
Theoretical Computer Science 52 (1987) 205-237
North-Holland

205

Matthias FELLEISEN, Daniel P. FRIEDMAN, El:gene KOHLBECKER
and Bruce DUBA
Computer Science Department, Lindley Hall 101, Indiana Vniuersity, Bloomington, IN 47405, U.S.A.

Communicated by R. Milner
Received April 1986
Revised February 1987

Abstract. Sequential control operators like J and call/cc are often found in implementations of
the h-calculus as a programming language. Their semantics is always defined by the evaluation
function of an abstract machine. We show that, given such a machine semantics, one can derive
an algebraic extension of the AU-calculus. The extended calculus satisfies the diamond property
and contains a Church-Rosser subcalculus. This underscores that the interpretation of control
operators is to a certain degree independent of a specific evaluation strategy. We also prove a
standardization theorem and use it to investigate the correspondence between the machine and
the calculus. Together, the calculus and the rewriting machine form a syntactic theory of control,
which provides a natural basis for reasoning about programs with nonfunctional control operators.

1. Deficiencies of the A-calculus as a programming language

“The lambda calculus is a type-free theory about functions as rules, rather than
graphs. ‘Functions as rules’ . . . refers to the process of going from argument to
value,” [I, p. 31 No other words can better express why computer scientists

have been intrigued with the A-calculus. The rule character of function evaluation
comes close to a programmer’s operational understanding of computer programs
and, at the same time, the calculus provides an algebraic framework for reasoning
about functions. Yet, this concurrence is also a major obstacle in the further
development of the calculus as a programming language since it is based on simplicity
rather than convenience.

The one and only means of computation in the calculus is the P-reduction rule

which directly models function application. Althsugh this suffices from a purist’s
point of view, it is in many cases insufficient with respect to expressiveness and
inefficient with respect to the evaluation process. For example, when a recursive
program discovers the final result in the middle of the computation process, it should
be allowed to immediately escape and report its value. Similarly, in an erroneus
situation a program must be able to terminate or to call an exception handler without

delay. We could easily lengthen this list of examples, but the thrust is clear:

functions-as-programs need more control over their evaluation.

* This paper is partly based on work supported by NSF Grants DCR 8501277 and DCR 85-03279.

0304-3975/87/$3.50 @ 1987, Elsevier Science Publishers B.V. (North-Holland)

206 M. Felleisen et al.

The most general solution to the control problem within the functional realm

originated in denotational semantics* [4,11,19]. A program is evaluated by comput-
ing the value of its pieces and combining the results. When a particular component
is being evaluated, one can think of the remaining subevaluations and the combina-
tion step as the rest of the computation or as the continuation of the current
subevaluation. The crucial idea is to write programs in a style where functions can
be used to simulate continuations. The programs always pass arourid and explicitly
invoke (a function representation of) the current continuation. They are thus able
to direct the evaluation process: they may decide not to use the current continuation,
to save it for later use, or to resume a continuation from some other point in time.
However, such programs look clumsy and are hard to design. It is better to introduce
linguistic facilities which give programs access to the current continuation when
needed. Programs using these facilities are “much simpler, eGer to understand
(given a little practice) and easier to write. They are also more reliable since the
machine zarrying out the computations constructs the continuations mechani-
cally . . .Y2 Typical examples of such facilities in A-calculus based languages are
the J-operator [8,9], label values [171, escape functions [161, call-with-current-
continuation (abbreviated as call/cc) [lS], and catch and throw [20].

Nonfunctional control operators “provide a way of pruning unnecessary computa-
tier, and allow certain computations to be expressed by more compact and concep-
tually manageable programs.“’ If these operations make continuations available as
first-class objects, as in Scheme or ISWIM, it is easy to imitate any desired sequential
control construct, e.g., escapes, error stops, search strategies as applied in logic
programming [7,12], intelligent backtracking [S], and coroutining [21]. Even though
this is widely recognized, control operators are stili regarded with skepticism. Their
addition seems rather ad hoc, because it only advances the calculus as a programming
language. On the algebraic side there are no rules reflecting the new operations.
Proofs of program properties can no longer be carried out in the syntactic domain;
they must be based upon a semantic interpretation in terms of abstract machines
or denotational definitions [11,211.

In this paper, an expanded revision of two preliminary reports [2,3], we show
that the A-calculus as an equational system can incorporate control operators and

* Indeed, the origin of the concept of a continuation can be traced back to Van Wijngaarden who
explained in a discussion at the iFlY Working Conference on Formal Language Description Languages,
1964 [18, p. 241 that “this implementation [of procedures] is only so difficult because you have to take
care of the goto statement. However, if you do this trick I devised, then you will find that the actual
execution of the program is equivalent to a set of statements; no procedure ever returns because it always
calls for another one before it ends, and all of the ends of all the procedures will be at the end of the
program: one million or two million ends. If one procedure gets to the end, that is the end of all;

erefore, you can stop. That means you can make the procedure implementation so that it does not
LoZher :o enable the procedure return. That is the whole difficulty with procedure implementation. That’s
why this is so simple; it’s exactly the same as a goto, only called in other words.”

* C. Talcott about the introduction of note into Rum, a lexically-scoped dialect of Lisp [21, p. 681.
3 C. Talcott wrote this remark in the context of escape mechanisms, but the spirit of her dissertation

makes clear that it is also applicable to jump operations in general [21, p. 161.

A syntacdc theory of sequential control 207

that nonfunctional control may be characterized in a purely syntactic manner.
Starting from an idealized Scheme with an operational semantics, we design an
extended calculus-like system that captures the behavior of the additional control
operators. The theory is consistent in the sense that two different derivations starting
with the same term are conlluent. Hence, it permits algebraic calculations in the
familiar style. A standardization theorem shows that the calculus defines a program-
ming language in its own right. Comparing the calculus and the programming
language semantics, we find that the two truly correspond to each other. The standard
computation function agrees with the evaluation function except for some negligible
differences, and equality in the calculus implies indistinguishability on the machine.
Together with the machine semantics, the calculus provides a powerful framework
for reasoning about programs with nonfunctional control operators. We exemplify
and discuss this in more depth in the last section.

Since our base language has an applicative-order semantics, the resulting calculus
is an extension of Plotkin’s A-valu. Galculus. Although assuming familiarity with
the conventional A-calculus [11, we do not require understanding of Plotkin’s variant
[141. Furthermore, we follow Plotkin’s plan [141 for the comparison of calculi and
programming languages, but, to keep the paper self-contained, we include some

appropriate explanations at key places.

2. A,

The programming language Scheme [lS] is the starting point of our language
design. Of all the A-calculus-based languages, its continuation-accessing operation,
call/cc, is independent of the rest of the primitive language concepts. For example,
the J-operator [81 interferes with functional abstraction; the escape-construct [161
introduces a second binding facility. Thus, call/cc, which simply takes an argument
and applies it to the current continuation, appears to be the ideal operator. However,
it also complicates the development of a calculus. When call/cc is used, it not only
transfers control over the current continuation to the program, it also installs this
continuation. This implies that a program has only partial control over the con-

tinuation.
To avoid these problems, we introduce a variant of call/cc into the A-calculus

term language. The next two subsections contain the extended syntax and its
semantics. In the third one, we illustrate how to program with this new facility. We
compare our example to a functional solution and briefly discuss the continuation-

passing programming style as a generalization of the latter.

