
Design, Implementation and Evaluation of
the FNC-2 Attribute Grammar System

Martin JOURDAN, Didier PARIGOT, Catherine JULII?,
Olivier DURIN & Carole LE BELLEC

INRIA*

Abstract

FNC-2 is a new attribute grammar processing system
aiming at expressive power, efficiency, ease of use and
versatility. Its development at INRIA started in 1986,
and a first running prototype is available since early
1989. Its most important features are: efficient exhaus-
tive and incremental visit-sequence-based evaluation of
strongly (absolutely) non-circular AGs; extensive space
optimizations; a specially-designed AG-description lan-
guage, with provisions for true modularity; portabil-
ity and versatility of the generated evaluators; com-
plete environment for application development. This
paper briefly describes the design and implementation
of FNC-2 and its peripherals. Then preliminary experi-
ence with the system is reported.

1 Introduction and Design Re-
quirements

Since Knuth’s seminal paper introducing attribute
grammars (AGs) [34], it has been widely recognized that
this method is quite attractive for specifying every kind
of syntax-directed computation, the most obvious ap-
plication being compiler construction. Apart from pure
specification-level features-declarativeness, structure,
locality of reference-, an important advantage of AGs
is that they are executable, i.e., it is possible to auto-
matically construct, from an AG specifying some com-
putation, a program which implements it.

*Authors’ address: INRIA, Domaine de Voluceau, Rocquen-
court, BP 105, F-78153 LE CHESNAY Cedex, France. Email:
{jourdan,parigot. julie, durin, lebellec)&ainos.inria.fr.
C. Julik is also with Laboratoire d’Informatique Fondamentale
d’OrKaus, Uuiversit& d’Orl&ms, BP 6759, F-45067 ORL~ANS
Cedex 2, France. Email: julieeuniv-orleans.fr.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

01990 ACM 0-S9791-364-7/90/0006/0209 $1.50

Proceedings of the ACM SIGPLAN’SO Conference on
Programming Language Design and Implementation.
White Plains, New York, June 20-22, 1990. 209

Unfortunately, until recently the automatically gener-
ated attributes evaluators, as these programs are called,
were too inefficient in time and/or space to honorably
compete with their hand-written equivalents, unless the
class of accepted AGs, and hence the expressive power,
are severely restricted (see [7] for a good list of existing
AG-processing systems).

Our goal in designing the FNC-2 AG-processing sys-
tem [25] was hence to bring up-to-date technology
and recent research results together into a production-
quality system. Our motivation was definitely to bring
a practical and usable solution to a problem which had
mostly attracted theoretical interest. We wanted FNC-2
to be:

efficient: the generated evaluators should be as effi-
cient in time and space as hand-written programs
using the same basic data structures, in particu-
lar an explicitly-built tree to represent the input
text (we ruled out from the start tree-less meth-
ods such as attributes evaluation during parsing for
their very poor expressive power, see next item).

powerful: this efficiency should not be achieved at the
expense of expressive power, i.e., FNC-2 should be
able to process AGs in a very broad class, so that
an AG-developer is not (too much) constrained in
his design by the system.

easy to use: the input language of FNC-2 should en-
force a high degree of programming safety, reliabil-
ity and productivity.

versatile: the generated evaluators should allow to be
interfaced with many other tools.

There exists (yet) no system which actually achieves
these goals, and only a few which reach close to them.
Among them we can quote GAG [32], developed by
U. Ksstens at Universitat Karlsruhe, Linguist [13,16],
developed by R. Farrow first at Intel, then at Columbia
University, and now at Declarative Systems, and, al-
though it is based on a somewhat different frame-
work, the Synthesizer Generator [42,43,44], developed

by T. Reps and T. Teitelbaum at Cornell University.
Comparisons between FNC-2 and these systems will ap-
pear in the relevant sections.

This paper presents the design decisions embodied in
FNC-2 (section 2), various aspects of its implementation
(section 3) and an account of preliminary experience we
gained in using it (section 4). Future work is described
in the final section.

2 Design Choices

2.1 Evaluation Methods

The first choice one must make when undertaking the
design of an AG-processing system is that of the evalu-
ation method(s) the generated evaluators will use. In-
deed, this determines both the expected efficiency of
the evaluators and the expressive power (accepted AG
class) of the generator. A tremendous amount of re-
search work has been devoted to the devising of evalu-
ation methods that reach a good tradeoff between effi-
ciency and expressive power (see [1,7,10] for good sur-
vey s) .

2.1.1 Exhaustive evaluation

The requirement for FNC-2 to generate efficient evalu-
ators ruled out methods based on dynamic scheduling:
in addition to the execution of semantic rules, which
is its basic job, an evaluator should do as little work
as possible, which means that as much information as
possible about the evaluation order should be embod-
ied in the code of the evaluator itself and not computed
at run-time. So we decided that FNC-2 would produce
evaluators based on the visit-sequence paradigm [14,29].
Such an evaluator is a visit-sequence interpreter. There
exist one visit-sequence per production, which is a se-
quence of instructions drawn from the following set:

BEGIN i: begin the i-th visit to the current node.

EVAL s: evaluate all the attributes in set s; the at-
tributes on which elements of s depend are guaran-
teed to be available.

VISIT i, j: perform a recursive visit (the i-th one) to
the j-th son of the current node; on that son, fetch
the applied production and search the BEGIN i in-
struction in the corresponding visit-sequence.

LEAVE i: terminate the current (i-th) visit of the cur-
rent node and return to its father; continue on the
father with the instruction following the VISIT i,
j which caused the current visit to begin.

It is clear that such evaluators can be implemented very
efficiently.

It is possible to build visit-sequences for a given AG
only if a total evaluation order can statically be deter-
mined, which is not the case for all AGs, but then this
has the additional beneficial side effect that this order
can also be used to improve the space consumption of
the evaluators (see below).

The largest class of AGs for which such a total order
exists is the l-ordered class [ll], also called uniform in
[14]. Unfortunately, on one hand this class is not as
broad as could be dreamed of, and above all its charac-
terization is an NP-complete problem [ll]. There exist
two possible approaches for solving this problem:

l restrict the accepted AG class to one more eas-
ily characterizable, such as the OAG class [29] for
which there exists a polynomial test; however this
decreases the expressive power;

l use a variant of the non-circular to Z-ordered trans-
formation [ll] that applies to the strongly (i.e., ab-
solutely) non-circular AG class [6] and is compati-
ble with the visit-sequence paradigm [45].

