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Abstract 

FNC-2 is a new attribute grammar processing system 
aiming at expressive power, efficiency, ease of use and 
versatility. Its development at INRIA started in 1986, 
and a first running prototype is available since early 
1989. Its most important features are: efficient exhaus- 
tive and incremental visit-sequence-based evaluation of 
strongly (absolutely) non-circular AGs; extensive space 
optimizations; a specially-designed AG-description lan- 
guage, with provisions for true modularity; portabil- 
ity and versatility of the generated evaluators; com- 
plete environment for application development. This 
paper briefly describes the design and implementation 
of FNC-2 and its peripherals. Then preliminary experi- 
ence with the system is reported. 

1 Introduction and Design Re- 
quirements 

Since Knuth’s seminal paper introducing attribute 
grammars (AGs) [34], it has been widely recognized that 
this method is quite attractive for specifying every kind 
of syntax-directed computation, the most obvious ap- 
plication being compiler construction. Apart from pure 
specification-level features-declarativeness, structure, 
locality of reference-, an important advantage of AGs 
is that they are executable, i.e., it is possible to auto- 
matically construct, from an AG specifying some com- 
putation, a program which implements it. 
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Unfortunately, until recently the automatically gener- 
ated attributes evaluators, as these programs are called, 
were too inefficient in time and/or space to honorably 
compete with their hand-written equivalents, unless the 
class of accepted AGs, and hence the expressive power, 
are severely restricted (see [7] for a good list of existing 
AG-processing systems). 

Our goal in designing the FNC-2 AG-processing sys- 
tem [25] was hence to bring up-to-date technology 
and recent research results together into a production- 
quality system. Our motivation was definitely to bring 
a practical and usable solution to a problem which had 
mostly attracted theoretical interest. We wanted FNC-2 
to be: 

efficient: the generated evaluators should be as effi- 
cient in time and space as hand-written programs 
using the same basic data structures, in particu- 
lar an explicitly-built tree to represent the input 
text (we ruled out from the start tree-less meth- 
ods such as attributes evaluation during parsing for 
their very poor expressive power, see next item). 

powerful: this efficiency should not be achieved at the 
expense of expressive power, i.e., FNC-2 should be 
able to process AGs in a very broad class, so that 
an AG-developer is not (too much) constrained in 
his design by the system. 

easy to use: the input language of FNC-2 should en- 
force a high degree of programming safety, reliabil- 
ity and productivity. 

versatile: the generated evaluators should allow to be 
interfaced with many other tools. 

There exists (yet) no system which actually achieves 
these goals, and only a few which reach close to them. 
Among them we can quote GAG [32], developed by 
U. Ksstens at Universitat Karlsruhe, Linguist [13,16], 
developed by R. Farrow first at Intel, then at Columbia 
University, and now at Declarative Systems, and, al- 
though it is based on a somewhat different frame- 
work, the Synthesizer Generator [42,43,44], developed 



by T. Reps and T. Teitelbaum at Cornell University. 
Comparisons between FNC-2 and these systems will ap- 
pear in the relevant sections. 

This paper presents the design decisions embodied in 
FNC-2 (section 2), various aspects of its implementation 
(section 3) and an account of preliminary experience we 
gained in using it (section 4). Future work is described 
in the final section. 

2 Design Choices 

2.1 Evaluation Methods 

The first choice one must make when undertaking the 
design of an AG-processing system is that of the evalu- 
ation method(s) the generated evaluators will use. In- 
deed, this determines both the expected efficiency of 
the evaluators and the expressive power (accepted AG 
class) of the generator. A tremendous amount of re- 
search work has been devoted to the devising of evalu- 
ation methods that reach a good tradeoff between effi- 
ciency and expressive power (see [1,7,10] for good sur- 
vey s) . 

2.1.1 Exhaustive evaluation 

The requirement for FNC-2 to generate efficient evalu- 
ators ruled out methods based on dynamic scheduling: 
in addition to the execution of semantic rules, which 
is its basic job, an evaluator should do as little work 
as possible, which means that as much information as 
possible about the evaluation order should be embod- 
ied in the code of the evaluator itself and not computed 
at run-time. So we decided that FNC-2 would produce 
evaluators based on the visit-sequence paradigm [14,29]. 
Such an evaluator is a visit-sequence interpreter. There 
exist one visit-sequence per production, which is a se- 
quence of instructions drawn from the following set: 

BEGIN i: begin the i-th visit to the current node. 

EVAL s: evaluate all the attributes in set s; the at- 
tributes on which elements of s depend are guaran- 
teed to be available. 

VISIT i, j: perform a recursive visit (the i-th one) to 
the j-th son of the current node; on that son, fetch 
the applied production and search the BEGIN i in- 
struction in the corresponding visit-sequence. 

LEAVE i: terminate the current (i-th) visit of the cur- 
rent node and return to its father; continue on the 
father with the instruction following the VISIT i, 
j which caused the current visit to begin. 

It is clear that such evaluators can be implemented very 
efficiently. 

