
Automatic Generation of Global Optimizers*

Deborah Whitfield and Mary Lou Soffa
Department of Computer Science

University of Pittsburgh

Pittsburgh, PA 15260

ABSTRACT

This research has developed an optimizer generator that

automatically produces optimizers from specifications.

Code optimizations are expressed using a specification

language designed for both traditional and parallelizing

optimization, which require global dependence condi-

tions. Numerous optimizers have been produced from a

prototype implementation of the generator. The quality of

code produced using the generated optimizers compares

favorably with that produced by hand coded optimizers.

The generator can be used as a phase in a compiler or as

an experimental tool to determine the effects of various

optimization and to tailor optimization. Experiments

indicate that optimization interact in practice and that dif-

ferent orderings of optimization are needed for different

code segments of the same program. Experiments found

that the cost-benefit ratio of some optimizations is quite

large and in some cases can be reduced by careful

specifications of the optimizations or different implemen-

tations.

1. Introduction

Although traditional global optimizations have long

been applied to program code, the cost of implementing

these optimizers remains high. We have reduced the cost

of implementing optimizers by providing a General

Optimization Specification Language, (GOSpeL) and an

optimizer generator (GENesis) that allows users to gen-

erate a wide variety of global optimizers from compact,
declarative specifications. The optimizers thus produced

are useful in conventional compilers but are particularly

* This work was partialty supported by tfre National Science Foun-
dation under Grant CCR-8801 104 to the University of Pittsburgh.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and

its date appear, and notice IS given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee andlor specific permission.

@ 1991 ACM 0-89791 -428 -7/91 /0005 /0120 . ..$1.50

~

Proceedings of the ACM SIGPLAN ’91 Conference on

Programming Language Design and Implementation

Toronto, Ontario, Canada, June 26-28, 1991.

useful when experimenting with optimizations and when

compiling for parallel machines, where it maybe unclear

which transformations to use and how to order them.

To use GENesis, the optimization under considera-

tion for application on program code are expressed in

GOSpeL by the user. For each optimization, GOSpeL

requires the specification of the preconditions and the

actions to optimize the code. In addition, the interactive

capability that the user desires with the optimizer can be

specified. The preconditions consist of the code patterns

and the global dependence information needed for the

optimization. The code patterns express the format of the

code, and the global information describes the control and

data dependence that are required for the specified

optimization. The actions take the form of primitive

operations that occur when applying code transforma-

tions. The primitives are combined to express the total

effect of applying a specific optimization. For generality,

GENesis assumes a high level intermediate representation

that retains the loop structures from the source program.

The user can specify whether the optimization should be

applied automatically (e.g., traditional optimization) or

should be applied at the user’s direction (e.g., paralleliz-

ing transformations). The higher level intermediate code

allows the user to interact at the source level for loop

transformations, typically applied for parallel systems.

With an optimizer generated by GENesis, the user

can experimentally investigate the performance of the

optimization on program code for the system under con-

sideration, The cost and expected benefit of various

optimizations can be compared on production code.

Optimizations that are not effective can be removed and

other optimization can be added by simply changing the

specifications and rerunning GENesis, producing a new

optimizer. The decision as to the order in which these
optimization should be applied can be easily investi-

gated. New optimization can be created or existing

optimization tailored to the system and easily incor-

porated into an optimizer.

120

Currently, we have used GOSpeL to specify approx-

imately twenty optimizations found in the literature and

have been successful in specifying all optimization

attempted. In order to test the viability and robustness of

this approach, we implemented a prototype for GENesis

and have produced a number of optimizers. Using these

optimizers, the impact of ordering optimization as well as

the cost and benefit of the optimizations have been inves-

tigated experimentally. In the next section, examples of

the specifications of optimization in GOSpeL are given as

well as an overview of the language. Section 3 describes

the design and implementation of GENesis. Experimental

results are presented in Section 4. The paper concludes

with a section on related work.

2. Description of GOSpeL

GOSpeL permits the uniform specification of both

traditional, sequential optimizations and parallelizing

transformations by using common constructs. Control,

anti, flow and output data dependence are used in this

work, as these dependence are needed to specify parallel-

izing optimizations and can also be used to express tradi-

tional data flow for sequential optimizations. Thus the use

of a common data dependence notation in the

specification is a step toward unification of parallelizing

and traditional optimizations.