2.1. Syntax

The core of our programming language is the A-calculus term set A. For the sake
of simplicity, we concentrate on constant-free expressions. The extended language
A, includes two new types of applications: %‘- and &!-applications. The formal

208 M. Felleisen et al.

definition of A, is displayed in Definition 2.1. We adopt the notational conventions
of the classical A-calculus and write hxy . Ad for Ax. hy . M, LMN for ((LM)N),
and also %‘M for (), etc. where this is unambiguous.

nition 2.1 (the term sets A, and A). The improper symbols are A (,), . , %, and

~4. Vat- is a countable set of variables; the symbols X, k, J v, etc. range over Var as
metavariables but are also usec;t as if they were elements of Var. L, M, N, . . . are
metavariables for A,. The term set A, contains
-variables: x if x E Var;
-abstractions: (Ax.) if MEA, and xeVar;

-applications: (MN) if M, N E A,, M is called the function, AI is called the argument;
-%-applications: (%M) if M E A,, and M is called the (e-argument;
-.&applications: (SBM) if ME A,, and M is called the d-argument.
The union of variables and abstractions is referred to as the set of values; U, V, . . .
are metavariables for values. A, the term set of the traditional A-calculus, stands
for A, restricted to variables, applications, and abstractions.

The notion of free and bound variables in a term M carries over directly from
the A-calculus. Terms with no free variables are called closed terms or programs.
We adopt Barendregt’s convention of identifying terms (3) that are equal except
for some renaming of bound variables and his hygiene condition which says that
in a discussion, free and bound variables are assumed to be distinct. Furthermore, we
extend Barendregt’s definition of the substitution function M[x := N] to A, in the
natural way:

x[x:= N]= N, y[x:= N]=y (x # Y),

(Ay . M)[x := N-J= (Ay. M[x:= N]),

and
(LM)[x:= N]=(L[x:= N]M[x:= N])

(%M)[x:= N] = (%M[x := N]), (dM)[x:= N] = (dM[x := N]).

2.2. Operational semantics

The intention behind the two operations Ce and & can be explained informally.
An &application represents an abort or stop operation, which terminates the
program and returns the value of its argument. Whereas such an operation is
commonly found in traditional languages, %’ and its relatives are only available in
A-calculus based languages. The operation gives its argument complete control over
the current continuation, that is, % applies its argument to an abstraction of what
must be done in order to complete the program after evaluating the %-application.
This step is also called labeling-or capturing- of continuations with reference to
label values in more traditional languages. A continuation is invoked-or thrown
to-by applying it to a value, just li e a function. The %-operation and call/cc only

A syntactic theory of sequential control 209

differ in one point: call/cc implicitly invokes the current continuation on the value
of its argument; % leaves this to its argument. % is equivalent to call/cc and ti and

vice versa:

(%M) = (call/cc(hk. d(Mk))) and (call/ccM) = (%Ak. k(Mk)).

The formal semantics of A, is defined via an abstract machine. We started from
an operational interpretation of a denotational semantics in the style of Reynolds’s
continuations-as-data structures interpreter [161. Such a machine has three-state
components: terms as control strings, environments for the evaluation of free
variables, and continuation structures to remember the rest of a computation. The
elimination of environments by quasi-substitution and the replacement of continu-
ation codes by a special kind of context leads to an equivalent quasi term-rewriting
system [2]. Since this rewriting system is more appropriate for the derivation of a
calculus, we take it as the basis of our development.

Definition 2.2 (the C-rewriting system). The term language A,:

&F ::= Al xl(P,aI)IAx.MI~~

C[] ::= [] 1 VC[] 1 C[]M.

The C-transition function:

I a4 I &MY

C[(Ax. M)V] wc C[M[x:= VI], (Cl)

a VW d M(P, C[I>, (c2)

CD P, Cd I> VI 4 Cd VI, (C3)

C[dM] I+=. M. W)

The underlying term language nP -see Definition 2.2-of the C-rewriting machine
is an extension of A, with a new set of values: continuation points. A continuation
point is a p-tagged applicative context. An applicative context is a term with a hole
in it such that the path from the root of the term to the hole leads through applications
only, and every subterm to the immediate left of the path is a value. We use C[1,. . .

to range over applicative contexts, C[M] to denote a term which is like the context
C[] but with M put into the hoie. Because the hole of an applicative context is
never within an abstraction, the filling-in of a hole cannot capture free variables.

The transition function of the C-writing system performs a single evaluation step
on an entire program. The unique partitioning of a program into an applicative
context and a C-redex determines the next rewriting step. This completely orders
evaluations on the C-rewriting machine; it implies that the evaluation of an appiica-
tion proceeds from left to right. The applicative context of a C-rewriting step also
represents the current continuation. For the evaluation of a (e-application the context
is packaged into a continuation point, for an &application it is thrown away. The
invocation of a continuation point installs the associated control context, forgetting

210 M. Felleisen et al.

the current one. The evaluation function for programs is the transitive closure of
the transition function:

evalc(M) = N iff 1M &* .N such that N is a value.

From the transition rules we can deduce that evalc is a partial function on programs:
it either yields a value or it diverges. If evalc yields a value for a program, we say
that M has a value; we also generalize this to open expressions. The result is not
necessarily in A, since continuation points are a new kind of value; if it is in A,,
we call it continuation-free.

The C-rewriting system defines an equivalence relation over A,. Intuitively two
terms are operationally equivalent if one can replace the other in any program and
the two resulting programs are indistinguishable with respect to eval=. This notion
is due to Morris [131; Plotkin [141 introduces the name “operational equivalence.”
Its formalization depends on two concepts: program contexts and basic constants.

A program context is an arbitrary term with one hole. Unlike applicative contexts,
it may capture free variables when filled with an open term. A set of values is
referred to as a set of basic constants if it has a decidable equality predicate. Since
n, does not contain constant names, we arbitrarily pick the set of normal-form
number representations in A, e.g., the Church- or Turing-numerals [l]. With this
in place, we can formulate the following definition.

Definition 2.3. M, N E A, are operationally equivalent, M zc N, iff, for any program
context C[] such that C[MN] is closed, evalc is undefined for both C[M] and
C[N], or it is defined for both and if one of the programs yields a basic constant,
then the value of the othee- is the same constant.

With an operational semantics a la SECD-machine [9], operational equivalence
is rather opaque. Verifying the equivalence of two useful program pieces is almost
impossible. With the C-rewriting system this becomes simpler. The transition func-
tion only uses one extraneous concept, namely applicative contexts, and this is
naturally related to terms. However, the system only accounts for entire program
rewriting steps and these steps are completely ordered. There is no provision for
local transformations, independent of a context, nor for a simultaneous reduction
of redexes. In other words, the C-rewriting system is not quite the calculus-extension
one would like for A,. Before we consider this problem, we briefly illustrate
programming in A, and clarify its advantages.

2.3. Programming in A,

Many traditional programming languages contain linguistic devices that can be
programmed with continuation accessing operations like %. A typical example is
the function-exit facility. It permits a procedure to return a result immediately to
its caller, avoiding recursive nestings. We demonstrate with a sample program how
this is achieved with Ce. Vet, this is only a trivial use of continuations; for more
interesting programs we refer the reader to the literature [6].

A syntactic theory of sequential control 211

First we recall some common combinators and syntactic forms [1,9]. The function
= Ax. x is the identity function; y stand for the truth values
rue and false respectively. Giv entation of the call-by-

value version of the branching-
dummy variable. We also adopt Barendregt’s numeral system for the AC-calculus
where [n 1 represents the number n, zero? is the O-test predicate, and + denotes the
addition function for numerals. For the example we assume that a tree is either
empty or that it consists of a left-son tree, a number, and a right-son tree. The

t?, Ison, rson, and num are the respective predicate and selector functions.
Given these definitions, consider the function C* which takes a tree of numbers

and returns their sum:

c* = Y&s. ht.

