values before they are matched. This is of use for unfree data types where
more than one representation exists for an abstract value: in many cases
there is a specific representation for which function definitions become
very simple, and active patterns just allow to assume this specific rep-
resentation in function definitions. We define the semantics of active
patterns and describe their implementation.

1 Introduction

Pattern matching is a well-appreciated concept of (functional) programming. It
contributes to concise function definitions by implicitly decomposing data type
values. In many cases, a large part of a function’s definition is only needed to
prepare for recursive application and to finally lead to a base case for which the
definition itself is rather simple. Such function definitions could be simplified
considerably if these preparatory computations could be factorized and given in
a separate place. Recognizing that the same normalization is often used in more
than one function definition this seems even more reasonable since avoiding code
means reducing the risk of introducing programming errors.

We propose to hide these computations in the definition of a special kind
of patterns that allow the programmer to assume the “simple base case” in
a function definition. Consider, for example, the implementation of sets based
on lists. Function definitions for membership test, insertion and deletion typ-
ically check whether the first list element equals the argument element to be
searched, inserted, or deleted, and, depending on the result, a value is returned
or the function being defined is recursively called. Given the following data type

definition:!

datatype ’a set = Empty | Add of ’a * ’a set

the function definition, for example, for membership test is:

fun member x (Add (y,s))
| member x Empty = false

if x=y then true else member x s

! Throughout this paper we will use ML syntax.

If we can use a pattern that, when it matches, guarantees that the required
element is in the first position of the list, the function definition becomes re-
markably simple. Assume for a moment we have already defined such a pattern,
say Add’ (x,s), which transforms any set value v matched against into a set-
term Add (x,t) (if possible, that is, if x is contained in v). Then the definition
of member is:

fun member x (Add’ (x,s))
| member x s

true

false

Informally, member now works as follows: when called with an element x and a set
value v, the computational part of Add’ is applied to v to move the item x to the
first position. If this can be performed successfully, we know that x is contained
in v, and thus we can simply return true. Moreover, the rest of v is bound to
the variable s. Otherwise, that is, if v cannot be rearranged as demanded, the
match fails and the second line of member applies. Under the assumption that
lists representing sets do not contain duplicates (this has to be ensured by the
insertion function) a function definition for deletion is simply given by:

fun delete x (Add’ (x,s)) = s
| delete x s = s

Finally, insertion leaves a term already containing the element to be inserted un-
changed or otherwise simply performs insertion by applying the Add-constructor.

fun insert x (Add’ (x,s))
| insert x s

Add (x,s)
Add (x,s)

The given function definitions come up to equational specifications of abstract
data types, yet they are efficiently executable function definitions. Of course, the
correctness of the above definitions critically depends on the proper definition for
Add’: on the one hand, the process of rearranging must preserve the represented
set value, and on the other hand, rearrangement has to fail exactly if x is not
contained in v.

Due to their computational content we call patterns like Add’ active patterns.
A definition of an active pattern actually consists of two parts: a function that
performs the described rearrangement and an interface to the function that
serves two purposes:

1. The interface defines the syntax of the pattern, that is, the actual appearance
when used in the left hand side of a function definition. The appearance is
derived from the constructor term produced by its function and differs only
in the constructor name to distinguish it from an ordinary constructor term.?

2 In this paper we use the convention that the pattern name is the constructor name
followed by an apostrophe. This helps identifying the constructor which is actually
to be expected at the position of an active pattern.

2. The interface introduces the free variables of the pattern’s function, if there
are any. Recall that the function transforms a term into a specific form
which is often guided by an external value. (In the example above this was
the element x.) This value might be a constant or a variable, which then
appears free in the pattern function. We call these variable positions in an
active pattern free positions.

The definition of an active pattern is introduced by the keyword pat. For exam-
ple, the definition of Add’ is:

pat Add’ (x,_) =
Add (y,s) => if x=y then Add (y,s)
else let val Add’ (x,t)=s
in Add (x,Add (y,t)) end

Informally, the above code reads as follows: Add’ is an active pattern, and the
associated pattern function might use the free variable x. The function itself
expects a term Add (y,s), and if x equals y, that term is already the result
and the unbound variables of the pattern (the positions of which are indicated
in the interface by an underscore) are bound to the corresponding parts of the
term. If x # y, the pattern function searches for x in s, that is, s is rearranged
by recursively matching the active pattern Add’. If this succeeds, x is swapped
with y, yielding the desired result. Thus if x i1s contained in the argument term,
it will “bubble up” by recursively being exchanged with preceding elements in
the term. Note that the function expects a term Add (y,s), that is, it fails for
Empty which means that if x is not found in the term, the function would usually
(that is, according to the semantics of Standard ML) raise a Match exception.
But this is handled by the semantics to move to the next case (following the
current active pattern) in the function definition.

It might seem the described effects could also be achieved by a language ex-
tension allowing just repeated variables in patterns, but this is not the case, since
plain non-linear patterns miss the computational part of active patterns, that 1is,
they match only if the argument is already in the desired shape. For example,
member 2 (Add (1,Add (2,Empty))) correctly yields true for the definition
with active patterns, but it gives false with just repeated variables in patterns
which are merely checked for equality.