We used the latter approach for FNC-2. This rather
well-known transformation is described in [ll, 18,451; it
relies on the computation of several totally-ordered par-
titions of the attributes of each non-terminal, each order
being a possible evaluation order for these attributes.
The transformation proceeds as follows:

1. Compute the argument selectors (IO-graphs).

2. In top-down passes over the AG, compute for each
non-terminal a set of totally-ordered partitions of
its attributes. For each production:

(4

04

(4

pick a totally-ordered partition for the LHS
non-terminal;

paste it together with the production depen-
dency graph and the argument selectors of the
RHS non-terminals;

topologically order the resulting graph; this
determines on each RHS non-terminal a
totally-ordered partition; memorize the map-
ping from the production number and parti-
tion for the LHS non-terminal to the parti-
tions for the RHS non-terminals.

Repeat until fixed point is reached.

3. The resulting AG has as non-terminals the pairs
(old non-terminal, one of its partitions) and pro-
ductions as determined by the above construction
(memorization step). Note however that this AG
needs not be explicitly built; rather, during the con-
struction, a visit-sequence-based evaluator can be
built, in which recursive VISIT instructions carry

210

an additional parameter that identifies the parti-
tion to use on the visited node (there exists one
visit-sequence per pair (production, partition of its
LHS non-terminal)).

This construction reaches its goal, in that the gener-
ated evaluators are completely deterministic, thus fast,
while keeping the great expressive power of the SNC
class. Unfortunately, it has exponential complexity, and
the generated evaluators can be exponentially big (more
precisely there can be an exponential number of totally-
ordered partitions per non- terminal).

One of our works was to reduce this factor, by defin-
ing a coarser but still correct notion of equivalence of
partitions which allows to strongly limit their prolifer-
ation [40]. The idea is similar to that of covering [37],
a notion originally devised to reduce the complexity of
non-circularity tests. In step (2~) of the above trans-
formation, once you have determined a totally-ordered
partition on the RHS non-terminals, and for each of
them, check whether the newly-found partition can be
replaced by an already existing one; here, “replace”
means determining whether you can change the topolog-
ical order so that it fits both that existing partition and
the local dependencies (this is a necessary correctness
condition), and also the partitions for the other RHS
non-terminals (this condition is not strictly necessary
but keeps the whole process polynomial)-see Figure 1.
If no such “including” existing partition can be found,
check whether the newly-found partition can replace one
or more existing partitions in the productions in which
they have been generated.

There exist several variations of this notion of equiv-
alence of totally-ordered partitions (see 1401 for more
details and the formal proofs). With our “best” varia-
tion, dubbed bong inclusion, practical tests show that,
on most practical AGs, we end up with exactly one
partition per non-terminal,’ when the classical trans-
formation, with inclusion being the same as equality,
ends up with sometimes more than five partitions per
non-terminal on the average. This is clearly a good
saving on the evaluators size. An additional benefit is
that the running time of the transformation seems to be
directly related to the total number of partitions com-
puted for the whole AG, so that our optimized transfor-
mation runs much faster that the classical one and in
almost-linear time. The only drawback of our scheme
is that it tends to increase the number of visits to each
node,2 since a “replacing” partition must have at least
as many distinct attributes sets as the replaced one (pos-

‘This does not mean that we have found a polynomial test
for characterizing the I-ordered class: there exist I-ordered AGs
for which our transformation will end up with more than one
partition per non-terminal.

‘Note that finding the set of partitions achieving the minimum
number of visits is yet another NP-complete problem.

Z a

(a) Production dependency graph
with argument selectors

r1 A2

(b) The two partitions for X generated
by the classical transformation

(c) ~1 can replace 7r2 in the production

Figure 1: Replacing a totally-ordered partition
by another one

sibly more), and the number of visits is half that num-
ber of sets. However, on all the practical AGs we have
used, this increase is less than 2% in average, and since
pure tree-walking accounts only for a very small frac-
tion of the evaluator running time (the rest is for the
computation of the semantic rules), the dynamic effect
is unnoticeable.

The evaluators generated by FNC-2 are hence as fast
as those produced by GAG and Linguist, since they
basically use the same paradigm. However FNC-2 is
more powerful since it accepts a larger AG class.

2.1.2 Incremental evaluation

In addition, we provided for FNC-2 to be able to gener-
ate incremental attributes evaluators [42]. We devised a
new incremental evaluation method [40] whose outline
is as follows:

1. Generate an exhaustive evaluator which is able to
start at any node in the tree. This is achieved
by computing argument selectors as for the SNC
class, but these selectors must be closed both “from
below” and “from above” [I$]. This construction
hence applies only to a subclass of SNC AGs called
doubly non-circular (DNC). This class is however

211

larger than the l-ordered class, and our SNC to l-
ordered transformation allows to actually use this
method for any SNC AG. Also, the DNC class is
characterizable in polynomial time. This evaluator
is efficient since it is completely deterministic.

2. Add to this exhaustive evaluator a set of “semantic
control” functions allowing to limit the reevaluation
process to affected instances. This control is baaed
on the determination of the status of each attribute
instance (changed, unchanged or unknown) and the
comparison of its old and new values [42]. Note that
the notion of equality used in this comparison can
be adapted to the problem at hand, which enhances
versatility.

Parigot [40] also describes how this method can accom-
modate multiple subtree replacements.

Reps [42] proposes two incremental evaluation meth-
ods, one for (plainly) non-circular AGs and one for or-
dered AGs (see also [49,50]). Our method should prove
more efficient than the former and as efficient and more
powerful than the latter. We believe that it is quite
attractive, in particular because of its versatility, but
this must be confirmed by practical experiments that
we have not yet conducted.

2.2 Space Management

As demonstrated by the works of Kastens [30,31,32]
and others [12,17], the necessity to have a statically-
determinable total evaluation order to produce visit-
sequence-based evaluators has the beneficial side-effect
to allow to conduct very fine static analysis of the life-
time of each attribute instance, which in turn allows to
determine the most efficient way to store it: either in a
global variable, or on a global stack, or, as a last resort,
at tree nodes. Of course we have integrated these works
in FNC-2 (for exhaustive evaluation).