(if(mt? d) [Ol

(+ (num t)(+(Mson 9)(sbon t))))b),

where Y,= hf. (Ax. f (hz . xxz))(Ax. f (Az .XXZ)) represents the call-by-value recur-
sion combinator 1171. Designing a purely functional program that immediately
returns TO] upon encountering a tree element [O] is less trivial although this is only
a minor modification to the original specification. With %‘, this new function 2: is
a straightforward extension of the C * -function:

&f=At. %A;L. k(Y,(As.nt.
(if(mt? t) [Ol

(if(zero?(uum t))(k [Ol)

(+bum t)(+(s(lson t))(s(mon 0))))))

0.

For a comparison we give an drltensionally equivalent definition of this function
in the A-calculus. By this we mean that the following function is like 20” in that it
performs a single-pass over the tree, adds numbers only if necessary and escapes
as soon as a [O] is discovered4:

A -Z$ = A?. (Y,(As. Atk. (if(mt? t)(k [Ol)
(if(zero?(num t)) [Ol

(s(lson t)

t1).

(Al. (Man t)(Ar. (k(+(nu t)(+W)))))))N

The internal loop of this program simultaneously passes around the current tree
and a function that can perform the rest of the A - 2: -computation. Initially, this

simulated continuation is the identity function, indicating that A - 2: need only
return the result. At every junction of two subtrees, A - 2: builds two continuations:

. . .)), which represents the application of the function to the right

subtree, and hr. k.. . , which combines the two partial results, passing them on to

4 There are alternatives to this version but they are all derivable from this function 1221.

212 M. Feileisen et al.

another continuation. When the function encounters an empty tree, it applies the
simulated continuation to the intermediate result 0; when a 0 is discovered, the
continuation function is thrown away so that no more tree nodes are visited.

The function A - 2,” is an optimized instance of a more general programming
pattern: the continuation-passing style alluded to in the introduction. All A-programs
can be restructured into this style via the following well-known transformation (CPS)

[4,14]:

[Xl = AK. KX, (cpsl)
[(AX. M)l= AK. ~(hx. [A’.?!), (cps2)

[(MN)jj = AK. [Mj’j(Am. [Mjj(An. mntc)). (cps3)

To evaluate a cps’ed program, it must be applied to the initial continuation I. If
the result of a program M E A is Ax. N, then [M]I yields Ax. [Nn [I4]. For A, we

must add two clauses:

[(%M)n = AK. [M](hm. m(AVd . KV)~), (cps4)

[(dM)] = AK. [M]I. (cps5)

These equations reflect the formal definition of % and z#: % transfers control over
the current continuation to the program, continuing the evaluation as if it had just
begun; d throws away the current continuation.

The existence of the [=&morphism shows that %‘- and &applications abstract
from recurring programming patterns in a functional language. Theoretically, one
can write programs in A, and translate them into A for further manipulations [ll],
but this would defeat the purpose of abstraction. The correct solution is to extend
the AU-calculus with axioms for these semantic abstractions. The need for these
additional axioms is documented by the following two reformulations of (cps4) and
(cps5):

[%n+AK.(AK’.K’(AfK.(f(AVK’. (KV))I)))(Af.[iM](Am.fmK)), (cps4’)

[&Mj = AK. (AK’ . K'(AVK . v))(Af. [M](hm. fmK)). (cps5’)

The two equations treat %- and .&applications as if they were applications and as
if % and J$ were ordinary abstractions in A, that map to the underlined parts
respectively. On the olner hand, neither %’ nor ti are the images of values in A,
and therefore, ordinary P-reduction cannot support reasoning with Ce- or ,s&applica-
tions. New axioms must be developed.

The traditional A-calculus may be perceived as an axiomatic theory as well as a
reduction system. The two views are equivalent. The theory can only prove terms
equal that are equal under the congruence relation generated from the P-reduction.
From a computational viewpoint the reduction system is more attractive since it
exposes the rule character of the calculus and its operational nature. Thus, it is

A syntactic theory of sequential control 213

quite natural when we go the inverse direction in this section, taking the specification
of the C-rewriting rules as the point of departure and deriving the reduction system.

Once the calculus is derived, the next step is to investigate its fundamental
properties. Among these, consistency and standardization are the most important.
The former means that equations in the calculus make sense, the latter implies that
the calculus defines a programming language. Together, the two theorems provide
a basis to tackle a correctness proof for the calculus.

3.1. Reductions and cornpu ta tions

A transition step in the C-rewriting system depends on partitioning the program
into a C-redex and an applicative contex?. For the (Cl)-step this dependency is
superficial, for the others it is inherent because of the sequential nature of continu-
ations. To establish a calculus, we must try to eliminate the context dependency as
far as possible. In the case of (Cl), this is trivial and yields the &,-relation:

(Ax. M)N-+“u M[x:= N] provided that N is a value. (PO)

It completely captures (Cl) and the underlying h,- .alculus.
Next we consider &applications. According to (C4), an &application removes

its applicative context. Case analysis of applicative contexts leads to appropriate
notions of reduction. If an &-application &M is within an applicative context C[]
and to the left of some arbitrary term N, then first the N must be thrown away and
second the rest of the context must be removed. This is a recursive problem: C[]
can be eliminated in favor of M by simply placing AZM in the hole. Thus, C[(J%JM) N]
should be related to C[dM]. Since this is independent of the applicative context,
we can formulate our first notion of reduction for &-applications:

(dM)N-+%s4M. WI_)

The second possible case, where &N is to the right of a value M, is treated
symmetrically:

M(&N) -&R &N provided that M is a value. (4%)
This covers all but the base case of applicative contexts.

The empty context requires special treatment. An occurrence of P!M at the root
of a term must evaluate to M, but this cannot be a proper reduction. One can only
apply this rule when the .&application is not embedded in a term. Otherwise the
reduction system becomes inconsistent. Consider the expression (&

the .&_-step twice results in J@; the top-level rule then leads
relation is first applied to the embedded pplication, (&
in turn results in T. T would thus equal and this is inconsistent. We therefore

introduce this top-level relation as a computation rule and denote it with a D instead
of the customary 3:

hen we complete the calculus later, we must add this computation rule at the
right place.

214 M. Felleisen et al.

me considerations for %-applications move along the same line. ‘GVe must satisfy
equations (c2) and (C3). (C2) specifies that the context of a %-application must
be removed. Thus, we expect that the 5% :eduction rules must be designed according
to the position of %M in an applicative context and that they must be similar to
&reductions. For example, the expression (%M) N must relate to a term %X for

some term X
For the correct design of X we appeal to the intended semantics of the %‘-

application. The %-application must capture the current continuation and supply
it to its argument. Hence, if X is the next %-argument, it will be applied to the
continuation v*l,ich stands for the rest of the context. This continuation must be
passed on to the original %-argument M. Furthermore, M’s context includes an
application with N as the argument. In other words, if we let f be the function
which must be applied to N, then the continuation of %M could be characterized
by K(fN) where K stands for the continuation of VX. Since the continuation gets
the function when it is invoked, it must be an abstraction whose parameter is
f: hf. K(fN). The term X, on the other hand, must be a function which accepts the
continuation K and passes it on to the term hf. ~(fhf). A first approximation of X

is hK . M(Af. K(fN)). This satisfies (C2) Since it removes the context of a %-
application and applies its argument to some encoding of the context, but continu-
ation points also need to respect (C3).

The rewriting rule (C3) demands that when a continuation is invoked, the current
context is removed. This means for &continuations that the first action must be
an abort action to remove the current context. Hence, hf. &(~(f”)) is the correct
continuation for M. The symmetric case where %N is to the right of a value M is
treated in a similar way and so we define the two notions of reduction for the
%-application:

(%M*)N jqL %AK. M(Af. d(K(j%‘);), !%)

M(%N)*%R %AK. N(hv. &(K(Mv))) provided that M is a value.

