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Abstract
Nested data-parallelism (NDP) is a declarative style for program-
ming irregular parallel applications. NDP languages provide lan-
guage features favoring the NDP style, efficient compilation of
NDP programs, and various common NDP operations like paral-
lel maps, filters, and sum-like reductions. In this paper, we describe
the implementation of NDP in Parallel ML (PML), part of the Man-
ticore project. Managing the parallel decomposition of work is one
of the main challenges of implementing NDP. If the decomposi-
tion creates too many small chunks of work, performance will be
eroded by too much parallel overhead. If, on the other hand, there
are too few large chunks of work, there will be too much sequential
processing and processors will sit idle.

Recently the technique of Lazy Binary Splitting was proposed
for dynamic parallel decomposition of work on flat arrays, with
promising results. We adapt Lazy Binary Splitting to parallel pro-
cessing of binary trees, which we use to represent parallel arrays in
PML. We call our technique Lazy Tree Splitting (LTS). One of its
main advantages is its performance robustness: per-program tuning
is not required to achieve good performance across varying plat-
forms. We describe LTS-based implementations of standard NDP
operations, and we present experimental data demonstrating the
scalability of LTS across a range of benchmarks.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General; D.3.2 [Programming Languages]: Language
Classifications—Concurrent, distributed, and parallel languages;
D.3.4 [Programming Languages]: Processors—Run-time environ-
ments

General Terms Languages, Performance

Keywords nested-data-parallel languages, scheduling, compilers,
and run-time systems

1. Introduction
Nested data-parallelism (NDP) [BCH+94] is a declarative style for
programming irregular parallel applications. NDP languages pro-
vide language features favoring the NDP style, efficient compila-
tion of NDP programs, and various common NDP operations like
parallel maps, filters, and sum-like reductions. Irregular parallelism
is achieved by the fact that nested arrays need not have regular, or
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rectangular, structure; i.e., subarrays may have different lengths.
NDP programming is supported by a number of different parallel
programming languages [CLP+07, GSF+07], including our own
Parallel ML (PML) [FRRS08].

On its face, implementing NDP operations seems straightfor-
ward because individual array elements are natural units for creat-
ing tasks, which are small, independent threads of control.1 Cor-
respondingly, a simple strategy is to spawn off one task for each
array element. This strategy is unacceptable in practice, as there is
a scheduling cost associated with each task (e.g., the cost of plac-
ing the task on a scheduling queue) and individual tasks often per-
form only small amounts of work. As such, the scheduling cost of
a given task might exceed the amount of computation it performs.
If scheduling costs are too large, parallelism is not worthwhile.

One common way to avoid this pitfall is to group array elements
into fixed-size chunks of elements and spawn a task for each chunk.
Eager Binary Splitting (EBS), a variant of this strategy, is used
by Intel’s TBB [Int08, RVK08] and Cilk++ [Lei09]. Choosing
the right chunk size is inherently difficult, as one must find the
middle ground between undesirable positions on either side. If the
chunks are too small, performance is degraded by the high costs of
the associated scheduling and communicating. By contrast, if the
chunks are too big, some processors go unutilized because there
are too few tasks to keep them all busy.

One approach to picking the right chunk size is to use static
analysis to predict task execution times and pick chunk sizes ac-
cordingly [TZ93]. But this approach is limited by the fact that tasks
can run for arbitrarily different amounts of time, and these times
are difficult to predict in specific cases and impossible to predict
in general. Dynamic techniques for picking the chunk size have
the advantage that they can base chunk sizes on runtime estimates
of system load. Lazy Binary Splitting (LBS) is one such chunk-
ing strategy for handling parallel do-all loops [TCBV10]. Un-
like the two aforementioned strategies, LBS determines chunks au-
tomatically and without programmer (or compiler) assistance and
imposes only minor scheduling costs.

This paper presents an implementation of NDP that is based
on our extension of LBS to binary trees, which we call Lazy Tree
Splitting (LTS). LTS supports operations that produce and consume
trees where tree nodes are represented as records allocated in the
heap. We are interested in operations on trees because Manticore,
the system that supports PML, uses ropes [BAP95], a balanced
binary-tree representation of sequences, as the underlying represen-
tation of parallel arrays. Our implementation is purely functional in
that it works with immutable structures, although some imperative
techniques are used under the hood for scheduling.

1 We do not address flattening (or vectorizing) [Kel99, Les05] transforma-
tions here, since the techniques of this paper apply equally well to flattened
or non-flattened programs.
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LTS exhibits performance robustness; i.e., it provides scalable
parallel performance across a range of different applications and
platforms without requiring any per-application tuning. Perfor-
mance robustness is a highly desirable characteristic for a parallel
programming language, for obvious reasons. Prior to our adoption
of LTS, we used Eager Tree Splitting (ETS), a variation of EBS.
Our experiments demonstrate that ETS lacks performance robust-
ness: the tuning parameters that control the decomposition of work
are very sensitive to the given application and platform. Further-
more, we demonstrate that the performance of LTS compares fa-
vorably to that of (ideally-tuned) ETS across our benchmark suite.

2. Nested data parallelism
In this section we give a high-level description of PML and discuss
the runtime mechanisms we use to support NDP. More detail can
be found in our previous papers [FRR+07, FFR+07, FRRS08].

2.1 Programming model
PML is the programming language supported by the Manticore sys-
tem.2 Our programming model is based on a strict, but mutation-
free, functional language (a subset of Standard ML [MTHM97]),
which is extended with support for multiple forms of parallelism.
We provide fine-grain parallelism through several lightweight syn-
tactic constructs that serve as hints to the compiler and runtime that
the program will benefit from executing the computation in paral-
lel. For this paper, we are primarily concerned with the NDP con-
structs, which are based on those found in NESL [Ble90b, Ble96].

PML provides a parallel array type constructor (parray) and
operations to map, filter, reduce, and scan these arrays in parallel.
Like most languages that support NDP, PML includes comprehen-
sion syntax for maps and filters, but for this paper we omit the syn-
tactic sugar and restrict ourselves the the following interface:
type ’a parray
val range : int * int -> int parray
val mapP : (’a -> ’b) -> ’a parray -> ’b parray
val filterP : (’a -> bool) -> ’a parray

-> ’a parray
val reduceP : (’a * ’a -> ’a) -> ’a -> ’a parray

-> ’a
val scanP : (’a * ’a -> ’a) -> ’a -> ’a parray

-> ’a parray

The function range generates an array of the integers between its
two arguments, mapP, filterP, and reduceP have their usual
meaning, except that they may be evaluated in parallel, and scanP
produces a prefix scan of the array. These parallel-array operations
have been used to specify both SIMD parallelism that is mapped
onto vector hardware (e.g., Intel’s SSE instructions) and SPMD
parallelism where parallelism is mapped onto multiple cores; this
paper focuses on exploiting the latter.