Furthermore we have improved these works in several
respects [27,28]:

l We have relaxed the unnecessarily strict conditions
that Kastens [30,32] imposed on stack manage-
ment, namely that only the top element can be ac-
cessed. We allow accesses below the top of stack,
provided that the depth can be computed stati-
cally each time it is needed to do so. This, corn-.
bined with artificial delaying of POP instructions;
allows to store in stacks every temporary attribute
(which typically account for more than 80% of all
attributes).

l With a formalism that is both finer than that of
[30,32] and simpler than that of [31], we are able
to store more temporary attributes in global vari-
ables. Technically, this is because, when statically

simulating the execution of the evaluator by means
of the grammar of visits, we take into account the
visit numbers, which Kastens did not do.

l Along the lines of [12], but with a much sim-
pler formalism based on the grammar of visits and
contexts, we are able to determine when a non-
temporary attribute can be stored in a global vari-
able.

l We have improved Kastens’ technique for packing
together several global variables or several stacks.
Re used, to decide each such grouping, a mere fea-
sibility criterion, which on one hand was far from
optimal and, on the other hand, was sensitive to the
textual order of the productions and semantic rules
in the AG. Our criterion is based on the number of
copy rules a potential grouping would eliminate.
Not only does it reduce memory consumption in a
purely declarative manner but it also reduces the
running time, especially when it suppresses stack
management operations. It is well-known that solv-
ing this problem in an optimal way is NP-complete,
so we use heuristics, based on a static traversal of
the visit-sequences, to keep an acceptable complex-
ity.

Note that when we say that we have improved over Kas-
tens’ work, we must recognize that we do not refer to
his latest work [31], in which he reaches nearly the same
results as we (except for the packing algorithm). How-
ever we did most of our work independently from him;
in addition, we believe our formalism is simpler than
his.

Presently we work on the last category of attributes,
namely the non-temporary ones which cannot be stored
in global variables. First, it seems possible to use the
grammar of visits and contexts, or a variant thereof, to
determine whether a non-temporary attribute can be
stored in a strict stack, i.e., with accesses only to the
top element and without trying to extend the lifetimes.
Second, we are working on a special data structure, sim-
ilar to so-called “cactus stacks,” to hold attributes fail-
ing even this latter test, and on the corresponding life-
time extensions. We are quite confident that, in the
end, we’ll be able to store all the attributes out of the
tree. This will of course improve storage consumption,
but the most important consequence is a yet to be esti-
mated, but surely great, increase in the expressive power
of AGs. Indeed, since with that scheme the only pur-
pose of the tree is to conduct the evaluator, it needs
not be a physical object any more; it only has to mimic
a physical tree. For instance, attributes evaluation on
DAGs (i.e., trees with shared subtrees) comes for free.
Other applications need yet to be explored.

Practical results are given in section 4.

212

2.3 Modularity

AGs have many advantages as a specification method
but their most stringent drawback in this respect is their
absence of modularity, i.e., the necessity to program a
complete application as a single, monolithic AG. As ap-
plications get larger and more complicated, this scheme
becomes more and more unworkable; a striking example
is the ADA front-end developed using the GAG system
[48]: it is a single AG of more than 500 pages! We
clearly had to address this issue if we wanted FNC-2 to
have a chance to become a production-quality system.

Another problem with this approach is that it forces
to use a single formalism to tackle a whole application,
whereas it can be preferable to use different specialized
frameworks for solving different subproblems. There are
several instances of this situation in compiler construc-
tion. First, it is a priori impossible to use AGs for
fixed-point-like computations, such as those involved in
data flow analysis (although [46] shows they are not al-
ways necessary, and [15] shows how to implement them
through an extension of the AG framework). Secondly,
the AG formalism imposes that the representation of
the program, i.e., the input tree, does not change at all
during the whole computation; this is clearly not well
suited for e.g. optimization phases, which involve trans-
formations of the program representation.

So we had to devise a scheme allowing to build an ap-
plication as a set of modules, some of them being spec-
ified by AGs and the others by other techniques. This
is achieved by considering that an AG specifies, and an
evaluator implements, an (attributed) tree to attributed
tree mapping. More precisely, each evaluator takes as
input a tree, possibly decorated with a collection of at-
tributes, and produces as output one or more decorated
trees. This allows to:

1.

2.

decompose what used to be specified by a single AG
into smaller modules, each of them specified by a
smaller and hence more easily manageable AG;

interface the corresponding evaluators with other
modules, providing that the latter be also based
on the tree-to-tree mapping paradigm (this is for
instance the case for tree transformation systems
such as those generated by OPTRAN [36]).

Our scheme is actually a variation of attribute cou-
pled grammars [20]. This formalism is interesting since
descriptional composition [20,23] allows to combine sev-
eral “modular” AGs into a single efficient evaluator
which does not build the intermediate trees. We already
know that this process is feasible with FNC-2, in partic-
ular because the SNC class is closed under descriptional
composition [23], but we have not yet implemented it.

None of the systems used as reference points offer
true modularity. They all provide for externally-defined

213

semantic functions, which is a form of modularity, but
it lies outside the AG formalism.

2.4 Input Language

Many works have been concerned with the construction
of systems producing efficient evaluators from an AG
[7], but surprisingly few of them have tried to design
specialized AG-description languages. Actually, there
are two classes of systems:

1.

2.

those offering such a specialized language;

those using as input language their implementation
language merely augmented with constructions to
define and access attribute occurrences.

Of course, some systems are a mixture of both classes. . .
We have shown [24] that the second approach has

many drawbacks that would hinder nearly all of the
FNC-2 design requirements. Hence we have decided to
design a new language specifically devoted to the de-
scription of AGs. The requirements for this new lan-
guage were: easiness of use; great expressive power;
enforcement of programming safety and reliability;
versatility; readability and modularity; closeness to
Knuth’s theory of AGs; independence from the eval-
uation method and the implementation languages, but
easy translation to those languages; opportunities for
optimizations; simplicity. Our language, called OLGA
[25], fulfills these goals by providing the following fea-
tures:

OLGA is purely applicative, but not functional.

It is strongly typed, with polymorphism, overload-
ing and type inference.

