
Feldspar: A Domain Specific Language for Digital Signal Processing algorithms

Emil Axelsson∗, Koen Claessen∗, Gergely Dévai†, Zoltán Horváth†, Karin Keijzer∗,
Bo Lyckegård‡, Anders Persson‡∗, Mary Sheeran∗, Josef Svenningsson∗ and András Vajda§

∗Chalmers University of Technology, †Eötvös Loránd University,
‡Ericsson, §Ericsson Software Research

Email for corresponding author: emax@chalmers.se

Abstract—A new language, Feldspar, is presented, enabling
high-level and platform-independent description of digital sig-
nal processing (DSP) algorithms. Feldspar is a pure functional
language embedded in Haskell. It offers a high-level dataflow
style of programming, as well as a more mathematical style
based on vector indices. The key to generating efficient code
from such descriptions is a high-level optimization technique
called vector fusion. Feldspar is based on a low-level, functional
core language which has a relatively small semantic gap to
machine-oriented languages like C. The core language serves
as the interface to the back-end code generator, which produces
C. For very small examples, the generated code performs
comparably to hand-written C code when run on a DSP
target. While initial results are promising, to achieve good
performance on larger examples, issues related to memory
access patterns and array copying will have to be addressed.

I. INTRODUCTION

Telecommunications, and especially mobile communica-
tions, have seen a rapid development over the last decade,
with well over half of the world’s population already con-
nected. For telecommunications infrastructure, the conse-
quence is a dramatic increase in bandwidth and compu-
tational needs, coupled with an increasing need to deliver
new services faster. At the same time, we are witnessing a
dramatic shift in the architecture of available computational
platforms: the emergence of manycore, heterogeneous chips
as well as the diversification of available solutions are
adding to the complexity of delivering telecommunications
solutions. Signal processing is central to managing content
delivery, especially over the air, between mobile base-
stations and mobile terminals. Currently most high perfor-
mance signal processing code is developed in C, often in a
very low level form of C with hardware specific intrinsics;
essentially, this is assembly language programming in C.
Consequently, development is error-prone, has a significant
lead-time and hence is costly. For much the same reasons,
code portability is limited, even when code is ported between
processors from the same vendor. The move to new parallel
architectures will exacerbate these problems, as well as
calling into question the suitability of C as the high level
programming language. The Feldspar project aims to tackle
these problems head on, by developing a Domain Specific
Language (DSL) for Digital Signal Processing (DSP) algo-

rithm design, with particular application to baseband signal
processing. The language aims at raising the abstraction level
at which the programmer works with algorithms, reducing
development time. The restricted domain permits the use
of a rather specialised domain specific language, and it
is this restrictiveness that gives us hope of achieving the
necessary performance. For a recent snapshot of practical
developments in DSLs, see the slides and videos from
DSL DevCon 2009 [18]. Our approach is to embed a
DSL in Haskell, building upon a wealth of earlier work
in the functional programming community on embedded
DSLs [14], [7]. In the longer term, we may choose to
make a standalone language, but working with an embedded
language initially has enabled a more rapid exploration
of the design space since we can rely on the consider-
able infrastructure now available for DSL construction in
Haskell. This paper reports the current status of the Feldspar
project, in which sequential ISO C99 code is generated from
Feldspar descriptions of algorithmic kernels. A major long
term goal is to support parallelism, easing the problem of
exploiting future manycore architectures. We will, in future,
also enable the generation of target-specific C code from
high level specifications that are platform independent to
the extent possible. Although not yet implemented, these
goals have strongly influenced the design of Feldspar and
the architecture of its backend compiler.

II. INTRODUCTION TO FELDSPAR

Domain experts in DSP tend to explain algorithms using
boxes and arrows, and tend to be comfortable with the idea
of composing sub-components. Therefore, we have chosen a
dataflow style of algorithm description. We expect that this
will give us greater ability to capture and exploit potential
parallelism.

The domain specific language is called Feldspar and it
is, together with its associated compiler, available as open
source software [9]. The current version of Feldspar deals
only with pure data processing; although, we have initiated
work to extend the language to encompass control.

Figure 1 shows how a high-level Feldspar program is
transformed into efficient C code. The initial code appears
to be a program operating on actual data; however, this is

Core generation

High-level algorithm

Core language

Manual
optimization

Code generation

C code

Figure 1. Feldspar compilation flow

just an illusion. The initial program is in fact a generator
that, when run, results in a data structure representing
a program in Feldspar’s low-level core language. Since
Feldspar is embedded in Haskell, the generator is an ordinary
Haskell program, and it is the evaluation of this program
that we refer to as the core generation phase. It is in this
generation that many high-level optimizations take place,
see section III for more details. The user can look at
the generated program (see printCore below), and, if
necessary, go back and optimize the original code. Next, the
code generator produces C for further processing by the DSP
chip vendor compilers. The first implementation produces
generic ISO C99 and by leveraging the vendor C compiler
we can quickly get representative results even for targets
with special DSP facilities. For the future, we are working
on adding platform descriptions as compiler plugins in order
to enable generation of platform-specific C including the use
of intrinsics and compiler pragmas.

The rest of the section introduces Feldspar using examples
and explains the translations from general Feldspar to the
core language. In this paper, we only show code that is
accepted by the current Feldspar version (0.3), and all
displayed output is the actual output from our tools. In
some cases (clearly marked) the generated code has been
elided for readability. The examples are included in the file
Memocode2010.hs included in the 0.3 release1.