As a simple example, the main loop of a ray tracer generating
an image of width w and height h can be written

fun raytrace (w, h) =
mapP (fn y => mapP (fn x => trace (x, y))

(range (0,w-1)))
(range (0,h-1))

This parallel map within a parallel map is an example of nested data
parallelism. Note that the time to compute one pixel depends on
the layout of the scene, because the ray cast from position (x,y)
might pass through a subspace that is crowded with reflective ob-
jects or it might pass through relatively empty space. Thus, the
amount of computation across the trace(x,y) expression (and,
therefore, across the inner mapP expression) may differ signifi-
cantly depending on the layout of the scene. A robust technique for

2 Manticore may support other parallel languages in the future.

balancing the parallel execution of this unbalanced computation is
the primary contribution of this paper.

2.2 Runtime model
The Manticore runtime system consists of a small core written
in C, which implements a processor abstraction layer, garbage
collection, and a few basic scheduling primitives. The rest of our
runtime system is written in BOM, a PML-like language. BOM
supports several mechanisms, such as first-class continuations and
mutable data structures, that are useful for programming schedulers
but are not in PML. Further details on our system may be found
elsewhere [FRR08, Rai09, Rai07].

A task-scheduling policy determines the order in which tasks
execute and the assignments from tasks to processors. Our LTS is
built on top of on a particular task-scheduling policy called work
stealing [BS81, Hal84]. In work stealing, we employ a group of
workers, one per processor, that collaborate on a given computa-
tion. The idea is that idle workers which have no useful work to
do bear most of the scheduling costs and busy workers which have
useful work to do focus on finishing that work.

We use the following, well-known implementation of work
stealing [BL99, FLR98]. Each worker maintains a deque (double-
ended queue) of tasks, represented as thunks. When a worker
reaches a point of potential parallelism in the computation, it
pushes a task for one independent branch onto the bottom of the
deque and continues executing the other independent branch. Upon
completion of the executed branch, it pops a task off the bottom of
the deque and executes it. If the deque is not empty, then the task is
necessarily the most recently pushed task; otherwise all of the local
tasks have been stolen by other workers and the worker must steal
a task from the top of some other worker’s deque. Potential victims
are chosen at random from a uniform distribution.

This work-stealing scheduler can be encapsulated in the follow-
ing function, which is part of the runtime system core:

val par2 : (unit -> ’a) * (unit -> ’b) -> ’a * ’b

When a worker P executes par2 (f,g), it pushes the task g
onto the bottom of its deque3 and then executes f(). When the
computation of f() completes with result rf , P attempts to pop g
from its deque. If successful, then P will evaluate g() to a result
rg and return the pair (rf,rg). Otherwise, some other worker Q
has stolen g, so P writes rf into a shared variable and looks for
other work to do. When Q finishes the evaluation of g(), then it
will pass the pair of results to the return continuation of the par2
call. The scheduler also provides a generalization of par2 to a list
of thunks.

val parN : (unit -> ’a) list -> ’a list

This function can be defined in terms of par2, but we use a more
efficient implementation that pushes all of the tasks in its tail onto
the deque at once.

2.3 Ropes
In our Manticore system, we use ropes as the underlying represen-
tation of parallel arrays. Ropes, originally proposed as an alterna-
tive to strings, are persistent balanced binary trees with seqs, con-
tiguous arrays of data, at their leaves [BAP95]. For the purposes of
this paper, we view the rope type as having the following definition:

datatype ’a rope
= Leaf of ’a seq
| Cat of ’a rope * ’a rope

although in our actual implementation there is extra information in
the Cat nodes to support balancing. Read from left to right, the

3 Strictly speaking, it pushes a continuation that will evaluate g().
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data elements at the leaves of a rope constitute the data of a parallel
array it represents.

Since ropes are physically dispersed in memory, they are well-
suited to being built in parallel, with different processors simul-
taneously working on different parts of the whole. Furthermore,
the rope data structure is persistent, which provides, in addition to
the usual advantages of persistence, two special advantages related
to memory management. First, we can avoid the cost of store-list
operations [App89], which would be necessary for maintaining an
ephemeral data structure. Second, a parallel memory manager, such
as the one used by Manticore [FRR08], can avoid making memory
management a sequential bottleneck by letting processors allocate
and reclaim ropes independently.

As a parallel-array representation, ropes have several weak-
nesses as opposed to contiguous arrays of, say, unboxed doubles.
First, rope random access requires logarithmic time. Second, keep-
ing ropes balanced requires extra computation. Third, mapping
over multiple ropes is more complicated than mapping over mul-
tiple arrays, since the ropes may have different shape. In our per-
formance study in Section 5, we find that these weaknesses are not
crippling by themselves, yet we know of no study in which NDP
implementations based on ropes are compared side by side with
implementations based on alternative representations, such as con-
tiguous arrays.

The maximum length of the linear sequence at each leaf of a
rope is controlled by a compile-time constant M . At run-time, a
leaf contains a number of elements n such that 0 ≤ n ≤ M . In
general, rope operations try to keep the size each leaf as close to M
as possible, although some leaves will necessarily be smaller. We
do not demand that a rope maximize the size of its leaves.

Relaxing the perfect balance requirement reduces excessive bal-
ancing, yet maintains the asymptotic behavior of rope operations.
Our rope-balancing policy is a relaxed, parallel version of the se-
quential policy used by Boehm, et al. [BAP95]. The policy of
Boehm, et al. is as follows. For a given rope r of depth d and length
n, the balancing goal is d ≤ dlog2 ne+2. This property is enforced
by the function

val balance : ’a rope -> ’a rope

which takes a rope r and returns a balanced rope equivalent to r
(returning r itself if it is already balanced).

In our rope-balancing policy, only those ropes that are built se-
rially are balanced by balance, i.e., the serial balancing process
only ever takes place within a given chunk. There is no explicit
guarantee on the balance of a rope containing subropes that are built
by different processors. For such a rope, the amount of rope imbal-
ance is proportional to the distribution of work across processors
rather than the size of the rope itself. As we discuss in Section 5,
across all our benchmarking results, balancing has minimal impact
on performance.

As noted above, rope operations try to keep the size of each leaf
as close to M as possible. In building ropes, rather than using the
Cat constructor directly, we define a smart constructor:

val cat2 : ’a rope * ’a rope -> ’a rope

If cat2 is applied to two small leaves, it may coalesce them into
a single larger leaf. Note that cat2 does not guarantee balance,
although it will maintain balance if applied to two balanced ropes
of equal size. We also define a similar function

val catN : ’a rope list -> ’a rope

which returns the smart concatenation of its argument ropes.
We sometimes need a fast, cheap operation for splitting a rope

into multiple subropes. For this reason, we provide

val split2 : ’a rope -> ’a rope * ’a rope

which splits its rope parameter into two subropes such that the size
of these ropes differs by at most one. We also define

val splitN : ’a rope * int -> ’a rope list

which splits its parameter into n subropes, where each subrope has
the same size, except for one subrope that might be smaller than
the others.

