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Abstract 

Felleisen, M., On the expressive power of programming languages, Science of Computer Program- 
ming 17 (1991) X-75. 

The literature on programming languages contains an abundance of informal claim; on the relative 
expressive power of programming languages, but there is no framework for formalizing such 
statements nor for deriving interesting sonsequences. As a first step in this direction, we develop 
a formal notion of expressiveness and investigate its properties. To validate the theory, we analyze 
some widely held beliefs about the expressive power of several extensions of functional languages. 
Based on these results, we believe that our system correctly captures many of the informal ideas 
on expressiveness, and that it constitutes a foundation for further research in this direction. 

1. Comparing programming languages 

The literature on programming languages contains an abundance of informal 
claims on the expressive power of programming languages. Arguments in these 
contexts typically assert the expressibility or non-expressibility of programming 
constructs relative to a language. Unfortunately, programming language theory does 
not provide a formal framework for specifying and verifying such statements. 
Comparing the set of computable functions that a language can represent is useless 
because the languages in question are usually universal; other measures do not exist. 
The lack of a comparison relation makes it impossible to draw any firm conclusions 
from expressiveness claims or to use them for an objective decision about the use 
of a programming language. 

Landin [24] was the first to propose the development of a formal framework for 
comparing programming languages. He studied the relationship between program- 
ming languages and constructs, and began to classify some as “essential” and some 
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as “syntactic sugar”. A typicai example of an inessential construct in Landin’s sense 

is the let-expression in a functional language with first-class procedures. It declares 

and initializes a new, lexically-scoped variable before evaluating an expression. 
Whether it is present or absent is inconsequential for a programmer since 

let x be u in e is expressible as apply (procedure (x) e) U. 

Similarly, few programmers would consider it a loss if a goto-free, Algal-like 
language had a while but not a repeat construct. After all, 

repeat s until e is expressible as s; while le do s. 

Others, most notably Reynolds [36, 371 and Steele and Sussman [40], followed 
Landin’s example. They introduced the informal notion of the core of a language 

and studied the expressiveness of imperative extensions of higher-order functional 

languages. Steele and Sussman [SO: 291 summarized the crucial idea behind this 
kind of classification of language features with the remark that a number of program- 

ming constructs are expressible in an applicative notation based on syntactically 
local, structure- all: behavior-preserving translations, but that some, notably control 

statements and assignments, involve complex reformulations of large fractions of 

programs. 
In the realm of logic, Kleene anticipated the idea of expressible or eliminable 

syntacticsymbols in his study of formal systems [21: $741. Troelstra [42: I.21 resumed 
this work and introduced further refinements and extensions. Roughly, the additional 

symbols of a conservative extension of a core logic are eliminable if there is a 

translation from the extended logic to its core that satisfies a number of conditions. 
Two of these are important for our purposes. First, the mapping is the identity on 

the formulae of the core langtiage and is homomorphic in the logical connectors. 

Second, if a formula is provable in the extension then so is its translation in the 

core. Clearly, these two conditions imply that this translation preserves the structure 
of formulae and removes symbols on a local basis. 

By adapting the ideas about the relationship among formal systems to program- 

ming languages, we obtain a relation that determine2 whether a programming 

language can express a programming construct. More precisely, given two universal 

programming language.5 rhat oniy differ by a set of programming constructs, 

{c IV...? c,,}, the relation holds if the additional constructs do not make the larger 

language more expressive than the smaller one. Here “more expressive” means that 
the translation of a program with occurrences of one of the constructs c, to the 

smaller language requires a global reorganization of the entire program. A first 

analysis shows that this measure of expressiveness supports many informal judge- 

ments in the literature. Moreover, we discover that an increase in expressive power 
comes at the expense of less “intuitive” semantic equivalence relations. We also 
discuss some attempts at generalizing the measure to a comparison relation for 
arbitrary programming languages. 
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The next section briefly reviews the logical notions of eliminable symbols and 

definitional extensions. In subsequent sections, we propose a formal model of 

expressibility and expressiveness along the lines of logical expressiveness, investigate 

some of its properties, and analyze the expressive powers of several extensions of 

functional languages. More specifically, we introduce our formal framework of 

expressiveness based on the notion of expressibility. We demonstrate the abstract 

concepts by proving some sample theorems about A-calculus-based languages as 
well as a number of meta-theorems. Next, we study the expressiveness of an idealized 

version of Scheme and verify the informal expressiveness philosophy behind its 

design [4i :. Following this analysis, we briefly speculate how the use of a more 
expressive language increases programming convenience. Finally, we compare our 

ideas to related work and address some open questions. 

2. Eliminable symbols and definitional extensions 

The theory of comparing fornal systems is a peripheral topic in logical studies 
and finds little or no space in most textbooks. The following short overview summar- 

izes and adapts Troelstra’s [42: I.21 descriptions of Kleene’s work [21]. 

A formal system is a triple of sets: expressions, formulae, and theorems. The second 

is a subset of the first, the third a subset of the second. Expressions are freely 
generated (in the sense of a term algebra) from a number of non-logical and logical 

operators, e.g., A, +, -, etc. The set of formulae is a recursive subset of the set of 

expressions and satisfies certain well-formedness criteria. The set of theorems is the 

subset of the formulae that the formal system defines to be true. If 2 is a formal 

system,, then Exp(Y) is its set of expressions, Fm(.Y) the set of formulae, and 

Thm( 9) the set of theorems; LZ I- t also means t is a theorem of 9. 
A conservative extension 3 of a formal system 9’ is a forTa! system whose 

expressions are a superset of the expressions over Y’, generated from a richer set 

of operators, and whose formulae and theorems restricted to the expressions of 2’ 

are the formulae and theorems of .Y’: 

Fm(.Y)n Exp(Yj = Fm(9’); Thm( 9) n Exp( Y’) = Thm( Y’). 

A conservative extension 9 is a definitional extension of 9 if there is a mapping 

cp: Exp(Y) + Exp(Y) that satisfies the following conditions: 

Fl <p(J) E Fm(Y’) for eachfE Fm(Z’); 

F2 cp(f) =f for allfE Fm(Y’); 

F3 cp is homomorphic in all logical operators; 

F4 9 I- t if and only if 9’ t- cp( t); and 

F5 Yl-- :=cp(f). 

Kleene referred to those symbols that generate the additional expressions of the 
extended formal system as eliminable. 
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Remark 1 (Weak Expressibil-cty). Kleene’s original definition contains a weaker 
version of Condition 4, namely, 

F4’ ifZ+ t then YI- (g(f). 

Based on condition FS, it is possible to show that the two definitions are equivalent, 
assuming the usual axioms for f) [21: 8 741. As we shall discuss in several remarks 
below, this is not the: case in the context of programming languages. Instead, 
condition F4’ leads to a different but related notion of language expressiveness. Cl 

3. A formal theory of expressiveness 

As a first step towards a formal theory of expressiveness for programming 
languages, we adapt the logical theory of eliminable symbols to the programming 
language context. We develop the idea of a programming language as a formal 
system and reinterpret the concepts of conservative extension and eliminability 
accordingly, Since many of the examples in the work of L.;ndin, Reynolds, Steele, 
and Sussman preserve not only the global structure of the program but also the 
local structure of the transformed phrases, we consider a stricter notion of elimin- 
ability as a second step. We refer to this second notion as PMCYO expressibility. It 
satisfies the additional constraint that the transformation pf eliminated phrases is 
always compositional. In the twro subsections on the respective topics, we prove 
theorems about the eliminability and non-eliminability of programming constructs 
and apply them to a simplistic prototype language based on the A-calculus. Both 
notions of expressibility suggest natural comparative measures of the expressive 
power of programming languages, which we present in the third subsection. 

3.1. Expressibility 

Like a formal system, a programming language is a system of subsets of a general 
language. More precisely, a programming language is a set of phrases, a subset of 
programs, and a semantics that determines some aspects of the behavior of programs. 

Definition 3.1 (Programming Language). A programming language 9 consists of 

0 a set of Z-phrases, which is a set of freely generated abstract syntax trees (or 
terms), based on a possibly infinite’ number of function symbols IF, IF,, . . . with 
arities a, aI, . . . ; 

a set of .Xprograms, which is a non-empty, recursive subset of the set of phrases; 
and 

’ We assume that there is enough structure on an infinite set of constructors for specifying the 
decidability of predicates and the recursiveness of translations on the set of phrases. In the following 
examples, this is obviously the case. 
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a semantics, euul,, which is a recursively enumerable predicate on the set of 
%programs. If eu& holds for a program P, the program terminates. 

The fuflcthon symbols are referred to as programming constructs or programming 

facilities. Cl 

Definition 3.1 is an abstraction of the typical specifications of many rea!istic 
programming languages. Most languages have a context-free syntax yet enforce 
additional context-sensitive constraints by recursive’ decision procedures. Examples 

of such constraints are scoping’ and typing rules, which ensure that names only 

occur in certain pieces of text and only range over a restricted set of values. 

To avoid restrictive assumptions about the set of programming languages, the 

Gefinition only requires that the semantics observe the termination behavior of 

programs. By omitting any references to the characteristics of results, it is possible 
to consider programming languages with and without observable data. For program- 
ming languages with simple output data, i.e., constants or opaque representations 

of procedures, the definition is in many cases equivalent to a definition that refers 

to the observable output of a program. For a consideration of languages with infinite 

output, e.g., through imperative output statements or through potentially infinite 

lists, the definition needs some adjustments. 

Finally, the above definition of a programming language also shows that, in a 

certain sense, a programming language is a formal system. The set of phrases 
corresponds to the expressions of a formal system, the set of programs plays the 

role of the set of formulae, and the set of terminating programs is the analog of the 
set of theorems. In the terminology of universal algebra, the set of expressions is 

the universe of a free term algebra [5]; instead of relying on the more typical 

algebraic approach of equational restrictions, the definition uses arbitrary recursive 

predicates for filtering out the interesting subset of programs. Unlike logic, the 

programming language world does not know such ubiquitous constructs as the 
logical connectors. 

Our prototypical example of a programming language is a derivative of the 

language A of the pure h-calculus [3]. Figure 1 summarizes its (concrete) syntax 

and semantics. In order to compare the expressiveness of call-by-value and call-by- 

name procedures later in this section, we extend A with a new constructor, A,, and 

rename A to A,,. More specifically, the A-phrases are generated from a set of variables 
(0-ary constructors), {x, J’, z, . . .}, and two families of unary constructors, one for 

’ A notable exception is Scheme as defined in the standard report [35], which only has a recursively 
enumerable set of programs: An expression is a Scheme program if and only if it has the same result 

for all possible evaluation orders in its applications. We consider this an unfortunate aberration rather 
than an interesting extension of our definition. 