Since Feldspar programs are Haskell programs, we start
by introducing a simple example of plain Haskell – a func-
tion for computing the sum of the squares of the numbers
between 1 and n:
square :: Int -> Int
square x = x*x

sumSq :: Int -> Int
sumSq n = sum (map square [1..n])

This code introduces two functions, sumSq and its helper
function square. A general pattern for introducing functions
in Haskell is given by square: The definition starts with
a type signature (often optional) stating that the function

1http://hackage.haskell.org/package/feldspar-language-0.3

takes an integer argument and returns an integer result. The
next line is an equation whose left-hand side is function
name and its argument (multiple arguments can be separated
by spaces). The right-hand side gives the function body,
which may refer to the listed arguments. The definition of
sumSq follows the same pattern. Its contains two function
applications. Inside the parentheses, map square is applied
to the list [1, 2, . . . , n] resulting in the list [12, 22, . . . , n2].
The higher-order function map applies its first argument (in
this case the function square) to each element of its second
argument. The resulting squared list is summed by the sum

function, which gives the final result.
The body of sumSq can alternatively be expressed using

function composition. An equivalent definition is
sumSq n = (sum . map square) [1..n]

The compound function (sum . map square) is applied
to the list.2 We tend to use this function composition style
whenever possible.

Feldspar descriptions are intended to look as much as
possible like Haskell, but the language is severely restricted
in order to enable optimization and code generation for the
array-processing functions typical of the DSP domain. Here
is the Feldspar version of sumSq:
square :: Data Int -> Data Int
square x = x*x

sumSq :: Data Int -> Data Int
sumSq n = (sum . map square) (1...n)

The types use Data Int instead of Int (in general, Data a

is the type of Feldspar program computing a value of type
a). Also, instead of ordinary Haskell lists, this definition
uses Feldspar’s symbolic vectors. The initial vector is now
created by the binary operator ..., and it is processed by the
functions sum and map square, which have been redefined
for symbolic vectors. Function composition is unchanged.

The user can evaluate a Feldspar program at the prompt
of the Glasgow Haskell Compiler’s interactive environment
(GHCi):

*Main> eval (sumSq 10)
385

More interestingly, the function printCore can be used to
show the core language code generated from sumSq:

*Main> printCore sumSq
program v0 = v11_1
where
v2 = v0 - 1
v3 = v2 + 1
v4 = v3 - 1
(v11_0,v11_1) = while cont body (0,0)
where
cont (v1_0,v1_1) = v5
where
v5 = v1_0 <= v4

2The . operator is a higher-order function for composing two functions.
(f . g) a is equivalent to f (g a)

body (v6_0,v6_1) = (v7,v10)
where
v7 = v6_0 + 1
v8 = v6_0 + 1
v9 = v8 * v8
v10 = v6_1 + v9

The code it produces is actually runnable Haskell code
(given suitable helper definitions). It contains a number of
simple variable definitions and a single use of the while

function, corresponding to a C-style while loop. The core
language is purely functional, which means that there is no
hidden state. Instead, the while function operates on an
explicit state (which is initially (0,0) and finally bound
to (v11_0,v11_1)). (See section III-A for further details.)
Looking at the first three assignments, it is clear that some
small local optimizations are needed. However, the important
point to note is that there is only one while loop and not two
or three, even though the function was composed by three
distinct vector operations (filling the vector, squaring the
elements and summing the result). If compiled separately,
these three operations would result in one loop each.

The resulting C code is closely related to the core pro-
gram:

void sumSq(signed int var0, signed int * out) {
signed int var11_0;
var11_0 = 0;
(* out) = 0;
{

while((var11_0 <= (((var0 - 1) + 1) - 1))) {
signed int var6_0;
signed int var8;
var6_0 = var11_0;
var11_0 = (var6_0 + 1);
var8 = (var6_0 + 1);
(* out) = ((* out) + (var8 * var8));

}
}

}

As another example, consider one-dimensional convolu-
tion of a kernel vector a of length k with an input vector
b. A mathematical definition is y[n] = Σk−1

i=0 a[i] · b[n− i].
That is, for each n, the output is the dot product of the
kernel with the sequence [b[n], b[n− 1], . . . b[n− (k − 1)]],
which is a (reversed) window into b. To express this win-
dowing, we borrow an idiom directly from Haskell. The
function inits1 returns all the non-empty initial subse-
quences of an vector. To form the convolution, we must,
for each subsequence of the input vector, reverse it and
then take the dot product of the kernel with the result. The
“for each” results in a map, and the mapped function is
scalarProd kernel . reverse.

conv1D :: DVector Float -> DVector Float -> DVector Float
conv1D kernel = map (scalarProd kernel . reverse) . inits1

The resulting core program is of the form

program ((v0_0_0,v0_0_1),(v0_1_0,v0_1_1)) = (v6,v29)
where

[code elided for clarity]

v29 = parallel v6 ixf
where
ixf v7 = v28_1
where

[code elided]
(v28_0,v28_1) = while cont body (0,0.0)
where

[code elided]

The parallel construct (see section III-A) expresses that
each element of the output array can be computed indepen-
dently, using a while loop to perform the dot product. The
reverse function has been fused into the dot product where
it simply alters the loop index so that it traverses the vector in
the reversed order. Although the Feldspar backend compiler
does not currently take advantage of the opportunity for
parallelism offered by parallel, it has been essential to
design the core language with parallelism in mind.