We sometimes use

val length : ’a rope -> int

which takes a rope r and returns the number of elements stored in
the leaves of r. 4

The various parallel-array operations described in Section 2.1
are implemented by analogous operations on ropes. Sections 3 and
4 describes the implementation of these rope-processing operations
in detail.

3. The Goldilocks problem
In NDP programs, computations are divided into chunks, and
chunks of work are spawned in parallel. Those chunks might be
defined by subsequences (of arrays, for example, or, in our case,
ropes) or iteration spaces (say, k to some k + n). The choice of
chunk size influences performance crucially. If the chunks are too
small, there will be too much overhead in managing them; in ex-
treme cases, the benefits of parallelism will be obliterated. On the
other hand, if they are too large, there will not be enough paral-
lelism, and some processors may run out of work. An ideal chunk-
ing strategy apportions chunks that are neither too large nor too
small, but are, like Goldilocks’s third bowl of porridge, “just right.”
Some different chunking strategies are considered in the sequel.

3.1 Fragile chunking strategies
A fragile chunking strategy is prone either to creating an exces-
sive number of tasks or to missing significant opportunities for par-
allelism. Let us consider a two simple strategies, T -ary decom-
position and structural decomposition, and the reasons that they
are fragile. In T -ary decomposition, we split the input rope into
T = min(n, J × P ) chunks, where n is the size of the input rope,
J is a fixed compile-time constant, and P is the number processors,
and spawn a task for each chunk. For example, in Figure 1(a), we
show the T -ary decomposition version of the rope-map operation. 5

In computations where all rope elements take the same time to pro-
cess, such as those performed by regular affine (dense-matrix) sci-
entific codes, the T -ary decomposition will balance the work load
evenly across all processors because all chunks will take about the
same amount of time. On the other hand, when rope elements cor-
respond to varying amounts of work, performance will be fragile
because some processors will get overloaded and others underuti-
lized. Excessive splitting is also a problem. Observe that for i lev-
els of nesting and sufficiently-large ropes, the T -ary decomposition
creates (J ×P )i tasks overall, which can be excessive when either
i or P get large.

To remedy the imbalance problem, we might try structural de-
composition, in which both children of a Cat node are processed
in parallel and the elements of a Leaf node are processed sequen-
tially. We show the structural version of the rope-map operation in
Figure 1(b). Recall that the maximum size of a leaf is determined by

4 In our actual implementation, this operation takes constant time, as we
cache lengths in Cat nodes.
5 In this and subsequent examples, we use the function mapSequential
with type

(’a -> ’b) -> ’a rope -> ’b rope

which is the obvious sequential implementation of the rope-map operation.
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fun mapTary J f rp = let
fun g chunk = fn () => mapSequential f chunk
val chunks = splitN (rp, J * numProcs ())
in

catN (parN (map g chunks))
end

(a) T -ary decomposition

fun mapStructural f rp = (case rp
of Leaf s => mapSequential f rp
| Cat (l, r) =>

Cat (par2 (fn () => mapStructural f l,
fn () => mapStructural f r)))

(b) structural decomposition

Figure 1. Two fragile implementations of the rope-map operation.

fun mapETS SST f rp =
if length rp <= SST then mapSequential f rp
else let

val (l, r) = split2 rp
in

cat2 (par2 (fn () => mapETS SST f l,
fn () => mapETS SST f r))

end

Figure 2. The ETS implementation of the rope-map operation.

a fixed, compile-time constant called M and that rope-producing
operations tend to keep the size of each leaf close to M . But by
choosing an M > 1, some opportunities for parallelism will al-
ways be lost and by choosing M = 1, an excessive number of
threads may be created, particularly in the case of nested loops.

3.2 Eager binary splitting
EBS is a well-known approach that is used by many parallel li-
braries and languages, including Thread Building Blocks [Int08,
RVK08] and Cilk++ [Lei09]. In EBS (and, by extension, eager
tree splitting (ETS)), we group elements into fixed-size chunks and
spawn a task for each chunk. This grouping is determined by the
following recursive process. Initially, we group all elements into a
single chunk. If the chunk size is less than the stop-splitting thresh-
old (SST ), evaluate the elements sequentially.6 Otherwise, we cre-
ate two chunks by dividing the elements in half and recursively
apply the same process to the two new chunks. For example, in
Figure 2, we show the ETS version of the rope-map operation.

EBS has greater flexibility than the T -ary or structural decom-
positions because EBS allows chunk sizes to be picked manually.
But this flexibility is not much of an improvement, because, as is
well known [Int08, RVK08, TCBV10], finding a satisfactory SST
can be difficult. This difficulty is due, in part, to the fact that par-
allel speedup is very sensitive to SST . We ran an experiment that
demonstrates some of the extent of this sensitivity. Figure 3 shows,
for seven PML benchmarks (see Section 5 for benchmark descrip-
tions), parallel efficiency as a function of SST . The parallel effi-
ciency is the sixteen-processor speedup divided by sixteen times
100, where the baseline time for the speedup is taken from the se-
quential evaluation. For example, 100% parallel efficiency repre-
sents perfect linear speedup and 6.25% parallel efficiency repre-
sents almost no speedup. The results demonstrate that there is no
SST that is optimal for every program and furthermore that a poor
SST is far from optimal.

6 In TBB, if SST is unspecified, the default is SST = 1, whereas Cilk++
only uses SST = 1.
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Figure 3. Parallel efficiency is sensitive to SST (16 processors).

The Raytracer benchmark demonstrates, in particular, how frag-
ile ETS can be with respect to nesting and to relatively small ropes.
Raytracer loses 80% of its speedup as SST is changed from 32 to
128. The two-dimensional output of the program is a 256 × 256
rope of ropes, representing the pixels of a square image. When
SST = 128, Raytracer has just two chunks it can process in paral-
lel: the first 128 rows and the second. We could address this prob-
lem by transforming the two-dimensional representation into a sin-
gle flat rope, but then the clarity of the code would be compromised,
as we would have to use index arithmetic to extract any pixel. It is
a break with the nested-data-parallel programming style.

Recall that task execution times can vary unpredictably. Chunk-
ing strategies that are based solely on fixed thresholds, such as EBS
and ETS, are bound to be fragile because they rely on accurately
predicting execution times. A superior chunking strategy would be
able to adapt dynamically to the current state of load balance across
processors.

3.3 Lazy binary splitting
The LBS strategy of Tzannes, et al. [TCBV10] is a promising
alternative to the other strategies because it has good adaptivity to
dynamic load balance. Tzannes, et al. show that LBS is capable of
performing as well or better than each configuration of eager binary
splitting, and does so without tuning.