A flow dependence (Si 8 Sj) exists between a state-

ment Si that defines a variable and each statement Sithat

uses the definition from S& An anti-dependence (Si 8 Sj)

occurs between statement Si that uses a variable that is

then defined in statement Sj. An output dependence (Si 8°

Sj) exists between a statement Si that defines or writes a

variable that is later defined or written by Sj. A control

dependence (S, 8’ bj) exists between a control statement Si

and all of the statements Sj under its control. In other

words, if Si is an IF condition then all of the statements

within the THEN and the ELSE are control dependent on

Si. The concept of data direction vectors for both forward

and backward loop-carried dependence of array elements

is also used in this work. When determining the data

dependence within loops, it is necessary to examine the

direction of the dependencel”. Each element of the data

dependence vector consists of either a forward, backward,
or equivalent direction represented with <, >, or=, respec-

tively. An * is used when any of the three directions can

apply (omitting the direction vector produces the same

result). The number of elements in the direction vector

corresponds to the loop nesting level of the statements

involved in the dependence,

We first present examples of specifications and then

highlight the features of the language by considering the

syntax and semantics of the components of an optimiza-

tion specification. A BNF grammar was developed for

GOSpeL, and a subset appears in the Appendix of this

paper. The grammar is used to construct well-formed

specifications and also to implement an optimizer through

GENesis.

The specification of an optimization has three sec-

tions: type, precondition and action sections, where the

precondition is sub-divided into two parts. The type sec-

tion specifies the required code element types. The

precondition section includes both the code format

specification and the dependence that are needed. The

data dependence specification involves the description of

statement and operand dependence, direction vectors,

and any necessary membership qualification. The action

section specifies the primitive actions that perform the

code transformations. The general independence of the

specification from the underlying implementation allows

for the implementation of GOSpeL at any level, including

source level. However, the general form that a statement

may take is needed to delimit statement components.

The assumed representation of an assignment state-

ment for this implementation of GOSpeL is:

opr_l := opr_2 opc opr_3

The number of operands could be modified to reflect other

program representations. Figure 1 demonstrates a GOS-

peL specification of Constant Propagation (CTP).

The Code_Pattem keyword in the PRECOND sec-

tion of Figure 1 specifies an occurrence of a statement that

assigns a constant, represented by the second operand.

The data dependence conditions given in the Depend sec-

tion of PRECOND expresses the conditions that must

exist before applying the optimization. For CTP, the con-

dition is to locate a use of the defining variable of Si (i.e.,

opr_”l) at statement Sj (in operand position pos) and

ensure that there are no other definitions that reach the

use. If such a statement is found then the actions

expressed in the action section are performed. The action

is to modify the use at Sj to be the constant found as the

second operand of Si. Modify is just one of the primitive

actions allowed in GOSpeL.

Next consider the specification of the parallelizing

optimization Loop Interchanging (INX) found in Figure 2.

In the Code_Pattem section, any specifies an occurrence

of two tightly nested loops L1 and L2. Two loops are

tightly nested if one surrounds the other without any state-

ments between them14. The data dependence condition in

the Depend section expresses two conditions. First, it

ensures that the loop headers are invariant with respect to

each other by checking for a flow dependence. Also, the
Depend section expresses that there are no pairs of state-

ments in the loop with a flow dependence and a (<,>)

direction vector. If no such statements are found then the

Heads and Ends of the two loops are interchanged.

121

TYPE

SUnr Si, Sj, S1;

PRECOND
Code_Pattem I* Find a constant definition’/

any Si: Si.opc == assign AND type(Si.opr_2) == cons~

Depend ~ Use of Si whh no other definitions */

any (Sj,pos): flow_dep(Si, Sj,(=));

no (Sl,pos): flow_dep(Sl, Sj,(=)) AND (Si != S1)

AND operand(Sj,pos) != operand(Sl,pos);

ACTION P Change use of Si in Sj to be constant*/

modify (operand (Sj,pos), Si.opr_2);

Figure 1. GOSpeL specification of Constant Propagation

TYPE

Stmc Sn, Sm;

Tight Loops: &l, L2);

PRECOND
Code_Pattem /“ Find two nested loops *J

any(Ll, L2);

Depend /* Ensure invariant loop headers*/

~ No flow_dep statement and direction of (<,>) */
no L1.head flow_dep(L1.head, L2.head)

no Sm, Sn: mem(Sm, L2) AND mem(Sn, L2),

flow_dep(Sn, Sm, (e>));

ACTION p Interchange heads and tails*/

move(Ll .Head, L2.Head);

move(Ll .End, L2.End.prev);

Figtue 2. GOSpeL specification of Loop Interchange

2.1. Declaration Section

Variables are defined to be one of the following

types: Statement, Loop, Nested Loops, Tight Loops, or

Adjacent Loops. The domain of these types are the par-

ticular code elements in the intermediate code representa-

tion. A variable of type Statement can have as its value

any of the intermediate code statements in the program.