It is possible to build visit-sequences for a given AG 
only if a total evaluation order can statically be deter- 
mined, which is not the case for all AGs, but then this 
has the additional beneficial side effect that this order 
can also be used to improve the space consumption of 
the evaluators (see below). 

The largest class of AGs for which such a total order 
exists is the l-ordered class [ll], also called uniform in 
[14]. Unfortunately, on one hand this class is not as 
broad as could be dreamed of, and above all its charac- 
terization is an NP-complete problem [ll]. There exist 
two possible approaches for solving this problem: 

l restrict the accepted AG class to one more eas- 
ily characterizable, such as the OAG class [29] for 
which there exists a polynomial test; however this 
decreases the expressive power; 

l use a variant of the non-circular to Z-ordered trans- 
formation [ll] that applies to the strongly (i.e., ab- 
solutely) non-circular AG class [6] and is compati- 
ble with the visit-sequence paradigm [45]. 

We used the latter approach for FNC-2. This rather 
well-known transformation is described in [ll, 18,451; it 
relies on the computation of several totally-ordered par- 
titions of the attributes of each non-terminal, each order 
being a possible evaluation order for these attributes. 
The transformation proceeds as follows: 

1. Compute the argument selectors (IO-graphs). 

2. In top-down passes over the AG, compute for each 
non-terminal a set of totally-ordered partitions of 
its attributes. For each production: 

(4 

04 

(4 

pick a totally-ordered partition for the LHS 
non-terminal; 

paste it together with the production depen- 
dency graph and the argument selectors of the 
RHS non-terminals; 

topologically order the resulting graph; this 
determines on each RHS non-terminal a 
totally-ordered partition; memorize the map- 
ping from the production number and parti- 
tion for the LHS non-terminal to the parti- 
tions for the RHS non-terminals. 

Repeat until fixed point is reached. 

3. The resulting AG has as non-terminals the pairs 
(old non-terminal, one of its partitions) and pro- 
ductions as determined by the above construction 
(memorization step). Note however that this AG 
needs not be explicitly built; rather, during the con- 
struction, a visit-sequence-based evaluator can be 
built, in which recursive VISIT instructions carry 

210 



an additional parameter that identifies the parti- 
tion to use on the visited node (there exists one 
visit-sequence per pair (production, partition of its 
LHS non-terminal)). 

This construction reaches its goal, in that the gener- 
ated evaluators are completely deterministic, thus fast, 
while keeping the great expressive power of the SNC 
class. Unfortunately, it has exponential complexity, and 
the generated evaluators can be exponentially big (more 
precisely there can be an exponential number of totally- 
ordered partitions per non- terminal). 

One of our works was to reduce this factor, by defin- 
ing a coarser but still correct notion of equivalence of 
partitions which allows to strongly limit their prolifer- 
ation [40]. The idea is similar to that of covering [37], 
a notion originally devised to reduce the complexity of 
non-circularity tests. In step (2~) of the above trans- 
formation, once you have determined a totally-ordered 
partition on the RHS non-terminals, and for each of 
them, check whether the newly-found partition can be 
replaced by an already existing one; here, “replace” 
means determining whether you can change the topolog- 
ical order so that it fits both that existing partition and 
the local dependencies (this is a necessary correctness 
condition), and also the partitions for the other RHS 
non-terminals (this condition is not strictly necessary 
but keeps the whole process polynomial)-see Figure 1. 
If no such “including” existing partition can be found, 
check whether the newly-found partition can replace one 
or more existing partitions in the productions in which 
they have been generated. 

There exist several variations of this notion of equiv- 
alence of totally-ordered partitions (see 1401 for more 
details and the formal proofs). With our “best” varia- 
tion, dubbed bong inclusion, practical tests show that, 
on most practical AGs, we end up with exactly one 
partition per non-terminal,’ when the classical trans- 
formation, with inclusion being the same as equality, 
ends up with sometimes more than five partitions per 
non-terminal on the average. This is clearly a good 
saving on the evaluators size. An additional benefit is 
that the running time of the transformation seems to be 
directly related to the total number of partitions com- 
puted for the whole AG, so that our optimized transfor- 
mation runs much faster that the classical one and in 
almost-linear time. The only drawback of our scheme 
is that it tends to increase the number of visits to each 
node,2 since a “replacing” partition must have at least 
as many distinct attributes sets as the replaced one (pos- 

‘This does not mean that we have found a polynomial test 
for characterizing the I-ordered class: there exist I-ordered AGs 
for which our transformation will end up with more than one 
partition per non-terminal. 

‘Note that finding the set of partitions achieving the minimum 
number of visits is yet another NP-complete problem. 

Z a 

(a) Production dependency graph 
with argument selectors 

r1 A2 

(b) The two partitions for X generated 
by the classical transformation 

(c) ~1 can replace 7r2 in the production 

Figure 1: Replacing a totally-ordered partition 
by another one 

sibly more), and the number of visits is half that num- 
ber of sets. However, on all the practical AGs we have 
used, this increase is less than 2% in average, and since 
pure tree-walking accounts only for a very small frac- 
tion of the evaluator running time (the rest is for the 
computation of the semantic rules), the dynamic effect 
is unnoticeable. 