LBS is similar to eager binary splitting but with one key differ-
ence. In LBS, we base each splitting decision entirely on a dynamic
estimation of load balance. Let us consider the main insight behind
LBS. We call a processor hungry if it is idle and ready to take on
new work, and busy otherwise. It is better for a given processor to
delay splitting a chunk and to continue processing local iterations
while remote processors remain busy. Splitting can only be prof-
itable when a remote processor is hungry.

Although this insight is sound, it is still unclear whether it
is useful. A naı̈ve hungry-processor check would require inter-
processor communication, and the cost of such a check would
hardly be an improvement over the cost of spawning a thread.
For now, let us assume that we have a good approximate hungry-
processor check

val hungryProcs : unit -> bool

which returns true if there is probably a remote hungry processor
and false otherwise. Later we explain how to implement such a
check.

LBS works as follows. The scheduler maintains a current chunk
c and a pointer i that points at the next iteration in the chunk
to process. Initially, the chunk contains all iterations and i = 0.
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To process an iteration i, the scheduler first checks for a remote
hungry processor. If the check returns false, then all of the other
processors are likely to be busy, and the scheduler greedily executes
the body of iteration i. If the check returns true, then some of the
other processors are likely to be hungry, and the scheduler splits the
chunk in half and spawns a recursive instance to process the second
half.

Tzannes, et al. [TCBV10] show how to implement an efficient
and accurate hungry-processor check. Their idea is to derive such a
check from the work stealing policy. Recall that, in work stealing,
each processor has a deque, which records the set of tasks created
by that processor. The hungry-processor check bases its approxima-
tion on the size of the local deque. If the deque of a given processor
contains some existing tasks, then these tasks have not yet been
stolen, and therefore it is unlikely to be profitable to add to these
tasks by splitting the current chunk. On the other hand, if the deque
is empty, then it is a strong indication that there is a remote hun-
gry processor, and it is probably worth splitting the current chunk.
This heuristic works surprisingly well considering its simplicity. It
is cheap because the check itself requires two local memory ac-
cesses and a compare instruction, and it provides an accurate esti-
mate of whether splitting is profitable.

Let us consider how LBS behaves with respect to loop nesting.
Suppose our computation has the form of a doubly-nested loop, one
processor is executing an iteration of the inner loop, and all other
processors are hungry. Consequently, the remainder of the inner
loop will be split (possibly multiple times, as work is stolen from
the busy processor and further split), generating relatively small
chunks of work for the other processors. Because the parallelism is
fork-join, the only way for the computation to proceed to the next
iteration of the outer loop is for all of the work from the inner loop
to be completed. At this point, all processors are hungry, except for
the one processor that completed the last bit of inner-loop work.
This processor has an empty deque; hence, when it starts to execute
the next iteration of the outer loop, it will split the remainder of the
outer loop.

Because there is one hungry-processor check per loop iteration,
and because loops are nested, most hungry-processor checks occur
during the processing of the innermost loops. Thus, the general
pattern is clear: splits tend to start during inner loops and then move
outward quickly.

4. Lazy tree splitting for ropes
LTS operations are not as easy to implement as ETS operations,
because, during the execution of a given LTS operation, a split
can occur while processing any rope element. This section presents
implementations of five important LTS operations. The technique
we use is based on Huet’s zipper technique [Hue97] and a new
technique we call splitting a context. We first look in detail at
the LTS version of map (mapLTS) because its implementation
offers a simple survey of our techniques. Then we summarize
implementations of the additional operations.

4.1 Implementing mapLTS
Structural recursion, on its own, offers no straightforward way to
implement mapLTS. Consider the case in which mapLTS detects
that another processor is hungry. How can mapLTS be ready to
halve the as-yet-unprocessed part of the rope, keeping in mind that,
at the halving moment, the focus might be on a mid-leaf element
deeply nested within a number of Cat nodes? In a typical struc-
turally recursive traversal (e.g., Figure 1(b)), the code has no han-
dle on either the processed portion of the rope or the unprocessed
remainder of the rope; it can only see the current substructure. We
need to be able to “step through” a traversal in such a way that
we can, at any moment, pause the traversal, reconstruct processed

fun mapLTS f rp =
if length rp <= 1 then

mapSequential f rp
else (case mapUntil hungryProcs f rp
of More (u, p) => let

val (u1, u2) = split2 u
in
catN (parN [fn () => balance p,

fn () => mapLTS f u1,
fn () => mapLTS f u2])

end
| Done p => balance p)

Figure 4. The LTS implementation of the rope-map operation.

results, divide the unprocessed remainder in half, and resume pro-
cessing at the pause point.

A key piece of our implementation is an internal operation
called mapUntil. The mapUntil operation is capable of paus-
ing its traversal based on a runtime predicate:

val mapUntil :
(unit -> bool) -> (’a -> ’b)
-> ’a rope
-> (’a rope * ’b rope, ’b rope) progress

The first argument to mapUntil is a polling function
(e.g., hungryProcs); the second argument is the func-
tion to be applied to the individual data elements; and the
third argument is the input rope. Instead of returning a
fully processed rope, mapUntil returns a value of type
(’a rope * ’b rope, ’b rope) progress, where the
type constructor progress is defined as

datatype (’a, ’b) progress
= More of ’a
| Done of ’b

In the result of mapUntil, a value More (u, p) represents a
partially processed rope where u is the unprocessed part and p is
the processed part; a value Done p represents a fully processed
rope. The evaluation of mapUntil cond f rp proceeds by
applying f to the elements of rp from left to right until either
cond () returns true or the whole rope is processed. Before
we describe the implementation of mapUntil, we examine how
mapUntil is used to implement mapLTS.

The mapLTS algorithm, shown in Figure 4, starts by check-
ing the length of the input rope. When the rope length is greater
than one (the interesting case), the algorithm calls mapUntil
to start processing elements. If this call returns a partial result
(More (u, p)), then mapLTS splits the unprocessed subrope
u and schedules the parallel evaluation of the balancing (if nec-
essary) of the processed subrope p and the recursive mapping of
the halves of the unprocessed subrope u. At the join of the parallel
computation, the three now processed subropes are concatenated
and returned. Note that because this algorithm is recursive, split-
ting may continue until a single rope element is reached. If the call
to mapUntil returns a complete result (Done p), then p is bal-
anced (if necessary) and returned. Balancing p (in either the More
or Done cases) may be profitable here because the ropes returned
by mapUntil may be unbalanced.

It remains to implement the mapUntil operation. The crucial
property of the mapUntil operation is that it during the traversal
of the input rope, it must maintain sufficient information to, at any
moment, pause the traversal and reconstruct both the processed por-
tion of the rope and the unprocessed remainder of the rope. Huet’s
zipper technique [Hue97] provides the insight necessary to derive
a persistent data structure, and functional operations over it, which
enable this “pausable” traversal. A zipper is a representation of an
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aggregate data structure that factors the data structure into a distin-
guished substructure under focus and a one-hole context; plugging
the substructure into the context yields the original structure. Zip-
pers allow efficient navigation through and modification of a data
structure. With a customized zipper representation, some basic nav-
igation operations, and our novel context-splitting technique, we
arrive at an elegant implementation of mapUntil.