(G)

We still need to consider the empty context, i.e., the occurrence of a %-application
at the root of a term. The V-argument M must be applied to a function which
simulates the continuation-point (p, [I). The natural choice is Ax. J&C. Again, this
relation is not a proper notion of reduction but a computation rule:

%M Dg M(Ax. dx). (%I-)

With this last rule we have derived the reduction and computation rules that are
intuitively needed to simulate the C-transition function, but defining notions of
reduction is only the first step. The next one is to build a one-step reduction relation.
A one-step reduction relation is the extension of a notion of reduction to a relation
which is compatible with the syntactic constructors. In other words, the extended
relation connects terms which are the same except for two subterms related by a
reduction rule= n OUT case, four syntactic constructions must be considered: abstrac-
tion, application, @‘-application, and &-application. The two computation ru!es

A syntactic theory of sequential control 215

cannot be included in this relation since they are not applicable to nested subterms.
Definition 3.1 contains a formal description of the one-step reduction relation dc.

efinition 3.1 (the A,-calculus). Let jc = -%L v - 3 ‘R v *&L v +PR u 3% The one-
step C-reduction += is the compatible closure of -+‘:

MjCN --r, M-*,N;

The C-reduction is denoted by -))c and is the transitive-reflexive closure of -jc. We
denote the smallest congruence relation generated by -))c with =c and call it
C-equality.

The C-computation D, is defined by: D, = Dw u Dd U-H,. The relation =r is the
smallest equivalence relation generated by D,. We refer to it as computational
C-equality.

The final step in the development of a calculus is the construction of a congruence
relation from the reduction relation, i.e., an equivalence relation which respects the
syntactic constructors. Ctinforming to tradition, we do this in two states: -w, is the
transitive-reflexive closure of dc; its respective equivalence relation is =c. This,
however, is not yet the final goal. We still need to build in the computation rules.
Without computation rules it is impossible to find a standard computation function
which simulates the machine evaluation: occurrences of %- and Sapphcations at
the root of a term cannot be removed. We extend the reduction relation +c tu z
computation relation D, by adding the top-level relations. Forming the symmetric,
reflexive, and transitive closure of D, results in an equivalence relation =y which
establishes equality among terms according to reductions and computatislls. Al5
these concepts are summarized in Definition 3.1.

The relation =y determines the &-calculus and we write A,+ ..‘V =r N if the

terms M and N are equal under = y. This calculus is not tradition4 in the sense

that it uses incompatible relations. The congruence relation =c is somewhat weaker
but more traditional and we consider it as a subcalculus. We also write A, t-- -cN
when we refer to proofs within the subcalculus.

3.2. Fundamental properties of the A,-calculus

The development of the basic notions of the A,-calculus raises a number of
interesting questions. In principle, it makes sense to inspect every h-calculus-theorem
on its validity for the extended calculus. As mentioned at the outset of this section,
we concentrate on the question of consistency and the existence of standard re
and standard computation sequences. The central results of this subsection are
captured in the Consistency Theorems 3.7 and 3.8, the definition of a standard

216 M. Felleisen et al.

computation function (Definition 3.9), and the Standardization Theorem 3.10; the
reader may wish to concentrate on these points and to skip over the proof details

for the first reading.
The consistency problem depends on proving the confluence of reduction and

computation paths that start from t& same place. In other words, we must prove
a classical Church-Rosser theorem for reductions and a diamond theorem for
computation. The proof of the Church-Rosser property for +’ is an application of
Martin-L%% method for showing the corresponding result for +? Since our pre-
sentation follows Barendregt’s rather closely, we only state the necessary lemmas
and demonstrate some of the major modifications to the proofs.

First, we define a version of the parallel reduction relation *1 for +‘. For the
proof of the standardization theorem we also define a notion of the length or size
of the parallel reduction: see Definition 3.2. Note that if A4 is a value and M-w, N,
then N is a vallue.

nition 3.2 (the parallel reduction *,). The parallel reduction over A, is denoted

by -))I* SW-+ or just s is the function which measures the size of the derivation
M_wl N.n(x, M) is the number of free occurrences of x in M.

(PI) Ma, M, s= 0;

(PZ) M_wl M’, N+, N’,

N is a value a (Ax. M)N*, M’[x := N’],

s = $f-+f’ + n(x, M’)s,,,_+,~+ 1;

(P3) M-w,M’ + (&M)N+, (cr;a

S =SM-,M~+ 1;

(Pa) N*, N’, M is a value * M(s~N)-~,JUV’,

s=s N-w,N’+ 1;

(PS) M+, M’, N-w, N’ =+ (%M)N*, %k l M’(Af. d(K(fN'))),
S= SM -+f’+SN-,N’+l;

(P6) M-u, M’, N-w, N’,

is a value + M(%N) *, QK. N’(hv. d(~(M’v))),

S =SM-,M’+SN-,N’+l;

(P7) M+,N + Ax. M+,Xx. N,

S =sM l -nl NV

(I’S) M++,N _. %?M++,%N,

S =sM - -“,N,

+,N =+ &M+,&N,

S =sM ’ -,N,

t
9

s =sM+f’+sN-+~‘=

A syntactic theory of sequential control

The following lemma shows the relationship between
obvious and omitted.

217

++, and -))/. Its proof is

Next we prove that in ++, unlike in cc, the expression A&:= N] reduces to
M’[x:= N’] in one step if M and N reduce to ’ and N’ in one step respectively.
However, for the proof of the standardization orem we also need to know that

this reduction is shorter than the one from (Ax. M) N to M’[x := N’]. The two
proofs have the same structure and therefore-following Plotkin-we merge them.

Lemma 3.4. Suppose M*l M ‘, N-n, N’, and N is a value. Then the following
statements hold :

(i) M[x := N] -)), M’[x := N’];

() ii SR = hl[x:= IV] -, M’[x:= IV’] < SL = +x.M)N -n/ M’[x:= N’].

Proof. The proof is a structural induction on the reduction M-wl M’. We omit the
cases which are similar to the given ones.

(Pl): M-l Iv’= M. The result follows by induction on the structure of A4 We
demonstrate it for the subcase M = %P = VP’= M’.

(i) (%P)[x := N] = (%P[x := N]) ++I (%P’[x := N’])

() ii SR = SP[,:= N] -n, P’[x:= N’]

since P is smaller than M.

-P,,P@ + 4x, P’h -, Nl by inductive hypothesis

<n(x, P)sN-,Ne+l=sL since P’= R

(P3): M = (&P)Q*, M’= &P’ and P-, P’.
(i) ((&P)Q)[x:= N]=(dP[x:= N])Q[x:= W] +B/ &P’[x := N’] by inductive

hypothesis for P[x := N] eI P’[x := N’].

(1 ii sR = sP[x:= N] -n, p’ix:= ~‘1 +1

s SP-m,P + n(x, P’)q,, _, Nf+ 1 by inductive hypothesis

): M~P(%Q)-~,M’=%‘AK.Q’(Av.~(K(P’v))) and P*I ‘, Q-njQ’, and
P is a value.

(i) (P(%‘Q))[x:= N] = P[x:= N](%Q[x:= N])

-j)l %itK . Q’[x:=

by inductive hypotheses for P and Q and the fact that P[x:=

218 M. Felleisen et al.

(1 ii sR= SP[Jr:= N](%Q[x:= N]) -I %AK.Q’[x:= N’](Au..s~(K(P’[x:= N’lu)))

= SP[x:= II] 4/ P’[x:= N’] + sQ[x:= N] _y, Q’[x:= N’] + 1

by inductive hypothesis for spcx:= NI _+,, pIcx:= N’] and sQ[x:= Nl -, Q’[x:= Ntl

: M = %P-nl M’= %lP’ and P-w, P’.
(i) (%P)[x := N] = %‘P[x := N] -))l %P’[x := N’] by inductive hypothesis.