As in the above example, the work of active patterns is often guided by
an external value which results in repeated variables in patterns, but active
patterns do not always require non-linear patterns. Consider, for example, the
implementation of queues by two lists [Bur82]. The first list contains the front
part of the queue, and the second list contains the rear part of the queue in
reverse order. This makes it possible to append new elements by simply consing
to the second list while dequeuing can still be performed by simply removing
the first element of the first list. Now when the first list is empty, it is exchanged
with the reverse of the second list. We use the following data type.

datatype ’a queue = Q of ’a list * ’a list

Appending to the queue needs no active pattern at all, the definition is:
fun append x (Q (f,r)) = Q (£f,x::1)
Using a pattern that asserts the first list is not empty:

pat Q’ (_,_) = (Q (O,r)) => Q (rev r,[])
| q =>q

inspection and deletion of the front element is now very simple:

fun front Q> (x::_,.)) =x
fun dequeue (Q’ (x::f,r)) = Q (£,r)

Here the rearrangement of the data type value just depends on the value itself,
no external value i1s needed, and patterns stay linear. Another example is the
implementation of priority queues based on lists. There an active pattern has to
move the list’s minimum to the front which does not require an external value
either.

In the next section we consider more applications of active patterns, and in
Section 3 we define static and dynamic semantics of a core language containing
active patterns. In Section 4 we show a straightforward implementation of active
patterns using a rather simple source code transformation. We also sketch a
fusion algorithm that i1s able to optimize some function definitions very well.
We comment on related work in Section 5, and some conclusions are drawn in
Section 6.

2 More Examples

Active patterns can be used to write highly concise function definitions. We
illustrate this with an implementation of binary search trees.
Trees are represented by the following data type.

datatype tree = Nil | Node of int * tree * tree

Now we can define an active pattern Node’ that realizes a generalized form of
rotation for moving a specific node to the root:

pat Node’ (x,_,_) = (t as Node (y,l,r)) =>
if x=y then t else
if x<y then let val Node’ (x,1’,r’) =1
in Node (x,1’,Node (y,r’,r)) end
else let val Node’ (x,1’,r’) =T
in Node (x,Node (y,1,1’),r’) end

Using this active pattern the code for testing membership in a tree looks very
similar to the definition given for member:

true

fun isin x (Node’ (x,_,_))

| isin x _ false

More interesting is the function for deletion. The definition employs a function
delmin that deletes the minimum from a binary tree and returns the minimum
itself and the remaining tree:

fun delmin (Node (x,Nil,r))
| delmin (Node (x,1,r))

(x,1)
let val (m,s) = delmin 1
in (m,Node (x,s,r)) end

Now the function remove can be defined by:

r

1

let val (m,s) = delmin r
in Node (m,1l,s) end

| remove x t =t

fun remove x (Node’ (x,Nil,r))
| remove x (Node’ (x,1,Nil))
| remove x (Node’ (x,1,r))

This is already a quite compact definition. However, we can go even further by
extending the data type by a new variant serving as an interface between remove
and delmin.

datatype tree =
Nil
| Node of int * tree * tree
| DelMin of int * tree

This extension is not very problematic since it is only used locally within the
definition of remove; isin (and also a possible function for insertion) are not af-
fected. Now we can define an active pattern DelMin’ for extracting the minimum
of a tree by returning a term DelMin (i,t).

pat DelMin’ (x,_) =
Node (x,Nil,r) => DelMin (x,r)
| Node (x,1,r) => let val DelMin’ (m,s) =1
in DelMin (m,Node (x,s,r)) end

This could also be specified by using the active pattern recursively in the LHS:
pat DelMin’ (_,_) =
Node (x,Nil,r) => DelMin (x,r)
| Node (x,DelMin’ (m,s),r) => DelMin (m,Node (x,s,r))

Now, remove can be defined even more succinctly:

fun remove x (Node’ (x,Nil,r)) =r
| remove x (Node’ (x,1,Nil)) =1
| remove x (Node’ (x,1,DelMin’ (m,s))) = Node (m,1,s)
| remove x t = t

Another interesting application area for active patterns are graphs: in order to
realize graph algorithms in functional languages it is convenient to view a graph
inductively as a term Graph (v,p,s,g) adding a node v with predecessors p and
successors s to another graph g. Now many graph algorithms traverse graphs
in a particular node order. This means to access a graph repeatedly at specific
nodes, which is possible by an active pattern Graph’ having v as a free variable.
This is explained in more detail in [Erw97].

3 Syntax and Semantics

In the following we consider the language defined in Figure 1.3 As usual we
have constants, variables, abstraction, and application. Tuples are needed to
build data type terms. In addition to value declarations, local definitions for
active patterns are also possible. Both kinds of 1et-expressions allow for recursive

definitions.
exp = con pat = atpat
| wvar | cpat
| Ceapy,...,eap,) cpat ::= con atpat
| exp exp
| £n match atpat == _
| let val pal=erp in erp end | con
| let pat cpat=maitch in ezp end | var
| (paty,...,pat,)
match = rule (| match)
rule = pal => exp

Fig. 1. Syntax of Expressions and Patterns.