’ Although m=rst languages impose lexical scoping, Definition 3.1 or+ accounts for this fact through 
the recursive selection of programs from the set of phrases. An explicit inclusion sf the lexical scoping 

structure through a Church encoding [7] of the language in a typed lambda calcuius is a feasible and 
interesting alternative but would probably lead to a slightly different definition of expressibility and 

expressiveness. 
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Phrases 

Programs 

e ::= 2 1 V 1 (ee) (e;cpressions) 

V ::= (&z.e) 1 (&z.e) (values) 

e is a program if and only if fv(e) = 0 

where fv(e) is f,he set of free variables in e 

Semantics 
e&A(e) holds if and only if e -* v for some v 

Evaluation Contexts 
E ::= a 1 ((X,z.e)E) I (Ee) 

Reduction Steps 

E((A,g.e)e’) - E(e[z/e’] j 

E((U.e)V) - E(e[+]) 

where e[z/e’] is the capture-free substituion of e’ for all free x in e 

(4 

(P”) 

Fig. 1. The programming language .t. 

each variable X: h,x : term + term (call-by-value abstraction), hrrx : term + term (call- 

by-name abstraction), and one binary constructor: . : term x term + term (juxtaposi- 

tion). Below, A, and A,, denote the sets of all A-constructors. For readability, we 
use concrete syntax for A-terms and adopt the traditional A-calculus conventions 

about its use [3]. 
The constructors A,x and A,J bind the variable x in their term arguments. The 

set of free variables in an expression e, fv( e), is the set of variables that are in e 
and are not bound. If all variables in a A-term are bound, the term is closed. The 

set of A-programs is the set of closed phrases, i.e., there is only one recursive 

constraint that distinguishes programs from arbitrary phrases. 

The operational semantics of A reflects the semantics of realistic programming 
languages like ISWIM, ML, and Scheme [33].4 The specification of the semantics in 
Fig. 1 follows the style of extensible operational semantics [8, lo), which is easily 

adaptable to the imperative extensions of A in the following section. An evaluation 

is a sequence of reduction steps on programs according to the normal-order strategy. 

If the program is a value (an abstraction), the evaluation stops. Otherwise the 

reduction function (uniquely) decomposes the program into an evaluation context, 

a term with a hole (cu), and a redex, the contents of the hole. A redex is either an 
application of a call-by-name abstraction to an arbitrary expression (p) or an 

application of a call-by-value abstraction to a value (&). In either case, the reduction 

function replaces the redex, ((Ax.b)a), by a new version of the procedure body, 
b[x/a]. Then the evaluation process starts over again. 

Summarizing the standard reduction process as a predicate on programs yields 

the operational semantics of 14. Some useful examples of phrases are the call-by-name 

’ As usual, this operational semantics has only remote connections to the equational theory of the 
A-calclllus. 
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and call-by-value fixed point operators, which facilitate the recursive definition of 

functions: 

and 

Y, = (A,fx..(A,.g.gg)(A,xAA,x.(gg)x))x). 

Two simple diverging programs are L!,, = Y,,( A,,x.x) and L!, = YJ A,,xy.xy)( A,x.x). 

To illustrate the impact of syntactic constraints on programs, we also define A ‘, 

a typed variant of A. 4’ has the same set of phrases as A but uses a type checking 

algorithm for filtering out valid programs. A ‘4’ program is not only closed but is 

also typable as either an integer or a higher-order functional on integers according 

to the type inference system in Fig. 2. It easily follows from Mimer’s [27] initial 

work on polymorphism that typability is a recursive predicate for A ‘. The semantics 
of A’-programs is the same as that of their untyped counterparts. 

Programs 
e is a program if and only if it is closed and 0 I- e : T 

Types 
T ::= 11 T - 7 

Type Assertion 
A: Variables +w Types (finite functions) 

where A[x/r](x) = 7 A[xld(y) = A(y) (functional update) 

Type Inference 

A I- x : T if A(x) = T 
A[x/r] k e : r’ At-s:r’-r; A I- er : t’ 

A I- X,,,x.e : r - r’ A t- (ee’) : T 

A t- Y, : (T - r) - r A I- Y, : ((T - T’) - (T - r’)) - (T. - T’) 

Fig. 2. .I ‘, 

A’ is a typical example of a monomorphic language: all occurrences of a A-bound 

variable have the same type. As a consequence, the typing constraints of ,I’ exclude 

typical A-programs like Ax.(xx) or phrases like (xx) in programs. Indeed, the Y 

operator for defining recursive functions must be typed explicitly because it would 

not pass the other type rules. 
Based on the interpretation of a programming language as a formal system, it is 

easy to define the notion of a conservative programming language extension. 

Definition 3.2 ( Conservative Extension and Restriction). A programming la.nguage 

3 is a conservative extension of a language 2’ if 

@ the constructors of 2” are a subset of the constructors of 2f with the difference 

being {IF,, . . . , IF,,, . . . }, which are not constructors of 9’; 
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o the set of Y-phrases is the full subset of Z-phrases that do not contain any 

constructs in {IF,, . . . , IF,, . . .}; 

o the set of Y-programs is the full subset of Z-programs that do not contain any 

constructs in {IF 1,. . , IF n,. . .}; and 

l the semantics of Y, eva& is a restriction of Z’s semantics, i.e., for all .Y- 

programs P, evaf,( P) holds if and only if evaly( P j holds. 

Conversely, 9 is a conservative restriction of .Z. 

To emphasize the constructors on which the restriction and extension differ, we 
write 9’ = 5?\{lF 1, . . . , ff n, . . .} and .Z = Y+ {IF,, . . . , IF,, . . .). We also use the notation 

to denote the natural restriction and extension that result from subtracting or adding 

facilities to the syntax (provided tha respective languages and, in the latter case, a 
semantic specification exist). Cl 

In our running example, the restricted language A,, is A without A,-abstractions, 
A, is A without call-by-name abstractions: 

A, =A’&; A, = A\&,. 

A restriction of the above evaluation process to A,- and A,,-phrases yields a 

call-by-value and a call-by-name semantics, respectively. The corresponding sub- 

languages of A’ are defined similarly. 
To enrich the set of examples, we add a let construct to A. There is one binary 

let constructor for each variable X: let, : term x term + term. Like hx, let, binds its 

variable, namely in the second subexpression. The concrete syntax for let,(e, e’) is 

(let x be e in e’). 

The semantics of A + {let,}, or A + let for short, requires an additional clause in the 
specification of evaluation contexts 

E ::=e l l I(letxbe E ine) 

and an additional clause for the reduction function: 

E(let x be v in e)+ E(e[x/v]). (let,) 

Otherwise the definition of the semantic predicate in Fig. 1 stays the same. It is 

trivial to check that A + let is a conservative extension of A. 
The extension of A’ with let additionally requires a type inference rule for the 

new construct. For greater flexibility, the new rule only requires that, at each 
occurrence of the abstracted variable, the named subexpression is typable with some 
type: 

At-e:r; A C e[x/ e’] : 7’ 

AI-(letxbeeine’):~’ ’ 

A :+let is polymorphic in the spirit of ML 127, 28, 43: 43, 441. Unlike h-bound 

variables, let-bound variables can have several types. For example, x in (let x be 
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(hy.y) in (xx)) conceptually assumes two different types: (L + L) + (L + L) and (L + L), 

which makes the expression a legal program despite the self-application of a variable. 

Again, it is easy to see that the extension is conservative with respect to A’. 

For the re-interpretation of the logical notion of eliminability, we need to be more 

flexible. The non-existence of ubiquitous programming language features in the 

sense of logical connectors raises the question whether the mapping from the 

extended Janguage to the core should be homomorphic and, if so, on which set of 
features. At this point, we recall the above-mentioned desire that our translations 

be structure-preserving, and the idea that the homomorphic character of a translation 

naturally corresponds to this property. To preserve the structure of programs as 

much as possible, we require that the translations be homomorphic in ill program- 

ming facilities of the core language. 

Definition 3.3 (Eliminability; Expressible Programming Constructs). Let 9 be a 

programming language and let {IF,, . . . , IF ,*, . . .} b e a subset of its constructors such 
that 9’ = T\{ff , , . . . , IF n, . . .} is a conservative restriction. The programming facilities 

IF I,..., IF n, l * l are eliminable if there is a recursive mapping cp from Z-phrases to 

Y-phrases that satisfies the following conditions: 

EP <p(e) is an Y-program for ~11 .Z-prograrrs e; 

E2 cp(Ue, , . . . , e,)) = b(e,), . . . , ~(2~)) for all facilities IF of Y, i.e., cp is 

homomorphic in all constructs of 9’; and 
E3 eu&( e) holds if and only if eual,,,( cp( e)) holds for all Y-programs e. 

We also say that 3’ can express the facilities IF,, . . . , IF,,, . . . with respect to Z We 

omit the qualification if the language universe is clear from the context. By abuse 

of notation, we write cp : Y+ 9’. Cl 

Condition E2 in this defr&on u+plies that the mapping cp is the identity on the 

language 2’. It corresponds to ce_taditions F2 and F3 of the logical notion of 
eliminability. According to the ab@ve interpretation of a programming language as 

a formal system, an interpretation of condition F4 in Section 2 requires that the 
translation of a terminating program in the extended language is a terminating 

program in the restricted language. This is precisely the contents of Condition E3. 

Finally, the last condition of the logical notion of eliminability, F5, has no counter- 

part in a programming language context because of the lack of a ubiquitous 
programming construct. 

Remark 2 (Weak Expressibility). By using an adaptation of Kleene’s original Condi- 

tion F4’ (see Remark 1 in the previous section) instead of the third condition in the 

preceding definition, we get a weak notion of expressibility. The revised condition 

takes on the following shape: 

E3’ Jf euat,( e) holds then eual,,(cg(e)) holds. 
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The intuition behind this definition is that the translated phrase has at least as many 
capabilities as the original one. The terminology reflects our belief that any differen- 

ces in behavior should be noted as a failure of complete expressibility. Moreover, 

the terminology is also consistent with the fact that expressibility implies -weak 
expressibility. Cl 

An alternative understanding of the above definition is that the translation maps 
phrases constructed from eliminated symbols to observationally indistinguishable 

phrases in the smaller language. In other words, replacing the original phrase with 

its translation does not affect the termination behavior of the surrounding programs. 

This relation between two phrases of programming languages is widely studied in 

semantics and is known as operational (or observational) equivalence [25,29,33,34]. 

,4fter developing the formal definition of operational equivalence, we can charact- 

erize sufficient conditions for the eliminability of programming constructs. 
A formal definition of the operational equivalence relation relies on the auxiliary 

notion of a program context. 

Definition 3.4 (Contexts; Program Contexts). An n-ary context over 2, 

C(a I,***, (x,,), is a freely generated tree based on 2’s constructors and the addi- 

tional, 0-ary constructors a,, . . . , a,, called meta-variablex All subtrees of 

C(a I,***, cu,) are also n-ary contexts. If C(&, , . . . , au,) is a context and eI, I . . , en 
are phrases in 2, then the instance C(e,, . . . , e,,) is a phrase in 2 that is like 
C(cU 19***, a,) except at occurrences of (Y~ where it contains the phrase ei: 

@ if C(a,, . . . , (Y,~)= a, then C(e,, . . . , e,,)= ei, and 
@ if C(Q,,. . . , (~~)=lF(c,(a!,, . . . , IY”), . . . , C&X~, . . . , ar,,)) for some IF with arity 

4 then C(e,, . . l , e,,)=lF(C,(e,, . . . , e,), . . . , C,(e,, . . . , e,,,)). 

An Z-program context for a phrase e is a unary context, C(m), such that C(e) is 
a program. CJ 

For A,,, the context C&X) = (A.~y.a!)(A.xx)0,, is a program context for all 

expressions whose free variables are among x and y. 

Since the semantic predicate of a programming language only tests a program 

for its termination behavior, our definition of operational equivalence compares the 

termination behavior of programs? 