It is block-structured and modular. Function def-
initions are blocks and can be nested. Compila-
tion units are declaration and definition modules,
possibly parametrized, and AGs; as said above, an
AG defines a tree-to-tree mapping (there are tree
types and tree construction functions). An AG can
be structured into phases, each of them contain-
ing productions together with a number of seman-
tic rules; a given production may appear in several
phases or not at all. Phases and productions are
blocks; a value local to a production and depending
on some attributes is hence a local attribute. Dec-
laration modules export the entities they contain,
which can be opaque. Each block can then import
some or all of those entities, and can contain local
declarations.

OLGA provides modern constructs such as pattern
matching, exception handling, display of error mes-
sages, construction of circular structures, . . .

l The syntactic base of an AG written in OLGA is an
abstract syntax rather than a concrete one, The
formalism is quite close to Metal [4] and provides
for list nodes. There exist special constructs for
defining and accessing attributes on list produc-
tions.

l Most copy rules can be automatically generated
and need not be specified explicitly. In addition,
you can specify a set of attribute classes and se-
mantic rules models defining them; the system will
automatically instantiate these models into actual
semantic rules whenever necessary and applicable
[35] (this is analogous to what is described in [9,
471).

The three reference systems also offer each a special-
ized input language (but they are not representative
in this respect!). Although it is hard to compare the
“efficiency” and “power” of programming languages, it
seems that OLGA is at least as good as the others (see
also section 4); [24] g ives a rather detailed presentation
of OLGA and compares it with Aladin, SSL and the Lin-
guist language.

3 Implementation

The FNC-2 system is composed of three parts, linked
through well-defined interfaces: the OLGA front-end,
the evaluator generator and the translators (see Fig-
ure 2). This structure allows for instance to use the
evaluator generator as a stand-alone processor, through
a crude interface. In addition, FNC-2 comes with a
number of companion processors.

3.1 The Evaluator Generator

The evaluator generator (see Figure 3) is the “engine”
of the system, in which all the fundamental knowl-
edge about attributes evaluation is concentrated. It re-
ceives as input an abstract AG (syntax and local depen-
dencies) and produces an abstract evaluator (visit se-
quences with calls to evaluate the semantic rules, mem-
ory map and storage manipulation operations).

The first step in the construction is the SNC test.
The whole process aborts if the AG fails this test, but
then an interactive circularity trace system [39] allows
to easily discover the origin of the failure; this allows
to take full advantage of the power of the SNC class.
Then the DNC test is performed; if it succeeds, the
OAG test is performed. Actually there exists an infinity
of incomparable OAG(b) classes [3]; by default FNC-2
performs the OAG(0) test but can be directed to test
for the OAG(lc) class for any given L.

If either the DNC or OAG test fails, the SNC to I-
ordered transformation is invoked. Note that even if the

OAG test fails, the information computed by the DNC
test is used by the transformation step to run faster and
produce better results. Also note that cascading these
phases costs the same as performing the OAG test from
scratch, since the first phase of the OAG test is the DNC
test, and the first phase of the latter is the SNC test.

The next step is the production of the visit-sequences
from the total orders computed either in the OAG test
or in the transformation. The final step is the space
optimization, which produces the memory map and en-
riches the visit-sequences with storage manipulation op-
erations.

During the development of an AG, it is also possible
to save some time by producing non-deterministic visit-
sequences directly after the SNC test. In this case, no
space optimization is attempted since no total evalua-
tion order is available.

All the algorithms cited above belong to the Grammar
Flow Analysis framework [38] and make heavy use of our
improvements to this technique [26]. Thus the evalua-
tor generator is quite fast: an evaluator for a complete
Pascal to P-code compiler is produced in less than two
minutes on a Sun-3/60 (see also the figures in Table 1).

3.2 The OLGA Front-end and Transla-
tors

These components are of course bootstraped, i.e., they
are specified by AGs written in OLGA and automatically
generated by FNC-2 itself. We make full use of the
provision for modularity (see the figures in next section).

OLGA is a big language, and its analysis and imple-
mentation are hard tasks, even with AGs. Presently not
all of the language is implemented; either the front-end
or the translators reject some valid programs. The most
notable omissions are full polymorphism, parametrized
modules and exceptions.

Presently there are two translators, one to C and one
to Lisp. Both are rather nayve; this is especially notice-
able for the C implementation, which lacks a garbage
collector. However both are usable, the best evidence
being the bootstrap of the system. These translators
are preceded by a common optimizer, which in particu-
lar performs tail recursion elimination and builds deter-
ministic decision trees for the OLGA pattern-matching
construct.

3.3 The Companion Processors

FNC-2 comes with several companion processors. Asx
analyses attributed abstract syntaxes descriptions,
which play a great role in our formalism since they de-
scribe the input and output data of the evaluators (at-
tributed trees). Aic generates abstract tree constructors
which run in parallel with, and are driven by, parsers

214

/

generation time
------------------------------ -----_-----_3c---_--------

execution time

Figure 2: The FNC-2 system

constructed by the SYNTAX system [5]; another version
of ate built on top of Yacc is available. Ppat generates
unparsers for attributed abstract trees. Mkfnc.2 auto-
mates the construction of complete applications using
FNC-2 and the other processors; it is a pale start at the
library manager depicted in Figure 2.

All those subsystems use as input language an “ex-
tended subset” of OLGA. Of course, they are boot-
straped.

4 Evaluation

The first hand-written version of FNC-2 was completed
in early 1989 and immediately bootstraped. Since then
development continues with OLGA and its companion
languages, however their main applications are still the
system components themselves. Two realistic “exter-
nal” applications are under development:

l a compiler from the PARLOG parallel logic program-
ming language to code for the SPM abstract ma-
chine [22];

l a compiler from full IS0 Pascal to P-code.

In addition, FNC-2 is used in the PAGODE code gener-
ator generator [8], both to implement the system itself
and as the back-end for one of its phases.

In spite of this rather long list, the experience re-
ported below is preliminary and rather incomplete.

Since the above-described applications are still under
development, the statistics below will use as basic data
the AGs and modules specifying parts of the system
itself.