All types have pre-defined attributes denoting the next or

previous code element of that type.

Statement types have pre-defined attributes indicating the

first, second and third operand and the operation. The

pre-defined attributes of type loop include the loop body,

which identifies all the statements in the loop, loop control

variable, initial value, final value, head of the loop, and

end of the loop. Tight Loops restrict Nested Loops by

ensuring that there are no statements between the two

loops. Variables receive their values as a result of various

operations performed by operators such as any, all, and

no.

122

In the declaration section, variables are defined fol-

lowing the keyword TYPE using the forma~

type: id_list;

The id_list for Statement and Loop is simply a list, but

Nested Loops, Tight Loops, and Adjacent Loops require

parenthesized pairs of identifiers.

2.2. Pre-condition Section

In order to specify a code transformation and condi-

tions under which it can be applied safely, the pattern of

code (e.g., constant operands) and the data and control

dependence conditions (if any) that are needed must be

given. These two similar components constitute the

precondition section of a specification. The keyword

PRECOND is followed by the keyword Code Pattern,

which precedes the code pattern specificat~ons and

Depend which precedes the dependence specification,

forcing the user to order the code pattern specifications

prior to the dependence specifications. This ordering is

enforced for ease of converting the specifications to exe-

cutable code.

The code pattern section specifies the format

needed for the statements and loops involved in the optim-

ization, The code pattern specification consists of a

quantifier followed by the elements needed and the

required format of the elements.

quantifier element_list: format of elements;——

The quantifier operators any and all return an element or

all the elements, respectively, of the requested types if a

match is successful. The no operator returns null and

warns the user that no statement has been specified for

pattern matching. The second part of the code pattern

specification describes the format of the type of elements

required. If Statement is the element type, then the for-

mat typically restricts the statement’s operands and opera-

tor, Thus, if constants are required as operands or if loops

are required to start at iteration 1, this requirement is

specified in the forma_of elements. Expressions can be

constructed in format_of ~lements using the AND and

OR conjunctive with the= usual meaning.

The second component of the precondition section

is the specification of data or control dependence that are

required. The dependence are specified using the names

of the code elements listed in element list. The depen-

dence specification consists of express~ons that return a
boolean value and the set of elements that meet the condi-

tions. The general form of the dependence specification is

element_quantifier element:

sets of elements, dependence_conditions;.—

The description of the sets of_elements is specified

before the dependence condit~ns only for ease in

automatically converting the specifications to executable

code.

The element quantifier may be any, no, or all. Any

specifies a condition for one statement, all specifies all

statements that satisfy the condition, and no specifies that
no statement exists with the condition. The dependence

condition returns two objects: the collected set and a truth

value. Optionally, the user may request the position of the

dependence within the statement (Sj,pos) to also be

returned for each element in the collected set, as shown in

Figure 1,

The sefs of elemenrs component permits the author

of the specific~tio~ to define set membership of elements.

The mem(Element, Set) operation specifies that Element

is a member of the defined Set, Set may be described

using predefine sets, the name of a specific set, or an

expression involving set operations and set functions. An

example of a predefine set is path (ID, ID’) that has as
its values the set of statements along a path designated by

ID and ID’. The sets_of_elements items maybe sepamted

by an AND or OR operator.

The dependence_conditions describe the data and

control dependence of the code elements and take the

form:

type_of_dependence(StmtId, StmtId, Direction);

The dependence type can be either flow dependent

(flow_dep), anti-dependent (anti_dep), output dependent

(out--dep), or control dependent (ctrl_dep). Direction is

a description of the direction vector, where each element

of the vector consists of either a forward, backward or

equivalent direction (represented with c, >, =, respec-

tively), or any which allows any of the three directions.

This representation is needed to specify loop-carried

dependence of array elements for parallelizing transfor-

mations. This direction vector may be omitted if loop-

carried dependence are not relevant.

Semantically, the dependence specification has two

roles. First of all, variables are assigned vaIues using any,

all, and no. The dependence conditions place further res-

trictions on the components of the computed sets.

Secondly, the list of dependence specifications are

evaluated for a truth value. If all dependence

specifications and code pattern specifications are true,

then the precondition evaluates to true.