Note that a function does not simply abstract over a variable, but is given by
a collection of rules where a rule associates an expression with a pattern. This
is the place where active patterns come into play. A pattern is either atomic, or
it 1s a constructor pattern which is an application of a constructor to an atomic
pattern. An atomic pattern is a wildcard, a variable, or a tuple of patterns.

The use of repeated variables in patterns is restricted to the following case: in
the preorder traversal of a pattern, the first occurence of each variable must be in
non-free position (that is, not matching a parameter of a pattern function), and
each further occurrence must be in free position. This guarantees that repeated

3 Phrases enclosed in angle bracket are optional.

variables are just used to supply parameters for active patterns.
For example, the function definition for member using this austere syntax is:*

let pat Add’ (x,_) =
Add (y,s) => if x=y then Add (y,s)
else let val Add’ (x,t)=s
in Add (x,Add (y,t)) end
in
let val member = fn x =>
fn (Add’ (x,s)) => true
| s => false
in
erp
end end

3.1 Static semantics

The static semantics include, of course, type inference rules, but especially for
active patterns there is a more fine-grained analysis possible which we call “con-
structor checking”. We begin with the description of the type system. The lan-
guage of types is given in Figure 2.

T o= « type variable
| 7—71 function type
| (m1,...,7n) tuple type (n > 1)
| (1) con data type
o = Vai,...,0n.T type scheme
Fig. 2. Types.

The typing rules for constants, variables, application and local value defini-
tion are standard. Type checking for abstractions over patterns might not be so
well-known, and this is explained best by dealing with two kinds of sentences in
the type inference system: (1) At ezp : 7 says that expression ezp has type 7
under the set of assumptions A. Usually, A is a finite map from variables and
constructors to types, but for a constructor of an active pattern we store its type
together with its interface in A. (2) For a pattern we derive, in addition to its
type, also a set of assumptions (for the variables occurring within the pattern).
We write such assertions as A b+ pat — (A', 7).

Since we have to treat repeated variables in patterns we must be careful
about the definition of the union of two assumptions. Defining A + A’ as usual
by “overwriting” the definitions in A by those in A’ leaves some type errors

* Note that we still keep conditionals. To be precise, if ¢ then e; else e translates
to (fn true => e; | false => e3) c.

undetected. We thus require identity on common subdomains, that is:

A(z) if z € dom(A) A (z € dom(A") = A(z) = A'(x))
(A+ A)(z) = A(2) if z € (dom(A") — dom(A))

1 otherwise

The type system is given in Figure 3, and the derivation of assertions from
patterns is shown in Figure 4.

A(con) > 1 A(var) > 7
CONp ——t VARy — 277
Al con : T Al var @ 7T
p— Al exp, 1 7 Al exp, @ ™
AlF Cexpy,...,exp,) @ (T1,...,Tn)
AF T AF R
APPL exp : exp
AbF exp exp’ : T
ABS A& match : 7 MATCH AbF rule : 7 A F match : T
F AF fn match : ™ F AF rule | match : ™
A& pat A A+ A+ LT
RULE, pat — (A',7") +, exp
Ab pat => exp : 7 — 7T
BT AF pat — (A7) A+ A Fexp 7 A+gen(A,AYFexp : T
g AF let val pat=erp’ in exp end : T
A(con'y=71" — 7' At atpat — (A',7") A4+ A'F match : 7 — 7'
LETP- A+ {con’ — (gen(A, 7" — '), alpat)} F exp : T
Al let pat con’ atpat=match in exp end : T

Fig. 3. Type System.

The operation gen in rules LETL and LETPy is for the generalization of types
to type schemes so that different occurrences of variables and patterns can be
instantiated to different types. Let a1, ..., ap be the type variables that are con-
tained in type 7, but not in the assumption A. Then gen(A4,7) = Vaq,..., ag.T.
Now gen is extended in a natural way to assumptions. For

A ={vary — 1 ,...,var, — 1, }
we have
gen(A, A") = {vary — gen(A, 1), ..., var, — gen(A,1,)}

Note also in rules LETy and LETP}- that using assumptions A+ A’ in the inference
of exp’, respectively maich, accounts for recursive value and pattern definitions.
Apart from this, A’ is needed in the inference of match to provide types for its
free variables. However, A’ is not used in the inference of ezp in rule LETP-, to
ensure that free variables of maich are defined within ezp; only the generalized

type of the active pattern’s constructor might be used. In addition to this type
the interface (atpat) is also put into the assumption to enable the identification
of variables in free positions within the rule AcTIVE] . This is done as follows:
variables in the actual pattern atpat that are in free position with respect to the
interface atpat’ are determined by a function F' defined by:

F(var', var) = {var}
F(con atpat’, con atpat) = F(aipat’, atpat)
F((paty, ... ,patll), (paty, ... ,pat,)) = U, F(pat;, pat})

In all other cases, F'(pat, pat’) = @. The assumption A’ is then restricted to those
variables not contained in this set. This is needed to reject definitions, such as
fun foo (Add’ (x,_)) = x, which would lead to a runtime error because x is

undefined.