The evaluators generated by FNC-2 are hence as fast 
as those produced by GAG and Linguist, since they 
basically use the same paradigm. However FNC-2 is 
more powerful since it accepts a larger AG class. 

2.1.2 Incremental evaluation 

In addition, we provided for FNC-2 to be able to gener- 
ate incremental attributes evaluators [42]. We devised a 
new incremental evaluation method [40] whose outline 
is as follows: 

1. Generate an exhaustive evaluator which is able to 
start at any node in the tree. This is achieved 
by computing argument selectors as for the SNC 
class, but these selectors must be closed both “from 
below” and “from above” [I$]. This construction 
hence applies only to a subclass of SNC AGs called 
doubly non-circular (DNC). This class is however 
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larger than the l-ordered class, and our SNC to l- 
ordered transformation allows to actually use this 
method for any SNC AG. Also, the DNC class is 
characterizable in polynomial time. This evaluator 
is efficient since it is completely deterministic. 

2. Add to this exhaustive evaluator a set of “semantic 
control” functions allowing to limit the reevaluation 
process to affected instances. This control is baaed 
on the determination of the status of each attribute 
instance (changed, unchanged or unknown) and the 
comparison of its old and new values [42]. Note that 
the notion of equality used in this comparison can 
be adapted to the problem at hand, which enhances 
versatility. 

Parigot [40] also describes how this method can accom- 
modate multiple subtree replacements. 

Reps [42] proposes two incremental evaluation meth- 
ods, one for (plainly) non-circular AGs and one for or- 
dered AGs (see also [49,50]). Our method should prove 
more efficient than the former and as efficient and more 
powerful than the latter. We believe that it is quite 
attractive, in particular because of its versatility, but 
this must be confirmed by practical experiments that 
we have not yet conducted. 

2.2 Space Management 

As demonstrated by the works of Kastens [30,31,32] 
and others [12,17], the necessity to have a statically- 
determinable total evaluation order to produce visit- 
sequence-based evaluators has the beneficial side-effect 
to allow to conduct very fine static analysis of the life- 
time of each attribute instance, which in turn allows to 
determine the most efficient way to store it: either in a 
global variable, or on a global stack, or, as a last resort, 
at tree nodes. Of course we have integrated these works 
in FNC-2 (for exhaustive evaluation). 

Furthermore we have improved these works in several 
respects [27,28]: 

l We have relaxed the unnecessarily strict conditions 
that Kastens [30,32] imposed on stack manage- 
ment, namely that only the top element can be ac- 
cessed. We allow accesses below the top of stack, 
provided that the depth can be computed stati- 
cally each time it is needed to do so. This, corn-. 
bined with artificial delaying of POP instructions; 
allows to store in stacks every temporary attribute 
(which typically account for more than 80% of all 
attributes). 

l With a formalism that is both finer than that of 
[30,32] and simpler than that of [31], we are able 
to store more temporary attributes in global vari- 
ables. Technically, this is because, when statically 

simulating the execution of the evaluator by means 
of the grammar of visits, we take into account the 
visit numbers, which Kastens did not do. 

l Along the lines of [12], but with a much sim- 
pler formalism based on the grammar of visits and 
contexts, we are able to determine when a non- 
temporary attribute can be stored in a global vari- 
able. 

l We have improved Kastens’ technique for packing 
together several global variables or several stacks. 
Re used, to decide each such grouping, a mere fea- 
sibility criterion, which on one hand was far from 
optimal and, on the other hand, was sensitive to the 
textual order of the productions and semantic rules 
in the AG. Our criterion is based on the number of 
copy rules a potential grouping would eliminate. 
Not only does it reduce memory consumption in a 
purely declarative manner but it also reduces the 
running time, especially when it suppresses stack 
management operations. It is well-known that solv- 
ing this problem in an optimal way is NP-complete, 
so we use heuristics, based on a static traversal of 
the visit-sequences, to keep an acceptable complex- 
ity. 

Note that when we say that we have improved over Kas- 
tens’ work, we must recognize that we do not refer to 
his latest work [31], in which he reaches nearly the same 
results as we (except for the packing algorithm). How- 
ever we did most of our work independently from him; 
in addition, we believe our formalism is simpler than 
his. 