III. FELDSPAR IMPLEMENTATION

Feldspar is implemented as an embedded language in
Haskell, which means that the language constructs are given
as a library of ordinary Haskell functions. These functions do
not perform any actual computation (related to the domain).
Instead, they simply result in a data structure representing
the corresponding core language program. Other functions
can then apply different interpretations to the core program;
for example, evaluate it or compile it to a low-level language.
An implementation based on such an intermediate data
structure is usually referred to as a deep embedding.

Not all language constructs need to be part of the core
language. In fact, one of the great benefits of an embedded
language is the ability to use the host language to gener-
ate programs. This allows us to define complex language
constructs as generators that translate into more primitive
constructs. For example, the for loop in Feldspar is internally
expressed as a while loop. Thus, the user has access to both
kinds of loops, but the back-ends only need to support while
loops. This is very similar to the way that most high-level
languages use syntactic sugar to translate certain syntactic
formulations into more primitive ones.

We have taken this idea quite far in Feldspar. While the
user has full access to the core language, a typical high-
level Feldspar program is mostly expressed using smart
generators that even perform high-level optimizations on
the fly. An example of this is provided by the kind of
vector used in the earlier “sum of squares” example to
hold the numbers from 1 to n. The vector 1...n, which
has type Vector (Data Int), appeared in the original
Feldspar program, but has completely disappeared in the
corresponding core program. The result is that there is no
array allocation in the final C code. These symbolic vectors
will be considered in section III-B; they exemplify the
approach of building a DSL around a simple core language
plus a series of domain-specific APIs that give the user the
feel of working in a much more sophisticated language.

A. Core language

The core language can be seen as a simplified variant of
C, except that it has a purely functional semantics and the
special parallel array construct introduced in section II. The
core language is based around the following interface:

value :: Storable a => a -> Data a

ifThenElse :: (Computable a, Computable b) =>
Data Bool -> (a -> b) -> (a -> b) -> (a -> b)

while :: Computable a =>
(a -> Data Bool) -> (a -> a) -> (a -> a)

parallel :: Storable a =>
Data Length -> (Data Int -> Data a) -> Data [a]

Core programs have the type Data a, where a is the type
of the program’s result. Moreover, core programs are gener-
alized by the Computable class of types that can be turned
into core programs. First of all, Data a is a member of
Computable (for certain types a). In addition, nested tuples
are also members of Computable. This means that ordinary
Haskell tuples, such as (Data Int, Data Bool), can be
used with the core interface.

The first construct in the interface, value, is used to
turn a Haskell value into a core language literal (a program
that computes a constant value). For numeric literals, this
constructor is inserted automatically, so they can be used
directly in Feldspar programs (see, for example, the literal
1 in the earlier sumSq example).

The conditional construct, ifThenElse, selects between
two functions based on a Boolean condition. The reason for
operating on functions rather than values is that this allows a
lazy semantics: only the selected function needs to be called.

The while loop, while, operates on a state of type a.
The first argument is a function that computes the “continue
condition” based on the current state. The second argument
is the “body”, which computes the next state from the current
state. The result is a function from initial state to final state.
Note that, unlike loops in imperative languages, this while
loop has no side-effects, which is why it uses explicit state
passing. Here is a simple example of how to use while:

modulus :: Data Int -> Data Int -> Data Int
modulus a b = while (>=b) (subtract b) a

This function computes the modulus division by repeatedly
subtracting b from a until the result is less than b.

The Core language construct parallel, is used to ex-
press a vector where the computation of any element can
be done independently from the others. This is intended
to enable a future compiler to generate code exploiting
the parallelism using for example SIMD operations. The
first argument to parallel is the number of elements to
compute, and the second is a function mapping each index
(starting from 0) to its value. For example, the first eight
powers of 2 can be computed as follows:

powersOfTwo :: Data [Int]
powersOfTwo = parallel 8 (\i -> 2 î)

*Main> eval powersOfTwo
[1,2,4,8,16,32,64,128]

In addition to the above constructs, the core language also
contains quite a large number of primitive functions; for
example, arithmetic functions ((+), (*), etc.) and relational
operators ((==), (<), etc.).

Similar to Pan [7], we use a data type to represent the
abstract syntax of the core language. Each of the given core
constructs has a corresponding constructor in the data type.
In our case, we use a generalized algebraic data type GADT
[20], which allows the constructors to be completely type
safe with regards to the values flowing in the program graph.

B. Symbolic vectors

An important part of Feldspar is the vector library. This
library both supports high level vector operations similar
to Haskell’s list operations (see, for example, sumSq) and
indexing which allows for a style close to what is often
seen in mathematical specifications (see, for example, dct2
in section IV).

Vectors in Feldspar are not part of the core language.
Instead, the vector library is implemented as a Haskell
library and will be translated into core primitives. This is
why we refer to the vectors as symbolic. The Vector type
is defined as follows:
data Vector a = Indexed (Data Length) (Data Ix -> a)
type DVector a = Vector (Data a)
indexed l ixf = Indexed l ixf

Symbolic vectors are represented as a pair of a length and a
function mapping each index to its element. This means that
a vector is not a reference to a block of elements in memory;
it merely contains the necessary information to compute
such a memory block. Since singly-nested vectors are quite
common, we often use the alias DVector a. In order to
somewhat decouple the vector API from its implementation,
we define the function indexed as an alias for Indexed.
Symbolic vectors are instances of the Computable class,
which means that they can be viewed as an extension of the
core language.