As an example, the following specification is for

one element named Si that is an element of Loop 1 such

that there is a Sj, an element of Loop 2, and there is either

a flow dependence or an anti-dependence between Si and

Sj.

123

Depend

any Si: mem(Si, Ll) AND mem(Sj, L2),

flow_dep(Si, Sj,(=)) OR anti_dep(Si, Sj, (=));

2.3. Action Section

The actions of applying transformations can be

decomposed into a sequence of the following five prim-

itive operations. The semantics of each are indicated

below. These operations are overloaded in that they can

apply to different types of code elements. In the follow-

ing descriptions, a, b and c refer to any type of code ele-

ment. The five actions are

Delete (a): delete a,

Copy (a, b, c): copy a, place it following b, and name it c.

Move (a, b): remove a from its original position and place

it following b.

Add(a, Element_description, b): add an element described

by Element_description, place it following a, and call it b.

Modify (Operand(S,i), New_operand): modify Operand i

of statement S to be New_operand,

These actions are combined to fully describe the

optimization. It may be necessary to repeat some actions

for all statements found in the precondition. Hence, a list

of actions may be preceded by forall and an expression

describing the elements to which the actions should be

applied.

The flow of control in a specification is implicit

with the exception of the forall construct available in the

action section. In other words, the ACTION keyword

acts as a guard that does not permit entrance into this sec-

tion unless all conditions have been met.

The initial design of the GOSpeL language was

fine-tuned by having other researchers, some very familiar

with optimizations and some not, write optimizations in

GOSpeL. These users were able to specify known optimi-

zation without any help. One of the changes suggested

by these users was to change an original quantifier one to
any for ease of understanding.

3. Description of GENesis

The GENesis tool analyzes a GOSpeL specification

and generates C code to perform the appropriate pattern

matching, check for the required data dependence, and

call the necessary primitive routines to apply the optimi-

zation. Figure 3 presents a pictorial view of GENesis and

its use. A source program that is to be optimized is con-

verted to an intermediate representation (usually as part of

the compilation process) and data dependence are com-

puted. The intermediate code and the data dependence

are input into the generated optimizer (OPT), and optim-

ized intermediate code is produced.

‘pEm6~z
OPTIMIZER

(OPT)

nICI‘-r

Source
Code\

q&;

user, Pz!zGl “c)
options

Figure 3. Overview of GENesis

There are three parts to GENesis: a generator, a

library, and a cons&uctor. The generator produces code

for the specified optimization, which utilize the pre-

define routines in the optimizer library. The constructor

packages all of the produced code and the library routines

within an interface, which prompts interaction with the

user.

GENesis analyzes the GOSpeL specifications using
LEX and YACC, producing the data structures and code

for each of the three sections of a GOSpeL specification.

The generator producer first establishes the data structures

for the code elements in the specifications. Code is then

generated to find elements of the required format in the
intermediate code. Code to verify the required data

dependence is next generated. Finally, code is generated

for the action statements. The algorithm used in GENesis

is given in Figure 4.

124

Step 1:

Input the GOSpeL specifications to GENesis

Step 2:

Analyze the GOSWL specifications using LEX and

YACC and generate code to

a. setup the data structures defined in the type section

b. search for the patterns specified in code_pattem

section - call the necessary pattern matching routines

to find the specified types (e.g., find_nested-loops,

find_statement)

c. check data dependence for those elements

specified in the precondition section of Depend

d. perform actions by calling pre-defined library rou-

tines for primitive actions

Step 3:

Construct the optimizer by:

a. Packaging the produced

and library routines

code for all optimization

b, Creating the interface from a template to:

i. Read the source code

ii. Convert source to intermediate representation

iii. Allow intemction with the user

1. Select optimization(s) to perform

2. Select application points

3. Override dependence restrictions

iv. Compute the data dependence

v, Perform the optimization at user’s request

vi. Return to iii. until user quits session

Figure 4. The GENesis Algorithm

The generated code relies on a set of predefine

routines found in the optimizer library. These routines are

optimization independent and only represent routines typi-

cally needed to perform optimization. The library con-

tains pattern matching routines, data dependence

verification procedures, and code transformation routines.

The pattern matching routines search for loops and state-

ments. Once a possible pattern is found, the generated

code is called for verification of such items as operands,

opcodes, initiat and finat values of loop control variables.