To represent the rope-map traversal, we use a context represen-
tation similar to Huet’s single-hole contexts [Hue97], but with dif-
ferent types of elements on either side of the hole, as in McBride’s
contexts [McB08]. Thus, our context representation is defined as

datatype (’a, ’b) ctx
= Top
| CatL of ’a rope * (’a, ’b) ctx
| CatR of ’b rope * (’a, ’b) ctx

where Top represents an empty context, CatL(r, c) represents
the context surrounding the left branch of a Cat node where r is
the right branch and c is the context surrounding the Cat node, and
CatR(l, c) represents the context surrounding the right branch
of a Cat node where l is the left branch and c is the context
surrounding the Cat node. Note that, for a rope-map traversal, all
subropes to the left of the context’s hole are processed (’b rope)
and all subropes to the right of the context’s hole are unprocessed
(’a rope).

The implementation of mapUntil will require a
number of operations to manipulate a context. The
leftmost (rp, c) ⇒ (s’, c’) operation plugs the
(unprocessed) rope rp into the context c, then navigates to the
leftmost leaf of rp, returning the sequence s’ at that leaf and the
context c’ surrounding that leaf:

val leftmost : ’a rope * (’a, ’b) ctx
-> ’a seq * (’a, ’b) ctx

fun leftmost (rp, c) = (case rp
of Leaf s => (s, c)
| Cat (l, r) => leftmost (l, CatL (r, c)))

The start operation simply specializes leftmost to the case of
the whole unprocessed rope in the empty context (see Figure 5(a)):

val start : ’a rope -> ’a seq * (’a, ’b) ctx

fun start rp = leftmost (rp, Top)

It is used to initialize the mapUntil traversal. The
next (rp, c) operation plugs the (processed) rope rp into the
context c, then attempts to navigate to the next unprocessed leaf.
val next :
’b rope * (’a, ’b) ctx
-> (’a seq * (’a, ’b) ctx, ’b rope) progress

fun next (rp, c) = (case c
of Top => Done rp
| CatL (r, c’) =>

More (leftmost (r, CatR (rp, c’)))
| CatR (l, c’) => next (cat2 (l, rp), c’))

This navigation can either succeed, in which case next returns
More (s’, c’) (see Figure 5(c)), where s’ is the sequence at
the next leaf and c’ is the context surrounding that leaf, or fail,
in which case next returns Done rp’ (see Figure 5(b)), where
rp’ is the whole processed rope.

The final operation on contexts is an operation to split a context
into a pair of ropes — the unprocessed subrope that occurs to
the right of the hole and the processed subrope that occurs to the
left of the hole. It is convenient for the splitCtx operation to
additionally take an unprocessed rope and a processed rope meant
to fill the hole, which are incorporated into the result ropes (see
Figure 5(d)):
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Figure 5. Operations on contexts. A right-facing leaf node denotes
a processed node and facing the left an unprocessed node.

val splitCtx : ’a rope * ’b rope * (’a, ’b) ctx
-> ’a rope * ’b rope

fun splitCtx (u, p, c) = (case c
of Top => (u, p)
| CatL (u’, c’) =>

splitCtx (cat2 (u, u’), p, c’)
| CatR (p’, c’) =>

splitCtx (u, cat2 (p, p’), c’))

With these context operations, we give the implementation of
mapUntil in Figure 6. The traversal of mapUntil is performed
by the function lp. The argument s represents the sequence of the
leftmost unprocessed leaf of the rope and the argument c represents
the context surrounding that leaf.

The processing of the sequence is performed by
mapSeqUntil, a function with similar behavior to mapUntil,
but implemented over linear sequences. It is mapSeqUntil
that actually calls cond and applies the function f. Note that
mapSeqUntil must also maintain a context with processed
elements to the left and unprocessed elements to the right, but
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fun mapUntil cond f rp = let
fun lp (s, c) = (case mapSeqUntil cond f s
of More (us, ps) =>

More (splitCtx (Leaf us, Leaf ps, c))
| Done ps => (case next (Leaf ps, c)

of Done p’ => Done p’
| More (s’, c’) => lp (s’, c’)))

in
lp (start rp)

end

Figure 6. The mapUntil operation.

doing so is trivial for a linear sequence. (Recall the standard
accumulate-with-reverse implementation of map for lists.)

If mapSeqUntil returns a partial result (More (us, ps)),
then the traversal pauses and returns its intermediate results
by splitting its context. (This pause and return gives mapLTS
the opportunity to split the unprocessed elements and push the
parallel mapping of these halves of the unprocessed elements
onto the work-stealing deque.) If mapSeqUntil returns a com-
plete result (Done ps), then the traversal plugs the context
with this completed leaf sequence and attempts to navigate to
the next unprocessed leaf by calling next (Leaf ps, c). If
next returns Done p’, then the rope traversal is complete and
the whole processed rope is returned. Otherwise, next returns
More (s’, c’) and the traversal loops to process the next leaf
sequence (s’) with the new context (c’).

4.2 Implementing other operations
The implementation of filterLTS is very similar to that of
mapLTS. Indeed, filterLTS uses the same context represen-
tation and operations as mapLTS, simply instantiated with unpro-
cessed and processed elements having the same type:

val filterLTS : (’a -> bool)
-> ’a rope -> ’a rope

type ’a filter_ctx = (’a, ’a) ctx

As with mapLTS, where the mapping operation was applied by
the mapSeqUntil operation, the actual filtering of elements is
performed by the filterSeqUntil operation.

The reduceLTS operation takes an associative operator and its
zero and a rope and returns the rope’s reduction under the operator.

val reduceLTS : (’a * ’a -> ’a) -> ’a
-> ’a rope -> ’a

Thus, the reduceLTS operation may be seen as a generalized sum
operation. The implementation of reduceLTS is again similar to
that of mapLTS, but uses a simpler context:

datatype ’a reduce_ctx
= Top
| CatL of ’a rope * ’a reduce_ctx
| CatR of ’a * ’a reduce_ctx

where CatR (z, c) represents the context surrounding the right
branch of a Cat node in which z is the reduction of the left branch
and c is the context surrounding the reduction of the Cat node.

The scanLTS operation, also known as prefix sums, is an
important building block of a data-parallel programming language.
Like reduceLTS, the scanLTS operation takes an associative
operator and its zero and a rope and returns a rope of the reductions
of the prefixes of the input rope.

val scanLTS : (’a * ’a -> ’a) -> ’a
-> ’a rope -> ’a

For example,
scanLTS (op +) 0 (Cat (Leaf [1, 2], Leaf [3, 4]))
⇒ Cat (Leaf [1, 3], Leaf [6, 10])

In a survey on prefix sums, Blelloch describes classes of important
parallel algorithms that use this operation and gives an efficient
parallel implementation of prefix sums [Ble90a], on which our
implementation of scanLTS is based. The algorithm takes two
passes over the rope. The first performs a parallel reduction over
the input rope, constructing an intermediate rope in which partial
reduction results are recorded at each internal node. The second
pass builds the result rope in parallel by processing the intermediate
rope. The efficiency of this second pass is derived from having
constant-time access to the cached sums while it builds the result.