4.1 The Evaluator Generator

Table 1 presents some figures gathered from the execu-
tion of the evaluator generator (as part of FNC-2) on
various AGs. These AGs specify the following parts of
the system:

1. The construction of the module dependency graph
in mkfnc2.

2. The test for well-definedness of an AAS specifica-
tion in asx.

3. The translation to C of the tree construction part
of an ate specification.

215

---a--) non-optimized
- optimized

AG 1

phyla II 6
operators
occ. attr.
ti sem. rules

% stacks
% non-temp.
variables
stacks
% elim./copy
% elim./poss.
time

20 7 62 35 28 52
0 7 5 4 12 0
4 25 12 44 106 7
3 5 23 30 49 11

65 64 20 20 30 23
74 I 88 89 84 94 97

1.78 9.03 10.00 45.31 489.41 10.37

Table 1: Statistics gathered for the evaluator generator

.:.:.::::::::::::::::::::::.;:::: strong ~~~~~~
Non-circularity ‘. c Test ~tiiililsiili~~li~~~~~

.i..... ..i..........................
Double :.:.:.:.:::::::::::::::::::::~::: :~~~:~:~:~:~:~~~:

Non-circularity :
Test F

$$$$$;p_....._... .:~:i#

1 OAG Test k

iiiiiiiiiiii E SNC to IDordered . ,:_>>:_>: .,.,.,.,.,:,:,:,:,:

I I
:.:.:.:.:.:. ::::::::::,;,:+~ :j:j:j:j:j:j ;;>::::y:::::: Transformation

Visit Sequences
................
:::::::.::::m:

t

:,~?j'--"
Generation m:

................ ~~~~l~~#~~
:l-ll:.l :::::::::::::::::::::::::::::::::

Space @$$j$ $$#
.. Optimizations P

............................ !:i:i:!:::::::::::::::::::~.:,

Figure 3: The evaluator generator

OAG(0) OAG(0) OAG(0) 1 DNC OAG(0)
86 33 61 1 60 48

7 ave.
74

319
249

1497
OAG(1)

35 56.5
64 36

1 7.5
26
47
16 27
91 91

48.23

216

4. The type-checking of the tree construction part of
an ate specification.

5. The type-checking of an OLGA specification, be it
an AG or a module, and test for well-definedness
of an AG. This is the largest and most significant
example in the set.

6. The test for tail-recursive functions in an OLGA
specification (the construction of deterministic de-
cision trees for pattern-matching is not yet part of
the production version of the system).

7. The translation to C of the non-AG parts (types,
functions, semantic rules, etc.) of an OLGA speci-
fication.

Note that these AGs are not self-contained: they import
many types, functions and other entities from separate
modules.

The top part of Table 1 gives an idea of the size of
each AG. Phyla and operators correspond roughly to
non-terminals and productions in a concrete grammar.
The number of attribute occurrences is the sum on all
phylas of the number of attributes attached to each.

The so-called class of an AG is the smallest class to
which it belongs, as determined by the evaluator gener-
ator. AG 5 is not OAG(H) for any Ic, which shows that it
is advantageous to have a system accepting a class larger
than OAG. We don’t know whether it is truly I-ordered:
our SNC to I-ordered transformation ends up with 1.03
totally-ordered partitions per non-terminal in average
(max. 2). On the same AG, the classical transforma-
tion using equality ends up with 4.15 partitions per non-
terminal in average (max. 29)! AG 7 is not OAG(0) but
is OAG(l). Th is was discovered by trial and error and
leads to better results for space optimization than our
transformation (this is not always the case); however
this trial and error process should be performed only in
the very final phase of the development of an AG.

The next part of Table 1 deals with space optimiza-
tion. The first three figures give the proportion of at-
tribute occurrences which are stored in global variables,
global stacks or at tree nodes; the latter class corre-
sponds to non-temporary attributes because we have
not yet implemented the test for storing non-temporary
attributes in global variables. The average figures in the
last column are weighted by the number of attribute oc-
currences in each AG, which is a meaningful indication
of its size. These figures are static, i.e., they refer to
the AG itself rather than to its dynamic execution. Dy-
namic measures [28] show a decrease of the number of
attribute storage cells by a factor of 4 to 8 in the execu-
tion of AG 5 on various source texts. These figures are
already quite good and will be even better when our
space optimization scheme is fully implemented. The

next four figures report the effect of our grouping al-
gorithm. On AG 5 for instance, it cuts the number of
global variables from 595 down to 106 and the number
of global stacks from 278 to 49; however the dynamic
effect on storage consumption is much less noticeable.
More important is the next figure, which describes the
proportion of copy rules which have been eliminated
w.r.t. the total number of copy rules; again, this is a
static figure. It may seem low, but it must be noticed
that not all copy rules can be eliminated: for instance,
storing two different attribute occurrences in the same
variable makes the evaluator incorrect when both are
live at the same time. The next figure-the proportion
of rules that have aclvally been eliminated w.r.t. those
which could theoretically be eliminated-show that we
reach close to the optimum (recall that achieving the
optimum is NP-complete).

The last figure is the CPU time on a Sun-3/60 ma-
chine. The whole process is clearly non-linear but also
non-exponential. We believe that the efficiency of the
evaluator generator is reasonable given the extensive op-
timizations it performs.

4.2 The Generated Evaluators

As examples of evaluators generated by FNC-2 we have
chosen some parts of FNC-2 itself, namely the type-
checking of the OLGA source text and the translation
to C of its non-AG parts. Table 2 summarizes the exe-
cution of FNC-2 on the above-described AGs while Ta-
ble 3 is for some modules, i.e., OLGA texts not specify-
ing an AG (Cn are declaration modules and Fn are the
corresponding definition modules).

In both tables, the first row gives the length of the
input text. The second to fourth give the CPU time, in
seconds, for some phases of its processing (measured on
a Sun-3/60 machine). “Input” includes scanning, pars-
ing and initial tree construction; this phase is generated
by a1c and SYNTAX. “Typing” is the type- and well-
definedness checking, as specified by AG 5 above, and
“translator” is the translation to C of the non-AG parts
(AG 7 above)-translation to C of the visit-sequences
is presently hand-written. There are other phases in-
volved in the processing, e.g. evaluator generation, but
these last two phases correspond exactly to evaluators
generated by FNC-2, which is what we are interested
in here. “Memory” is the size, in kbytes, of the mem-
ory used by the whole process, as reported by the time
command built in csh. “Time” is the total CPU time
including all the phases (in particular the evaluator gen-
eration for Table 2).