Wi, ————— VAR{
F AF_ = ({}) '_Al—var<—>({varr—>r},r)
con! A(con) = 1
r
Al con — ({},7)
up! Al paty — (A1, 71) At pat, — (An, ™)
F AF (paty,...,pat,) — (A1 +...4+ An, (T1,..., 7))
ACTIVEL A(con) = (7', atpat’) 7! >—I = At atpat — (A',7")
At con alpat — (A |dom(A’)—F(atpat’,atpat); T)
A(con) > 7' — 1 AF atpat — (A', 7"
CPATL (con ()

A& con atpat — (A',T)

Fig. 4. Derivation of Assumptions.

As already mentioned, within static elaboration we can actually do a bit more
for active patterns than just type checking: we know that all rules of a pattern’s
match have to build a term of exactly the same shape (which additionally has
to match the pattern’s interface). For example, each case in the function of Add’
— actually, there is just one case — has to return a term with an outermost Add-
constructor; an Empty-constructor, which would be legal according to the type
system, makes no sense here and should be prevented.

We can formalize this constructor checking by re-using the above type sys-
tem in a slightly modified way: we simply assume for each constructor con the
“type” con instead of the associated data type (resolving name clashes between
constructor and type names appropriately), that is, rule coNp changes to

A(con) = con
AF con :: con

For example, whereas in the type system true and false would be both mapped

to the type bool, the modified “constructor system” infers for true the construc-
tor true and for false the constructor false. Now, within this modified rule
system the sentence exp :: con states that the outermost constructor of expres-
sion ezrp 18 con.

Constructor checking actually has two applications: first, we can strengthen
the type checking of active patterns by enforcing equal constructors in all rules
of the pattern function. This is reflected by the adding the following precondition
to rule LETP:

{} F match :: 7/ — con

This means that in addition to proving a function type for match we must also be
able to infer a corresponding constructor. (The name con is chosen to distinguish
the constructor from con’, which is the name of the active pattern.)

The second application of constructor checking is found in the transformation
of active patterns: there we have to refer to a pattern’s associated constructor
(for example, Add is the associated constructor of Add’). This can be expressed
as follows. If con’ is defined by the expression let pat con’ atpat=match in
ezp end, the associated constructor of con’ is con if { } F maich :: 7 — con.

Though described here as a separate phase, in practice constructor checking
should be integrated with type checking.

3.2 Operational semantics

An expression is evaluated call-by-value relative to an environment £ and re-
duces to a value which is either a constant, a tuple of values, or a closure. A
closure is a triple clos = (match, E, E') where E captures the environment at
the time of the definition of match and E’ contains definitions for variables that
are bound to recursive functions. Terms (values of data types) are represented
by pairs (constructor, argument).

Moreover, we need a value representation for evaluated active patterns since
in addition to the pattern function (which reduces to a closure) we need the
interface in the evaluation, too. This is used when in an application of an active
pattern an expression ezp appears at the position of a free variable var. Then
we must use the additional binding {var — v} (v being the value of ezp) in the
evaluation of the active pattern. In order to identify the free variable positions
we thus need the interface when applying active patterns.

A pattern is evaluated against a value and yields an environment giving
bindings for its variables. However, this is only true if the pattern really matches
the value, otherwise the special object FAIL is returned. FAIL is not a value, it is
a semantic object that controls the order of pattern matching. FAIL propagates
to rule MATCH-, expressing that when a rule successfully matches, then the
obtained result is the result of the whole match and if a rule does not match,
that is, when it yields FAIL, the remaining match is evaluated. If FAIL is not
caught eventually by rule MATCH-,, this is left an undefined situation by our
semantics and can be considered a runtime error. (In the semantics of Standard
ML [MTH90], a match exception is generated.) In the semantic rules we make

10

use of what we will call the “FAIL-assumption”: if any precondition of a rule
yields FAIL, then the conclusion also yields FAIL. Places where FAIL might
occur are indicated by appending “/FAIL” to the usually expected object. The
semantics is given in Figure 5.

ElFexp, = un EF exp, = v,
CONgy & — TUP
F F con = con EF (expy, ... exp,) = (01, ...,05)
E(var)y=v
VAR &~ ————— ABSo .
EFvar = v E F fn match = (match, E,{})

E & ezp = (match, E', E") EF exp = o
APP_ E' +rec ", v' F match = v
Et expexp = v

EF exp = con EFexp' =v
E+ exp exp’ = (con,v)

EFexp' =0 E, v+ pat = E’ E+4recE Fexp=o0

LET e
F F let val pat=exp’ in erp end = v
LETP E + rec{con' — (atpat,(match, E,{}))} F ezp = v
= E F let pat con’' atpat=match in exp end = v
E, vk rule =o' E vt rule = FAIL E,vF match = v’
MATCHz - -
FE,vF rule | match = v E, vt rule | match=v
E,vF pat = E'/FAIL E4+EFexp=
RULE=

E,vF pat => exp = v'/FAIL

Fig. 5. Operational Semantics.