When a possible application point is found in the

intermediate code, the data dependence must be verified.
Data dependence verification may include a check for the

non-existence of a particular data dependence, a search

for all dependence, or a search for one dependence

within a loop or set. The generated code may simply be

an “if” to ensure a dependence does not exist or may be a

more complex conglomeration of tests and loops. For

example, if all statements dependent on “Sit’ need to be

examined, then code is generated to collect the statements.

The required direction vectors associated with each

dependence in the specification are matched against the

direction vectors of the dependence that exist in the

source program.

If the dependence are verified then the action is

executed. Routines consisting of the actions specified in

the ACTION section of the specification are generated for

the appropriate code elements.

The constructor compiles the optimizer library and

the generated code to produce the optimizer (OPT). The

constructor also generates an interface to execute the vari-

ous optimization. The interface to an optimizer reads the

source code, generates the intermediate code and com-

putes the data dependence. The interface also queries the
user for interactive options. This interactive capability

permits the user to execute any number of optimization

in any order. The user may elect to perform an optimiza-

tion at one application point (possibly overriding depen-

dence constraints) or at all possible points in the program.

The interface permits the user to decide if the data depen-

dence should be re-calculated between execution of each

optimization.

3.1. Prototype Implementation

In order to test the robustness of the GENesis sys-

tem, a prototype implementation was developed. The pro-

totype was used to generate optimizers for a number of

optimizations. For any optimization specified (e.g., xxx),

the generator produces four procedures: set_up_xxx,

match_xxx, pre_xxx, and act_xxx. These procedures

correspond to the sections in the specifications.

In our implementation, an optimizer consists of a

driver that calls the routines that have been generated

specifically for that optimizer. The format of the driver is

the same for any optimizer generated. The driver calls
procedures in the generated call interface for the specific

optimization. The call interface in turn calls the generated

procedures that implement the optimization. The standard

driver is given in Figure 5 using pseudocode. Notice that

the driver calls four procedures (set_up_OPT,

match_OPT, pre_OPT, and act_OP7) that are found in

the call interface for the specific optimization. The call

interface code simply calls the generated optimization

specific code. In other words for CTP, the set_up_OPT

procedure consists of a single call to set_up_CTP. The

driver requires a successful pattern match from

match_CTP and pre_CTP in order to continue. Thus, the

match OPT and pre OPT of the call interface procedures

return; boolean val~e. The C code that was actually gen-

175

erated to implement the pattern matching, dependence

checking, and actions for CTP is given in Figure 6.

Driver

Call set_up_OPT to initialize stlp structure.

pat_suc:= True

WHILE (pat_suc AND NOT Done) DO

pat_suc := match_elements(stlp)

IF @at_suc) THEN DO

match_suc:= match_OPT

IF (match.sue) THEN DO

pre_suc:= pre_OPT

IF (pre.sue) THEN DO

act_opt

Done := True;

ENDIF

ENDLF

ENDIF

ENDWHILE

END

Figure 5. The Driver Algorithm

The generated set_up procedure consists of code

that initializes data structures for each element specified

using any or all in the PRECOND section. The stip data

structure contains identifying information about each

statement or loop variable specified in the TYPE section.
For type Statement, an entry is initialized with the type

and corresponding identifier. If a loop type variable is

specified, additional flags for nested or adjacent loops are

set in the stlp entry. These entries are filled in as the

information relevant to the element is found. For the CTP

example, an stlp entry is initialized to type “Statement”

and identifier “Sit’ when the optimizer executes procedure

set_up_CTP, for a search for this statement is required ini-

tially.

After the set_up_OPT procedure terminates, the

driver initiates the search for the statement recorded in the

stlp table by calling match_OPT.

In the example, the driver would call match_CTP.

In the match_CTP procedure, the pattern matching routine

jind searches the intermediate code for a quad (statement

“Si”). that has opcode of “ASSGN” and a constant

operand. If the source program’s statement does not

match, then the optimizer driver re-starts the search for a

new statement.

set_up_CTP() {

F setup stlp for one elemenfistatement, Si”/

stlp[l] kind= Statemeng

strcpy (stlp[l].desc.stmt.id, “Si”}

num_elems = 1;

return(l);