The result of this first pass is called a monoid-cached
tree [HP06], specialized in the current case to monoid-cached rope.
In a monoid-cached rope,

datatype ’a crope
= CLeaf of ’a * ’a seq
| CCat of ’a * ’a crope * ’a crope

each internal node caches the reduction of its children nodes. For
example, supposing the scanning operator is integer addition, one
such monoid-cached rope is

CCat (10, CLeaf (3, [1, 2]), CLeaf (7, [3, 4]))

Our implementation of Blelloch’s algorithm is again similar
to that of mapLTS, except that we use a context in which there
are ropes to the right of the hole and cached_ropes to the
left of the hole. Aside from some minor complexity involving
the propagation of partial sums, the operations on this context are
similar to those on the context used by mapLTS.

The map2LTS operation maps a binary function over a pair of
ropes (of the same length).

val map2LTS : (’a * ’b -> ’c)
-> ’a rope * ’b rope -> ’b rope

For example, the pointwise addition of the ropes rp1 and rp2 can
be implemented as

map2LTS (op +) (rp1, rp2)

Note that rp1 and rp2 may have completely different branching
structures, which would complicate any structural-recursive imple-
mentation. The zipper technique provides a clean alternative: we
maintain a pair of contexts and advance them together in lock step
during execution. The result rope is accumulated in one of these
contexts.

Contexts and partial results nicely handle the processing of
leaves of unequal length. When the map2SeqUntil function
is applied to two leaves of unequal length, it simply returns a
partial result that includes the remaining elements from the longer
sequence. The map2Until function need only step the context
of the shorter linear sequence to find the next leaf with which to
resume the map2SeqUntil processing. Note that we do need to
distinguish map2SeqUntil returning with a partial result due
to the polling function, in which case map2Until should also
return a partial result (signaling that a task should be pushed to
the work-stealing deque), from map2SeqUntil returning with
a partial result do to exhausting one of the leaves, in which case
map2Until should not return a partial result. The implementation
straightforwardly extends to maps of arbitrary arity.

4.3 Rebalancing
In our implementation, there are two circumstances in which we
need to do balancing. The first is in filterLTS, because the
filtering predicate may drop elements at arbitrary positions inside
the rope. The second is in operations like mapLTS, because such
operations may split at an arbitrary rope leaf.
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5. Evaluation
We have already presented data that shows the performance of
ETS is sensitive to the SST parameter. In this section, we present
the results of additional experiments that demonstrate that LTS
performs as well or better than ETS over a range of benchmarks.
Furthermore, it demonstrates scalable performance without any
application-specific tuning.

5.1 Experimental method
Our test machine has four quad-core AMD Opteron 8380 proces-
sors running at 2.5GHz. Each core has a 512Kb L2 cache and shares
a 6Mb L3 cache with the other cores of the processor. The system
has 32Gb of RAM and runs Debian Linux (kernel version 2.6.31.6-
amd64). We ran each experiment 10 times and we report the aver-
age performance results in our graphs and tables. For most of these
experiments the standard deviation was below 2%, thus we omit the
error bars from our plots.

5.2 Benchmarks
For our empirical evaluation, we use six benchmark programs from
our benchmark suite and one synthetic benchmark. Each bench-
mark is written in a pure, functional style and was originally writ-
ten by other researchers and ported to PML. All benchmarks use the
same max leaf size (M = 256), which provides the best average
performance over the programs in our benchmark suite.

The Barnes-Hut benchmark [BH86] is a classic N-body prob-
lem solver. Each iteration has two phases. In the first phase, a
quadtree is constructed from a sequence of mass points. The sec-
ond phase then uses this tree to accelerate the computation of the
gravitational force on the bodies in the system. Our benchmark
runs 20 iterations over 200,000 particles generated in a random
Plummer distribution. Our version is a translation of a Haskell pro-
gram [GHC].

The Raytracer benchmark renders a 256 × 256 image in par-
allel as two-dimensional sequence, which is then written to a file.
The original program was written in ID [Nik91] and is a simple
ray tracer that does not use any acceleration data structures. The
sequential version differs from the parallel code in that it outputs
each pixel to the image file as it is computed, instead of building an
intermediate data structure.

The Quicksort benchmark sorts a sequence of 1,000,000 inte-
gers in parallel. This code is based on the NESL version of the al-
gorithm [Sca].

The SMVM benchmark is a sparse-matrix by dense-vector mul-
tiplication. The matrix contains 1,091,362 elements and the vector
16,614.

The DMM benchmark is a dense-matrix by dense-matrix mul-
tiplication in which each matrix is 100× 100.

The Tree Rootfix benchmark takes as input a tree structure in
which each node is annotated with a value and returns, for each
node, the sum of the values on the path from the root of the tree
down to that node. This code is based on the NESL version of the
algorithm [Sca] and we use it to measure the performance of the
scanP operation.

The Nested Sums benchmark is a synthetic benchmark that
exhibits irregular parallelism. Its basic form is as follows:

let fun upTo i = range (0, i)
in mapP sumP (mapP upTo (range (0, 5999)))
end

5.3 Lazy vs. eager tree splitting
Our most important experimental results come from a comparing
LTS to ETS side by side. Figure 7 shows speedup curves for all
seven of our benchmarks. For each graph, we plot the speedup

PML
Benchmark MLton Seq. LTS Par. 16 Speedup
Barnes Hut 7.71s 14.63s 20.62s 2.20s 6.64

Raytracer 2.29s 3.58s 3.54s 0.22s 16.15
Quicksort 1.36s 3.93s 5.61s 0.51s 7.77

SMVM 0.07s 0.15s 0.19s 0.02s 8.94
DMM 0.84s 3.49s 4.12s 0.30s 11.65

Tree Rootfix 3.79s 8.43s 10.44s 1.32s 6.38
Nested Sums 0.21s 1.46s 1.80s 0.14s 10.17

Table 1. The performance of LTS for seven benchmarks.

curve (over sequential PML performance) of ETS with SST values
of 1, 128, and 16384 and of LTS.

We have argued that one of the main advantages of LTS over
ETS is that LTS does not require tuning for each benchmark. These
graphs show that LTS is better than most configurations of ETS,
and that the downside of picking a poor SST value for ETS can
be quite severe (e.g., Figure 7(b) with an SST of 128). They also
show that not only is the best choice of SST for ETS dependent on
the particular benchmark, but in some cases it is also dependent on
the number of processors (e.g., Figure 7(a) and (f)).