The operator rec employed in rules APP— and LET- performs a one-step
unfolding of recursive function definitions, that is, with

(match, E' | E) if v = (match, E', E")
rec(E,v) = < (pat,(match, E' E)) if v = (pat, (match, E', E"))
v otherwise
we obtain for an environment E = {vary + vy, ..., var, — v, } the collection of
unrolled definitions rec £ = {vary — rec(E,v1),...,var, — rec(E, v,)}.

In rule LETP= the interface and function definition of the active pattern are
pushed into the environment in which expression exp is to be evaluated. This
definition is used in rule ACTIVEL, (see below).

The pattern matching semantics are given separately in Figure 6. The last
three rules describe the matching of patterns against constructor terms (data
type values). Rule ACTIVEL describes the essence of active pattern matching: to
match an active pattern con’ atpat against a value v the pattern function maich
obtained from the environment E (1st precondition) is used to transform v into a

11

term (con, v’) (3rd precondition). However, before maich can be applied, we must
ensure that bindings exist for all free variables of match. This is done by matching
the actual “pattern call” afpat against the interface of con’ (2nd precondition).
To describe this we need another rule system defining the matching of patterns
against patterns, see Figure 7. Note that matching the constructor of v, which
happens to be con, is done during the matching of match. Thus v/ denotes just
the argument of the rearranged term. Finally, the variables of atpat are bound
by matching atpat against v’ (last precondition). Rule cPATL, applies whenever
con is not defined in the environment E. In that case the constructor of the term
to be matched must be the same as in the pattern, otherwise matching fails.

’ !
Wi Evk_={} VAR E,vF var = {var — v}
, con' # con
CONL, 7
E,cont con={} E, con' - con = FAIL
- E,v1 F pat, = E/FAIL E, v, F pat, = E,/FAIL
= E, (v1,...,0n) F (paty,...,pat,) = Ey + ... + E,/FAIL
E(con') = (atpal’, (match, E1, E)) E, atpat + atpat’ = Ep
ACTIVE! FE+ Ei1 +rec B> + Ep,v F match = (con,v')/FAIL
= E,v' & atpat = E'/FAIL
E,vF con' atpat = E'/FAIL
AT con ¢ dom(FE) E,v & atpat = E'/FAIL
= E, (con,v) con atpat = E'/FAIL
con ¢ dom(E) con # con'
E, (con’',v) F con atpat = FAIL

Fig. 6. Pattern Matching Semantics.

When matching patterns against patterns the main case is matching a vari-
able war (of the interface) against another pattern pat: rule VARZ expresses
that this results in a binding {var — v} whenever pat reduces to value v. This
is well-defined since, disregarding the wildcard, patterns make up a subset of
expressions. (Formally, we need yet another rule system defining evaluation of
such patterns, but actually this is perfectly done by the semantics of Figure
5.) The meaning of the remaining rules are: matching a wildcard does not give
any binding (WILDZ), and recursive application for tuples (TUPL) and terms
(cpaTl).

4 TImplementation

In the following we define a function 7 that transforms an expression possi-
bly containing active patterns into a semantically equivalent expression without

12

pat # _ EF pat = v

wILDY, —————————— VAR

7 E,patk _={} ~ E,pat F var = {var — v}
— E, pat, & pat} = Ex E, pat, & pat!, = E,

= E, (pat,,...,pat,) F (pati,...,pat'n) = FE+...+E,

Pt E, atpat F atpat’ = E’
= E, con atpatt con aipat’ = E'

Fig. 7. Matching Pattern Calls Against Interfaces.

active patterns.

The idea is to replace active patterns by functions that perform the desired
rearrangement for matching values and leave other values unchanged. Uses of
active patterns are then replaced by applications of these functions. Consider
the following pattern definition

let pat con’ atpat=maich

where vary,...,var, is the sequence of free variables of atpat (obtained by a
preorder traversal). Then

P(atpat) = fn var; => ... => fn var, =>

denotes the additional parameters of the pattern function that are needed in the
definition of the corresponding function. The definition is:

let val con'=P(aipat) fn match | x => x

Since match is only defined for one constructor of a data type we append a
rule realizing an identity mapping to allow non-matching values to pass con’
unchanged. The need for this can be seen as follows: whereas a non-matching
active pattern simply moves evaluation to the next case of the function definition,
an application of the corresponding function would be undefined.