1

match_CTP() {

if (quad[tind(’’Si’’,O)o pcpkindnd != ASSGN)

return(0); /* if quad’s opcode isn’t ASSGN, fail*/

if (quad[find(’’Si’’,O)] .opra.kind != const)
return(o); /* if quad’s operand_a isn’t constant, fail*/

return(l); /* match was successful for Si */

)

pre_CTP() {

ins_stmt(- 1, “Sj”); /* insem Statement, Sj */

/*If flow dependent Sj exists, assign its quad number’/

if((stlp[num_elems] .desc.stmt.stmt_num =

dep(LSTILOW,find(”S i“,O),O,O,lZQ)));

else return(-l);

ins_stmt(- 1, “N”); /* insert Statement, S1 */

/*If suitable S1 exists, assign its quad number*/

while((stlp[num_elems] .desc.stmt.stmt_num =

dep(LSTJ?LOW,O,find(’’Sj’’,O),O,l J3Q)))

P’compare quad_numbers and operand involved in

dependence *I

if (find(’’Si’’,O) !=tindSl’,0)’,O) &&

dep_opr(find(’’Sj’’,O))==dep_opr(findSl”Sl” ,0)))
return(-l);

return(l);

)

act_CTP() { p modify one of quad Sj’s operands */

/* repl compares AND replaces operand*/

/* involved in dependence if it matches */

modify(&quad[find(’’Sj’’,O)] .opra,

repl(&quad[find('' Si'',O)].oprc,&quad[find(''Sj'',O)] .opra,

&quad[find(’’Sit’,O)] ,opra,&quad[find(’’Sj” ,0)].opra),-l);

modify (&quad[find(’’Sj’’,O)] ,oprb,

repl(&quad[find(’’Si’’,O)] .oprc,&quad[find(’’Sj’’,O)oprb,b,

&quad[find(’’Si’’,O)] .opra,&quad[find(’’Sj” ,0)].oprb),-l);

return(l);
1

)

Figure 6. The Generated Code for CTP

126

Function dep;

InpuC

1, TYPE of search - LST or IF

2. KIND of dependence (anti, flow, output, ctrl)

3. Statements involved

TYPE == IF both starting and terminating state-

ments of dependence

TYPE == LST either the starting or terminating

statement

4. FLG signaling the number of dep call

5. NUMber of elements in direction vector

6. DIRection vector to be matched

Outplm

O -no dependence found

1- dependence for IF found

value - statement number of dependence

Si = emanating quad number

Sj = terminating quad number

if (TYPE = IF) then begin

if (dependence from Si to Sj = KIND)

and (DIR matches)
retum(1);

else

return(0);

else begin

if (Si known) then begin

Sj = first terminating statement with

(dependence= KIND) and (DIR matches);

save[flg] = Sj;

retum(Sj);

else begin

Si = first emanating statement with

(dependence = KIND) and (DIR matches);

save[flg] = St

retum(Si);

endifi

endifi

end dep.

Figure 7, The dep algorithm

The next routine called is pre_OPT to check for

data dependence. For CTP, the pre_CTP prccedure

inserts an element into the stlp structure for each depen-

dence condition statement. Sj is inserted into stlp and the

procedure dep, given in Figure 7, is called to find the first

statement that is flow dependent on Si. If one is not found

then the condition fails. S1 is inserted and the procedure

dep is called again. Each S1 such that S1 is flow dependent

on Sj is examined to determine if the operand of S1 caus-

ing the dependence is the same variable involved in the

dependence from Si to Sj. If such an S1 is found then the

condition fails.

The last procedure to be called is act_OPT, which

translates to act_CTP for CTP. Procedure act_CTP sim-

ply modifies the operand collected in Sj. The call to repl

compares the first and second parameters. Thus, the first

call to modz~y considers “operand a“ of Sj for replacement

and the second call considers “operand b“ for replace-

ment, effectively implementing the pattern matching

needed for determining the operand position of a depen-

dence. act_CTP is called by the driver only if match_CTP

and pre_CTP have terminated successfully.

There are three modules of C code involved in the

generation of an optimizer by GENesis: the generator, the

generated code for an optimizer, and the non-optimization

specific library. The generator consists of 1,735 lines of

code (including LEX and YACC specifications). An

optimization consists of 99 lines on the average, where the

call interface consists of 29 lines of code, and the four

generated procedures consist of 70 lines on the average.

The non-optimization specific code in library is 1,873

lines. These lines of code do not include the routines

needed to convert the source to intermediate code or the

data flow routines.

The existing GENesis prototype can be expanded in

various aspects to permit user flexibility. Such implemen-

tation expansions include a gmphical user interface to

guide the user in the application of transformations. The

current implementation only permits the user to provide a

suggested application point by inputing the intermediate

code location. Not all of the features in GOSpeL have

been implemented in the prototyp~ however, the imple-

mentation of these features would not pose any problems.