Presently we work on the last category of attributes, 
namely the non-temporary ones which cannot be stored 
in global variables. First, it seems possible to use the 
grammar of visits and contexts, or a variant thereof, to 
determine whether a non-temporary attribute can be 
stored in a strict stack, i.e., with accesses only to the 
top element and without trying to extend the lifetimes. 
Second, we are working on a special data structure, sim- 
ilar to so-called “cactus stacks,” to hold attributes fail- 
ing even this latter test, and on the corresponding life- 
time extensions. We are quite confident that, in the 
end, we’ll be able to store all the attributes out of the 
tree. This will of course improve storage consumption, 
but the most important consequence is a yet to be esti- 
mated, but surely great, increase in the expressive power 
of AGs. Indeed, since with that scheme the only pur- 
pose of the tree is to conduct the evaluator, it needs 
not be a physical object any more; it only has to mimic 
a physical tree. For instance, attributes evaluation on 
DAGs (i.e., trees with shared subtrees) comes for free. 
Other applications need yet to be explored. 

Practical results are given in section 4. 
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2.3 Modularity 

AGs have many advantages as a specification method 
but their most stringent drawback in this respect is their 
absence of modularity, i.e., the necessity to program a 
complete application as a single, monolithic AG. As ap- 
plications get larger and more complicated, this scheme 
becomes more and more unworkable; a striking example 
is the ADA front-end developed using the GAG system 
[48]: it is a single AG of more than 500 pages! We 
clearly had to address this issue if we wanted FNC-2 to 
have a chance to become a production-quality system. 

Another problem with this approach is that it forces 
to use a single formalism to tackle a whole application, 
whereas it can be preferable to use different specialized 
frameworks for solving different subproblems. There are 
several instances of this situation in compiler construc- 
tion. First, it is a priori impossible to use AGs for 
fixed-point-like computations, such as those involved in 
data flow analysis (although [46] shows they are not al- 
ways necessary, and [15] shows how to implement them 
through an extension of the AG framework). Secondly, 
the AG formalism imposes that the representation of 
the program, i.e., the input tree, does not change at all 
during the whole computation; this is clearly not well 
suited for e.g. optimization phases, which involve trans- 
formations of the program representation. 

So we had to devise a scheme allowing to build an ap- 
plication as a set of modules, some of them being spec- 
ified by AGs and the others by other techniques. This 
is achieved by considering that an AG specifies, and an 
evaluator implements, an (attributed) tree to attributed 
tree mapping. More precisely, each evaluator takes as 
input a tree, possibly decorated with a collection of at- 
tributes, and produces as output one or more decorated 
trees. This allows to: 

1. 

2. 

decompose what used to be specified by a single AG 
into smaller modules, each of them specified by a 
smaller and hence more easily manageable AG; 

interface the corresponding evaluators with other 
modules, providing that the latter be also based 
on the tree-to-tree mapping paradigm (this is for 
instance the case for tree transformation systems 
such as those generated by OPTRAN [36]). 

Our scheme is actually a variation of attribute cou- 
pled grammars [20]. This formalism is interesting since 
descriptional composition [20,23] allows to combine sev- 
eral “modular” AGs into a single efficient evaluator 
which does not build the intermediate trees. We already 
know that this process is feasible with FNC-2, in partic- 
ular because the SNC class is closed under descriptional 
composition [23], but we have not yet implemented it. 

None of the systems used as reference points offer 
true modularity. They all provide for externally-defined 
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semantic functions, which is a form of modularity, but 
it lies outside the AG formalism. 

2.4 Input Language 

Many works have been concerned with the construction 
of systems producing efficient evaluators from an AG 
[7], but surprisingly few of them have tried to design 
specialized AG-description languages. Actually, there 
are two classes of systems: 

1. 

2. 

those offering such a specialized language; 

those using as input language their implementation 
language merely augmented with constructions to 
define and access attribute occurrences. 

Of course, some systems are a mixture of both classes. . . 
We have shown [24] that the second approach has 

many drawbacks that would hinder nearly all of the 
FNC-2 design requirements. Hence we have decided to 
design a new language specifically devoted to the de- 
scription of AGs. The requirements for this new lan- 
guage were: easiness of use; great expressive power; 
enforcement of programming safety and reliability; 
versatility; readability and modularity; closeness to 
Knuth’s theory of AGs; independence from the eval- 
uation method and the implementation languages, but 
easy translation to those languages; opportunities for 
optimizations; simplicity. Our language, called OLGA 
[25], fulfills these goals by providing the following fea- 
tures: 

OLGA is purely applicative, but not functional. 

It is strongly typed, with polymorphism, overload- 
ing and type inference. 

It is block-structured and modular. Function def- 
initions are blocks and can be nested. Compila- 
tion units are declaration and definition modules, 
possibly parametrized, and AGs; as said above, an 
AG defines a tree-to-tree mapping (there are tree 
types and tree construction functions). An AG can 
be structured into phases, each of them contain- 
ing productions together with a number of seman- 
tic rules; a given production may appear in several 
phases or not at all. Phases and productions are 
blocks; a value local to a production and depending 
on some attributes is hence a local attribute. Dec- 
laration modules export the entities they contain, 
which can be opaque. Each block can then import 
some or all of those entities, and can contain local 
declarations. 