Active patterns can be used in two ways: (i) on the LHS of a rule, and (ii)
in value definitions. When used in a rule

con' atpat => exp

the LHS is replaced by a fresh variable 7ar that does not yet occur anywhere
in the currently transformed expression. This variable matches any value, say v.
The transformation of the value and the pattern matching both happens on the
RHS: first, the newly defined function con’ is applied to war (which is bound
to v) and possibly additional arguments. If v matches the data type case of
con’, it is transformed into the representation v’, otherwise v stays unchanged.
After that the actual pattern matching takes place. In the first case, v’ must
be matched against the (non-active) pattern con afpat, and exp is returned.

13

Otherwise, no rearrangement did happen, and the match following the current
rule must be applied to v. We can achieve this behavior by a function consisting
of a rule for pattern con atpat and the rest of the current match. Thus, as a first
approximation, the transformation of the rule gives something like:

war => (fn con aipat => (1) (2)) (econ’ (3) wvar)

con = C(con') denotes the constructor associated with the active pattern. We as-
sume that the function C has been determined by the type/constructor checking
phase as described in Section 3.1.

In the transformed expression, (1) denotes the transformation of ezp, and
(2) stands for the transformation of the remaining match, which itself is an
abstraction applied to var. Finally, (3) denotes the additional arguments for
the free variables of con’’s pattern interface. These values are given by sub-
expressions of the currently transformed rule’s LHS. More precisely, each param-
eter war; gets its argument from the expression ezp; that occurs (in the rule’s
LHS) in the same position as war; in the pattern interface. We can compute
all arguments in the correct order by performing a parallel preorder traversal
of the pattern interface and atpat: whenever we encounter a free variable in the
interface, we have found in atpat the corresponding expression. Let Z(con') de-
note the interface of the active pattern constructor con’ (like C, 7 is also given
by static elaboration). Then the function .A computes the sequence of argument
expressions with respect to a pattern interface as follows (¢ denotes the empty
word).

_, exp) = ¢

var, exp) = exp

(paty, ...,pat,), Cexpy, ..., exp,)) = A(paty,exp,) ... A(pat,,exp,)
con atpat, con exp) Alatpat, exp)

A(
A(
A(
A(

Thus, the missing arguments are given by the expression A(Z(con'), atpat).
Finally, consider the transformation of a value declaration containing an ac-
tive pattern, such as

let val con’ aipai=ezp’ in erp end

The rearrangement of the active pattern happens by applying con’ to
A(Z(con’), atpat) (giving the arguments for the additional parameters) and to
the translation of ezp’. Again, ezp’ might not match con, in which case it should
pass unchanged. So we again transform the value declaration into a function ap-
plication with two cases: one for the pattern con aipat and one for other values.

The complete translation algorithm is shown in Figure 8. The angle brackets
in the translation of rules say that the enclosed code is only produced if maich
is not empty, that is, consists of one or more rules.

A possible optimization is to group a sequence of function equations with the
same active pattern con’ together to avoid possibly repeated calls to the function
con’. Toillustrate the algorithm, we transform the definition of member. We apply

14

T [con] = con

T [var] = war
T [Cexpy,...,exp,)] = (T [ezp,],...,T [exp,])
T [exp exp'] = T[exp] T [ezp']
T [£n match] = fn 7 [maich]
T [pat => ezp {| match)] =
var => 7 [(fn con atpat => exp if pat = con’ atpat
(I _ => (fn malch) var))] A C(con') = con

(con’ A(Z(con'), atpat) var)
pat => T [exp] (| T [match]) otherwise
T [1let val pat=exp’ in exp end] =

let val con atpat=con’ A(Z(con'), atpat) T [exp'] if pat = con’ atpat
in 7 [ezp] end A C(con') = con

let val pat=T [exp'] in T [ezp] end otherwise

T [let pat con’ atpat=match in erp end] =
let val con'=P(atpat) fn T [maich] | x => x in T [exp] end

Fig. 8. Transformation of Active Patterns.
T to the following expression.

let pat Add’ (x,_)=add in
let val member=memb
in ezp end end

where add and memb represent the parts of the corresponding expression from
the beginning of Section 3.
In the first step we obtain the expression:

let val Add’=P((x,.)) fn T [add] | x => x
in 7 [let val member=memb in ezp end] end

which immediately transforms to:

let val Add’=fn x => fn 7 [add] | x => x
in let val member=7 [memb]
in 7T [ezp] end end

Next we consider the translation of add and memb separately. Since the LHS of
match add is not an active pattern 7 [add] gives:

15

Add (y,s) => T [if x=y then Add (y,s)
else let val Add’ (x,t)=s
in Add (x,Add (y,t)) end]

which is

Add (y,s) => if x=y then Add (y,s)
else 7[let val Add’ (x,t)=s
in Add (x,Add (y,t)) end]

With C(Add’) = Add, Z7(Add’) = (x,_), and A((x,_), (x,t)) = x we obtain:
let val Add (x,t) = Add’ x s in Add (x,Add (y,t)) end

In the translation of memb the first abstraction over x is passed unchanged by
T. We get the expression:

fn x => fn 7 [(Add’ (x,s)) => true | s => false]
Now we let z be a fresh variable, and with A((x,_), (x,s)) = x we obtain:

fn x => fn z =>

(fn Add (x,s) => true | _ => (fn s => false) z) (Add’ x z)