The last column reports the average speed, in lines
per minute, of the various phases and the whole process.
The average global speed in Table 2 is not meaningful
since it includes the evaluator generation, a non-linear

217

Table 2: Statistics gathered for the FNC-2 system (on AGs)

module Cl Fl C2 F2 C3 F3 C4 F4 C5 F5 C6 F6
lines 189 372 320 3188 268 1083 390 1186 391 905 86 268
input 0.70 1.53 1.07 13.47 1.07 4.62 1.50 5.02 1.70 4.53 0.17 1.15
typing 1.58 3.32 4.77 51.73 4.08 13.80 6.22 14.80 5.00 14.72 0.40 1.72
translator 0.85 1.98 0.28 16.62 0.85 5.93 2.23 5.90 2.43 6.20 0.33 1.38
memory 480 632 848 2912 568 1032 656 1072 744 1080 384 536
time 6.28 12.30 38.03 191.51 12.32 36.30 16.58 41.43 22.15 41.13 1.55 5.82

phase; on the other hand, the results in Table 3 are typ-
ical of a compiler-like application. The difference in the
speed of the typing phases in Tables 2 and 3 stem from
the fact that, in addition to mere type-checking which is
the same as for a module, an AG needs to be checked for
well-definedness; furthermore, this phase is responsible
for constructing the “abstract AG” to be input to the
evaluator generator. The difference in the speed of the
input phases stems from the fact that modules are, in
average, substantially smaller than AGs, so that “con-
stant overhead” (initialization, etc.) is more noticeable
in the former case. Memory consumption of the whole
process averages to between 1.3 and 1.4 kbytes per line
of input and does not vary much whether the evaluator
generator is invoked or not; this means that most of the
space is used for data created for or by the evaluators.
As a comparison point, we have-not very precisely-
measured the behavior of Sun’s C compiler (no opti-
mization nor assembly): average speed amounts to 5800
l/mn and memory consumption to .09 kb/l. However it
must be kept in mind that it is a one-pass compiler
which does not build a complete representation of the
input program.3

We believe that the efficiency of the generated evalua-
tors is already rather satisfactory: comparison between
the hand-written version of the system and the boot-
straped version shows that the latter is only between
two and four times slower on average; comparison with
the C compiler shows a speed ratio of five, but its struc-
ture makes it a somewhat unfair comparison point (see
our design goals in section 1). Finer analysis shows that

3A tree is built for each expression, but it is immediately trans-
lated into target code and the space it occupies is reused for the
next expression, so the compiler can roughly be considered as to
run in constant space.

Table 3: Statistics gathered for the FNC-2 system (on modules)

this slowdown must not be attributed to the evaluator
as such but to the execution of the semantic rules them-
selves, because our OLGA to C translator is really naive.
Hence we are quite confident that we can improve this
ratio to make it close to unity.

The same applies to space consumption: the attribute
storage cells themselves account only for a small frac-
tion of the data space, the rest being used by the (un-
decorated) tree and above all by the values of com-
plex attributes (e.g. symbols tables). The latter will
be strongly reduced when we implement a garbage col-
lector and use more sophisticated analysis techniques on
OLGA to improve sharing and replace some constructive
modifications by destructive updates.

4.3 Use of the System

Our experience shows that the expressive power of
FNC-2, i.e., the SNC class, is very useful: many AGs we
have written were, at some time during their develop-
ment, not ordered and not even I-ordered. Of course
it would have been rather easy to make them actu-
ally ordered, but using FNC-2 gave us more freedom
in our development. Also, a great expressive power is
quite useful when AGs are automatically produced by
other systems, such as the above-cited PAGODE: de-
signers of these systems can ignore “mundane” issues
such as evaluation order. We also would like to point
out that AGs are, to the best of our knowledge, the only
method which really supports incremental development:
you may freely add new attributes and semantic rules,
and then test your AG without having to completely
specify it.

Our experience with OLGA is also quite satisfactory,
and we find it a very good specification tool: although

218

lines
files min I max I total I ave.

ate 4 60 2089 2575 644
total 1 49 8 3212 29767 607

Table 4: Source files in the FNC-2 system

it is hard to measure the productivity of a programmer,
knowing that the complete development of the system is
the one-year work of only one full-time researcher plus
one or two part-time students gives an idea of the eas-
iness of use of OLGA. When we compare our experi-
ence with OLGA to that we gained with an earlier sys-
tem using Lisp as base language, we are sure that we
have made the right choice (see the discussion at the
beginning of section 2.4), even though the present im-
plementation of OLGA is rather inefficient. We prefer
to spend our efforts in improving this efficiency rather
than switching back to an existing implementation lan-
guage. Furthermore, using a specialized AG-description
language allows to translate it to several implementation
languages, which we think is an important advantage
for versatility. There remains to implement the missing
features, which would improve again the easiness of use
of OLGA, and above all improve its implementation. In
addition, we are thinking of simplifying it by unifying
the syntactic and semantic domains, that is, the trees
and the attributes, as is done in SSL [43,44] or MARVIN
[21]; after all, a grammar specifies the same structures
as record, union and list types.

If we had to single out a specific advantage of OLGA
and FNC-2 over their competitors, this would undoubt-
edly be their provisions for modularity. Table 4 shows
the organization of the source code of the system (ex-
cluding ppai, still under development, and the modules
written in C, namely the evaluator generator and the
run-time system). If all this code was gathered in a
single file, or even one file per subsystem, it would be
impossible to manage.

Modularity also eases the reuse of modules in sev-
eral applications. As an example, Figure 4 shows the
organization of the ppa2 subsystem: ellipses represent
modules written in OLGA, asz or the ppal language it-
self. Solid arrows represent flow of information: outside
a shaded box this corresponds to an importation; inside
a shaded box this represents an internal representation
in the form of an attributed abstract tree (a dotted
arrow connects the corresponding asz specification to
the arrow representing the tree); from an ellipse to a
white box this corresponds to some generation process.
Files X. asx and X . ppat are written by the user; they

respectively specify the input attributed abstract trees
and their textual representation. File X-ppat . olga is
generated from those by ppat and then combined with
files boxes* to form the actual unparser. The figure
shows that most of the unparser is independent from
the input tree language and that the dependent part is
hence easier to generate.

As said previously, none of the other AG systems al-
lows to develop an application in a modular way.