OLGA provides modern constructs such as pattern 
matching, exception handling, display of error mes- 
sages, construction of circular structures, . . . 



l The syntactic base of an AG written in OLGA is an 
abstract syntax rather than a concrete one, The 
formalism is quite close to Metal [4] and provides 
for list nodes. There exist special constructs for 
defining and accessing attributes on list produc- 
tions. 

l Most copy rules can be automatically generated 
and need not be specified explicitly. In addition, 
you can specify a set of attribute classes and se- 
mantic rules models defining them; the system will 
automatically instantiate these models into actual 
semantic rules whenever necessary and applicable 
[35] (this is analogous to what is described in [9, 
471). 

The three reference systems also offer each a special- 
ized input language (but they are not representative 
in this respect!). Although it is hard to compare the 
“efficiency” and “power” of programming languages, it 
seems that OLGA is at least as good as the others (see 
also section 4); [24] g ives a rather detailed presentation 
of OLGA and compares it with Aladin, SSL and the Lin- 
guist language. 

3 Implementation 

The FNC-2 system is composed of three parts, linked 
through well-defined interfaces: the OLGA front-end, 
the evaluator generator and the translators (see Fig- 
ure 2). This structure allows for instance to use the 
evaluator generator as a stand-alone processor, through 
a crude interface. In addition, FNC-2 comes with a 
number of companion processors. 

3.1 The Evaluator Generator 

The evaluator generator (see Figure 3) is the “engine” 
of the system, in which all the fundamental knowl- 
edge about attributes evaluation is concentrated. It re- 
ceives as input an abstract AG (syntax and local depen- 
dencies) and produces an abstract evaluator (visit se- 
quences with calls to evaluate the semantic rules, mem- 
ory map and storage manipulation operations). 

The first step in the construction is the SNC test. 
The whole process aborts if the AG fails this test, but 
then an interactive circularity trace system [39] allows 
to easily discover the origin of the failure; this allows 
to take full advantage of the power of the SNC class. 
Then the DNC test is performed; if it succeeds, the 
OAG test is performed. Actually there exists an infinity 
of incomparable OAG(b) classes [3]; by default FNC-2 
performs the OAG(0) test but can be directed to test 
for the OAG(lc) class for any given L. 

If either the DNC or OAG test fails, the SNC to I- 
ordered transformation is invoked. Note that even if the 

OAG test fails, the information computed by the DNC 
test is used by the transformation step to run faster and 
produce better results. Also note that cascading these 
phases costs the same as performing the OAG test from 
scratch, since the first phase of the OAG test is the DNC 
test, and the first phase of the latter is the SNC test. 

The next step is the production of the visit-sequences 
from the total orders computed either in the OAG test 
or in the transformation. The final step is the space 
optimization, which produces the memory map and en- 
riches the visit-sequences with storage manipulation op- 
erations. 

During the development of an AG, it is also possible 
to save some time by producing non-deterministic visit- 
sequences directly after the SNC test. In this case, no 
space optimization is attempted since no total evalua- 
tion order is available. 

All the algorithms cited above belong to the Grammar 
Flow Analysis framework [38] and make heavy use of our 
improvements to this technique [26]. Thus the evalua- 
tor generator is quite fast: an evaluator for a complete 
Pascal to P-code compiler is produced in less than two 
minutes on a Sun-3/60 (see also the figures in Table 1). 

3.2 The OLGA Front-end and Transla- 
tors 

These components are of course bootstraped, i.e., they 
are specified by AGs written in OLGA and automatically 
generated by FNC-2 itself. We make full use of the 
provision for modularity (see the figures in next section). 

OLGA is a big language, and its analysis and imple- 
mentation are hard tasks, even with AGs. Presently not 
all of the language is implemented; either the front-end 
or the translators reject some valid programs. The most 
notable omissions are full polymorphism, parametrized 
modules and exceptions. 

Presently there are two translators, one to C and one 
to Lisp. Both are rather nayve; this is especially notice- 
able for the C implementation, which lacks a garbage 
collector. However both are usable, the best evidence 
being the bootstrap of the system. These translators 
are preceded by a common optimizer, which in particu- 
lar performs tail recursion elimination and builds deter- 
ministic decision trees for the OLGA pattern-matching 
construct. 

3.3 The Companion Processors 

FNC-2 comes with several companion processors. Asx 
analyses attributed abstract syntaxes descriptions, 
which play a great role in our formalism since they de- 
scribe the input and output data of the evaluators (at- 
tributed trees). Aic generates abstract tree constructors 
which run in parallel with, and are driven by, parsers 
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generation time 
------------------------------ -----_-----_3c---_-------- 

execution time 

Figure 2: The FNC-2 system 

constructed by the SYNTAX system [5]; another version 
of ate built on top of Yacc is available. Ppat generates 
unparsers for attributed abstract trees. Mkfnc.2 auto- 
mates the construction of complete applications using 
FNC-2 and the other processors; it is a pale start at the 
library manager depicted in Figure 2. 

All those subsystems use as input language an “ex- 
tended subset” of OLGA. Of course, they are boot- 
straped. 