Summarizing, the complete translation is:

let val Add’=fn x =>
fn Add (y,s) => if x=y then Add (y,s) else
let val Add (x,t) = Add’ x s
in Add (x,Add (y,t)) end
| x = x
in
let val member=fn x => fn z =>
(fn Add (x,s) => true
| _ => (fn s=>false) z) (Add’ x z)
in 7 [ezp] end end

We recognize that the resulting function for member is not very efficient because
of the terms that are unnecessarily built by Add’: in the worst case (when x is
the last element), the set representing list is duplicated. This is not surprising
since we use a rather general rearrangement function (Add’) which has to build
a reorganized value in the computation of a specific task where that value itself
is never needed. Is there a way to improve the function definitions so to avoid
unnecessary computations? Immediately, the deforestation fusion technique of
Wadler [Wad90] comes to mind. However, deforestation cannot be applied since
the definition of Add’ is not “treeless” (due to the term-producing Add’-call
being an argument of another function call). The method of Chin [Chi92] is

16

applicable, but it seems to ignore Add’ during optimization since the definition
of Add’ produces function terms.

Still in search of the appropriate technique to apply we shortly sketch another
fusion scheme that is tailored for the optimization of active patterns. (What
follows is still under development, and some restrictions are expected to be
dropped in future.) Consider the definition of a function f containing one rule
with an active pattern con’ atpat => exp. The translation resulting from 7 gives
something like

(fn con atpat => exp | ...) (con’ ...)

The goal is to fuse the definition of f for this case with the definition of the
function con’ to eliminate any computations for variables in the definition of
con’ that are not used in ezp. This can be achieved by the following three fusion
rules (in all other cases fusion is recursively applied to sub-expressions). A general
precondition for the method is that there 1s at most one variable shared by aipat
and ezp, that is, only one part of the term computed by con’ is actually used
within ezp. This prevents the introduction of repeated computations.

(F1) Replace “global” terms® con ezp’ in con’ by a properly instantiated version
of exp®

(F2) Replace recursive applications of con’ by f.

(F3) Replace patterns con pat in anonymous functions (resulting from the trans-
lation of 1let val-expressions) by patterns matching the results of ezp.

The last rule deserves some comments: The need for replacing function patterns
can be seen as follows: a con-pattern catches the result of a con’-call. Since con’-
applications are replaced by f the cases in function patterns have to be adapted.
In particular, since the pattern occurs in that case of f’s definition where the
active pattern was used, the corresponding result expression ezp is relevant here.
Now, if exp is a constant, say ¢, this is obviously the pattern to be substituted.
More general, if we can determine that ezp will return any constant of ¢y, ..., ¢y,
we can replace the rule by a set of rules, each for one constant ¢;. If exp is a
variable var, the pattern is replaced by var. All other cases are not completely
clear at the moment (except a straightforward extension to tuples), and we abort
the fusion process in those cases.

Let us illustrate the fusion rules in the optimization of member. F [ezp] de-
notes the application of the fusion algorithm to expression ezp. An implicit
argument is the function definition being actually fused; this should be clear
from the context. Recall the 7-translation of Add’ from above. Fusion moves
over abstraction and conditional, so we get the expression:

® These are terms that can be returned as a result of con’.
6 Bach (local) variable in ezp is substituted by the matching sub-expression of exp’,
in the sense of matching con exp’ against con atpat as defined in Figure 6.

17

fn x => fn Add (y,s) =>
if x=y then F[Add (y,s)] else
(fn F[Aadd (x,t)] => F[Add (x,Add (y,t))]
| x => x) F[Add’ x s]
| x => x

For member we obtain the following fused sub-expressions/patterns:

Fladd (y,s)] = true (F1)
Fladd (x,t)] = true (F3)
FAdd (x,4dd (y,t))] = true (F1)
Fadd’ x s] = member x s (F2)

This results in the function:

fn x => fn Add (y,s) => if x=y then true else
(fn true => true
| x => x) member x s
| x = x

We see that no intermediate Add-terms are constructed. With some algebraic
postprocessing we can arrive at the original member-definition without active
patterns.

Currently, the presented fusion method is rather crude and somewhat limited.
Algebraic transformations are needed to get concise definitions, and functions
like insert cannot be optimized at all.

5 Related Work

Pattern matching with unfree data types has been addressed by Miranda laws
[Tur85, Tho90], Wadler’s views [Wad87], or the recent work of Burton and
Cameron [BC93]. Common to all approaches is the mapping of equal terms
to a canonical representation.

The demand for a canonical representation is a rather strong requirement
which often entails a certain overspecification of the data type. For example,
implementing sets by lists requires keeping lists in sorted order. This approach
has the following two drawbacks:

1. Owerspecification restricts applicability. Keeping elements sorted requires a
comparison function on set elements. In contrast, working with unsorted lists
only needs equality on list elements.

2. Qwverspecification might need more computation than necessary. All three set
operations need linear time when implemented on base of sorted lists. With
unsorted lists, member and delete are again linear, but insert takes just
constant time if we allow duplicates.”