Many vector operations can be defined by just manipulat-
ing the length and/or index function. For example, here is
the definition of map (used in earlier examples):
map f (Indexed l ixf) = Indexed l (f . ixf)

Thus, an operation of the form map f vec results in a new
vector, of the same length as vec, but with a different index
function. The new index function is simply the composition
of f and the previous index function ixf. Note that map
does not introduce any actual array traversal in the final
code. It just rearranges the program at the generator level.
Many functions from Haskell’s standard list library can be
defined in a similar way.

In order to avoid recomputation of vector elements that are
accessed multiple times, Feldspar provides a special identity
function, memorize, which writes all elements to memory.
This is the only vector operation that allocates any memory.

The sum function can be defined using the for loop
construct in Feldspar:

sum (Indexed l ixf) = for 0 (l-1) 0 (\i s -> s + ixf i)

The first two arguments to for are the start and stop values
for iteration, the third argument is the initial value of a state
which is updated at each iteration by the fourth argument,
the iteration function. The result value of the for construct
is the final state produced by the last iteration. In this
particular example each iteration (indexed by i, the current
loop iteration), the vector element at index i is added to the
running sum. The for generator translates into a while loop
in the core language. This is the loop that ends up in the C
code produced in section II.

Representing vectors as described above has a further
benefit: it makes the implementation perform fusion on the
vectors, meaning that intermediate vectors will be removed.
We will explain fusion via an example by presenting how
the function sumSq from section II is compiled using our
representation of vectors. First of all, the vector 1...n can
be expressed as

1 ... n = Indexed n (+1)

The first argument to Indexed is the total length of the
resulting vector. (+1) is the index function; it takes an index
and sets the value at that position to the index plus one.

Substituting square and 1...n into the definition of map,
we get

map square (1...n) = Indexed n (square . (+1))

This vector can now be substituted into the definition of sum
to yield

for 0 (n-1) 0 (\i s -> s + (square . (+1)) i)

Thus, in the final program, the vectors have completely
disappeared, and the index functions have been fused into
the body of the for loop. Note that all of this happens
instantaneously while running the generator in Haskell.

C. Backend Implementation

The compiler backend transforms Feldspar core language
programs to C [6]. Its input is a Haskell data structure
that represents core language programs as dataflow graphs
consisting of computation nodes and edges representing
the flow of data between the nodes. Compound constructs,
like loops and branches are represented by complex nodes
containing sub-graphs for the loop body or the code inside
the branches of an ifThenElse construct.

This dataflow graph has purely functional (side effect
free) semantics, but it can be transformed into an imperative
program relatively easily. For each node, one or more

variables are defined to store the result of the computation
described by the node. Passing the input for sub-graphs
and writing their output to the right place has to be made
explicit by additional data copying instructions. Computation
of compound expressions is represented by a series of nodes
in the dataflow graph, which translates to a sequence of
primitive instructions each of which writes its result to a
variable.

As a consequence, the result of the direct transformation
of a graph to an imperative program can be optimized
by eliminating variables needed only to hold intermediate
values and by restructuring the code to reduce the need for
data copying. These transformations cannot be performed
on the dataflow graph, and it would be hard to implement
them on the C level, so an intermediate representation is
introduced. We refer to this as the abstract imperative code.

The intermediate level uses logical types (like arrays of
integers of different sizes) and differentiates between in and
out parameters and local variables. The abstraction level of
this representation makes optimization steps easier to imple-
ment, yet pretty-printing to C syntax is still straightforward.

The following transformation steps are performed on the
abstract imperative code (a more detailed description can be
found in [6]):

• Transformation of primitive instructions. The instruc-
tion set of the Feldspar core language is mapped to
that of C in this step. The compiler currently supports
ANSI C99 code generation. Soon, it will generate target
specific C code based on additional compiler options
describing the target platform. Then, the primitive oper-
ations will be transformed to calls of optimized library
functions or intrinsics of the given platform.

• Copy propagation eliminates many intermediate vari-
ables by replacing their occurrences by the expression
they are bound to.

• Backward copy propagation eliminates another set
of intermediate variables by propagating the LHS of
moves.

• Loop unrolling is a classical optimization technique
that C compilers can also perform. Our compiler has
a different goal to achieve by unrolling a loop: the
instructions inside a partially unrolled loop can be
combined and replaced by intrinsic operations offered
by many DSP platforms. Introducing intrinsics in the
code is future work.

The transformation steps described above share common
subtasks. Each of them has to walk through the program tree
and collect semantic information about the code then per-
form the actual transformation. By generalizing this common
structure, a plugin architecture is developed. Transformation
steps like loop unrolling or copy propagation are imple-
mented as plugins encapsulating the code that is specific to
the given transformation step, while a general architecture

takes care of walking through the program tree and passing
semantic information.

IV. FURTHER FELDSPAR EXAMPLES

The functional dataflow approach to algorithm specifica-
tion used in Feldspar lends itself to a style of description
similar to that used in the SPIRAL project and its associated
DSL (called SPL) [21]. In SPL, transforms and their de-
compositions are defined as products of structured matrices,
using a small number of constructs for building matrices.
Then, a transform of input signal x to output signal y by the
transform matrix M is expressed as a matrix multiplication
y = Mx. For example, the Discrete Cosine Transform (type
2) matrix can be expressed as

DCT–2n =

[
cos

k(2l + 1)π

2n

]
0≤k,l<n

and this transliterates directly into the following Feldspar
code, in which mat is the DCT–2n matrix, which is
multiplied by the input xn to produce the output vector of
the same length.
dct2 :: DVector Float -> DVector Float
dct2 xn = mat ** xn

where
mat = indexedMat (length xn) (length xn)

(\k l -> dct2nkl (length xn) k l)

dct2nkl :: Data Int -> Data Int -> Data Int -> Data Float
dct2nkl n k l = cos ((k’ *(2*l’ +1)*3.14)/(2*n’))
where
(n’,k’,l’) = (intToFloat n,intToFloat k,intToFloat l)

The indexedMat function is a generalization of the
indexed function for symbolic vectors. It constructs a
matrix from a function that maps row index (k) and column
index (l) to the corresponding element.