4 Evaluation 

The first hand-written version of FNC-2 was completed 
in early 1989 and immediately bootstraped. Since then 
development continues with OLGA and its companion 
languages, however their main applications are still the 
system components themselves. Two realistic “exter- 
nal” applications are under development: 

l a compiler from the PARLOG parallel logic program- 
ming language to code for the SPM abstract ma- 
chine [22]; 

l a compiler from full IS0 Pascal to P-code. 

In addition, FNC-2 is used in the PAGODE code gener- 
ator generator [8], both to implement the system itself 
and as the back-end for one of its phases. 

In spite of this rather long list, the experience re- 
ported below is preliminary and rather incomplete. 

Since the above-described applications are still under 
development, the statistics below will use as basic data 
the AGs and modules specifying parts of the system 
itself. 

4.1 The Evaluator Generator 

Table 1 presents some figures gathered from the execu- 
tion of the evaluator generator (as part of FNC-2) on 
various AGs. These AGs specify the following parts of 
the system: 

1. The construction of the module dependency graph 
in mkfnc2. 

2. The test for well-definedness of an AAS specifica- 
tion in asx. 

3. The translation to C of the tree construction part 
of an ate specification. 
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---a--) non-optimized 
- optimized 

AG 1 

# phyla II 6 
# operators 
# occ. attr. 
ti sem. rules 

% stacks 
% non-temp. 
# variables 
# stacks 
% elim./copy 
% elim./poss. 
time 

20 7 62 35 28 52 
0 7 5 4 12 0 
4 25 12 44 106 7 
3 5 23 30 49 11 

65 64 20 20 30 23 
74 I 88 89 84 94 97 

1.78 9.03 10.00 45.31 489.41 10.37 

Table 1: Statistics gathered for the evaluator generator 
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Figure 3: The evaluator generator 

OAG(0) OAG(0) OAG(0) 1 DNC OAG(0) 
86 33 61 1 60 48 

7 ave. 
74 

319 
249 

1497 
OAG( 1) 

35 56.5 
64 36 

1 7.5 
26 
47 
16 27 
91 91 

48.23 
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4. The type-checking of the tree construction part of 
an ate specification. 

5. The type-checking of an OLGA specification, be it 
an AG or a module, and test for well-definedness 
of an AG. This is the largest and most significant 
example in the set. 

6. The test for tail-recursive functions in an OLGA 
specification (the construction of deterministic de- 
cision trees for pattern-matching is not yet part of 
the production version of the system). 

7. The translation to C of the non-AG parts (types, 
functions, semantic rules, etc.) of an OLGA speci- 
fication. 

Note that these AGs are not self-contained: they import 
many types, functions and other entities from separate 
modules. 

The top part of Table 1 gives an idea of the size of 
each AG. Phyla and operators correspond roughly to 
non-terminals and productions in a concrete grammar. 
The number of attribute occurrences is the sum on all 
phylas of the number of attributes attached to each. 

The so-called class of an AG is the smallest class to 
which it belongs, as determined by the evaluator gener- 
ator. AG 5 is not OAG(H) for any Ic, which shows that it 
is advantageous to have a system accepting a class larger 
than OAG. We don’t know whether it is truly I-ordered: 
our SNC to I-ordered transformation ends up with 1.03 
totally-ordered partitions per non-terminal in average 
(max. 2). On the same AG, the classical transforma- 
tion using equality ends up with 4.15 partitions per non- 
terminal in average (max. 29)! AG 7 is not OAG(0) but 
is OAG(l). Th is was discovered by trial and error and 
leads to better results for space optimization than our 
transformation (this is not always the case); however 
this trial and error process should be performed only in 
the very final phase of the development of an AG. 

The next part of Table 1 deals with space optimiza- 
tion. The first three figures give the proportion of at- 
tribute occurrences which are stored in global variables, 
global stacks or at tree nodes; the latter class corre- 
sponds to non-temporary attributes because we have 
not yet implemented the test for storing non-temporary 
attributes in global variables. The average figures in the 
last column are weighted by the number of attribute oc- 
currences in each AG, which is a meaningful indication 
of its size. These figures are static, i.e., they refer to 
the AG itself rather than to its dynamic execution. Dy- 
namic measures [28] show a decrease of the number of 
attribute storage cells by a factor of 4 to 8 in the execu- 
tion of AG 5 on various source texts. These figures are 
already quite good and will be even better when our 
space optimization scheme is fully implemented. The 

next four figures report the effect of our grouping al- 
gorithm. On AG 5 for instance, it cuts the number of 
global variables from 595 down to 106 and the number 
of global stacks from 278 to 49; however the dynamic 
effect on storage consumption is much less noticeable. 
More important is the next figure, which describes the 
proportion of copy rules which have been eliminated 
w.r.t. the total number of copy rules; again, this is a 
static figure. It may seem low, but it must be noticed 
that not all copy rules can be eliminated: for instance, 
storing two different attribute occurrences in the same 
variable makes the evaluator incorrect when both are 
live at the same time. The next figure-the proportion 
of rules that have aclvally been eliminated w.r.t. those 
which could theoretically be eliminated-show that we 
reach close to the optimum (recall that achieving the 
optimum is NP-complete). 