" However, if the number of duplicates is large compared to the size of the represented
sets, then member and delete are no longer linear in the size of the represented set.

18

In contrast, active patterns do not require a canonical representation and thus
offer more freedom in the implementation.

Views and Miranda laws both cause some trouble with equational reasoning
because constructors of non-free data types can be used to construct values.
This is overcome by the proposal of [BC93] where these constructors may be
only used within patterns. We expect the same for active patterns since they too
can only be used in patterns.

Context Patterns [Moh96] are intended to give direct access to arbitrary
deeply nested sub-parts of terms, but they only work for free data types.

The abstract value constructors of [AR92] provide a kind of macro facility to
denote terms in a more convenient (and abstract) way. However, no computations
in the sense of changing the representation of the matched values are performed.
We could cover abstract value constructors by active patterns if we dropped
the restriction that the argument type must be the same as the result type. (We
would have to adapt the semantics and the implementation.) The intent of active
patterns is, however, different: they are meant as a device for abstracting data
type laws and not as a macro language.

Finally, the active destructors introduced in [PGPN96] are essentially func-
tions that can be used within patterns to produce bindings. Active destructors
can perform computations much like active patterns, and they are even more
general since they (like abstract value constructors) have no type restriction im-
posed. In [PGPNY6] it is also sketched how active destructors can use external
values, but active destructors only work with linear patterns. However, in many
cases it 1s just the combination of external values and non-linear patterns that is
needed, namely pushing one function parameter into an active pattern defining
another parameter. Thus the set, tree, and graph examples cannot be expressed
by active destructors.

6 Conclusions

Active patterns might be considered problematic since some applications require
non-linear patterns which are not part of most functional languages. One impli-
cation is that the evaluation order of arguments is restricted: before an active
pattern can be evaluated, its free variables must be bound. (In ML this is not a
problem since the evaluation order is fixed left-to-right.) A related aspect is that
parallel pattern matching is generally not possible in languages with imperative
features (such as references and exceptions in ML) since the computations of
active patterns make the order of pattern matching significant.

On the other hand, active patterns offer a powerful abstraction concept: re-
organizations of data type values are removed from function definitions and are
given in separate pattern definitions. There are two benefits gained from this:
first, function definitions become remarkably simple, and second, by “factoriz-
ing” the data type laws, the risk of introducing errors in function definitions is
reduced since reorganizational expressions do not have to be repeated for each
new function definition. The effort needed to integrate active patterns into a

19

functional language depends on the destination language. As far as ML is con-
cerned, this presents no great difficulties: only the parser (and maybe the type
checker) need to be extended; thanks to the presented source code transforma-
tion, the rest of a language implementation can be left unchanged. Finally, the
sketched fusion technique is a first step to obtaining efficient implementations
of functions defined with active patterns.

Acknowledgements

Thanks to Pedro Palao Gonstanza and John Boyland for their helpful comments
on a previous version of this paper.

References

[AR92] W. E. Aitken and J. H. Reppy. Abstract Value Constructors. In ACM
Workshop on ML and its Applications, pages 1-11, 1992.

[BCI3] F. W. Burton and R. D. Cameron. Pattern Matching with Abstract Data
Types. Journal of Functional Programming, 3(2):171-190, 1993.

[Bur82] F. W. Burton. An Efficient Functional ITmplementation of FIFO queues.
Information Processing Letters, 14:205-206, 1982.

[Chi92] W. N. Chin. Safe Fusion of Functional Expressions. In ACM Conf. on Lisp
and Functional Programming, pages 11-20, 1992.

[Erw97] M. Erwig. Functional Programming with Graphs. In 2nd ACM SIGPLAN
Int. Conf. on Functional Programming, pages 52—65, 1997.

[Moh96] M. Mohnen. Context Patterns in Haskell. In 8th Int. Workshop on Imple-
mentation of Functional Languages, LNCS (this volume), 1996.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, Cambridge, MA, 1990.

[PGPN96] P. Palao Gonstanza, R. Pefia, and M. Niiiez. A New Look at Pattern
Matching in Abstract Data Types. In 1st ACM SIGPLAN Int. Conf. on
Functional Programming, pages 110-121, 1996.

[Tho90] S. Thompson. Lawful Functions and Program Verification in Miranda. Sci-
ence of Computer Programming, 13:181-218, 1990.

[Tur85] D. A. Turner. Miranda: A Non-strict Functional Language with Polymor-
phic Types. In Conf. on Functional Programming and Computer Architec-
ture, LNCS 201, pages 1-16, 1985.

[Wad87] P. Wadler. Views: A Way for Pattern Matching to Cohabit with Data Ab-
straction. In ACM Symp. on Principles of Programming Languages, pages
307-313, 1987.

[Wad90] P. Wadler. Deforestation: Transforming Programs to Eliminate Trees. The-
oretical Computer Science, 73:231-284, 1990.

This article was processed using the IATpX macro package with LLNCS style

20