Definition 3.5 (Operational Equivalence). Let 2 be a programming language and 

let evalv be its operational semantics. The Z-phrases e, and e, are operationally 

equivalent, e, + e2, if there are contexts that are program contexts for both e, and 
e2, and if for all such contexts, C(Q), eva&( C( e,)) holds if and only if evalY (C( e2)) 
holds. El 

’ In many cases, our definition is equivalent to the more traditional definition that compares the 
termination behavior of programs’and the results, provided they are among a set of obseroable data. 
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With the above program context CO, it is possible, for example, to differentiate 

the phrases x and y. Since 0, diverges, CO(x) = (h,xy.x)( A,x.x)& terminates 
whereas CO(y) = (h,xy.y)(h,x.x)J2, diverges. 

Figure 3 contains a sequent calculus of operational equivalence on A, + let, which 

is US,J below in Proposition 3.7; the proof system is sir;lilar to Riecke’s for a typed 

version of A, [38]. The calculus proves equations over the language from premisses 

(r) that are finite sets of equations. It is sound but incomplete, i.e., if 0 I- e = e’ 
then e = e’ but not vice versa, 

P‘ I- (X,x:.e)v = e[x/v] rt-flRe=Q rl-eR=R 

rl-e=e’ 

I? t- X,x.e = A,x.e’ x $ WY 
rl-e=e’ rt-e=e’ 

r t- eel' = e'e" r t- e”e = e”e’ 

I’ I- (let x be v in e) = e[z/v] I’ I- (let x be $2 in e) = R 

rl-e=e 

I’ I- (let x be e in e”) = (let z be e’ in e”) z 4 W) 

r U {e = e’) I- e = e’ 
r u {e = Q} I- el = e2; r u {e = 2~) I- el = e2 for all v 

r I- el = e2 

rl--e=e 
rt-e=e 

rl-d=e 

r I- e = e’; r I- e’ = e” 

r t- e = e” 

Fig. 3. A calculus for operational equivalence on ‘IL, + let. 

Remark 3 (Weak Expressibility). A replacement of the “if-and-only-if” condition 

with a simple “if” condition yields the notion of operational approximation., which 

plays the same role for weak expressibility as operational equivalence for expres- 

sibility. More specifically, the term el operationally approximates e2, e, ~~ e2, if for 
all program contexts, C( cw), for e, and e2, evalr( C( e2)) holds if walY( C( e,)) 

holds.-In conjunction with the above context Cfi, the program context C,( ar ) = 

~A,Jx.cx)~A,x.x)S~,, shows that x and y do not q.pproximate each other. Cl 

We now have everything in place to formalize our above idea about the connection 

between ‘eliminable programming constructs and their translations. The following 

theorem shows that, at least to some extent, the elimination of expressible program- 
ming constructs from a program is a local process and keeps the program structure 

intact. 

Theorem 3.6. Let Lf=.Y+{lF ,,... jlF,,,.. .) be a conservative extension of 3’. If 
q : Y+ 2' is homomorphic in all facilities of 2” and preserves program-ness, and [f 
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IFi - - -, e,,) z.I/'<p(Fi(el,. . - , e,,)) for all (Fi and all Se.cpressions e, , . . . , e,, , then 

2” can express the facilities IF,, . . . , IF,,, . . . . 

Proof. It suffices to show that condition E3 of Definition 3.3 holds for 50. Assume 

that P is an S-program such that eval,,( P) holds. By the construction of P, there 

is a context C(a, , . . . , a,) such that 

p=aP,,...,Pn) 

wherep,,..., p,, are the finite number of outermost occurrences of phrases construc- 

ted from some facilities in IF,, . . . , IF,, . . . . Thus, C(a,, p2,. . . 9 p,) is a program 

context for pl . It follows from the theorem’s assumption that 

er.44C(pl,...,_. P )) holds if and only if eval,( C( cp( p,), . . . , p,,)) holds. 

Repeating this step n times proves that 

eu&(C(p,, . . . , p,)) holds if and only if evalJ C( q( p,), . . . , cp( p,))) holds. 

But, since C does not contain any facilities in IF,, . . . , IF,,, . . . , 

ad PA, l - l , cP(Pn))=(P(C(P,,“.,Pn))=(P(P). 

Moreover, since 2 conservatively extends Z”, 

eva[J P) holds if and only if evaI& cp( P)) holds. 

This completes the proof. Cl 

Remark 4 (Weak Expressibility). The theorem holds for weak expressibility even if 

we replace operational equivalence by operational approximation: 

If lFi(el,. . . , e,,) G I/ q(ffi(el,. . . , e”,)), then the IF,,. . . ,ff,,. =. are weakly 
eliminable. Cl 

An application of this theorem shows that let is an example of an eliminable 
construct. For the typed setting, this provides a precise formalization of the folk 
theorem that ML-style polymorphism is expressible in a monomorphic language? 

The two examples also reveal a striking difference between the typed and the untyped 

language variant. Whereas the untyped let expression simply abbreviates an applica- 

tion as illustrated in the introduction, its typed counterpart maps to a version of 

the let body in which each occurrence of the abstracted variable is substituted with 

a copy of the named expression. The reason for this differe.lce is that in the typed 

case the translation must not only preserve the semantics but also the typability in 
order to preserve program-ness. 

Proposition 3.7. The constructor let is eliminable in call-by-value languages. 

(i) A, can express let with respect to A, + let. 
(ii) A I can express let with respect to A k+ let. 

’ An alternative approach to a formalization of this folk theorem is due to Wand [44]. 
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Proof. (i) Set rp(let x be e in e’)=(h,qo(e’))q(e). To show that the two phrases 
are operationally equivalent we proceed by induction on the number of let’s in the 

Eubexpression. The base case for e, e’ in A, proceeds as follows. By the homomor- 

phism constraint, q(e) = e and cp( e’) = e’. By the laws in Fig. 3, 

e = fl I- (let x be e in e’) = R = (hx.e’)e 

and, for all values U, 

e = v t- (let x be e in e’) = e’[x/v] = (Ax.e’)e, 

and therefore, 

(let x be e in e’) s..(+,~* (hx.e’)e. 

The induction step proceeds along the same line. 

(ii) Set cp(let x be e in e’) =((A,d.cp(e’)[x/cp(e)])cp(e)) where d does not occur 
free in e or e’. To verify that this translation maps programs to programs, it suffices 
to prove that the translation preserves the implicit type assignment. We proceed by 
induction on the number of let-expressions in the program and show that, given a 

fixed set of type assumptions, q(e) has the same type as e. Assume e and e’ are 

let-free, and consider the typing of an instance of let: 

At-(1etxtPeeine’)Y 

for some A sind 7’. By the setup of the inference system, A I- e : r for some r and 
A I- e’[x/sj: 7’. Since, by assumption, p(e) = e and p( e’) = e’, A I-- cp( e) : T and 

A I- cpWCxld41 : 7’. The rest follows easily: A I- (A,d.<p(e’)[x/<p(e)]: T+ T’ and 

also 

ThG induction step requires a lemma that proves <p( e’)[x/ (p(e)] has the same type 

as e’[x/ e] if 50 (e) and q( e’) have the same type as e and e’. 
The proof that ~0 preserves the semantics of typed let-programs follows the same 

pattern as part (i). Observe that 

e = J2 I- (let x be e in e’) = R = (Ad.e’[x/e])R = (Ad.e’[x/e])e 

and also, for all v, 

e = v I- (let x be e in e’) = e’[x/v] = (Ad.e’[x/v])v = (Ad.e’[x/e])e. 

The rest is obvious. Cl 

The converse of Theorem 3.6 does not hold. That is, the facilities IF,, . . . , IF,,, . . . 

may still be expressible in 9’ even though the translation from 2 to 2” maps an 

eliminabk phrase to an observably distinct element. One reason for this is that the 

set of programs may not contain an element such that IF i( PI, . . . , ea,) for some IFi 

occurs in a context over the restricted language, in which case it is irrelevant how 

the mapping <p translates this phrase. Thus, by imposing an appropriate condition, 

we can get a theorem on the non-expressibility of programming constructs. 
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Theorem 3.8. Let S=ZZ’+{F,, . . .,ff,, . . . ) be a conservative extension of 2”. If for 
all mappings Q : 2 + 2%” that are homomorphic in all facilities of Y, IFi(e, , . . . , e,,) 

74.y Q@i(el, l l l 9 e,,)) for some L&expressions e, , . . . , e,, and ff i in ff , , . . . , IF,, . . . , 

and if there is a context C(a ) over 2’ that witnesses this inequality, then .Y cannot 
express the facilities ff, , . . . , IF ,,, . . . . 

Proof. Let p : L!?+ 2” be an arbitrary mapping that is homomorphic in all facilities 
Of y. SUppOSe Q(ffi(el, . . . , ea,)) = e and let C(Q) be the context over 3’ that 

observes the operational difference between e and IF i(el , . . . , e,,). Since Q is 
homomorphic over .Y, 

Q(C(Fi(e,, We l , e,,))) = C(Q(Fi(e,, . . . , e,,))) = C(e). 

But, by assumption, eval,( C(ff i( e, , . . . , e,,))) holds while eval,( C( e)) and 

evalY( C(e)) do not hold (or vice versa). This implies that no mapping that is 
homomorphic over 9’ can possibly satisfy condition E3 of Definition 3.3 if the 

antecedent of the theorem holds, and that consequently the programming constructs 

IF I,_“, IF “, . . . cannot be eliminable. Cl 

Based on this first non-expressibility theorem, we can now prove that call-by-name 

A cannot express call-by-value abstractions and vice versa. 

Proposition 3.9. A extends both A, and A,,. 
(i) A,, cannot express A, with respect to A. 

(ii) A, cannot express A, with respect to A. 

Proof.’ (i) According to the semantics for A,,, the application of an abstraction 
(h,y.p) to an argument can only proceed in one of the fallowing three manners: 

1. it may uniformly diverge for all arguments: whenever (A,, y.p)e+ e’ there is always 

an e” such that e’ + e”; 

2. it may uniformly converge to a value for all arguments, including a,, : for all 

expressions e there is a value v, such that (A,, y.p)e+ v, ; 
3. it may activate the argument for a first time: (A,,y.p)e* eel l l - 2k for some 

e,,...,ek. 

The proof of this auxiliary claim is a simple induction on the length of the reduction 

sequence. Ah, it is easy to check that whenever e* e’ then E( e)-t, E( e’). 

Let (A,x.e) be an abstraction in A that converges upon application to some values. 

More specifically, let e and v be ii: A,, and assume that for some value 

u, (Avx.e)v(A,,x.x) -t-, u. Then we claim that C(a) = (av)(A,,x.x) is the context that 
we are looking for in order to apply Theorem 3.8. 

7 Improved by Carolyn Talcott. 



The qxessive power of progrumming languages 49 

Assume that ye : A + A,, is a structure-preserving translation. Then (o(h,u.e) is, or 

reduces to, a value in .A,,. Let h,,y.p be this value. Since the original abstraction 
terminates upon application to some value, the translation of this application must 

terminate as well. Therefore A,y.p cannot diverge uniformly. On the other hand, 

the pre-image, A,x.e, also diverges upon application to a,,, which implies that the 

translation cannot converge uniformly. Thus, let e, , . . . , ek be the expressions such 

that 

C(rp(A,X.e)) = cp(A,x.e)u(A,x.x)~(A,y.p)u(A,x.x)~ ue, l l l C’k(h,lX.X). 