The last figure is the CPU time on a Sun-3/60 ma- 
chine. The whole process is clearly non-linear but also 
non-exponential. We believe that the efficiency of the 
evaluator generator is reasonable given the extensive op- 
timizations it performs. 

4.2 The Generated Evaluators 

As examples of evaluators generated by FNC-2 we have 
chosen some parts of FNC-2 itself, namely the type- 
checking of the OLGA source text and the translation 
to C of its non-AG parts. Table 2 summarizes the exe- 
cution of FNC-2 on the above-described AGs while Ta- 
ble 3 is for some modules, i.e., OLGA texts not specify- 
ing an AG (Cn are declaration modules and Fn are the 
corresponding definition modules). 

In both tables, the first row gives the length of the 
input text. The second to fourth give the CPU time, in 
seconds, for some phases of its processing (measured on 
a Sun-3/60 machine). “Input” includes scanning, pars- 
ing and initial tree construction; this phase is generated 
by a1c and SYNTAX. “Typing” is the type- and well- 
definedness checking, as specified by AG 5 above, and 
“translator” is the translation to C of the non-AG parts 
(AG 7 above)-translation to C of the visit-sequences 
is presently hand-written. There are other phases in- 
volved in the processing, e.g. evaluator generation, but 
these last two phases correspond exactly to evaluators 
generated by FNC-2, which is what we are interested 
in here. “Memory” is the size, in kbytes, of the mem- 
ory used by the whole process, as reported by the time 
command built in csh. “Time” is the total CPU time 
including all the phases (in particular the evaluator gen- 
eration for Table 2). 

The last column reports the average speed, in lines 
per minute, of the various phases and the whole process. 
The average global speed in Table 2 is not meaningful 
since it includes the evaluator generation, a non-linear 
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Table 2: Statistics gathered for the FNC-2 system (on AGs) 

module Cl Fl C2 F2 C3 F3 C4 F4 C5 F5 C6 F6 
# lines 189 372 320 3188 268 1083 390 1186 391 905 86 268 
input 0.70 1.53 1.07 13.47 1.07 4.62 1.50 5.02 1.70 4.53 0.17 1.15 
typing 1.58 3.32 4.77 51.73 4.08 13.80 6.22 14.80 5.00 14.72 0.40 1.72 
translator 0.85 1.98 0.28 16.62 0.85 5.93 2.23 5.90 2.43 6.20 0.33 1.38 
memory 480 632 848 2912 568 1032 656 1072 744 1080 384 536 
time 6.28 12.30 38.03 191.51 12.32 36.30 16.58 41.43 22.15 41.13 1.55 5.82 

phase; on the other hand, the results in Table 3 are typ- 
ical of a compiler-like application. The difference in the 
speed of the typing phases in Tables 2 and 3 stem from 
the fact that, in addition to mere type-checking which is 
the same as for a module, an AG needs to be checked for 
well-definedness; furthermore, this phase is responsible 
for constructing the “abstract AG” to be input to the 
evaluator generator. The difference in the speed of the 
input phases stems from the fact that modules are, in 
average, substantially smaller than AGs, so that “con- 
stant overhead” (initialization, etc.) is more noticeable 
in the former case. Memory consumption of the whole 
process averages to between 1.3 and 1.4 kbytes per line 
of input and does not vary much whether the evaluator 
generator is invoked or not; this means that most of the 
space is used for data created for or by the evaluators. 
As a comparison point, we have-not very precisely- 
measured the behavior of Sun’s C compiler (no opti- 
mization nor assembly): average speed amounts to 5800 
l/mn and memory consumption to .09 kb/l. However it 
must be kept in mind that it is a one-pass compiler 
which does not build a complete representation of the 
input program.3 

We believe that the efficiency of the generated evalua- 
tors is already rather satisfactory: comparison between 
the hand-written version of the system and the boot- 
straped version shows that the latter is only between 
two and four times slower on average; comparison with 
the C compiler shows a speed ratio of five, but its struc- 
ture makes it a somewhat unfair comparison point (see 
our design goals in section 1). Finer analysis shows that 

3A tree is built for each expression, but it is immediately trans- 
lated into target code and the space it occupies is reused for the 
next expression, so the compiler can roughly be considered as to 
run in constant space. 

Table 3: Statistics gathered for the FNC-2 system (on modules) 

this slowdown must not be attributed to the evaluator 
as such but to the execution of the semantic rules them- 
selves, because our OLGA to C translator is really naive. 
Hence we are quite confident that we can improve this 
ratio to make it close to unity. 

The same applies to space consumption: the attribute 
storage cells themselves account only for a small frac- 
tion of the data space, the rest being used by the (un- 
decorated) tree and above all by the values of com- 
plex attributes (e.g. symbols tables). The latter will 
be strongly reduced when we implement a garbage col- 
lector and use more sophisticated analysis techniques on 
OLGA to improve sharing and replace some constructive 
modifications by destructive updates. 