Example restrictions include a step by one in loop incre-

ments and no expressions are included as code elements

in the fomll construct of the ACTION section.

Because of our interests, the optimizers currently

implement only one optimization. For a sequence of

optimization to be applied to program code, the various

optimizers are called in the desired sequence. However, it

is fairly easy to change the implementation to have the

driver sequence through a number of optimization. The

data flow analyzer may have to be called after each appli-
cation.

127

4. Experimentation

We are performing experiments using optimizers

produced by GENesis to determine the application cost

and quality of code produced by the optimizers and pro-

perties of optimizations. In this section, we discuss some

of the results obtained so far. In all, optimizers were pro-

duced for ten optimizations including both traditional and

parallelizing optimizations. The optimization are Copy

Propagation (CPP), Constant Propagation (CTP), Dead

Code Elimination (DCE), Invariant Code Motion (ICM),

Loop Interchanging (INX), Loop Circulation (CRC),

Bumping (BMP), Parallelization (PAR), Loop Unrolling

(LUR), and Loop Fusion (FUS). Experimentation was per-

formed using programs found in the HOMPACK test suite

and in a numerical analysis test suite3. HOMPACK con-

sists of FORTRAN programs to solve non-linear equa-

tions by the homotopy method. The numerical analysis

test suite included programs such as the Fast Fourier

Transform and solving non-linear equations using

Newton’s method. A total of ten programs were used in

the experimentation.

We first compared the quality of code produced by

our optimizers with that produced by hand-crafted optim-

izers. Our optimizers found the same application points

and the resulting code was comparable to that produced

by the hand-crafted optimizers. There were no extraneous

statements, and the optimizations were correctly per-

formed.

In the test programs, CTP was the most frequently

applicable optimization (often enabled) while no applica-

tion points for ICM were found. It should be noted that

the intermediate code did not include address calculations

for array accesses, which may introduce opportunities for

ICM. CTP was also found to create opportunities to apply

a number of other optimizations, which is to be expected.

Of the total 97 application points for CTP, 13 of these

enabled DCE, 5 enabled CFO and 41 enabled LUR

(assuming that constant bounds are needed to unroll the

loop). CPP occurred in only two programs and did not

create opportunities for further optimization.

To investigate the ordering of optimizations, we

considered the optimizations FUS, INX and LUR which
have been found to theoretically enable and disable one

another 13, In one program, FUS, INX, and LUR were all

applicable and heavily interacted with one another by

creating and destroying opportunities for further optimiza-

tion, For example, applying FUS disabled INX and

applying LUR disabled FUS. Different orderings pro-

duced different optimized programs. The optimizations

also interacted when all three optimizations were applied;

when applying only FUS and INX, one instance of FUS in

the program destroyed an opportunity to apply INX. How-

ever, when LUR was applied before FUS and INX, INX

was not disabled. Thus, users should be aware that apply-

ing an optimization at some point in the program may

prevent another optimization from being applicable. To

further complicate the prmess of determining the most

beneficial ordering, different parts of the program

responded differently to the orderings. In one segment of

the program INX disabled FUS, while in another segment

INX enabled FUS. Thus, there is not a “right” order of

application. The context of the application point is

needed. Using the theoretical results of interactions from

the formal specifications of optimizations13 as a guide, the

user may need multiple passes to discover the series of

optimizations that would be most fruitful for a given sys-

tem.

Another set of experiments evaluated the cost and

benefit of applying optimizations. The cost of applying an

optimization was estimated using the number of checks to

determine preconditions and the number of operations to

apply the code transformation. As an optimization was

actually applied, this value was computed by using code

that GENesis produced. These cost values were validated

by running the optimizers and timing their execution. We

found that the estimated times very closely reflect the

actuaI times. The expected benefit of applying an optimi-

zation was computed by estimating the impact the optimi-

zation has on execution time, taking into account code

that was parallelized and code that was eliminated. Dif-

ferent architectural characteristics were considered,

including vectorization and multi-processing. These costs

can be used in a number of ways. The costs can be used

in determining whether an optimization should be

included in a production optimizer. As an example, INX

was found to be a relatively inexpensive operation with

large benefits. CTP is inexpensive to apply, and it also

enables many parallelizing optimizations. FUS was found

to apply in only one test case and is a fairly expensive

optimization to apply with little expected benefit unless

various types of memory hierarchies are part of the paral-

lel system, We have yet to experiment with this type of

architectural consideration.