Setting e = A,,x.x and v = A,,x.& (which satisfy the original assumptions), it is trivial 
to see that this program now diverges. If k = 0 the reduction continues with: 

l . -(h,i~.R,,)(h,l~.~)+Ll,i-, l . c; 

otherwise, it is: 

l l -(A,,xd!,,)e, l l l ek(A,,X.X)-,&e,* ’ - e&,X.X)+ - * - 

That is, whereas C(A,x.e) converges to (A,,x.x), C(p(A,x.e)) diverges. By the 

preceding theorem, we have shown our claim. 

(ii) This part is i:;uch simpler. Take C( au) = (cd&), e = (A,,x.( A,,x.x)) and assume 

that (9 is a structure-preserving translation. Clearly, eoal( C( A,,x.( A,,x.x))) holds, but, 

C( q( ( A,lx.( &,x.x)))) diverges. Hence, a structure-preserving translation cannot pre- 

serve operational equivalence, which proves the claim. Cl 

Remark 5 (Weak Expressibility). By Remark 4, A,, can weakly express A, because 

A,x.\s t__., A,,x.e. q 

An immediate corollary of Theorem 3.8 is that if for some phrase with an eliminable 

symbol there is no operationally indistinguishable expression in the restricted 

language, then the restricted language is less expressive than the full language. We 

use this corollary instead of the full theorem in Section 4.2. 

Corollary 3.10. Let 9 = .Y + {at, , . . . , IF,, , . . . } be a conservative extension of Y’. Iffor 

some IFJe,, . . . 9 e,,) there is a program context C over 2” but there is no e in ofp’ such 

thaf Si( e,, . . . , e,,) = Y e, then 2” cannot express the,facilities IF,, . . . , ff ,,, . . . . 

3.2. Macro expre3sibiliry 

Although the definition of eliminable programming construct is a sati:factory first 

step towards a better understanding of the formal structure of programming 
languages, it does not completely account for the idealized notion of “syntactic 

sugar” of Landin and others [24,36,37,40] as discussed in the introduction. In 

many cases, the elimination of “syntactic sugar” constructs not only preserves the 

global program structure but also the structure of the subexpressions of phrases 

built from eliminable constructs. 
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Recall the two examples from the introduction: 

1. In a functional language with first-class functions, a let expression is simply 
abbreviation of the immediate application of an anonymous procedure to 

argument: 

let x be v in e is expressible as apply (procedure (x) e) v. 

2. In a goto-free, Algol-like language, 

repeat s until e is expressible as s; while le do s. 

r an 

an 

In both examples, the translation of a composite phrase is the (fixed) composition 
of the translation of its subphrases. More technically, the translation of a phrase is 

the evaluation of a term (in the sense of universal algebra [S]) over the restricted 

language at the translations of the subphrases. As mentioned above, terms correspond 

to contexts in our framework; for clarity, we refer to contexts as syntactic abstractions’ 

in relation to the following definition and its uses. 

Definition 3.11 ( Macro Eliminability; Macro Expressibility). Let 2’ be a programming 

language and let {ff,, . . . , IF,,, . . . } be a subset of its constructors such that 2”= 

P\{F I,**., IF,,, l * .I is a conservative restriction. The programming facilities 

IF (F,,... I,..‘, are macro eliminable if they are eliminable and if the eliminating 

mapping 50 from 2’ to .Y’ satisfies the following, additional condition: 

E4 For each a-ary construct IF E {IF,, . . . , IF,,, . . .} there exists an a-ary syntactic 

abstraction, A, over 2’ such that 

cs(Ucl,. . . , e,H = AWeA.. . ,4pkd. 

We also say that .Y’ can macro-express the facilities ff,, . . . , IF,, . . . with respect 

to 9. 17 

Remark 6 (Weak Expressibility). If some facilities are weakly expressible and satisfy 

the additional condition, we call them weakly macro-expressible. 0 

Since macro expressibility is a restriction of simple expressibility, Theorem 3.6 

on the eliminability of constructs requires some adaptation. 

Theorem 3.12. Let .Z=Y+(ff,, . . . , IF,,, . . .) be a conservative extension of 9’. If 

50 : 9+ 2’ is homomorphic in all facilities of 2’ and preserves program-ness, and if 

there is a syntactic abstraction Ai for each IFi in IF,, . . . , IF,,, . . . such that 

Fi(e,,. . -,G,) ~~,Ai(~(e,),..., p ( e,, )) for all .%-expressions e, , . . . , en,, then 2’ can 
macro-express the jbcilities O-, , . . . , IF ,,, . . . . 

’ In Lisp-like languages, syntactic abstractions are realized as macros [22]; logical frameworks know 

them as notarioru7l ahhreoiafions [ 173. The terminology of equational algebraic specifications [ 161 refers 
to syntactic abstractions as derived operarors. 
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Proof. It is easy to see that the additional condition in the antecedent is precisely 

what is needed to adapt the proof of Theorem 3.6 to the stronger conclusion. Cl 

Moreover, the additional condition E4 permits a simplification of the theorem to 

a corollary that no longer makes any reference to the translating map. The corollary 

is used in Section 4. 

Corollary ‘3.13. Let Z=Y+{ff,, . . . JF,,, . . .} 6 e a conservative extension of 2’. Lj- 
there is a syntactic abstraction Ai for each lFi in IF., . . . , IF ,,? . . . so that 

k(e,, . . . 9 eO,) syAi(e,,..., e,,) for all 2%expressions e, , . . . , e,, , then 9’ can mucro- 
express the facilities IF, , . . . , IF ,1, . . . . 

By Proposition 3.7, A, can express let. A simple check of the proof reveals that 

the translation between the two languages satisfies the antecedent of the corollary, 
and that therefore let is also macro-expressible. More importantly, however, the 

additional condition E4 in Definition 3.11 also leads to a stronger meta-theorem on 

the non-expressibility of facilities. The new theorem shows that new programming 
constructs add expressive power to a language if their addition affects existing 

operational equivalences. 

Theorem 3.14, Ler 9, = 2ZO+ {IF,, . . . , IF,,, . . . ) be a conservative extension of &,. Let 
+, and s, be the operational equivalence relations of &, and 2,) respectively. 

(i) If the operational equivalence relation of 9, restricted to YO expressions is not 

equal to the operational equivalence relation of 2?0, i.e., so # (=, I&,), then .Z& cannot 

macro-express the facilities IF,, . . . , IF ,,, . . . .9 

(ii) The converse of (i) does not hold. That is, there are cases where 5&, cannot 

express some jacilities IF, , . . . , IF ,, , . . . , even though the operational equivalence relation 

of 2, restricted to &, is identical to the operational equivalence relation of go, i.e., 
=o = (=,12&J. 

Proof. Let eval, and eval, be the respective evaluation predicates for &, and 2,. 

(i) A difference between the restricted operational equivalence relation of 2, and 

that of JZO implies that there are two phrases e and e’ in 2’,, and 2’1 such that either 

e zO e’ and e g, e’ and e f. e’ and e =, e’. For the first case, let C( cu) be a context 

over 2, that can differentiate the two phrases e and e’. Let us say, without loss of 
generality, that 

eval, holds for C(e) but not for C(e’). 

Now, assume contrary to the claim in the theorem that .2’(, can express the facilities 

IF IF IS”‘, II%.... Then, there is a mapping (9 : .Z’, + JZo that satisfies conditions El 

‘) An extension of an equivalence relation to a larger language is also called conservative if the restriction 

to the old syntax yields the original equivalence relation. To avoid confusion, we will not use this 
terminology here. 
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through E4 of Definitions 3.3 and 3.11. By conditions El and E3, the programs 

C(e) and C( e’) have counterparts in L&, cp( C( e)) and p( C( e’)), that have the same 

termination behavior: 

eual,-,( q( C( e))) holds because eual,( C( e)) holds 

and 

enaZ,( p( C( e’))) does not hold because eual, ( C( e’)) does not hold. (Q 

By conditions E2 and E4, the programs cp( C( e)) and q( C( e’)) can only differ in 

a finite number of occurrences of e and e’. In other words, there is a program 

context D(a) over LZO such that cp( C(e)) = D(e) and po( C(e’)) = D(e’): for the 

proof, see the Translation Lemma below. Next, from the assumption e sO e’, it 
follows that p( C(e)) = D(e) and q( C(e’)) = D(e’) have the same termination 

benavior in L&, i.e., 

eval,( D( e)) holds if and only if eval,( D(e’)) holds. 

But this contradicts the above fact (t) that v( C( e)) = D(e) converges and q( C( e’)) = 
D(e’) diverges, which concludes the first case. 

For the second case, assume e P, e’ and e = I e’. This assumption actually implies 

that 

there are no contexts over SO that _omplete both e and e’ to programs. (*) 

For otherwise, there must be a context C(a) such that eval,(C( e)) holds while 
eval,( C( e’)) does not. Since 9, is a conservative extension of PO, eval, (C( e)) holds, 

eval,( C( e’)) does not, and therefore contrary to the assumption, e 34, e’. 
Now again, assume contrary to the claim of the theorem that L$, can express the 

additional facilities in LZl via an appropriate translation q : 2, + L?,. Since e and e’ 

are operationally equivalent in 9, , there must be a context C(a) over 9, such that 

eval,( C( e)) and eval,( C( e’)). By assumption, evalO( q( C( e))) and eval,( cp(C(e’))). 
Again by the Translation Lemma, the two translated programs are instances of the 
same program context D(cw) such that cp( C(e)) = D(e) and p( C(e’)) = D( e’). But 

by the above fact (*), such a context cannot exist, and we have thereby arrived at 

a contradiction. This concludes the second case of claim (i). 

To finish the proof of claim (i), we must finally show that a homomorphic function 

preserves the structure of a program. 

Translation Lemma. Let cp : Lfl + .Lfo be a translation that satisfies Conditions El 
through E4 in Dejinitions 3.3 and 3.11. Let C(o) be a context over 2, . Then, there 
is o context D(a) over JfO such that cp( C(e)) = D(e) and cp( C(e’)) = D( e’). 

hoof. The proof is an induction on the structure of C(a). The only interesting 

caseisthefollowing.Say,C(~)=ff(C,(Q) ,..., C,(cl!))forsomeIFinff; ,..., IF,, ,.... 

Then, 
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cPW(Cde’), . . . , CA0 = A(dG(e’)), . . . 9 cp(C,(e’))) 

for some fixed syntactic abstraction A over .2$ by condition E4. By inductive 

hypothesis, there are contexts Di(a), for 1 s id U, such that p( Ci(e)) = Q(e) and 
q( Ci(e’)) = Q( e’). But then D(a) = A( &(a,), . . . , Da(a)) is the context corre- 

sponding to C(G). The other cases are similar but easier. q lLemma 

The proof of the Translation Lemma finishes the proof of case (i). 

(ii) We only sketch the construction of an example that proves claim (ii). For 

another example that is more interesting and fits more smoothly into this paper, 
see Subsection 4.2 on the control structure of Idealized Scheme. 

For the base language, take the simply typed A-calculus with a fixed point operator, 

whose types are either base types or arrow types. Because of the type system, it is 

impossible to define the typical cons, car, and cdr functions for pairs of values of 
arbitrary types. Hence this simply-typed language cannot express these functions. 