The resulting core program shows the result of the vector
fusion described in section III-B. The matrix has entirely
disappeared.

*DCT> printCore (dct2 :: DVector Float -> DVector Float)
program (v0_0,v0_1) = (v0_0,v21)
where
v3 = v0_0 - 1
v14 = intToFloat v0_0
v15 = 2.0 * v14
v21 = parallel v0_0 ixf
where
ixf v1 = v20_1
where
v8 = intToFloat v1
(v20_0,v20_1) = while cont body (0,0.0)
where
cont (v2_0,v2_1) = v4
where
v4 = v2_0 <= v3

body (v5_0,v5_1) = (v6,v19)
where

[code elided for clarity]
v16 = v13 / v15
v17 = cos v16
v18 = v7 * v17
v19 = v5_1 + v18

Matrices are currently represented as nested vectors. We
are working on an improved representation based on a
generalization of the Vector type.

Typically one would not use this naı̈ve implementation of
the DCT but rather use the FFT or a Fast DCT. The recursive
descriptions from the Spiral project can also be written
in Feldspar. However, the recursion must then be over a
Haskell-level value, and must be unrolled at compile time.
This produces more code than the naı̈ve implementation, but
uses fewer operations to compute the transform. The core
language does not offer recursion.

As an alternative to recursion, Feldspar provides some
standard combinators for composing programs, such as map,
fold and scan [15]. The user is also able to implement
new combinators for a specific sub-domain. For example,
combinators similar to those used in Lava to describe sorting
networks and related structures can be defined [3], although
a more index-oriented style of description now seems ap-
propriate. For example, the following is an iterative sorter
based on the balanced periodic merger.
swapsT n = indexed (n+1) (\j -> (indexed (j+1)

(\k -> swapcol n (n-j) (j-k))))

swapcol n i v
= indexed (2 n̂) (\k -> g (setBitAndShift (i+v) k))
where
g k = (k, xor (onesZeros (v+1) i) k)

sort0 n as = fold (fold (fold cswap)) as (swapsT n)

The function swapcol uses bit level manipulations to cal-
culate the array indices to be compared by each comparator
(cswap) at a given phase of the sorter. This gives a triply
nested loop in the core program, with a single comparator
in the inner loop. Feldspar also provides the user with the
ability to experiment with moving computation out of the
inner loop, or even back to (frontend) compile time.

V. RELATED WORK

A. Compilation methods
Our compilation methods differ from classical compiler

technologies because of the embedded nature of the lan-
guage. There is no need for a lexer, parser and type checker.
However, the backend C code generator applies well-known
optimization techniques described in [8] among others.

The way our compiler supports optimization by modular
design and an optimization framework was described in
section III-C. A similar framework is Hoopl [22]. Once the
optimization is modular, one has to solve problems related to
composition of optimization modules. In [16], an interesting
solution to this problem is presented. As our plugin phases
also perform analyses and transformation at the same time,
these ideas may be applicable in our framework.

B. Language implementation
Our embedded language implementation is in the same

vein as Pan [7], which has served as a great source of

inspiration for Feldspar. Pan is an embedded language for
image synthesis and manipulation. Arrays in Pan are created
by a function mapping each index to its element, similar
to Feldspar’s parallel construct. However, Feldspar goes
further by providing symbolic vectors, which are handled
and optimized purely at the generator level.

Obsidian [23] is an embedded language for general-
purpose programming of graphics processing units (GPUs).
The aim of Obsidian is to enable a functional programming
style to make maximal use of the massive parallelism
available in GPUs. The programming interface is based on
the concept of parallel arrays, which originally gave the
inspiration for our symbolic vectors.

Our use of fusion for symbolic vectors is closely related
to short cut fusion and related techniques for lists and arrays
[13], [19], [5], but there are important differences. Firstly,
all symbolic vectors – except those operated on by the
memorize function – are guaranteed to be removed and
will never have a physical representation at runtime. This is
in contrast to previous fusion techniques where only some
intermediate structures are removed. The guaranteed removal
of symbolic vectors combined with programmer control
using memorize provides a transparent and predictable
scheme.

Secondly, the range of functions that can be defined
for symbolic vectors is slightly different from what we’ve
learnt to expect from shortcut fusion. The two important
things that make symbolic vectors different from lists are
that they have a fixed length and that each element in the
vector is computed independently. The fixed length cuts both
ways when it comes to fusion. Functions like reverse

can be written and fused without problem when using
symbolic vectors, while previous approaches cannot remove
the runtime representation [12]. However, a function like
filter, which removes elements according to a predicate,
is a problem for symbolic vectors because the length of the
resulting vector is not known until the vector is computed in
its entirety. The fact that the elements in symbolic vectors
are computed independently also limits the set of functions
that can be written over them. Any type of scan where an
element depends on previous elements is not possible to
write using symbolic vectors alone. In order to cope with
scan-like functions, we are experimenting with a different
kind of symbolic structure, called Stream (see the iir

example in section VI-A).
Feldspar’s concept of a program generator is similar to

the concept of macros in languages like Scheme. The idea
of building advanced language features using macros is not
new. For instance, Felleisen et al. show how to use macros
to extend Scheme with call-by-reference functions [10].