5 Conclusion and Future Work

We have presented the FNC-2 attribute grammar sys-
tem, which aims at production-quality by providing effi-
ciency, expressive power, ease of use and versatility. We
are still far from our final goal but preliminary experi-
ence shows we are on the right track.

Future work will concentrate in improving the imple-
mentation of OLGA and interfacing FNC-2 with many
other systems. As for the former point, Appel’s work on
a portable implementation of a run-time system for ML,
including a garbage collector [2], is a very good start-
ing point; similar work addressing Lisp implementation
is in progress at INRIA. As for the latter point, the
OLGA to Lisp translator is the basis of the integration
of FNC-2, CENTAUR [4] and GIGAS [19] into a powerful
and attractive competitor to the Synthesizer Generator;
in addition, this will serve as a testbed for our incre-
mental evaluation algorithm and for application-specific
propagation termination conditions.

Another aspect of our future work is the use of FNC-2
to develop highly specialized languages and systems to
develop (parts of) compilers. Indeed, AGs are not spe-
cialized for compiler construction, and they do not em-
body any specific expertise for this task. It seems pos-
sible to embody this expertise in specialized systems, as
demonstrated by the works of Reiss [41] for identifica-
tion and symbol table management, and those of Kildall
[33] for data flow analysis (see also [46] for how to use
AGs for this task). Then our dream of a complete and
usable compiler development workbench would become
a reality.

References

1.

2.

3.

Alblas, H. Attribute Evaluation Methods. Memoran-
dum INF-89-20, Onderafdeling der Informatica, Tech.
Hogeschool Twente, 1989,

Appel, A. W. A Runtime System. Draft, Princeton Univ.,
Feb. 1989.

Barbar, K. Classification des grammaires d’attributs or-
donnees. Rapport 8412, Univ. de Bordeaux I, Apr. 1984.

219

4.

5.

6.

7.

8.

scan, parse,

*e- - -L,-

: X.ppat
-*w- ---c

Figure 4: The ppaf subsystem

Borras, P., Clement, D., Despeyroux, T., Incerpi, J.,
Kahn, G., Lang, B. and Pascual, V. CENTAUR: the Sys-
tem. In ACM SIGSOFT/SIGPLAN Symp. on Practical
Software Development Environments (Boston, MA, Nov.
1988). SIGSOFT Software Eng. Notes 13, 5 (Nov. 1988),
14-24. Joint issue with ACM SIGPLAN Notices 24, 2
(Feb. 1989).

Boullier, P. and Deschamp, P. Le systeme SYNTAX-
Manuel d’utilisation et de mise en ceuvre sous Unix. IN-
RIA, Rocquencourt, Sept. 1988.

Courcelle, B. and Franchi-Zannettacci, P. Attribute
Grammars and Recursive Program Schemes. Theoret.
Comput. Sci. 17, 2 and 3 (1982), 163-191 and 235-257.

Deransart, P., Jourdan, M. and Lorho, B. Attribute
Grammars: Definitions, Systems and Bibliography. Lect.
Notes in Comp. Sci., vol. 323, Springer-Verlag, New York-
Heidelberg-Berlin, Aug. 1988.

Despland, A., Mazaud, M. and Rakotozafy, R. Using
Rewriting Techniques to Produce Code Generators and
Proving them Correct. Rapport RR-1046, INRIA, Roc-
quencourt, June 1989. To appear in Sci. Comput. Pro-
gramming.

9.

10.

11.

12.

13.

14.

Dueck, G. D. P. and Cormack, G. V. Modular Attribute
Grammars. Research report CS-88-19, Univ. of Waterloo,
May 1988.

Engelfriet, J. Attribute Grammars: Attribute Evaluation
Methods. In Methods and Tools for Compiler Construc-
tion, B. Lorho, Ed. Cambridge Univ. Press, Cambridge,
1984, pp. 103-138.

Engelfriet, J. and File, G. Simple Multi-Visit Attribute
Grammars. J. Comput. System Sci. 24, 3 (June 1982),
283-314.

Engelfriet, J. and de Jong, W. Attribute Storage Opti-
mization by Stacks. Rapport 88-30, Vakgroep Informat-
ica, Rijksuniv. te Leiden, Dec. 1988. To be published.

Farrow, R. Generating a Production Compiler from an
Attribute Grammar. IEEE Software I, 4 (Oct. 1984), 77-
93.

Farrow, R. Sub-Protocol-Evaluators for Attribute Gram-
mars. In ACM SIGPLAN’84 Symp. on Compiler Con-
struction (Montreal, June 1984). ACM SIGPLAN Notices
19, 6 (June 1984), 70-80.

220

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Farrow, R. Automatic Generation of Fixed-point-finding
Evaluators for Circular, but Well-defined, Attribute
3rammars. In ACM SIGPLAN’86 Symp. on Compiler
Construction (Palo Alto, CA, June 1986). ACM SIG-
PLAN Notices 21, 7 (June 1986), 85-98.

Farrow, R. The Linguist Translator-writing System-
User’s Manual version 6.25. Declarative Systems Inc.,
Palo Alto, CA, June 1989.

Farrow, R. and Yellin, D. M. A Comparison of Stor-
age Optimizations in Automatically-Generated Attribute
Evaluators. Acta Inform. 23, 4 (1986), 393-427.

File, G. Classical and Incremental Attribute Evaluation
by Means of Recursive Procedures. Theoret. Comput. Sci.
53, 1 (Jan. 198’7), 25-65.

Franchi-Zannettacci, P. Attribute Specifications for
Graphical Interface Generation. In Information Process-
ing ‘89 (San Francisco, CA, Aug. 1989) G. X. Ritter, Ed.
North-Holland, Amsterdam, pp. 149-155.

Ganzinger, H. and Giegerich, R. Attribute Coupled
Grammars. In ACM SIGPLAN’84 Symp. on Compiler
Construction (Montreal, June 1984). ACM SIGPLAN
Notices 19, 6 (June 1984), 157-170.

Ganzinger, H., Giegerich, R. and Vach, M. MARVIN:
a Tool for Applicative and Modular Compiler Specifi-
cations. Forschungsbericht 220, Fachbereich Informatik,
Univ. Dortmund, July 1986.