On the other hand, also due to the type system of the language, the new functions 
cannot be bound to free variables in phrases of the sublanguage, which implies that 

the additional functions on pairs (of distinctly typed components) cannot be used 

to distinguish phrases in the simply typed language. It follows that pairing functions 

and selectors increase the expressive power without destroying operational 

equivalences of the underlying language. 0 

Based on Theorem 3.14, we can show that the sublanguage A, is not strong 

enough to macro-express call-by-name abstraction, and that A,, is not strong enough 
to macro-express call-by-value abstraction. The proofs utilize the first half of the 

proof of claim (i). 

Proposition 3.15. A extends both AL, and A,,. 

(i) A, cannot macro-express h, with respect to A. 
(ii) A, cannot macro-express A,, with respect to A. 

Proof. The claims are obviously consequences of Proposition 3.9. 

(i) A direct proof for the first claim is derived from a theorem by Ong [31: 

Theorem 4.1.1],‘” based on the preceding meta-theorem. Consider the phrases 

x(h,,y.x(YK)fiy)(YK) and x(x(YK)O)(YK). The two are equivalent in an adequate 

model of A,, [31] and are therefore operationally equivalent: 

x(A,,y.x(YK)L?y)(YK) = \,, x(x(YK)R)(YK), 

The operational reasoning for a verification of this equivalence is as follows. No 

matter which argument the procedure x evaluates first, the expression (YK) event- 

ually appears in the hole of the evaluation context, which leads to an immediate 

termination of the program evaluation. 

“’ Gordon Plotkin pointed out Abramsky’s [l] and Ong’s [31] work on the iaty h-calculus, which 
corrected a mistake in an early draft. 
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In the full language A, the above analysis no longer holds: Call-by-value pro- 
cedures can evaluate and discard the expression (YK) in a way that does not affect 
the rest of the program. Thus, the context 

C(a) = (A,x*a)(A,x.(A,y.y)) 

can distinguish between the two phrases: C(x(A,,y.x(YK)s2y)(YK)) terminates, but 
C(x(x(YK)a)(YK)) diverges. By Theorem 3.14, A, cannot express A,. 

(ii) Consider the expressions A,Jf(A,x.x)0 and A&i?. In the pure call-by-value 
setting, the two are operationally equivalent: 

Both abstractions are values; upon application to an arbitrary value, both of them 
diverge, A formal proof is straightforward, based on the proof rules in Fig. 3. In 
the extended language A, however, we can differentiate the two with the context 

C(a) = a( A,x.( A,y.x)). 

The context applies a phrase to a function that returns the value of the first argument 
after absorbing the second argument without evaluating it, Hence, C(A,Af(A,x.x)J2) 
terminates while c(A,J.'fi!) diverges, which proves that the extension of A, to A 

does not preserve the operational equivalence relation. Again by Theorem 3.14, A,, 
is not expressible. Cl 

Remark 7 (Weak Expressibility). Remark 5 and the proof of Proposition 3.15 show 
that Theorem 3.14 does not carry over to weak expressibility because A,, can weakly 
macro-express A, and yet = ,,, SZ = i. That is, even in the case of a language extension 
that does not preserve the operational equivalence or approximation relation, the 
restricted language may already be able to express the new facilities in a weak 
sense. 0 

For a second application of Theorem 3.14, we show that the polymorphic let 
construct of A b is not macro-expressible in A ‘. On one hand, this lemma confirms 
the folk knowledge that a polymorphic let adds expressive power to a monomorphi- 
tally typed programming language. It does not contradict the above proposition, 
which only shows that a polymorphic let is expressible in a monomorphic !anguage. 
On the other hand, this lemma provides an example of an interesting facility that 
is expressible but not macro-expressible relative to the same language. The proof 
relies on the second part of claim (i) in the meta-theorem. 

Proposition 3.16. A iq cannot macro-express let with respect to A l, + let. 

Proof. Consider the expressions (( gx)(jj))) and (A,d.( (gx)(ff)))( gx). Since both 
contain a self-application of the variable f; there is no A i, program context for the 
two expressions, and the two programs cannot be operationally equivalent: 

(&x)(H))) F \’ (AJ.((gx)(fs)))(gx) 
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Still their dynamic behavior is the same. The difference between the two programs 

is that the second computes the application of g to x twice, throwing away the first 

result via a vacuous abstraction: 

gx = fi k (gx)(ff) = NH) = 0 = (&Mgx)(ff))).n 

= (A,Ngx)(ff)))(gx) 

and, for all values v, 

gx = v I- (gx)(ff) = an = (~L~~.((gxKf.n))~ 

= (h,d.((gx)(ff)))(gx). 

Thus, in the extended language, where the variable f can be let-bound in an 

appropriate context, the two program fragments are equivalent: 

((gX)(ff)) s \‘+let (Ad*((gX)(ff)))(SX)- 

Together with the above inequality, this proves the proposition. Cl 

Propositions 3.15 and 3.16 provide several examples of pairs of universal program- 
ming languages that we can differentiate according to our expressiveness criterion. 

With the full language A, it also provides an example of a language that can express 

more than A, and A,,. We have come to a point where we can formally distinguish 

the expressive power of programming languages. 

3.3. Expressiveness 

The two notions of expressibility are also simple comparison relations for 
languages and their conservative extensions. For a comphrison of arbitrary program- 

ming languages, these relations are too weak. One solution is to conceive of our 

abstract programming languages as signatures (or types in the sense of universal 

algebra [ 51) for classes of real programming languages. It is then possible to compare 

languages by comparing their signatures if one signature happens to be a conservative 

extension of the other. Though appealing at first glance, this idea only relaxes 
syntactic constraints such that the languages under comparison do not have to have 
the same syntax. 

An alternative solution is to consider a common language universe that is a 

conservative extension of two or more programming languages. Given a common 

universe that fixes the meaning of a number of interesting programming constructs, 

there is a natural extension of the notion of expressibility to a notion of relative 

expressive power. Intuitively, a programming language is less expressive than another 
if the latter can express all the facilities the former can express in the language 

universe. 

Definition 3.17 ((Macro) Expressiveness). Let 2’” and 2, be conservative language 

restrictions of 2’. 2, is at least as (macro-) expressive as Z(, with respect to 28 if 9, 

contains or can (macro-) express a set of .2’-constructs whenever L& contains or can 

(macro-) express the additional facilities. Cl 



56 M. Felleisen 

The expressiveness relation is obviously a pre-order on sublanguages in a given 

language framework; it is also monotonic in its third argument provided the extension 

to the universe is conservative. 

Theorem 3.18. Let ZO, 2,) iZ2 be conservative restrictions of 9, and let 2 be a 

conservative restriction of alp’. 
(i) Y0 is less expressive than 2$ with respect to 2’. 

(ii) If ZO is less expressive than 2, with respect to 2 and 2, is less expressive than 

JZ2 with respect to 2, then ZO is less expressive than 2$ with respect to 9. 
(iii) If olpO is less expressive than 2, with respect to 23, then 2Z,, is less expressive 

than 2, with respect to 2’. 

Proof. The proof is an easy calculation, verifying the conditions based on the above 

definitions. El 

However, a uniform change to all languages can change expressiveness relations. 

Theorem 3.19. Expressiveness 
of the languages. 

relationships are not invariant under uniform extensions 

Proof. For a simple example, consider A, A,,, and A,, and recall that the two 

sublanguages are incomparable by Propositions 3.9 and 3.15. To prove the claim, 
we uniformly add a begin coflstruct, (begin e e), that evaluates two expressions in 

sequence and then discards the first value. The formal specification requires an 
extension of the set of evaluation contexts to 

E ::= l * l I(begin E e) 

and an additional reduction clause: 

E(begin ve)+ E(e). 

Now, A,, +{begin} can (macro-) express A,x.e as A,,x.(begin x e), but begin does 

not add anything to the power of A,, : after all (begin eI eJ is (macro-) expressible 
as (A,xy.y)e,e, in A,. Thus, in the extended setting A,, +{begin) is more expressive 

than A, + {begin}. 
The claim is still valid if the new facility is already in the language universe. Take 

the same example and add h,xy.y, i.e., Abramsky’s [l] convergence tester C for A,,, 
to both sub-languages, which is equivalent to adding begin. Cl 

The example in the preceding theorem formalizes Algol6O’s definition of call-by- 
value as an abbreviation of a call-by-name procedure preceded by an additional 

block or statement [30: 121; i.e., it is not the pure call-by-name subset of Algol that 

can define call-by-value but an extension thereof that includes a “strict” facility. 

The theorem thus shows how dangerous it is to use such informal claims as 

call-by-name can or cannot express call-by-value etc. These claims only tend to be 
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true in specific language universes for specific conservative 

they often have no justification in other contexts! 
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language restrictions: 

4. The structure of Idealized Scheme 

Pure Scheme is a simple functional programming language. It has multi-ary, 
call-by-value procedures and algebraic constants. There are basic constants and 
functional constants. Following Plotkin, we assume the existence of a partial function 
(6) from functional constants and closed values to closed values that specifies the 

behavior of constants in hre Scheme and its extensions. Typically, the constants 

include integers, characters, booleans, and some appropriate functions; Fig. 4 con- 
tains the appropriate definition of 6. In order to gain a complete understanding of 

Idealized Scheme, Pure Scheme only contains integers and a minimal set of functions 

on integers, elements that are expressible in a A-calculus-based language like A,. 

Syntax 
::= 

; ::= 
O(lj -l/2) -2) . . . (numerals) 

O? II+ I I- I + I - (numeric funclions) 

V ..- ..- 

e ..- .*- 

Semant its 

elf (constants) 

I (lambda (5. . .) e) (abstractions) 
V (values) 

X (variables) 

(e e...) (apptications) 

e&(e) holds iff e -* v for some v 

Evaluation Contexts 

Reduction Steps 

E ::=(I I (v...E e...) 

E((fv.. .)) - I=(a(f, v,. . .)) if c5( f, v,. . .) is defined 

E(((lambda (21.. .zn) e) vi.. .v,)) - E(e[zl/ul.. . ., G?/%l~ 

Constant Interpretation 

a(l+,n) = n + 1 
f5(l-,n) = 71- 1 

b(+,n,m) = n+m 

6(-,n,m) = R.-m 

b(O?,O) = (lambda (z Y) 5) 

S(O?,n) = (lambda (z y) Y) 
for n jt 0 

Fig. 4. Pure Sdjer,:e. 

Figure 4 contains the complete specification of Pure Scheme, based on a reduction 

semantics in the style of the previous section. Scheme programs satisfy two context- 

sensitive definitions: They are closed expressions, and they do not contain lamda- 
abstractions with repeated parameter names. The predicate eual holds for a program 

if the program reduces to an answer, that is, values in the case of Pure Scheme. If 
eval does not hold for a program, the program is either in an infinite ioop or the 
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reduction process is stuck. I’ In Pure Scheme, an evaluation can become stuck because 

of the application of a constant symbol to a A-expression, the application of a 

numeral to a value, the application of a constant .Function to a value for which 6 

is undefined, or the application of a lambda-abstraction to the wrong number of 

arguments. As before, the reduction rules for Pure Scheme constitutti the basis for 

-proof systems for the operational equivalence relation in the spirit of Fig. 3. For 

brevity, however, we shall carry out most of the proofs in this section in an informal 
setting; it should be clear from the proofs, though, how to formalize the various 

steps, In the following subsections, sps denotes the operational equivalence relation 

on Pure Scheme; other indexes correspond to extensiorls of Pure Scheme and should 

be self-explanatory. 