() ii SR = sP[x:= N-J -se, psIx:= N’]

-P-qP@ + n(x, P’bN -, N’ by inductive hypothesis

<SL. cl

In addition to Lemma 3.4 we must show that two contracturns of (eL- or VR-redexes
reduce to each other in one -+step if the respective subterms do. Again, the second
and fourth claim of the following lemma are actually needed for the standardization
theorem.

Suppose M-, M’ and N-u, N’. l%en the following statements hold:
(i) %AK. M(hf. .d(K(fN))) eI cehK. M’(Af. d(K(fN’)))

(ii) sR < sL where

sR=s %AK.M(A~IsI~~(K(~~V))) -I %A~.JW’(A.#hls(~(flv’)))~

SL=S,VM)N -ml %AK.M’(AJ~(K(~~V’)))*

And if M is a value, then
(iii) @‘AK. N(hv. &(K(Mv))) -))I %AK. N’(hv. d(~(M’t))))

(iv) sR < sL where

sR=e!i ~AK.N(Au..s~(K(Mu))) -1 %AK.N’(Au.SJ[(K(M’U)))P

$_=s M(VN) -’ %AK.N’(ALJ.~(K(M’u)))*

. We show (i) and (ii) by straightforward calculations:
N_nl N’, hence . .%?(K(fN))*,Af. d(K(fN’)); further M-1 M’, hence

Of l Je(fN))) -1 hf l NK(fN’))), and

(Af l d(K(fN)))) *I AK. (MUf l d(K(fN’)))),

and therefore, %'AK . '(Af l d(K(fN’))).
() ii SR=S~-,M~+SN-,N~<S~~,M~+SN~,N~+~ =SL.

roofs of ropcsitions (iii) and (iv) follow the same pattern. G

A syntactic theory of sequential mntrol 219

Everything is in place to state and prove the diamond lemma for the parallel

reduction:

exists an N
The relation -H, satisfies the diamond property,

such that Li +, N for i = 1,2.
i.e., if -+I Li, then there

Proof. Again, the proof is an induction on the structure of the reduction -WI&.
We only discuss two cases. The rest of the possible cases are either similar to some
of presented ones or can be found in Barendregt’s corresponding proof.

: M=P(%Q)+,L,= %AK. Q,(Av. d(u(P,v))) and P-wlPI, Q*/Ql, and
P is a value. There are two possible cases for the reduction from M to L2 since P

is a value and %ZQ is not:
(a) L2 = Pz(%Qz) and P-n1 P2, Q-n, Q2. Note that P2 is a value. An application

of Lemma 3.5 yields N = @‘AK . Q3(hv . sQ(K (P&j) where P3 and Q3 are the terms
which must exist for P*l Pi and Q-1 Qi for i = 1,2 according to the inductive
hypothesis.

(b) L2:= %‘AK. Q2(hv. d(u(Pzv))) and P*, P2, Q-w, Q2. Again, an application
of Lemma 3.5 and of the inductive hypothesis for P*, Pi, Q-u, Qi, i = 1,2 produces
terms P3, Q3 such that N= cehu. Q&v. d(u(P3v))).

(PlO): M = PO-n, L1 = PIQ1 and P -H, PI, Q+, Q1. This time we have to distin-
guish six possible subcases:

(a) LZ= R,[x:= QJ and P=hx. R, R *, R2, Q-w, Q2, and Q is a value. But then
P,=Ax. RI, R+,Rl, and QI is a value. By inductive hypothesis we must be able
to find R3 and Q3 such that, with Lemma 3.4, N = R3[x := Q3].

(b) L2 = dRZ and P = dR, R -)), R2. Again, P, = dR1 and R-w, RI. By inductive

hypothesis we can find an R3 such that N = &R3.
(c) L2 = dRz and Q = .dR, R ++, RZ, and P is a value. This case is like (b).
(d) Lz= %K. R,(Af. d(u(fQ2))) and P= %R, Q-n,Q2, R++,R1. This implies

that PI = %‘R1, R -w, RI. Am application of the inductive hypothesis and Lemma 3.5

shows that N = %AK . R,(Af. d(u(fQ3))).

(e) Lz= %AK. R,(Av. ~(K(P~v))) and Q= %‘R, P-n, P2, R-1 &, and P is a

value. This case is like (d).
(f) Lz= P2Q2. Trivial. Cl

Putting things together we get the Church-Rosser property for *’ as follows.

3.7. The relation dc is Church- Rosser.

-))c is the transitive closure of +,. Since -H, satisfies the diamond property

so does -))c. Cl

An alternative proof of the above theorem is based on the

for showing that the pr)-reduction is C is re

220 M. Felleisen et al.

is CR and that they commute with each other. In our case the second part would
be laborious since five (!) different rules are involved. The above proof also has the
advantage that it neatly ties in with the proof of the standardization theorem in the
second half of this section.

Based on Theorem 3.7 we can show that D, satisfies the diamond property which
is sufficient to establish consistency.

(Consistency). The relation D, satisfies the diamond property.

roof. Assuming that M D, Li for i = I, 2, we need to show that there exists a term

N such that Li D, IV. We proceed by a case analysis on M D, L1.

(J&): M Dd L1 and M = (dL& Then there are only two possible cases for the

step from M to Lz:
(a) M-w, (d&). But then L, -H, K2 and we can take N = &.
(b) M Dd L2. Trivially, M = (dL,) = (SPL,) and N = Li = L2.

(%+-): M Dy: L1 and M = (SL,). This case is just like (&).
(-wJ: M-u, L1. Three cases are possible. Two of them are symmetric to the

previous ones. The third one is M-n, Lz, but then we just apply the Church-Rosser
Theorem for +‘. q

The theorem establishes the following traditional corollary.

orollary. If M =y N, then there exists an L such that M Df L and N Dz L.

With the Church-Rosser theorem in place, we can tackle the standardization
theorem. A standard reduction sequence for the A-calculus is usually defined with
respect to the position of redexes within a term and their residuals. Plotkin gives
an equivalent, but more elegant and intuitive definition. It requires the notion of a
standard reduction function which reduces the first-top-down and left-to-right-
redex in a A-term not inside an abstraction. This function is then extended to
standard reduction sequences by forming something like a compatible closure. The
extended syntax and the computation rules in the &-calculus require a slightly more
complex construction. In particular, the constructions of a standard reduction
function and a standard reduction sequence must proceed in two stages such that
computation rules do not interfere with reductions. Nevertheless, the definitions
remain intuitive and are formalized in Definition 3.9.

(standard reduction sequences and functions). The standard reduction
function, denoted by H,,, is defined by

is a value, N H,, N’ +

A syntactic theory of sequential control 221

Standard reduction sequences, abbreviated C-SRS-s, are defined by

XEV+ xisaC-SRS;

NW*., Nk is a C-SRS

+hx.N, ,..., hx.Nk,%N, ,..., %N,,and

&N,,..., &Nk are C-SRS’s;

MH,, N,, and N1 ,..., NkisaC-SRS+ M,N,,...,NkisaC-SRS

M l,...,Mj and N1 ,..., Nk are C-SRS’s

+ M*N,,...,MjN,,...,MjNk isaC-SRS.

The standard computation function for A, extends H,, to computations:

Standard computation seqb znces, CD-SCS-s, are defined by

N I,***, Nk is : C-SRS * NI, . . . , Nk is 2 CD-SCS;

M&N1 and Nr,... , Nk is a CD-SCS =+ M, N1,.. ., Nk is a CD-SCS.

The notation -$’ and &* stand for the transitive and transitive-reflexive closure
of H: respectively; -Ei l mdicates i applications of ~5.

The theorem which we want to prove can now be stated as follows.

Theorem 3.10 (Standardization). M D: N if and only if there exists a CD-SCS
L 1,.•-¤9 L,, with M = L, and L, = N.