With an optimal pick of SST value, ETS can outperform LTS,
because of lower overhead. In our experiments, we collected data
for every SST ∈ {2i | 0 ≤ i ≤ 14} and compared the best ETS
performance against LTS for each benchmark on 16 processors. We
found that even with always choosing the best SST value for the
given benchmark and number of processors, ETS was never more
than 20% faster than LTS. In practice, it is impossible to make such
precise and specialized tuning decisions a priori, since workloads
and compute resources are unpredictable. Therefore, we believe
that LTS provides a much better solution to the Goldilocks problem.

To address the question of why optimal ETS is faster than LTS,
we collected profiling data for our benchmarks. This data shows
that the per-processor utilization for ETS is never more than 3%
greater than that of LTS, which is almost within our 2% error bar.
Thus, we believe that the performance gap has to do with increased
overhead, rather than poorer scheduling. We also considered the
possibility that rebalancing was the source of the performance gap,
but our profiling data showed that the total time spent rebalancing
is an insignificant fraction of the the total program’s run time.
Thus, we believe that the main source of this performance gap
is the overhead of using a zipper to implement LTS (this point is
discussed in further detail below).

In Table 1, we present performance measurements for our seven
benchmarks run in several different sequential configurations, as
well as on 16 processors.

The first column of data presents timing results for MLton. ML-
ton is a sequential whole-program optimizing compiler for Stan-
dard ML [MLt, Wee06], which is the “gold standard” for ML per-
formance. The second data column gives the baseline performance
of the natural sequential PML versions of the benchmarks (i.e., par-
allel operations are replaced with their natural sequential equiva-
lents). We are about a factor of two slower than MLton for all of
the benchmarks except DMM and Nested Sums. Considering ML-
ton’s suite of aggressive optimizations and maturity, the sequen-
tial performance of PML is encouraging. Our slower performance
can be attributed to at least two factors. First, the MLton com-
piler monomorphizes the program and then aggressively flattens
the resulting monomorphic data representations. Since our ropes
are polymorphic, we use a boxed representation for the array ele-
ments, instead of an unboxed representation. Second, our profiling
shows higher GC overheads in our system. We expect to address
these issues as we improve our sequential performance.
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(c) Quicksort
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Figure 7. Comparison of lazy tree splitting (LTS) to eager tree splitting with ETS.
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Figure 8. The effect of varying max leaf size M (16 processors)

The third data column reports the execution time of the bench-
marks using the LTS runtime mechanisms (e.g., zippers), but with-
out parallelism. By comparing these numbers with the natural
sequential measurements, we get a measure of the overhead of
the LTS mechanisms. On average, the LTS version is about 24%
slower. We have determined through profiling that the main source
of this overhead is not from calls to hungryProcs or rebalanc-
ing. Instead, the primary source of the overhead comes from main-
taining the traversal state via the zipper context. Such a strategy is
less efficient than implicitly maintaining the state via the run-time
call stack in a natural structural recursion.7

The last two columns report the parallel execution time and
speedup on sixteen processors. Overall, the speedups are quite
good. The super-linear speedup of the Raytracer is explained by
a reduction in GC load per processor. This reduction happened
because each processor has its own local heap, so the total size
of the available heap increases with the number of processors. Our
GC architecture is described in more detail elsewhere [FRR08].

The Barnes-Hut benchmark achieves a modest speedup, which
we believe stems from a limit on the amount of parallelism in the
program. This hypothesis is supported by the fact that increasing
the problem size to 400,000 particles improves the speedup results.
The DMM benchmark is 25-27% slower than a perfect speedup,
which is also modest considering the large amount of parallelism
available in the program. We attribute the slower performance on
DMM to an increase in overheads incurred by the LTS Zipper
traversal. Observe that the sequential version of DMM that uses
a LTS is 20% slower than a similar version that does not.

There is still a question of whether our technique trades one
tuning parameter (SST ) for another, the max leaf size (M ). We
address this concern in two ways. First, observe that even if per-
formance is sensitive to M , this problem is specific to ropes, but
neither ETS nor LTS. Second, consider Figure 8 which shows, for
each of our benchmark programs, the parallel efficiency as a func-
tion of M (the parallel efficiency has the same meaning as it does
in Figure 3). The results show all benchmarks performing well for
M ∈ {512, 1024, 2048}. One concern is DMM, which is sensitive
to M because it does many random access operations on its two
input ropes. One can reduce this sensitivity by using an alternative
rope representation that provides more efficient random access.

7 Our implementation uses heap-allocated continuations to represent the call
stack [App92, FFR+07].

6. Related work
Adaptive parallel loop scheduling The original work on lazy bi-
nary splitting presents a dynamic scheduling approach for parallel
do-all loops [TCBV10]. Their work addresses splitting ranges
of indices, whereas ours addresses splitting trees where tree nodes
are represented as records allocated on the heap.

In the original LBS work, they use a profitable parallelism
threshold (PPT ) to reduce the number of hungry-processor
checks. The PPT is an integer which determines how many it-
erations a given loop can process before a doing hungry-processor
check. Our performance study has PPT = 1 (i.e., one hungry-
processor check per iteration) because we have not implemented
the necessary compiler mechanisms to do otherwise.

Robison et al. propose a variant of EBS called auto partition-
ing [RVK08], which offers good performance for many programs
and does not require tuning.8 Auto partitioning derives some lim-
ited adaptivity by employing the heuristic that when a task detects
it has been migrated it splits its chunk into at least some fixed num-
ber of subchunks. The assumption is that if a steal occurs, there are
probably other processors that need work, and it is worthwhile to
split a chunk further. As discussed by Tzannes, et al. [TCBV10],
auto partitioning has two limitations. First, for i levels of loop nest-
ing, P processors, and a small, constant parameter K, it creates
(K × P )i chunks, which is excessive if the number of processors
is large. Second, although it has some limited adaptivity, auto par-
titioning lacks performance portability with respect to the context
of the loop, which limits its effectiveness for scheduling programs
written in the liberal loop-nesting style of an NDP language.

Granularity control Early work by Loidl and Hammond in the
context of Haskell compared three strategies for deciding whether
to create a thread for parallel work or continue in sequence [LH95].
In simulation, they found that using a simple cut-off generated
more speedup than more complicated strategies that dynamically
determine whether to create a thread and which thread to run based
on a priority associated with the function to run. This cut-off is
a value based on a granularity estimation function provided to
the parallel primitives. They found, as we did, that speedup was
highly dependent upon the cut-off value. Their approach differs
from ours in that the cut-off value is statically provided to the
runtime; they require a function that can report a granularity metric
of the work to perform based on the function being called and
the data computed upon. Notably, their work handles any divide-
and-conquer algorithm, whereas our solution specifically addresses
parallel map operations.