The main characteristic of Idea!ized Scheme [ 11,12,13] is the extension of the 

functional core language Pure Scheme with type predicates, local branching con- 
structs, and imperative facilities: 

0 branching expressions for the local manipulation of control, 

@ predicate constants for determining the type of a value, 

l control operators for the non-local manipulation of control, and 

l assignment statements for the manipulation of state variables. 

The extensions reflect the belief that these constructs increase the expressive power 

of the language [40,41]. In this section, we demonstrate how to formulate these 
beliefs in our formal macro-expressiveness framework. 

Subsection 4.1 simultaneously deals with local control and type predicates because 

the two sets of constructs are closely related. The second subsection is a study of 

two different control operators, one for stopping the execution of a program and 

another for handling the general flow of control. The third subsection shows how 

imperative assignments add expressive power to the core language. Finally, the last 

subsection addresses the unrelated issue of how Pure Scheme relates to so-called 
“lazy” functional languages, or more precisely, to call-by-value languages with 

call-by-name data constructors. We thus hope to reconcile Proposition 3.15 on the 
non-expressibility of call-by-name abstractions in A, and Pure Scheme with the 

wide-spread belief that “lazy” data constructions are available in higher-order, 
by-value languages. 

4.1. Local control and dynamic types 

The programming language world knows two types of local branching statements: 

ihe booiean-value based if-construct for distinguishing two values from each other, 

and the Lisp-style if-construct for distinguishing one special value from all others. 

” Although this is common practice in semantic considerations, a more realistic specification would 

have to consider the introduction of an error mechanism. However, an error mechanism actually 
introduced additional expressive power, which is the rea:ion why we consider it separately. 
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The semantics of the former relies on the presence of two distinct values: false and 
true, or 0 and 1. Assuming an extension of the set of evaluation contexts to 

E ::= l l l I(Bif Eee), 

the following two additional reduction rules characterize the behavior of truth-value 

based Bif: 

E(Bif 1 e, ef)+ E(e,) (Bif.true) 

E(Bif 0 e, er)+ E(es). (Bif.false) 

If the test value in a Bif-expression is neither 0 nor 1, the evaluation of the program 

is undefined, or equivalently, such a Bif-expression is operationally indistinguishable 

from a diverging expression. The extension is obviously conservative; we refer to 

it as PS(Bif). 

Clearly, Pure Scheme can express such a simple Bif. 

Proposition 4.1. Pure Scheme can macro-express Bif. 

Proof Sketch. The proposition follows from Corollary 3.13 and is basically due to 
Landin and Burge [23: 1151, who realized that vacuous lambda abstractions could 
be used to suspend computations. Consider the syntactic abstraction: 

(Bif (Y LY, a]) = ((lambda ( t thn e/s) 

(((O? (I- t)) thn ((O? t) el!s (lambda () 0))))) 
a! (Iambda () a,) (lambda () cuf)). 

It is easy to show that this abstraction is operationally equivalent to Bif. If the 
replacement for Q is neither 0 nor 1, then both expressions diverge. Otherwise, both 

expressions select one of the replacements for LY, or cyr and eliminates the other. 

The right-hand side accomplishes this by suspending the two expressions in 0-ary 

procedure and invoking one of them after the selection has been made. q 

Remark 8 (Weak Expressibility). An extension of Pure Scheme with Bif and two 
distinct new values, true and false, would not be macro-eliminable. Otherwise cp 

would have to map true to a term t in Pure Scheme, which implies that the programs 

(Bif true 1 2), 

and 

(Bif t 1 2), 

map to the same image, namely 

AU, deA ded 

for some fixed syntactic abstraction A. But it is then impossible that the translation 

preserves program behavior because the first program terminates and the second 

one diverges. 
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Clearly, Bif is still weakly expressible since th, translation will only force more 

programs to terminate. In a typed version of Pure Scheme, the problem would 

disappehzr. The type system would not admit a program with an ill-typed Bif- 

expression. Put diflerently, since a typed version of Pure Scheme admits fewer 
programs, expressiveness propositions are stronger. Cl 

The Lisp-style if assumes that there is one distinct value for false, in Lisp usually 
called nil, and ail other values represent true. With 0 again serving as false, the 

reduction rules differ accordingly from (Bif.true) and (Bif.false): 

(Lif v e, e& + e, for v f 0, (Lif.v) 

(LifOe,eJ)++ (Lif.nil) 

Proposition 4.2. Pure Scheme cannot macro-express Lif. 

Proof Sketch. For readability, we carry out the proof in PS(Bif). Since Bif is 

macro-expressible by Proposition 4.1, operational equivalences of terms hold in 

Pure Scheme after expanding the Bif-expressions. 

The proposition is a consequence of Theorem 3.14. The interesting operational 

equivalence is based on the following context: 

C(a)=(Bif(p(lambda()cR))(Bif(pO)l a!)n). 

In Pure Scheme, the evaluation of (an instance of) this context cannot reach (the 

replacement of) LY. First, if p is not bound to a procedure, the evaluation process 

diverges at the first invocation of p on (lambda () 0). Thus assume p is replaced 

by a procedure. The rest of the proof proceeds by a case analysis on the following 

property of procedures: a procedure of one argument may (1) ignore its argument 

and return a constant result, or (2) apply a constant function symbol to its argument, 
or (3) use its argument in the procedure position of an application. For the evaluation 
of C(a) to reach LY, the procedure must return two different results: 1 on 
(lambda () a), and 0 and 0. Let us then consider the other two alternatives. On one 

hand, if p applies a functional constant in Pure Scheme to its argument, then the 

application (p (lambda () 0)) diverges. On the other, when p uses its argument as 

a procedure, the evaluation again diverges in the first test position. In short, either 

the evaluation of C diverges at the frrst test position, or the procedure p produces 

a result that is independent of its argument. Both cases imply that an evaluation 
cannot reduce a redex in the replacement of CY. 

It’follows from the above that it is inconsequential what cr represents. Therefore, 

C( 1) spr C(0). In the larger setting of PS(Lif), however, the preceding analysis 

does not hold. A context over PS(Lif), could bind the variable p to the procedure 

(lambda (x) (Lif x 0 l)), 

which can distinguish the arguments 0 and (lambda () 0) in ;he correct manner: 

C(1) G,. C(O). Cl 
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As an alternative to the addition of Lif, dynamically typed languages generally 

include type ,predicates. For extending Pure Scheme with a predicate symbol like 

int?, it suffices to extend the interpretation function S with the clauses 

S(int?, c) = (lambda (xy) x), 

S(int?, (lambda (. . . ) e)) = (lambda (xy) y). 

Again, the extension, PS( int?), is clearly conservative. 
With int?, programs in the extended language can now effectively test the type 

of a value, and indeed, int? can express Lif. It follows that int? is not expressible 

in Pure Scheme. 

Proposition 4.3. (i) Pure Scheme cannot express int?. 

(ii) PS(int?) can express Lif. 

Proof Sketch. First, PS(int?) can macro-express Lif: 

(Lif LY cy, q) = (Bif (sand ((int? a) (O? (l- a))) a, aj.), 

where 

(cand aI a,) = (Bif cyI cxz 0) 

and Bif is expressed as in Proposition 4.1 above. Second, since PS(int?) can express 
Lif, it is stronger than Pure Scheme by the preceding proposition. Cl 

The converse does not hold: A Lisp-style Lif can distinguish between 0 and all 

other values but not a,~ arbitrary integer from the class of procedures. 

Proposition 4.4. PS( Lif) cannot macro-express int?. 

Proof Sketch. The proof proceeds along the lines of the proof of Proposition 4.2. 
Instead of applying the procedure variable p to 0, the modified context invokes 

ponl: 

C’(a) = (Bif (p (lambda () 0)) (Bif (p 1) 1 a) 0). 

The analysis uses the same reasoning as the above proposition with one exception: 

a procedure argument may now also appear in the test position of a Lif-expression. 
As above, for the evaluation of (an instance of) C’ to reach (the replacement of) 

cy, the procedure may not invoke its argument, may not submit it to a constant 

function, but can test it with a Lif-expression. But this is irrelevant because both 1 

and (lambda () 0) cause a Lif-expression to take the same branch. Hence, 

C’( 1) = Llf‘ C’(n), yet, with int? in the language, this is no longer the case: 

C’( 1) gi,j,‘! C’( 0). q 

Putting it all together, we see that Pure Scheme can handle some but not all types 

of local branching decisions. A simple, boolean-valued if construct is expressible. 
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The more typical Lisp-style if adds the expressive power to distinguish one integer 

value from all other values, whereas the domain predicate int? permits a distinction 
between each integer value and the class of ail other values. 

4.2. Non-local control 

A more interesting expressiveness constellation arises in the context of non-local 

cpntroi abstractions. Idealized Scheme has the operations abort and caH/cc. The 
former facility abandons the current evaluation context, realizing a simplistic form 

of error handling. The latter applies its subexpression to an abstraction of the current 

control state, permitting almost arbitrary manipulations of the flow of control. Its 

name stands for “call with current continuation” because the Scheme-terminology 
refers to an abstraction of the control state as a “continuation*’ in analogy to 

denotational semantics. Figure 5 specifies the syntax and a simple reduction seman- 
tics of Pure Scheme with both control operators. We refer to the entire extension 
as PS(contro1); = E+(r denotes its operational equivalence. Two interesting con- 

servative restrictions of PS(contro1) are PS(abort) = PureScheme + abort and 

PS(call/cc) = Pure Scheme +call/cc with =a and + as their respective operational 

equivalences. 

Additional Syntax 

e ..- ..- . . . 1 (call/cc e) (continualion captures) 
1 (abort e) (progmm stops) 

Additional Reduction Steps 

E(call/cc e) - E(e (lambda (t) (abort E(z)))) 

E(abort e) - e 

Fig. 5. Pure Scheme with control. 

With the semantics of Figure -Sj it is trivial to verify that the extensions are 

conservative ober Pure Scheme. The semantics forms the basis of a simple equational 

calculus for abort and call/cc, and permits simple, zlgebra-like reasoning about 

programs with control operations [ 12,131. Ail three languages are more expressive 

than Pure Scheme. 

Proposition 4.5. Pure Scheme cannot macro-express non-local control constructs: Pure 

Scheme cannot macro-express abort or call/cc relative to PS(abort), PS(eall/cc), and 

PS( control). 

Proof Sketch. The proof relies on Theorem 3.14, i.e., the addition of abort and 

call/cc invalidate operational equivalences over Pure Scheme. A typical example” 

‘* This example is a folk theorem example in the theoretical “continuation” community, but it was 
also used by Meyer and Rieckc to argue the “unredsonablelleds” of continuations [26]. 
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is the operational equivalence 

(lambda (f) ((f0) a)) sps (lambda (f) a). 

As argued in the proof of Proposition 3.15(i), these two procedures are equivalent 

in a functional setting: both diverge when applied to a value. It is easy to check 

that this argument still holds in Pure Scheme. 

With abort and call/cc, however, there are contexts that invalidate this equivalence. 
Two examples are ( LY (lambda (x) (abort x))) and (call/cc a). Whereas the composi- 

tion of the first expression with these contexts evaluates to 0, the second expression 

diverges in the same contexts: 

(lambda (f) (MO) 0)) % (lambda (f) 0). 

for x ranging over a, c, and c + 0. Cl 

The next natural question is whether the two control operations are related or 
whether they provide distinct facilities. The following proposition shows that in 

Idealized Scheme, the two are actually independent enhancements of the expressive 

power of the core language.13 

Proposition 4.6. The control constructs abort and call/cc cannot express each other: 

ii) PS(abort) cannot macro-express call/cc with respect to PS(contro1) [39:. 
(ii) PS(call/cc) cannot (macro-) express abort with respect to PS(contro1). 