If the cost of an optimization is very high, then

alternative methods of specification should be attempted.
In applying the optimizations, it was found that different

specifications will produce different implementations of
the optimization, which have an impact on the cost. For

example, if the specification of LUR requires that both the

upper and lower limits are constant, LUR is less costly to

apply if the upper limit is checked before the lower

bound. Our experimentation showed that it is more likely

for the upper limit to be variable than the lower limit, thus

discarding a non-application point earlier.

The costs were also used to determine a better way
to implement optimization, A number of optimizations

involved the determination of membership when checking

128

for preconditions. Two straightforward ways of imple-

menting the checking are (1) to determine statements that

are members and then check for the desired dependence,

and (2) to consider the dependence of one statement and

check the corresponding dependent statements for

membership. We found that the cost of implementing the

optimizations using these approaches varies tremendously

and is not consistently better for one method over the

other. Using heuristics, GENesis was changed to select

the least expensive method on a case by case basis. In the

tests performed, we found that the heuristic correctly

selected the best implementation.

5. Related Work

Although numerous optimizing compilers and

optimization systems, such as Parafrase-212, ParaScope2,

and PTRANl have been designed and developed, this

research focuses on the automatic generation of optimiza-

tion systems. Techniques for the automatic generation of

various peephole optimizers have been reported4-6’8.

These optimizers apply localized optimizations found by

pattern matching on assembly or machine-level code.

They have no facilities for handling global information,

which is needed to perform the optimizations of interest in

this research. GENesis works at a higher level program

representation and can handle various types of program

code structures. It also incorporates global information in

the form of data and control dependence. However, it

should be noted that GENesis could also be used to pro-

duce peephole optimizers.

A recently developed technique presents a language

for specifying optimizations on assembly language and an

implementation of the language in Prolog7, There are no

provisions for incorporating global information, although

some simple data flow analysis is performed. The

machine-level nature of the implementation does not

allow for easy recognition of array structures or source-

level constructs such as tightly nested loops.

There are other optimization systems with goals that

differ from those in this research, which is to optimize

program code. Some of these optimization systems

attempt to optimize high-level specifications into more

concrete specifications using various optimizations and
the user’s help. Partsch and Steinbruggenl 1 give an

excellent overview of these general optimization systems.

The need for an optimization system permitting the

specification of a sequence of transformations, and the

automatic generation of the transformations, has long

been recognized. Such a system enables a user to create

and easily implement novel optimizations which may be

of particular benefit to the system in hand. GENesis is

such an optimization system. It permits the designer to

create and specify the optimizations and control the

application order. In addition, GENesis uses a well

defined specification technique for specifying optimiza-

tion.

Acknowledgement

The authors thank Christopher Fraser for his many helpful

comments and suggestions on this work.

APPENDIX -- BNF for Depend Section

Pre = quant stmtlst: Elemlst condlst;

quant a ANY I NO I ALL

Elemlst = mem (ID, setexp) Elmore I e

Elmore -, I AND Elemlst 10R Elemlst

setexp a stxp [comp (stxp, setexp)

stxp -ID IPATH(ID, ID)

mem =$ MEM I NMEM

comp a INTER I UNION

condlst = clist I NOT (clist)

clist + term I condlst OR term

term + conds I term AND conds

conds + type (Stmt.Id, StmtId direct) I (condlst)

I (StmtId relop StmtId)

I op_fn relop op_fn

op_fn + operand (StmtId)

type = FLOW 10UT I CTRL I ANTI

direct -, (sub more) I e

sub + relop I ANY I &

more + , sub more I E

relop-< l>l=lc=l>=l!= l==

StmtId a ID cent I (ID, POS)

cent = . NXT cent 1. PREV cent 1. HEAD cent

I . END cent I . LABEL I . FINAL I . INIT

I, BODY I, LCVIC

References

1. F. E. Allen, M. Burke, R. Cytron, J. Ferrante, W.

Hseh, and V. Sarkar, “A Framework for Determin-

ing Useful Parallelism,” Proceedings of (he 1988

International Conference on Supercomputing, pp.

207-215, St. Malo, France, February, 1988.

2. Vasanth Balasundaram, Ken Kennedy, Ulrich Kre-

mer, Kathryn McKinley, and Jaspal Subhlok, “The

ParaScope Editoc An Interactive Parallel Program-

ming Tool,” Proceedings of Supercomputing ’89,

pp. 540-549, Reno, Nevada.

3. Richard Burden and J. Douglas Faires, in Numerical

Analysis, Prindle, Weber & Schmidt, Boston, MA,

1989.

129