The proof is divided into two parts. First, we show that there is a standardization
theorem for reductions. Second, we give a method for reshuffling D,-computation
sequences into CD- SCS’s. The method is based on the first standardization theorem
and it utilizes the consequence of Theorem 3.8 that at the root of the term computa-
tions and reductions are interchangeable.

The standardization theorem for the reductions is as follows.

. Me, N if and only if there is a C-SRS L,, . . . , L, with M = LI and

L* = N.

he direction from right to left is trivial. For the opposite we follow Plotkin’s
r the corresponding theorem about the &-calculus. First, the sequence of

+,-steps is replaced by a sequence of steps using the parallel reduction -nI. This
follows from Lemma 3.3. Then we show with the following lemma tha
recursively transform the resulting sequence of -))/ reductions into a C-S

222 M. Felleisen et al.

2. If M-H, N, and N,, . . . , Nj is a C-SRS, then there exists a C-SRS

L 19=.-Y L, with M z~ LI and L, s Njm

The proof is a lexicographic induction on j, on the size of the proof M_UI N, ,
and on the structure of M. We proceed by case analysis on the last step in M++, N,
and omit all the cases which are similar to the presented ones or which are treated

b tkin:
): M=(dP)Q-wlN,- = dPl and Pel PI. But then we also have M H,, dP

and AZP-H, dPl by a proof which is shorter than the proof M++, N1. Hence, by
ive hypothesis we find a C-SRS from dP to Nj and can then build the required

from M to Nj.
: M= P(%‘Q)++INl =%AK.Q~(Av.&(K(P,v))) and P*,P*, Q*,Q,, and P

is a value. Again, M can immediately be reduced to %'AK . Q(hu . JXZ(K(Pv))) by H,,.
By Lemma 3.4 we know that

s(AK l (QOv l (K(fi))))) *I ce(AK l (Q,(Av l dK(pd’)))))

by a proof that is shorter than the one for M_nl N1. Therefore, by inductive
hypothesis, we can find a C-SRS from %'AK . Q,(hv. d(K(PI v))) to Nj from which
we build the required C-SRS from M to Nj.

): M = %P-w, M’s %P’ and P*, P’. Here Ni E %N: for all i, 1 s i 6 j. NOW
consider P-w, Ni, . . . , N,!. P is obviously smaller than M and we can apply the
inductive hypothesis to find a C-SRS from P to NJ!. Wrapping every element of

ence in a %-application yields the required reduction sequence.
: This case does not differ from Plotkin’s corresponding case but it requires

that M-w, N -sG L can be transformed into M -,, K-H, L for some appropriate
term K. This is proven in a separate lemma. Cl

The next lemma shows that +I and H,, commute as required by case (PlQ) of
the preceding lemma:

emma 3.13. If M +q M’H,, M’, then there exists an L such that M -& Lel M’.

roof. Plotkin’s proof of his Lemma 8, Section IV, goes through with almost no
change. It is a lexicographic induction on the size of the reduction M-1 M’ and
of M. It is divided according to the last parallel reduction step. Cases (Pl) through
(P9) are routine with (PS) and (P6) relying on Lemma 3.5. The last case again
induces the need for another lemma and deserves scme explanation.

For case (PlO) we assume that M = PQ++, M’s P’Q’ because P++ P’, Q-H, Q’,

and M’w,= M”. We now proceed by an analysis on this standard reduction step
and consider two typical subcases:

(a) M’= (&Pi)Q’ -sc M”= &Pi. So we have P-,&Pi. But then we claim that
there exists an L such that P -& L-n, &Pi and L is an &-application. With the

rules for H,, we get that (PQ) ~2 (LQ) w,, L++, &Pi =

A syntactic theory of sequential control 223

(b) ‘s (VP;) Q’ wsc ,&f” = %AK l P’,(hf. &(~(fo’))). We proceed just like in (a).
Given that P-n, VP; we again claim that there is a K such that P -2 K+/ %Pi
and K is a V-application. K and Q’ form the required L in the obvious way and
the rest is similar to (a). Cl

There are four propositions left that we have claimed or that we need through
our adoption of Plotkin’s proofs. All the necessary proofs are quite straightforward,
but for the sake of completeness we state the lemmas.

emma. If M+, (&N) where M is an application, then there exists an L which is an
.&application and M -,‘c L-u, (&N).

Lemma. If M++, (%N) where M is an application, then there exists au L which is a
%-application and M -2 L-n, (%N).

Lemma. If M+, (Ax. N) where M is an application, then there exists an L which is
an abstraction and M -,‘c L++, (Ax. N).

Lemma. If MaI x where x is a variable, then M -2 x.

Equipped with this first standardization theorem for reductions, it is easy to finish
the proof of Theorem 3.10, but first, we need to clarify one more fact.

. If N, , . . . , Nk is a C-SRS where Nk = %‘L or Nk = &L, then there exists
a j, 1 <j c k, such thatforall i, 1 s i <j, Ni H,, Ni+l , and, for all i, j G i < k, Ni lr Ni+l
and Ni +sc Ni+, .

Proof. A straightforward induction on k. q

And finally, here is the proof of the main result of this section.

Proof of Theorem 3.10. The proof is an induction on the number of computations,
Dee and Dd, used in the evaluation of M to N. If there are no computations involved,
we can form the C-SRS for reducing M to N and we have the desired result. Now
suppose there is at least one reduction of type Dd. Then we have the following
situation:

M~M,~,=.~~,Mk~~MkD,M~+,~M~D;=~D, = N.

By forming the C-SRS for the reduction from M, to A& we get, by Theorem 3.11
and Lemma 3.14,

224 M. Felleisen et al.

Since 3, and D& are interchangeable at the root of a term-see Theorem 3.8-we
can move the computation forward:

By inductive hypothesis we get a similar reduction sequence for the reduction from

M; to N Since M -,, D+ MI we can form the desired CD-KS from M to N. The

case of D,-computations is treated similarly. 0

This ends the investigation of the logical properties of the &-calculus. The two
results enable us to show that the &-calculus corresponds to the C-rewriting system.

4. The machine-calculus correspondence

Following Plotkin [14] a calculus is correct with respect to a programming
age if the operational semantics of the calculus agrees with the original machine

semantics and if equality in the calculus implies operational equality. If a calculus
is correct, we say that it corresponds to the machine, thus underlining that calculi
and programming languages are pairs which determine each other.

To prove the equivalence of the machine semantics with the operational rewriting
semantics of A,, we show that c e standard computation function simulates the rules
(Cl) through (C4) of Definition 2.2. Since an evaluation may return a continuation
point as (part of) the result, we first construct a morphism from A,-terms to &-terms
so that the C-rewriting machine can be properly unloaded. The major task of this
morphism is to encode contexts as terms in the same way as the %-reductions do.

For the construction of the morphism it is advantageous to look at contexts from
the inside out, i.e.,

The empty context in a continuation point means that the continuation was captured
with a %-application at the root of the tehm. Hence, [] maps to Ax. dx. If the hole
is to the left of some arbitrary term M in some context C[1, then a %-application
would use V$_ to construct the next piece of the continuazion. This new piece would
look like Af. d(~(fM)) where K stands for the encoding of C[1, and so we are
led to the following definition of the morphism [l lc fram contexts to terms:

[[]I= = Ax. dx,

IL = Af l 4ua llMf~>>,

ucr VI iinc = ~0 l 4ua inc(W.
The map from to 0 replaces continuation points in Q by terms:

[])=uc[]nc, z= X,

A syntactic theory of sequential control 225

Given the morphisms, we can attempt to prove a simulation theorem for the four
C-rewriting clauses. The &step, i.e., (Cl), and steps (C2) and (C4) are clearly
reflected in the definition of the standard computation function. In particular, the
latter two rules were a major guide in the derivation of the reduction system and
the map I[l]ic was designed according to the resulting notions of reduction.