Proof Sketch. (i) The p-oof of the first claim shows that call/cc destroys operational 
equivalences in PS(abort). A typical example is C(1) =0 C(L!) where 

C(a) =(Bif (f(lambda (k) ((k 1) 0))) 

(Bif (f(lambda (k) ((ka) C!))) 0 1) 

0). 

These two terms could only dither if the procedure J invokes its argument, and if 
this invocation could return a result. In PS(abort), this is impossible because 
expressions can either produce a value, diverge, or abort. Therefore, the body of 

f’s first argument, (lambda (k) ((k ((k 1) iI)), either aborts or diverges, but certainly 

cannot return a value. After adding call/cc, however, a context that binds f to 

(lambda (x) (call/cc x)) 

can distinguish the term C(1) from C(n): C(1) $c+a C(n). 

I3 The non-expressibility of abort appears to be an artifact of our modeling of Scheme. A more realistic 
model of Scheme systems (as opposed to the Scheme semantics [35]) would have to include the interactive 
loop, which provides a delimiter for control Lctions [9]. tsy including an appropriate version of this 
de!imiter in PS(control), abort becomes macro-expressible as a combination of call/cc and the control 
delimiter [29]. Put differently, interactive programming systems actually add expressive power to the 
programming language. Peter Lee [personal communication] pointed out another example of this 
phenomenon: The addition of a read-eval-print loop also introduces true, non-climinable polymorphism 
into a language like A’ -I- let by providing top-level let declarations with an open-ended body expression. 
The fact that such interactive programming environments add power to their underlying languages 
suggests that they should be specified as a part of !he language standards! 
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(ii) The second claim is a consequence of Corollary 3.10, i.e., there is a program 
with an abort expression for which it is impossible to find an operationally equivalent 

call/cc expression. The program is ((lambda (d) 0) (abort 1)); it is the composition 

of the context ,(lambda (d) 0) a) over PS(call/cc) and an abort expression. 
The absence of an operationally equivalent expression for (abort 1) from 

PS(call/cc) follows from the property that expressions in the restricted language 

cannot eliminate their evaluation context. More technically, if E(e) is a program 
over PS(contro1) such that all occurrences of abort expressions have the form 

(abort E(e’)) for some e’, then either E(e) * E(U) or e =c+a 0. The proof of this 
auxiliary claim is a routine induction on n in the following statement: 

If E(e) + n E (e’) then either ( 1) e’ is a value, or (2) e’ contains a stuck 

redex, or (3) there is an err such th,at E (e’) + E (e”) and E (e”) satisfies the 

above condition on abort subexpressions. 

Since an expression over PS(call,‘cc) does not contain any abort expression, it 

vacuously satisfies the antecedent sf the auxiliary claim. Hence, it either diverges 
or it returns a value and cannot be interchanged with an abort expression without 

effect on the behavior of a PS(contro1) program. 

From the existence of a program that contains (abort 1) and the non-existence of 

an operationally equivalent exprtission, it follows that PS(call/cc) cannot express 
abort in PS(contro1). El 

The preceding proposition not only establishes the formal expressiveness relation- 

ship among the control operators of Idealized Scheme, but it also provides a concrete 

example for the second claim in Theorem 3.14. 

Theorem 3.14 (restated). Let .2’, = ZO+ {IF,, . . . , IF,,, . . .) be a conservative restriction 

of 2$. Let GO and =, bc the operational equivalence relations of ZO and 2, , respectively. 

(ii) IIe converse of’ (1) *does not hold. That is, there are cases where YO cannot 
iTpress _rr?me_facilitim IF, , . . . , IF 119 - * l 9 even though the operational equivalence relation 

of .2’, restricted to 2&, is identical to the operational equivalence relation of 2?,,, i.e., 

=o=(=&)). 

Proof. By the preceding proposition we know that PS(calljcc) cannot express abort. 

To finish the proof, we only need to prove that the operational equivalence relation 

of PS(call/cc) is a subset of the operational equivalence relation of PS(contro1): 
z c ( =r+a -c- 1 PS(call/cc)); the other direction is obvious. 

Assume that e ++a e’. We prove that e & e’. Suppose there is a context C that 

can distinguish. e and e’ in PS(contro1). If the context is also a context over 

PS(call/scj, the result is immediate. Otherwise, C contains a number of abort 

expressions, and there exists a context D( LY, cyI, . . . , a,,) such that 

C(a) = D( cy, (abort e,), . . . , (abort e,,)). 

NOW let a be a variable that does not occur in C, and let the context C’(e) be 
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defined as follows: 

C’(Q) = ((call/cc (lambda (a) 

(lambda ( j 

D(a, (4 (lambda 0 4,. . . , (a (lambda 0 ed)))))). 

Next, we show that eval( C( e)) holds if and only if eval( C’(e)) holds. First, the 

program C’ evaluates to an intermediate program with a few administrative steps: 

C’(e) ++ D(e, ((lambda(x) (abort(x))) (lambda (j e,)), . . . , 

((lambda (x) (abort (x))) (lambda (j e,))). 

Second, by a generalized version of the call-by-value p axiom, 

((lambda (x) (abort (x))) (lambda (j ei)) sr+o (abort ei), 

and therefore 

D(e, ((lambda (x) (abort(x))) (lambda (j e,)), . . . , 

((lambda (x) (abort (x))) (lambda (j e,))) 

terminates if and only if 

D(e, [abort e,), . . . , (abort e,,)) = C(e) 

terminates. The same analysis holds for the program C(e’), and we have thus shown 

that the context C’(a) distinguishes e and e’: e f, e’. I4 Cl 

111 summary, we have shown that PS(contro1) extends both PS(abort) and 
PS(call/cc) with respect to expressive power, and the latter two individually extend 

Pure Scheme itself. An interesting point is that the extension of PS(abort) to 

PS(contro1) is qualitatively different from the extension of PS(call/cc) to 

PS(contro1). We expect this point to be a topic of further investigations. 

4.3. Assignments 

The final addition to Pure Scheme is the set!-construct, Scheme’s form of assign- 

ment statement. Like in a traditional Algol-like programming language, the set!- 

expression destructively alters a binding of an identifier to a value. A simple reduction 

semantics for PS(state), Pure Scheme with set! and letrec (for recursive declarations 

of variables with initial values), is given in Fig. 6. Clearly, PS(state) is a conservative 

extension of Pure Scheme; the new semantics is the basis for an equational calculus 

for reasoning about operational equivalences in PS(state) [ 11,121. 

Proposition 4.7. Pure Scheme cannot express set! and letrec. 

Proof Sketch. Consider the expression ((lambda (d) (f0)) (JO)), which contains 

the same subexpression, (f 0), twice. In a functional language like Pure Scheme, the 

” The transformation of C’(e) into C(e’) is not a homomorphic translation because it changes the 
top-level structure of the program. Since such a translation could encode a program as an integer and 
an interpreter as a function on the integers, a restricted language with all computable functions could 
express any feature if we allowed such global changes to programs. 
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Additional Syntax 

e ::= . , . 1 (set! 5 e) 
1 (letrec ([x v] I m .> e) 

Extended Semantics 

Additional Evaluation Cantexts 

E l .- *.- , . . I (set! 5 

Additional Reduction Steps 

(Iletrec (. II J E((fu. (I .))) -4 

(ktrec f.. _) E((lambda (31~. *) e) ZII . I l )) --+ 

two subexpressions return the same value, if any, and, given that the value of the 
first subexpression is discarded, the expression is operationally equivalent to (f 0): 

((lambda (d) (SO)) (f@) =Ps (jT6), 

The verification of this equivalence in the proof system of Fig. 3 is straightforward. 
In the extended language, this is no longer true. Consider the context 

C(a) = (letrec (f(lambda (x) (set!f(lambda (x) 65)))) a), 

which declares a proceduref: Upon the first application, the procedure modifies its 
declaration so that a second invocation leads to divergence. Consequently, an 
expression with a single use of the function converges, but an expression with two 
uses diverges: 

((Iambda (4 0)) (f(V) %sel? (DV q 

Not surprisingly, assignments increase the expressive power of Idealized Scheme. 

Without proof, we add that Scheme’s form of assignment is equivalent to cells with 
a destructive update operation but without domain predicate. 

4.4. Non-evaluating constructors 

Functional languages often use the call-by-name para~l~etera~assi~g protocol 
instead of &re Scheme’s call-by-value technique. Alternatively, such languages offer 
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data constructors, say cons, that do not evaluate their arguments [ 151. It is a widely 

held belief that such provisions are superfluous in the presence of higher-order 

procedural abstractions. 
As shown in the previous section, call-by-value languages cannot express csll-by- 

name abstractions. This result also holds in the extended framework of Pure Scheme. 

However, the introduction of non-evaluating data constructors is a bit more subtle. 

To study this issue more thoroughly, we consider two different conservative 
extensions of Pure Scheme, each of which incorporates a different form of a call-by- 
name constructor. The first extension, PS(lazy), provides the constructor as a 

first-class function: 

V ::= l - l Icons$ (call-by-name cons) 

1 (cons$ e e) (“lazy” values). 

For simplicity, “lazy” values are functions, and 1 and 2 serve as selector arguments. 
Figure 7 contains the corresponding extension of the reduction relation. Though 

not equivalent to full call-by-name abstractions, this addition of a single call-by-name 

primitive still introduces new semantic capabilities. A proof of this statement is 

easily derivable from Proposition 3.15. 

Evaluation Contexts 

E ::=a 1 (u...E ea..) where u = v \ (con&) 

Additional Reduction Steps 

E((cons$ el e2) 1) - E(a) 

E((cons$ el e2) 2) - Et4 

Fig. 7. Pure Scheme(cons$). 

The second extension, PS( delayed), is a restriction of tne first. The non-evaluating 

constructor is no longer a first-class function but is only available in first-order form: 

V ::= l l l 1 (cons$ e e) (“lazy” values) 

The reduction relation remains the same (Fig. 7). It is this restricted extension that 

is expressible in Pure Scheme. 

Proposition 4.8. Pure Scheme can macro-express cons$ relative to PS(delayed). 

Proof. The desired syntactic abstraction is 

(cons$ al cyZ) = (lambda (s) 

if(O? (l- s))al (Bif(O? (l-(l-~)))a? a))). 

It is easy to check that the corresponding translation satisfies the reduction clauses 

of the original functions. The result follows from Corollary 3.13. Cl 
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Remark 9 (Weak Expressibility). If the extended language contained selector func- 
tions for lazy values, the new values would only be weakly expressible for the same 
reason as Bif, true, and false are only weakly expressible (see Remark 8). III 

5. The conciseness conjecture 

If a programming language can represent all computable functions (on the 
integers), it contains a functionally equivalent counterpart to each program in a 
more expressive language. This raises the question as to what advantages there are 
to programming in the more expressive language when equivalent programs in the 
simpler language already exist. By the definition of an expressible construct, pro- 
grams in a less expressive language generally have a globally different structure 
from functionally equivalent programs in a more expressive language. But, is this 
really all we can say about programming in more expressive languages? 