C. Domain Specific Languages

The notion of a domain specific language for DSP is
not new. The Silage project had aims very similar to ours,

for instance [11]. We differ in building on a fully fledged
functional programming language, with an advanced type
system, higher order functions and a continuously develop-
ing infrastructure for the embedding of DSLs.

We have been inspired by the Spiral project at CMU [21].
The project uses a DSL to express decompositions of trans-
forms, and then searches for the best decomposition for a
given context, permitting the generation of high performance
library functions. Even though we do not (yet) use search,
the decompositions used in the Spiral project, combined
with our fusion technology, enable elegant descriptions of
transforms that generate compact C implementations. The
DCT example illustrates this, showing how the matrix that
characterises the transform is fused away.

The MathWorks is developing embedded MATLAB, citing
many of the same motivations as those in our project, and
aiming to generate C code of sufficiently high performance
for use in production [25].

Outside the DSP domain, examples of DSLs with similar
aims to ours include Cryptol (a DSL for cryptography from
Galois, [17]) and Microsoft’s Accelerator for programming
various platforms, including GPUs and multicores [24]. In
both Cryptol and Accelerator, all loops are unrolled during
code generation. Feldspar provides a step up in expressive-
ness, as it keeps the loops in the generated programs.

One path that we feel the need to explore is the lifting of
operations from scalars to matrices and other data structures
(as widely used in MATLAB). We have begun experiments
with this, making use of type classes to give the required
overloading. The language sequenceL [4] pushes this idea
to extremes, allowing a function to be automatically lifted
to any more deeply nested data type than that for which it
is defined. This allows, for instance, the elegant definition
in sequenceL of complicated matrix operations such as the
Jacobi iteration of a partial differential equation almost
directly from the mathematical definition.

VI. RESULTS AND EVALUATION

For the user of Feldspar, we wish to provide a language
which, firstly, makes it easy to write natural high level de-
scriptions of algorithms that are close to their mathematical
specification, and secondly generates efficient code which
can take full advantage of the target machine. As language
implementors we also hope to make an implementation
which is both flexible enough to accommodate experiments
with the language and allows us to effectively produce good
code. Feldspar is still an ongoing project which means that
we cannot yet hope to have fully achieved all of these goals.
We summarize current results below.

A. Ease of specification

We have seen examples of the kind of high level algorithm
specification that can be written in Feldspar: convolution
(section II) and discrete cosine transform (section IV). Given

Feldspar’s modular structure, it is easy to construct new
combinators that can help in writing programs in new
domains.

As an example of this we present a cryptographic algo-
rithm, Blake, which is a cryptographic hash function and
is a second round candidate for SHA-3 [2]. Cryptographic
algorithms have not been our main target when designing
Feldspar but our experiments with these algorithms show
that it can easily be extended to handle these kinds of
algorithms as well. Below is the Feldspar code for two
key functions in the Blake specification; the function for
computing one iteration over a particular message block
blakeRound, and its helper function g.
blakeRound :: MessageBlock -> State -> Round -> State
blakeRound m state r =
(invDiagonals .
zipWith (g m r) (4 ... 7) .
diagonals .
transpose .
zipWith (g m r) (0 ... 3) .
transpose)
state

g :: MessageBlock -> Round -> Int
-> DVector Unsigned32 -> DVector Unsigned32

g m r i v = fromList [a’’,b’’,c’’,d’’]
where [a,b,c,d] = toList 4 v

a’ = a + b +
(m!(sigma!r!(2*i)) ⊕ (co!(sigma!r!(2*i+1))))

d’ = (d ⊕ a’) >> 16
c’ = c + d’
b’ = (b ⊕ c’) >> 12
a’’ = a’ + b’ +

(m!(sigma!r!(2*i+1)) ⊕ (co!(sigma!r!(2*i))))
d’’ = (d’ ⊕ a’’) >> 8
c’’ = c’ + d’’
b’’ = (b’ ⊕ c’’) >> 7

The type Unsigned32 is a Feldspar type for 32 bit unsigned
integers.

It is instructive to compare these functions to the speci-
fication of Blake [2]. The operations done by blakeRound

are explained twice in the specification, once using indices
and once using pictures. We find that our code has the double
advantage of clearly showing what is happening while at the
same time being executable. Turning to the function g, it is
a direct transcription of the specification. It can hardly be
any closer to the mathematical description.

This implementation was greatly aided by the exist-
ing vector library. However, we had to add the functions
diagonals, invDiagonals, toList and fromList in
order to complete our example, something that was very
easily done.

The performance of our Blake implementation is currently
rather poor. One major reason is that the code currently
copies arrays instead of updating them in place. We are
currently working on adding language support for expressing
destructive updates.