Tick and Zhong presented an approach using compile-time
granularity analysis in concurrent logic programs [TZ93]. Their
compiler creates a call graph,9 collapses all strongly-connected
components (mutually-recursive functions), and then walks up the
collapsed graph creating recurrence equations representing cost es-
timates. These recurrence questions are solved at compile time and
used at run time for cost estimation of functions based on their dy-
namic inputs. This work does not discuss how these cost metrics
are integrated into their scheduler, but does provide an 85–91%
accurate estimator of runtime costs for arbitrary functions across
their suite of benchmarks. Their static analysis takes advantage of
logic programming language features, but demonstrates a poten-
tially more effective approach to determining a satisfactory PPT .

Data parallelism NESL is a nested data-parallel dialect of
ML [BCH+94]. The NESL compiler uses a program transformation

8 Auto partitioning is currently the default chunking strategy of
TBB [Int08].
9 This language is not higher-order, which greatly simplifies the construc-
tion of the call graph.
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called flattening, which transforms nested parallelism into a form of
data parallelism that maps well onto SIMD architectures. Note that
SIMD operations typically require arrays elements to have a con-
tiguous layout in memory. Flattened code maps well onto SIMD
architectures because the elements of flattened arrays are readily
stored in adjacent memory locations. In contrast, LTS is a dynamic
technique that has the goal of scheduling nested parallelism effec-
tively on MIMD architectures. A flattened program may still use
LBS (or LTS) to schedule the execution of array operations on
MIMD architectures, so in that sense, flattening and LTS are or-
thogonal.

There is, of yet, no direct comparison between an NDP imple-
mentation based on LTS and an implementation based on flattening.
One major difference is that LTS uses a tree representation whereas
flattening uses contiguous arrays. As such, the LTS representation
has two major disadvantages. First, tree random access is costlier,
for a rope it is O(log n) time, where n is the length of a given rope.
Second, there is a large constant factor overhead imposed by main-
taining tree nodes. One way to reduce these costs is to use a “bushy”
representation that is similar to ropes but where the branching fac-
tor is greater than two and child pointers are stored in contiguous
arrays.

The NESL backend written by Chatterjee [Cha93] and Data
Parallel Haskell [CLPK08] performs fusion of parallel operations
in order to increase granularity. We do not currently implement
such transformations. While fusion reduces overall work for data-
parallel operations, it reduces the work per element but does not
affect the coarsening of the iterations within a data-parallel opera-
tion. Such fusion techniques are orthogonal to LTS.

Narlikar and Blelloch present a parallel depth-first (PDF) sched-
uler that is designed to minimize space usage [NB99]. Later work
by Greiner and Blelloch on proposes an implementation of NDP
based on the PDF scheduler [BG96]. The PDF schedule is a greedy
schedule that is based on the depth-first traversal of the parallel
execution graph. The PDF schedule is as close to the sequential
schedule as possible in the sense that the scheduler only ever goes
ahead of the sequential schedule when the scheduler is limited by
data dependencies. In contrast, the work stealing approach used by
LTS has each processor doing an independent depth-first traversal
of that processor’s own portion of the parallel execution graph.

The work on space efficient scheduling does not address the is-
sue of building an automatic chunking strategy, which is the main
contribution of LTS. Narlikar and Blelloch coarsen loops manu-
ally in order to obtain scalable parallel performance in their per-
formance study. LTS finds good chunk sizes automatically, without
programmer assistance.

Ct is an NDP extension to C++ [GSF+07]. So et al. describe
a fusion technique for Ct that is similar to the fusion technique
of DPH [SGW06]. The fusion technique used by Ct is orthogonal
to LTS for the same reasons as for the fusion technique of DPH.
The work on Ct does not directly address the issue of building
an automatic chunking strategy, which is the main contribution of
LTS.

GpH GpH introduced the notion of an “evaluation strat-
egy,” [THLP98] which is a part of a program that is dedicated to
controlling some aspects of parallel execution. Strategies have been
used to implement eager-splitting-like chunking for parallel com-
putations. We believe that a mechanism like an evaluation strategy
could be used to build a clean implementation of lazy tree splitting
in a lazy functional language.

Cilk Cilk is a parallel dialect of the C language extended with
linguistic constructs for expressing fork-join parallelism [FLR98].
Cilk is designed for parallel function calls but not loops, whereas
our approach addresses both.

7. Discussion
The main idea of lazy splitting is to maintain some extra informa-
tion so it is always possible to spawn off half of the remaining work.
This paper presents an instantiation of this idea for operations that
produce and consume ropes. Although the main idea has potential
to be adapted to a larger class of divide-and-conquer programs, we
believe at least three substantial challenges must be met before this
goal can be achieved. The first challenge is to support other tree rep-
resentations, such as, for example, red-black trees. Specifically, one
must derive efficient traversal patterns that preserve the invariants
of such structures. Second, LTS programs involve zippers, which
are an implementation detail. Are there general techniques to de-
rive LTS specifications automatically from more natural specifica-
tions? For example, is there a mechanical process for deriving LTS
programs (e.g., mapLTS) from structural-recursive programs (e.g.,
mapStructural)? One possible approach is to use a static anal-
ysis to identify divide-and-conquer recursive functions, then apply
a program transformation to generate analogous lazy-splitting ver-
sions. Third, there is a need for general techniques to aggregate
work for small problem sizes (rope leaves effectively provide this
mechanism in the system described here). Failure to provide such
techniques will result in excessive overhead and limited scalability.

The splitting strategy used by LBS and our LTS can cause
unnecessary splitting. To understand why, observe that splitting is
prone to start at the innermost loops and then work its way to the
outer loops, as discussed at the end of Section 3. Having the thief
worker split the outermost loops is more efficient because the outer
iterations usually contain the most work.

Our current implementation uses innermost splitting for two
reasons. First, to support outermost splitting would involve special
support from the language implementation, as splitting the outer-
most loop would involve modifying a part of the whole continua-
tion, not just a part of the continuation of the current loop. Second,
in our empirical study, for each benchmark, we observed that total
number of splits stayed under the low hundreds. Since, steals are
extremely fast in our test machine, having a few extra steals made
little difference. We expect that an implementation based on outer-
most stealing would be superior for larger machines.

8. Conclusion
We have described the implementation of NDP features in the Man-
ticore system. We have also presented a new technique for paral-
lel decomposition, lazy tree splitting, inspired by the lazy binary
splitting technique for parallel loops. We presented an efficient im-
plementation of LTS over ropes, making novel use of the zipper
technique to enable the necessary traversals. Our techniques can be
readily adapted to tree data structures other than ropes and is not
limited to functional languages. A work-stealing thread scheduler
is the only special requirement of our technique.

LTS compares favorably to ETS, requiring no application-
specific or machine-specific tuning. For any given benchmark, LTS
outperforms most or all configurations of ETS, and is, at worst, only
20% slower than the optimally tuned ETS configuration. Since, in
general, optimal tuning of ETS for arbitrary programs and compu-
tational resources is not possible, we believe that LTS is a superior
implementation technique. The ability of LTS to enable good par-
allel performance without requiring application-specific tuning is
very promising.
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