.l. For any applicative context C[1,

(9 CWW HZ+ MUC[IL and
(ii) C[dM] H& dM & M.

Proof. The proof is a straightforward induction on the structure of applicative
contexts. q

We are, however, unable to show that the standard reduction function satisfies
rule (C3). This transition rule requires that a continuation invocation remove the
current context and that it continue as if the old context-filled with the argument-
were the new term. The first condition is clearly implemented since continuations
immediately perform an &-application. The second one causes problems. In the
&-calculus continn;zations are constructed to simulate the behavior of contexts, but
in the machine continuations are contexts. Thus, when a continuation is to be
captured after another one is invoked, the transition in the machine and the one
via the standard computation function diverge. The machine simply labels the current
context which contains the old continuation context; the standard computation
sequence encodes for a second time the term which simulates the former continu-
ation.

The nature of the problem is best illustrated with an example. Suppose the
_ continuation point (p, C[[] V]) is invoked on the value F:

!P, CD 1 VIW L--\= CWI-
Furthermore, assume that the application FV evaluates to D[%P] after some
&steps. Then the C-transition reaches the term P(p, C[D[I]). According to Lemma
4.1, if K, = [C[]lc, the corresponding reduction sequence in the &-calculus begins

with

IICN 1 VllleF -Q,+ K,W).
The next few &steps for FV are correctly simulated by the standard computation
function:

K,(FV) &+ K,D[VP].

This last term also constructs a continuation-just like C[D[%P]]-but the contim-

ation encodes the term K, instead of the context C[1:

K,D[w -Q,+ pu
s, a naive versio

simulation theorem fails. The best we can hope for is that the standard computation

226 M. Felleisen et al.

simulation of the C-transition preserves a relation between continuation points and

terms.
From the above lemma and the example one may suspect that a continuation

point like (p, C[D[I]) is related to the terms [C[D[]]lc and [[C[]lcD[Inc.

However, the situation in our example could recur may times. Instead of having
two contexts composing a new one, we would then have several of them. In fact.
we must account for all possible finite decompositions of a given context into smaller
contexts, including the empty one. Each context can be encoded as a term by itT&f;
each of these encoded contexts can be a part of a bigger context which ic &:ing
encoded. We have formalized this relation in Definition 4.2.

ition 4.2 (the continuation point- term correspondence). me relation zP basically

compares continuation points in AP to terms in A,. It is defined inductively over
AP and applicative contexts (over A,):

(P, cc 3) zp u= . . uuG[incG incw . . Cc inr
for all n such that C[] = C,[C,[. . . CJ 1.. .]]
and Ci[] zP Ci[] for all is n;

x=+, Ax.P-,hx.P’ PQ=,PQ, %P=,%P, &P-,&P
iff P= pP and Q-,Q.

For applicative contexts we add [] zP [1.
Note, we use the notation P ambiguously for both the result of mapping P to P

and a term in A, that is related to a term P in Ar via eP.

The relation = ,, in Definition 4.2 is implicit. It is well-suited to capture the different
continuation representations from the above example, but it does not expose the
structure of the terms which stand for continuation points. A brief investigation
reveals that these terms are rather similar. If there is a proper term contained in the
continuation point-context, exactly one of the partitioning contexts covers it, and
therefore, each subterm appears exactly once in the representation. Furthermore,
empty contexts correspond to Ax. dx and, putting the two observations together,
we see that the terms that are related to a continuation point are the same modulo
some occurrences of hx. &lx:

.3. Let (p, C[1) be a continuation point. Furthermore, let P, V E Ap and

P, VE AC such that P =rp P and V =rp i? Define three term-sequence schemas K i, K 5,
and KT for all representations of K,, i.e., (p, C[1) xP K,, such that K: E AX l dx,

:sAf.&(K,(fP)), Kishu.d(K,(V~)), and Ki+1zh~.d((A~.dx)(Kix))*

Then, a continuation point is related to exactly one of the three schemas, i.e., for all i

A syntactic theory of sequential control 227

Further:.&dre, we can generalize this to

(P, ax II> =p uK,m IL iff (

First note that (i), (ii), and (iii) cover all possible cases of applicative contexts.
One of them must match a particular applicative context. Furthermore, the proof
of all three statements is naturally divided into two parts: one for i = 1 and one for
i > 1. The latter is the same in all cases. For the former we demonstrate how to
prove case (ii) as a typical example.

From the definition of =,, we know that, for any context C[[]P] and finite
number of contexts Ci[] which compose C[[] P], we have

(P, CH PI) =p II- l l ma Inca lllc l l l cd IL
For the base case we assume that CJ] # [1. Then, in (ii), C’J j = D[[]P] for
some context D[] since P is the term next to the hole in the continuation-point
context. This implies that

II* ’ l uua 1nLr IL l l l m 1mc
= hf- Jm l l UUG[Inca IL- l l a Inc(fm

On the other hand, C[] 5 C,[. . . D[I.. .] and thus

(P9 CL I) =p u-e .UUG[Ilm lllc- * l a IL
This proves the case for i = 1.

For the inductive case assume that the last i 3 1 contexts in this sequence are
empty, i.e., equal to [1. By factoring out the first one, we get

II* l .uua Ilm IL l l [lllc=~x. Jar lnc(u~ l l UUG[Ilm IL l Jlcx))
=hx.d((hx.&)

(U l l l uuGr Inca lllc- l Jlcx))-
Thus we see that, as mentioned above, every empty context adds one term A, l ah=

Hence, (P, CR IPI) zp Ki+, and this concludes the induction step.
The generalization follows immediately. 0

Lemma 4.3 indicates an important fact about the terms in the representation set
of (p, C[1): they are behaviorally indistinguishable in standard computation
sequences with respect to &-steps. They invoke a continuation and, since continu-
ations always remove the current context, none of the hx. S&Z ever plays a role in
an evaluation.

DeJine three term sets as in Lemma 4.3 with the initial terms Ax. dx,

hf.Jmc<f~>>, and hv. &(K,(k)). Then we can show that

Ki ,..., Xx.&..(itimes)...x,

K;,... , hf. d.. . (i times). . . (K,(fl”)),

I -3
Li,..., Au. d. . . (i times) . . . (K,(h)),

are standard reduction sequences.

228 M. Felleisen et al.

f. Clearly, Ki = Ax. &MT for some (open) term

Ki+, -UC AX. ~((Ax. sOk)((Ax. dMT)x))

-n, Ax. d((hx. dx)(d

ec Ax. d(&MT),

and all are standard steps.
and (Kc(Vx)) respectively.

Proposition 4.4 says that all continuations related to a continuation point behave

But, the three T’s for the base cases are x, (AI,(x

CI

similarly when invoked; the difference is the number of abort operations. Thus, we
can show that evaluations via the standard computation function and the C-rewriting
system only differ in their outcome. First, we prove that the standard computation
function mirrors C-transition steps as long as no continuation is invoked:

Lemma 4.5. Assume C[] zp c[1, P zp F, and U zp 0 The simulation of the rules
(Cl), (C2), and (C4) via -2 respects zp:

(i) ifC[(hx. P)U]-cC[P[x:= U]], then~[(hx.~)~]w~~[~[x:= o]]for
any applicative context d[1;

(ii) if C[s4P] I-& P, then &@] ~2~ F;
(iii) if C[%P] & F(p, C[I), then c@p] -K+ P[c[Inc.

roof. The first statement reiterates that P-steps are simulated independently of the
context. Points (ii) and (iii) are consequences of Lemma 4.1. Cl

Things get more complicated when a continuation is invoked. The standard
computation sequence contains a series of auxiliary moves in order to simulate the
jump to a different context in the C-reduction sequence. Since proper simulation
steps are interspersed in this detour, it is impossible to prove a corresponding lemma
for (C3). However, a direct proof that continuation invocations are correctly imple-
mented by the standard computation function is possible.

o, V xp c and U =,, a Then,

CO[])V]wc+ U iff C[

=r,, c[] is unnecessary for the antece ent since a con-

A syntactic theory of segumtial control 229

e equivalence is prove by an induction on t
the -%=eduction sequence from c[(

tructure of CO[1:
): CO[] = [1. This case is trivial. It implies that

Kp K2= Ax. d((Ax. dx)((hx. &x)x)), etc.