Many DSP algorithms that we have tried to define in
Feldspar have proved to fit easily into either Haskell list-

Feldspar Reference
Convolution 1, 530, 511 1, 528, 516
Matrix Multiply 114, 608 114, 606
Overdrive 4, 012 15, 096
Octave Up 3, 019 1, 528

Table I
PERFORMANCE (CPU CYCLES) OF FELDSPAR GENERATED AND

REFERENCE CODE ON A DSP TARGET

processing style or a more index-oriented approach. But
there is also a class of DSP algorithms which involve
feedback and which have been difficult to model. Currently,
we can express a restricted set of these algorithms us-
ing a new higher order function recurrence. One such
algorithm is an IIR filter, typically specified as y[n] =
1
a0

(ΣP
i=0bix[n− i]−ΣQ

j=1ajy[n− j]). Using recurrence,
it would be defined as follows:

iir :: Data Float -> DVector Float -> DVector Float
-> Stream Float -> Stream Float

iir a0 a b input =
recurrence (replicate q 0) input

(replicate p 0)
(\x y -> 1 / a0 *

(sum (indexed p (\i -> b!i * x!(p-i)))
- sum (indexed q (\j -> a!j * y!(q-j))))

)
where p = length b

q = length a

The recurrence combinator uses a Stream type which en-
capsulates potentially infinite streaming computations. Our
work on streams and feedback algorithms is still in its
infancy and is expected to change which is why we refrain
from going into further details.

Finally, for some example programs we have found that
Feldspar currently doesn’t give enough control over memory
access patterns. We aim to address this in future versions of
Feldspar.

B. Performance

The ISO C99 code produced from high level Feldspar de-
scriptions has, for a number of small examples from the DSP
domain, compared favourably with hand-coded reference
implementations. Table I is taken from reference [6], a paper
which describes the backend compiler and the experiments
that produced these results.

The Feldspar version of the Overdrive program performed
better than the reference, because the structure of the formu-
las in the reference implementation made the optimization
for the C compiler harder. On the contrary, the Feldspar
compiler has unified the invariant parts in the formulas eas-
ily, which explains the results. On the other hand, octave up
performed worse than the reference, because the Feldspar-
generated code fills the output vector sequentially, while the
C implementation parses the input vector once, writing the
output vector in an interleaving fashion. As a consequence,

the generated code involves an extra modulo operation in
each iteration.

Much remains to be done (as discussed in section III-C)
if the approach is to scale up from the few small examples
that have so far been measured. Our work will be guided by
the use of standard DSP benchmarks.

C. Implementation techniques

As discussed in section III, Feldspar employs a hybrid
approach, having a core language which is deeply embedded,
with a number of extensions supplied as shallow embed-
dings. This provides several benefits. The deep embedding
of the core language means that it can not only be interpreted
within Haskell, it can also be sent to the compiler backend
to produce efficient code. The shallow embedding of the rest
of the language makes it very easy to change those parts,
such as the implementation of symbolic vectors. This setup
works like a workbench for language experimentation which
allows for quite drastic changes to the language without
having to change the compiler. Having this separation has
been extremely valuable during the development of Feldspar,
as the language development and compiler implementation
happen in different countries.

VII. DISCUSSION

Domain specific high level languages are once again being
explored as a means to resolve the tension between the
need for higher abstraction level when designing software
– in order to reduce cost and development lead-time –
and the efficiency of deployed code. Our goal with the
Feldspar language is to tackle this tension in the context
of DSP algorithms, traditionally a domain that requires
almost assembler level coding, in a very target hardware
specific manner. We have designed Feldspar as a layered
system: at the highest, productivity level, the programmer
is offered a highly specialized vector library that allows
compact description of most DSP algorithms; efficiency
programmers will also program largely with the vector
library and similar extensions, but will also use the C-like
but functional core language when necessary; finally, the
platform-specific backend (when completed) will generate
efficient, target-specific C code. (See reference [1] for a
discussion of these productivity and efficiency levels, and
also of the effects of the move to manycore processors on
programming models.)

The goal of the productivity level (the vector library) is to
offer a high degree of expressiveness, through tailor-made
constructs specific to the vocabulary of domain experts.
The vector library is also easily extensible, allowing any
programmer to create new constructs. In fact, Feldspar
can be extended and changed without impacting the core
language or the compiler. We see this as one of the key
assets of Feldspar. At the core language level we offer
familiar, C-like constructs, but without the usual whistles

of C: it has no pointers, it is purely functional and can
be run in interpreted mode on any machine. Vector fusion,
which can successfully fuse multiple vector operations into
one core loop, is an important contribution of Feldspar.
The compiler infrastructure has shown promising results
on the small set of benchmarks we used [6]. We plan
to validate these results using standard benchmark suites.
Our preliminary experiments indicate that more hardware-
specific optimizations can easily be added to the compiler,
using the plug-in infrastructure.

VIII. FUTURE WORK

Feldspar is a promising approach for attacking the decades
old issue of high level DSP code design. In future work, we
must continue to develop programming idioms for the DSP
domain, to give better coverage of those algorithms that do
not fit well in our current programming model. In particular
we will continue to build upon our initial results for stream
processing, feedback algorithms, programs requiring in-
place update and specific memory layouts. To better support
the use of built-in accelerators, we will improve the Feldspar
foreign function interface, making it possible to call arbitrary
library C functions.

We must also develop methods and tools to support
testing, debugging and profiling of software written in
Feldspar. For the algorithms developed so far, comparison
against MATLAB models have turned out to be enough for
functional verification, but we have also initiated work on
more sophisticated, property-based verification techniques.
Debugging is one area that will demand innovations. This is
because Feldspar programs are really just code generators,
which means that we must find good ways to help the user
to understand the relationship between the generated code
to the source code.

In the longer term, we plan to evolve Feldspar by adding
support for building more complex applications. We will
direct research into expressing and optimizing combinations
of computational kernels, their communication and orches-
tration. We will also explore search based exploration as
part of a (user-)directed automatic deployment of Feldspar
software across multiple processor cores.