4.3 Use of the System 

Our experience shows that the expressive power of 
FNC-2, i.e., the SNC class, is very useful: many AGs we 
have written were, at some time during their develop- 
ment, not ordered and not even I-ordered. Of course 
it would have been rather easy to make them actu- 
ally ordered, but using FNC-2 gave us more freedom 
in our development. Also, a great expressive power is 
quite useful when AGs are automatically produced by 
other systems, such as the above-cited PAGODE: de- 
signers of these systems can ignore “mundane” issues 
such as evaluation order. We also would like to point 
out that AGs are, to the best of our knowledge, the only 
method which really supports incremental development: 
you may freely add new attributes and semantic rules, 
and then test your AG without having to completely 
specify it. 

Our experience with OLGA is also quite satisfactory, 
and we find it a very good specification tool: although 
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# # lines 
files min I max I total I ave. 

ate 4 60 2089 2575 644 
total 1 49 8 3212 29767 607 

Table 4: Source files in the FNC-2 system 

it is hard to measure the productivity of a programmer, 
knowing that the complete development of the system is 
the one-year work of only one full-time researcher plus 
one or two part-time students gives an idea of the eas- 
iness of use of OLGA. When we compare our experi- 
ence with OLGA to that we gained with an earlier sys- 
tem using Lisp as base language, we are sure that we 
have made the right choice (see the discussion at the 
beginning of section 2.4), even though the present im- 
plementation of OLGA is rather inefficient. We prefer 
to spend our efforts in improving this efficiency rather 
than switching back to an existing implementation lan- 
guage. Furthermore, using a specialized AG-description 
language allows to translate it to several implementation 
languages, which we think is an important advantage 
for versatility. There remains to implement the missing 
features, which would improve again the easiness of use 
of OLGA, and above all improve its implementation. In 
addition, we are thinking of simplifying it by unifying 
the syntactic and semantic domains, that is, the trees 
and the attributes, as is done in SSL [43,44] or MARVIN 
[21]; after all, a grammar specifies the same structures 
as record, union and list types. 

If we had to single out a specific advantage of OLGA 
and FNC-2 over their competitors, this would undoubt- 
edly be their provisions for modularity. Table 4 shows 
the organization of the source code of the system (ex- 
cluding ppai, still under development, and the modules 
written in C, namely the evaluator generator and the 
run-time system). If all this code was gathered in a 
single file, or even one file per subsystem, it would be 
impossible to manage. 

Modularity also eases the reuse of modules in sev- 
eral applications. As an example, Figure 4 shows the 
organization of the ppa2 subsystem: ellipses represent 
modules written in OLGA, asz or the ppal language it- 
self. Solid arrows represent flow of information: outside 
a shaded box this corresponds to an importation; inside 
a shaded box this represents an internal representation 
in the form of an attributed abstract tree (a dotted 
arrow connects the corresponding asz specification to 
the arrow representing the tree); from an ellipse to a 
white box this corresponds to some generation process. 
Files X. asx and X . ppat are written by the user; they 

respectively specify the input attributed abstract trees 
and their textual representation. File X-ppat . olga is 
generated from those by ppat and then combined with 
files boxes* to form the actual unparser. The figure 
shows that most of the unparser is independent from 
the input tree language and that the dependent part is 
hence easier to generate. 

As said previously, none of the other AG systems al- 
lows to develop an application in a modular way. 

5 Conclusion and Future Work 

We have presented the FNC-2 attribute grammar sys- 
tem, which aims at production-quality by providing effi- 
ciency, expressive power, ease of use and versatility. We 
are still far from our final goal but preliminary experi- 
ence shows we are on the right track. 

Future work will concentrate in improving the imple- 
mentation of OLGA and interfacing FNC-2 with many 
other systems. As for the former point, Appel’s work on 
a portable implementation of a run-time system for ML, 
including a garbage collector [2], is a very good start- 
ing point; similar work addressing Lisp implementation 
is in progress at INRIA. As for the latter point, the 
OLGA to Lisp translator is the basis of the integration 
of FNC-2, CENTAUR [4] and GIGAS [19] into a powerful 
and attractive competitor to the Synthesizer Generator; 
in addition, this will serve as a testbed for our incre- 
mental evaluation algorithm and for application-specific 
propagation termination conditions. 

Another aspect of our future work is the use of FNC-2 
to develop highly specialized languages and systems to 
develop (parts of) compilers. Indeed, AGs are not spe- 
cialized for compiler construction, and they do not em- 
body any specific expertise for this task. It seems pos- 
sible to embody this expertise in specialized systems, as 
demonstrated by the works of Reiss [41] for identifica- 
tion and symbol table management, and those of Kildall 
[33] for data flow analysis (see also [46] for how to use 
AGs for this task). Then our dream of a complete and 
usable compiler development workbench would become 
a reality. 
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