By studying a number of examples, we have come to the conclusion that programs 
in less expressive languages exhibit repeated occurrences of programming patterns, 
and that this pattern-oriented style is detrimental to the programming process. To 
illustrate our point, we begin by presenting two examples. The first example compares 
two equivalent programs in variants of full Scheme and Scheme without 
assignment. ” Consider the following program fragment: 

(let (. . . 
[ TramManager (let ( TransCounter 0) 

(lambda (TramType) 
(if ( counter ? TramType) 

TransCounter 
(begirr 

(set! TransCounter (add! TramCounter)) 
BO‘DW))] 

. . . 1 
. . . ( TransManager tl) . . .) 

The program first binds the variable TramManager to a pygcedure that handles 
transactions and simultaneously counts how many transactions it performs. The 
procedure accomplishes the counting by allocating a local variable, TransCounter, 
in its private scope with initial value 0. For every subsequent proper transaction, 
the procedure then uses an assignment to increase TramCounter DY 1. There is a 
special transaction of appropriate type that can check the number of past 
transactions. 

A program in Rue Scheme-or any other ‘functional language without assign- 
ments-must realize the counting of transactions in a different way. For example, 

” This comparison is part of the folklore of the el,pressiveness discussion 124: 1651; the particular 
example is adap’9.d from wr previous paper or, the cquationnl semantics of assignments [I I]. 
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the above program fragment would have to be rewritten into something like the 

following code: 

(let i . . 

1 bansManager (lambda ( TransType TransCounter) 

(if (counter? TransType) 

TransCoun ter 

( COIIS (add 1 TransCoun ter) 

BO~Y)))I 
[ TransCounter 0] 

. . . ) 
. . . (let (result ( TransManager tl TransCounter)) 

(let ([ TransCounter (car result)] 
[ ProperResult (cdr result]) 

- - J)) 

This functional version of the program declares a variable for transaction counting 

in the same scope as the transaction manager procedure, which now takes the 

current value of the counter as an additional argument. Upon completion of the 

transaction, TransManager returns a pair whose first component is the increased 

counter value and whose second component is the proper result of the transaction. 

All calls to TransManager pass the current value of TransCounter as an extra 

argument. Finally, at every call site there is also some additional code to disassemble 
the result in the desired way. 

The functional version offers many opportunities for code simplifications. 

Specifically, every call site for the transaction procedure could immediately update 

the counter if the transaction is a proper transaction, and could return the value of 

the counter if the transaction causes a check on the number of previous calls: 

(let (. . . 
[ TransManager (lambda ( TransType) BODY)] 
[ TransCounter 0] 

. . . ) 
. . . (let ( TransCounter (add1 TransCounter)) 

( Trans Manager t 1) 

l .J) 

But, even after simplifying the functional version as much as possible, it always 

contains a large number of repeated kccurrences of add1 expressions, one per call 
site for TransManager, distributed rover the whelp program. 

The second example concerr?; the use of control operators. Imagine a large 

functional program consisting af several modules. The interfaces of these modules 

have fully formal specificatio;ls in the form of (variants of) parameter descriptions. 

Now suppose that because of some extension of the program’s requirements, one 

of the modules needs the capability to stop the execution of the (revised) program. 
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In a functional setting, this task is accomplished by eonveriing the relevant parts 
of the program into (simplified) continuation-passing style. Specifically, each func- 
tion that (transitively) uses the critical module passes a functional abstraction of 
the rest of the computation to the critical module, and its call sites are in such a 
position that upon return, no further work needs to be done. It is thus up to the 
critical module to stop or to continue the execution of the rest of the program. If 
the former is necessary, the module discards the additional argument; otherwise, it 
invokes the argument on some intermediate result. This programming style, however, 
requires fundamental changes to the original, non-abortive program. First, the 
interface to the critical module must now indicate the possibility that the module 
could abort the program execution. Second, and more importantly, the code for 
every call site of a function with connections to the critical module must now satisfy 
special conditions. Again, as in the above example, there are alternatives, but for 
each of them, the lack of a non-expressible facility, this time the abort operation, 
causes the occurrence of programming patterns throughout the entire program. 

Based on these examples and others with a similar flavor, we have come to believe 
that the major negative consequence of a lack of expressiveness is the abundance 
of programming patterns to make up for the missing, non-expressible constructs. 
Clearly, a more specific conjecture about this issue must address the question of 
which programs actually benefit from the additional expressive power of larger 
languages since not all of them do. A relatively naive answer would be that improved 
programs use non-expressible constructs in a sensible, obseroatrle rnunrrer. An example 
of a Scheme program that does not use assignments sensibly is a function whose 
only assignment statement occurs at procedure entry and affects the parameter. A 
more formal approach to the notion of “observable manner” could be the idea that 
a program with a sensible use of an additional feature must be transformable into 
a context that can witness operational distinctions between phrases in the restricted 
language. Despite the lack of a good definition for “sensible uses of constructs” or 
even for “programming patterns”, we still venture to formulate the following 
conjecture about the use of expressive programming languages. 

Conciseness Conjecture. Programs in more expressive programming 1angu;lge.s that 
use the additional facilities in a sensible manner contain fewer programming patterns 
than equivalent programs in less expressive languages. 

The most disturbing consequence of programming patterns is that they are an 
obstacle to an understanding of programs for both human readers and program- 
processing programs. In the above TrunsManager example, only a global program 
analysis can verify that the add1 expressions really count the number of transactions. 
Even worse there are two distinct explanations for a contirluation-passing style 
subprogram in a call-by-name functional setting: it may either implement some 
sophisticated control structure, or it may implement a call-by-value protocol [34]. 
Oniy a thorough analysis of the details of the continuation-passing program fragment 
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can reveal the true purpose behind the occurrence of the programming patterns. 

Thus, the main benefit of the use of expressive languages seems to be the ability to 

abstract from programming patterns with simple statements and to state the purpose 

of a program in the concisest possible manner. 

6. Related work 

The earliest attempt at defining and comparing the expressive power of program- 

ming languages is the work on comparative schematology by Chandra, Hewitt, 

Manna, Paterson, and others in the early and mid seventies [6,32]. &hematology 

studies programming languages with a simple set of control constructs, e.g., while- 

foop programs or recursion equations, and with uninterpreted constant and function 

symbcls. As in predicate logic without arithmetic, it is possible to decide certain 

questions about such uninterpreted program schemas. Moreover, the languages are 
not universal, and it makes sense to compare the set of functions that are computable 
based on different sets of control constructs, or based on an interpretation of a 

subset of the function symbols as operations on data structures like stacks, arrays, 

queues. In the presence of full arithmetic, i.e., representations of integers with an 
addition and multiplication function, the approach can no longer compare the 

expressive power of programming languages since everything can be encoded and 

all functions become computable. 
A second approach is due to Fortune et al. [ 141. Their basic observation is that 

statically typed languages without facilities for constructing diverging programs can 

only encode a subset of the total computable functions. For exalmple, whereas the 

simply typed h-calculus-language can define the elementary recursive functions, the 

second-ceder version of the calculus comprises the ~~ elementary recursive functions. 

Like schematology, this approach crucially relies on the fact that the languages 

under consideration are not universal. While these two approaches illuminate some 
of the issues about the expressiveness of data and type structures, their applicability 

to full-fledged programming languages is impossible because an equating of express- 

iveness with computational power is uninteresting from the programmer’s 

perspective. 
Recently, Hoare [20 J proposed classifying programming languages according to 

the equational and inequational laws that their programming constructs satisfy. He 

illustrates this idea with a collection of examples. The laws are based on denotational 
semantics, which are generally sound with respect to operational equivalences. Given 

our theorems that connect expressiveness with the validity of operational equiva- 

lences in programming languages, this approach seems to be a related attempt at 

formalizing or comparing the expressiveness of languages. 
Williams [45] looks at a whole spectrum of formalization techniques for semantic 

conventions in formal systems and, in particular, programming languages. His work 

starts with ideas of applicative and definitional extensions of formal systems but 
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also considers techniques that are more relevant in computational settings, e.g., 
compilation and interpretation. The goal of Williams’s research is a comparison of 

formalization techniques and not a study of the expressiveness of programming 

languages. Some of his results may be relevant for future extensions of our work. 
A secondary piece of related work is the study of the full abstraction property of 

mathematical models [25,31,33] and the representability of functions in A-calculi 

[3,4]. In many cases, the natural denotational model of a programming language 
contains too many elements so that operationally equivalent phrases have different 

mathematical meanings. Since it is relatively easy to reverse-engineer a programming 

language from a model, the equality relation of models without the full abstraction 

property directly corresponds to the operational equivalence of a conservative 

extension. As a consequence, such models naturally lead to the discovery of non- 

expressible programming constructs. In the framework of A-calculus languages, 
such facilities are multiple argument functions that do not require the values of all 

arguments to determine their result [33,1]. Still, the study of full abstraction does 
not provide true insight into the expressive power of languages. On one hand, the 

discovery of new facilities directly depends on the choice of a model. For example, 

whereas a direct model of A,, requires the above-mentioned facility for exploiting 

deterministic parallelism, a continuation model leads to operations on continuations 

and to restrictions of such operations [39]. On the other hand, by Theorem 3.14 we 

also know that a change in the operational equivalence relation is only a su#cient 

but not a ycessary condition for the non-expressibility of a programming construct, 
In short,’ research on full abstraction is a valuable contribution to, but not a 

replacement for, the study of expressiveness (see Proposition 3.15). 

7. Towards a formal programming language design space 

In the preceding sections we developed several ideas on a formal framework for 

comparing the expressive power of programming languages. Based on informal 
claims in the literature, we argued that 

0 the key to programming language comparisons is a restriction on the set of 

admissible translations between programming languages. 

Specifically, we proposed that 

0 the translations between languages should preserve as much of a program’s 

structure as possible. 

An application of this principle to conservative language extensions produced a 

number of criteria for deciding whether additional operators increase the expressive 

power or not. For a concrete example, we considered several language extensions 

of Pure Scheme, a simple functional programming language, and found that our 

formal expressiveness results are close to the intuitive ideas in the literature, 
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The most important criterion for comparing programming languages showed that 

an increase in expressive power may destroy semantic properties of the core language 

that programmers may have become accustomed to (Theorem 3.14). Among other 
things, this invalidation .bf operational laws through language extensions implies 

that there are now more distinctions to be considered for semantic analyses of 

expressions in the core language. On the other hand, the use of more expressive 

languages seems to facilitate the programming process by making programs more 
concise and abstract (Conciseness Conjecture). Put together, this result says that 

0 an increase in expressive power is related to a decrease of the set of “natural” 

(mathematically appealing) operational equivalences. 

An interesting challenge is to find expressive extensions of languages whose addi- 

tional facilities do not invalidate operational laws. I6 

The current framework is only a first step towards a formal programming language 
design space. On one hand, we must investigate our comparison relation for arbitrary 

languages in more depth before we can judge its general usefulness. On the other 

hand, our set of restrictions on language translations is clearly not the only interesting 
basis for comparing programming languages. There is an entire spectrum of feasible 

restrictions that yield alternative notions of expressiveness, and these alternatives 

deserve exploration, too. Finally, we have not yet tackled the problem of deriving 

properties from expressiveness claims but expect to do so in the future. In the long 
run, we hope that some theory of language expressiveness develops into a formal 
theory of the programming language design space, and that such a theory can help 

a programmer in selecting the right set of constructs for solving a problem. 
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