Garcia, J., Jourdan, M. and Rizk, A. An Implementa-
tion of PARLOG Using High-Level Tools. In ESPRIT ‘87:
Achievements and Impact (Brussels, Sept. 1987), Com-
mission of the European Communities-DG XIII, Ed.
North-Holland, Amsterdam, pp. 1265-1275.

Giegerich, R. On the Relation between Descriptional
Composition and Evaluation of Attribute Coupled Gram-
mars. Forschungsbericht 221, Fachbereich Informatik,
Univ. Dortmund, July 1986.

Jourdan, M., Le Bellec, C. and Parigot, D. The Olga
Attribute Grammar Description Language: Design, Im-
pIementation and Evaluation. In Workshop on Attribute
Grammars and their Applications (WAGA) (Paris, Sept.
1999). Lect. Notes in Comp. Sci., Springer-Verlag, New
York-Heidelberg-Berlin.

Jourdan, M. and Parigot, D. The FNC-2 System User’s
Guide and Reference Manual. INRIA, Rocquencourt,
Feb. 1989. This manual is periodically updated.

Jourdan, M. and Parigot, D.
Grammar Flow Analysis. In
May 1990).

Techniques for Improving
ESOP ‘90 (Copenhagen,

Julie, C. Optimisation de l’espace m&moire pour
1’Cvaluation des grammaires attribukes. These, Dept.
d’Informatique, Univ. d’OrKans, Sept. 1989.

Julie, C. and Parigot, D. Space Optimization in the FNC-
2 Attribute Grammar System. In Workshop on Attribute
Grammars and their Applications (WAGA) (Paris, Sept.
1990). Lect. Notes in Comp. Sci., Springer-Verlag, New
York-Heidelberg-Berlin.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Kastens, U. Ordered Attribute Grammars. Acta Inform.
13, 3 (1980), 229-256.

Kastens, U. The GAG-System-A Tool for Compiler
Construction. In Methods and Tools for Compiler Con-
struction, B. Lorho, Ed. Cambridge Univ. Press, Cam-
bridge, 1984, pp. 165-182.

Kastens, U. Lifetime Analysis for Attributes. Acta In-
form. 24, 6 (Nov. 1987)) 633-652.

Kastens, U., Hutt, B. and Zimmermann, E. GAG: A Prac-
tical Compiler Generator. Lect. Notes in Comp. Sci., vol.
141, Springer-Verlag, New York-Heidelberg-Berlin, 1982.

Kildall, G. A unified approach to global program opti-
mization. In 1st ACM Symp. on Principles of Progr. Lan-
guages. ACM Press, New York, NY, Jan. 1973, pp. 194-
206.

Knuth, D. E. Semantics of Context-free Languages. Math.
Systems Theory 2, 2 (June 1968), 127-145.

Le Bellec, C. Specification de r&gles semantiques man-
quantes. Rapport de DEA, Dept. d’biformatique, Univ.
d’Orlkans, Sept. 1989.

Lipps, P., Miincke, U. and Wilhelm, R. OPTRAN - A
Language/System for the Specification of Program Trans-
formations: System Overview and Experiences. In Corn-
piler Compilers and High Speed Compilation (Berlin,
Oct. 1988), D. H ammer, Ed. Lect. Notes in Comp. Sci.,
vol. 371, Springer-Veriag, New York-Heidelberg-Berlin,
pp. 52-65.

Lorho, B. and Pair, C. Algorithms for Checking Consis-
tency of Attribute Grammars. In Proving and Improving
Programs (Arc et Senans, July 1975)) G. Huet and G.
Kahn, Eds. INRIA, Rocquencourt, pp. 29-54.

Miincke, U. Grammar Flow Analysis. ESPRIT
PROSPECTRA Project report S.1.3.-R-2.2, Univ. des
Saarlandes, Saarbriicken, Mar. 1986, revised Jan. 1987.
To appear in ACM Trans. Progr. Languages and Systems.

Parigot, D. Un systeme interactif de trace des circularites
dans une grammaire attribuke et optimisation du test de
circularitk. Rapport de DEA, Univ. de Paris-Sud, Orsay,
Sept. 1985.

Parigot, D. Mise en oeuvre des grammaires attribuees:
transformation, &ablation incrementale, optimisations.
Thkse de 3kme cycle, Univ. de Paris-Sud, Orsay, Sept.
1987.

Reiss, S. P. Generation of Compiler Symbol Processing
Mechanisms from Specifications. ACM Trans. Progr. Lan-
guages and Systems 5, 2 (1983), 127-163.

Reps, T. Generating Language-based Environments. MIT
Press, Cambridge, MA, 1984.

Reps, T. and Teitelbaum, T. The Synthesizer Genera-
tor Reference Manual 3rd edition. Springer-Verlag, New
York-Heidelberg-Berlin, 1989.

Reps, T. and Teitelbaum, T. The Synthesizer Generator.
Springer-Verlag, New York-Heidelberg-Berlin, 1989.

221

45. F&-Nielson, H. Computation Sequences: A Way to Char-
acterize Subclasses of Attribute Grammars. Acta Inform.
19 (1983), 255-268.

46. Sagiv, S., Edelstein, O., Francez, N. and Rodeh, M. R.e-
solving Circularity in Attribute Grammars with Appli-
cations to Data Flow Analysis. In 16th ACM Symp. on
Principles of Progr. Languages (Austin, TX, Jan. 1989).
ACM Press, New York, NY, pp. 36-48.

47. Tiemann, M. D. Removing Redundancy in Attribute
Grammars. Manuscript, Parallel Processing Program,
Microelectronic and Computer Technology Corp., Austin,
TX, July 1987.

48. Uhl, J., Drossopoulos, S., Persch, G., GOOS, G., Dauss-
mann, M., Winterstein, G. and KirchgiBner, W. An At-
tributed Grammar for the Semantic Analysis of ADA.
Lect. Notes in Comp. Sci., vol. 139, Springer-Verlag, New
York-Heidelberg-Berlin, 1982.

49. Yeh, D. On Incremental Evaluation of Ordered At-
tributed Grammars. BIT 23 (1983), 308-320.

50. Yeh, D. and Kastens, U. Improvements of an Incremental
Evaluation Algorithm for Ordered Attributed Grammars.
ACM SJGPLAJV Notices 23, 12 (Dec. 1988), 45-50.

222