IX. CONCLUSION

We have presented Feldspar, a DSL for DSP algorithm de-
sign. The deeply embedded core language allows C-like pro-
gramming, but in a purely functional setting. Extensions to
this core language are provided as shallow embeddings, with
the symbolic vectors being the main example developed so
far. This layered approach allows us to provide the user with
an expressive programming language, and to experiment
with the design of that interface, while keeping the interface
to the backend compiler unchanged. An important aspect of
this frontend is the extensive use of fusion, which allows
the production of efficient core programs. The high level

executable specification language has proved very suitable
for specifying DSP algorithms, and the next step is to build
larger specifications. The backend compiler operates on the
core language (as a graph) and currently produces C code
of reasonable efficiency. The backend is built in a modular
way, which will facilitate the generation of platform-specific
code. Future work also includes the extension of Feldspar
to cover control of the data-paths currently described.

X. ACKNOWLEDGEMENTS

This research is funded by Ericsson, Vetenskapsrådet,
the Swedish Foundation for Strategic Research and the
Hungarian National Development Agency.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick. The Landscape of Parallel
Computing Research: A View from Berkeley. Technical
Report UCB/EECS-2006-183, UC Berkeley, Dec 2006.

[2] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan.
SHA-3 proposal BLAKE. Submission to NIST, 2008.

[3] K. Claessen, M. Sheeran, and S. Singh. Using Lava to design
and verify recursive and periodic sorters. STTT, 4(3):349–358,
2003.

[4] D. E. Cooke and J. N. Rushton. SequenceL – An Overview
of a Simple Language. In Proc. Int. Conf. on Programming
Languages and Compilers (PLC), pages 64–70, 2005.

[5] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion:
From lists to streams to nothing at all. In Proc. 12th ACM
SIGPLAN Int. Conf. on Functional Programming. ACM,
2007.

[6] G. Dévai, M. Tejfel, Z. Gera, G. Páli, G. Nagy, Z. Horváth,
E. Axelsson, M. Sheeran, A. Vajda, B. Lyckegård, and
A. Persson. Efficient Code Generation from the High-level
Domain-specific Language Feldspar for DSPs. In Proc.
ODES-8: 8th Workshop on Optimizations for DSP and Em-
bedded Systems, workshop associated with IEEE/ACM Inter-
national Symposium on Code Generation and Optimization
(CGO), 2010.

[7] C. Elliott, S. Finne, and O. de Moor. Compiling embedded
languages. J. Func. Prog., 13:3:455– 481, 2003.

[8] H. Falk and P. Marwedel. Source Code Optimization
Techniques for Data Flow Dominated Embedded Software.
Kluwer Academic Publishers, 2004.

[9] Feldspar. Functional Embedded Language for DSP and
PARallelism. http://feldspar.inf.elte.hu/.

[10] M. Felleisen, B. R. Findler, M. Flatt, and S. Krishnamurthi.
Building little languages with macros. Dr. Dobb’s Journal,
pages 45–49, April 2004.

[11] D. Genin, P. Hilfinger, J. Rabaey, C. Scheers, and H. De Man.
DSP specification using the Silage language. In Int. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP-90), pages
1056– 1060. IEEE, 1990.

[12] A. Gill. Cheap deforestation for non-strict functional lan-
guages. PhD thesis, University of Glasgow, 1996.

[13] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to
deforestation. In Proc. Int. Conf. on Functional programming
languages and computer architecture (FPCA), pages 223–
232. ACM, 1993.

[14] P. Hudak. Modular domain specific languages and tools. In
Proc. Fifth Int. Conf. on Software Reuse, pages 134–142.
IEEE, 1998.

[15] G. Hutton. Programming in Haskell. Cambridge University
Press, 2007.

[16] S. Lerner, D. Grove, and C. Chambers. Composing dataflow
analyses and transformations. SIGPLAN Not., 37(1):270–282,
2002.

[17] J. R. Lewis and W. B. Martin. Cryptol: High assurance, re-
targetable crypto development and validation. In Proceedings
of the IEEE/AFCEA Conference on Military Communications
(MILCOM), pages 820– 825. IEEE, 2003.

[18] Microsoft. DSL Developers Conference: applied topics in
domain specific languages. http://msdn.microsoft.com/en-us/
data/devcon.aspx, April 2009.

[19] S. L. Peyton Jones, A. Tolmach, and C. A. R. Hoare. Playing
by the rules: rewriting as a practical optimisation technique
in GHC. In Proc. Haskell Workshop. ACM SIGPLAN, 2001.

[20] S. L. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Wash-
burn. Simple unification-based type inference for GADTs.
In Proc. eleventh ACM SIGPLAN int. conf. on Functional
programming (ICFP), pages 50–61. ACM, 2006.

[21] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code
generation for DSP transforms. Proc. IEEE, 93(2):232– 275,
2005.

[22] N. Ramsey, J. Dias, and S. L. Peyton Jones. Hoopl: Dataflow
optimization made simple, 2009. http://research.microsoft.
com/en-us/um/people/simonpj/papers/c--/dfopt.pdf.

[23] J. Svensson, M. Sheeran, and K. Claessen. GPGPU Kernel
Implementation and Refinement using Obsidian. In Proc.
Seventh International Workshop on Practical Aspects of High-
level Parallel Programming, ICCS. Procedia, 2010.

[24] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data
parallelism to program GPUs for general-purpose uses. In
ASPLOS, pages 325–335. ACM, 2006.

[25] H. Zarrinkoub. Embedded MATLAB, part 1: From MATLAB
to embedded C, 2008. Article on DSP Designline website,
http://www.dspdesignline.com/howto/207800773.