In any case, we have

(p,C,C]>VHC V and K,6+: c

(apC2): CO[] = D[[]P] for some &applicative context and term R Now we
know from Lemma 4.3 that

KpK,=Af.d(K,(fF)), or

Kp Kp Ax. .sd((hx. dx)(K,x)), etc.

where (p, D[1) V zp K. and P ap i! The two reduction sequences start out with

and
WP, a I) VI J DC VP1

Next, we consider the possible evaluations of VP and v’is. The previous lemma
reassures us that as long as the rule (Cl) is used the context plays no role and,
more importantly, the relation zP is preserved. The first transition step which does
not conform to (Cl) is the distinguishing criterium for the rest of the reduction
sequence. Since this sequence is finite, four cases must be analysed:

(a) VP+&, W where W is a value. This means that VI -y w and we have
the following development for the C-transition:

D[VP] wc+ D[W].

For the one according to & we get

By assumption we know that

D[W]H~~ U with msn-2.

From the definition of wc we see that

D[W]H~”

Thus, we can safely replace ce

(E I> z and so, by inductive hypothesis, we get t

M. Felleisen et al. 230

(b) VP-&t1 E[dQ] and
context E[]. Comparing the

VF I--*:* J!?[J@] for some term Q and applicative

two reduction sequences , ’

D[VP] &* D[E[dQ]] .,c Q

and
K,(VP) -5” K,E[&Q] -9,” Q,

we see that both continue with related terms. From this point on, two developments
are possible: the rest of the sequence either uses the (C3) rule or it does not:

(bl) If QwC* U does not use (C3), then, according to Lemma 4.5, Q -PC* e

is immediate.
(b2) Suppose (C3) is used a first time. That means that

Q Id-* FHP, 6s IWI

and also, by Lemma 4.5, that

Q -:* F[K,W]

such that (p, Fo[1) xp I&. Since the reduction sequence is at least one step
shorter, we can now apply our inductive hypothesis, and this finishes case (b).

(c) v-+Z, E[%Q] and vp HZ* I?[%Q]. The reduction sequence according to
-9, continues as

K,(v’) HZ* K&[%‘~] -;+ @K&[Inc.

The transition rule (C2) accomplishes the capturing of this continuation in one step:

D[VP] wc* D[EW’Q11 d Q(P, D[E[11).

By assumption, (p, D[1) zp KD and hence, (p, D[E[I]) zp [K&]I by Lemma
4.3. The rest of this subcase is as in (b).

(d) VP M&T, E[(p, E,,[1) W] and VP &* l?[K#] with (p, Eo[1) zp KE. This
is an instance of the inductive hypothesis and the case (apC2) is finished.

3): Co[] = D[P[]] f or some &applicative context and value P Again,
ective continuations are characterized by K1 = hv. d(Ko(h)), etc. The two

reduction sequences immediately arrive at the same constellation as in (apC2):

C[(P, Co1 I) VI J- WV
and

c[K,v] &+ K,(pv).

The resl is analogous to the previous case. Cl

tting the previous two lemmas together, the following theorem is obvious.

(Simulation). Fou any program E A,, and value V, e exist such that

if +P+ SC c

A syntactic thee., of sequential tori trol 231

Since V zP V implies V= t for V E A,, the theorem can be specialized to the
following corollary.

For any program M E A, whose result V is continuation-free,

A more general consequence is that eval c is only defined if the program is
equivalent to a value:

Corollary 4.9. For any program M E A,, there exists a value Vsuch that A, t- M =y V
if eval c (M) is defined.

Informally, these results mean that the C-machine is characterized by a standard
computation function (and sequence) of a calculus modulo some syntactic difference.
In order to eliminate this difference, we would have to change the standard reduction
function in such a way that a term K(%M) evaluates to MK for a continuation K.
From the above definition of [l DC one can see that recognizing terms as continuations
is possible. But one could easily construct such a term K by hand, and then the
normal evaluation sequence would be preferable. Without knowing the history of
a term, it is impossible to know when to apply the new rule.

Although the difference cannot be eliminated, it is not stringent. The result of a
batch computation is generally expected to be a basic constant, and Corollary 4.9
assures us that we get the correct result back since we encode these values in A.
Otherwise, if a nonbasic value is the result, a sensible interpretation is impossible
because these values represent machine behavior. On the other hand, if a machine
is used interactively where intermediate results are saved, the user can only be
interested in getting such values back for potential future use. In this case we are
safe because of Proposition 4.4. All terms that are related to a continuation point
are behaviorally equivalent. Thus, we can assume that evalc and the operational
semantics of A, are equivalent.

A disadvantage of the above theorem and corollaries is their dependence on the
standard compution function of the calculus. One would prefer to interpret terms
in a less operational way using the equivalence relation instead. Traditionally, one
thinks of terms as functions from some set of basic constants’ to basic constants.
A program is equivalent to a basic constant and hence, it is a null-ary function.
Following Morris [131 and Plotkin [141 we define two interpretations of terms. For
all n 3 0, the calculus interpretation of a term is the function

9&=((N,,...,

’ For the following two theorems we must assume that constants are represented by an equiva. ence
class of terms, the normai form being the typical representative. Alternatively, we could have introduced
constants into A,, but that would have complicated the treatment of fundamental properties.

232 M. Felleisen et al.

where the Ni and V are basic values. The machine interpretation of a term M is the

function

A”,={(N,,..., N,, V) 1 eval&M& . . . N,,) = V}.

Given these interpretations, the correspondence of the C-machine to the &-calculus
is independent of a standard. computation function.

For any program M in A,, its calculus and machine interpretation are

the same for all n 2 0:

roar’. The theorem is a consequence of the Church-Rosser Theorem, Corollary
4.8, and Corollary 4.9. El

Theorem 4.10 essentially says that the machine and the calculus interpret a program
as the same function. Given that the classical A-calculus is for reasoning about the
equivalence of these functions, the question naturally arises what proofs in A, mean.

Since the relation =F . 1s not a congruence relation, it is clear that M = YN does
not mean that Jti: = Jiik for any n > 0. The relation = r oniy compares piO@ZUTlS

that are already supplied with all their input arguments. Intuitively, the equivalence
relation = y equates the global control intentions of programs. The subrelation =c
is more like =@,: it compares the functionality and local control structure of terms.

The question generalizes to what equality in h, means for open expressions, i.e.,
whether equality is preserved under all possible interpretations [131. Put differently,
we are asking whether equality in the calculus implies operational equality. From
the above discussion about =y and ==, we know that only =c implies operational
equivalence. For = y we need to make sure that the terms behave equivalently in
all applicative contexts; then it also implies operational equivalence.

core I. For M, N in A,,
(i) if& t- M == N, then M eC N, and

(ii) if A, I-- C[M] -y C[N] for all applicative contexts C[], then M xc N.

roof. The proof of (i) is easy. It is essentially a transcription of Plotkin’s corre-

sponding proof for the A,-calculus.
Part (ii) deserves some elaboration. Assume the hypothesis and, without loss of

enerality, assume that M and N are in A, prop Let D[] be a context such that
N] is closed. Now, suppose that eval,(D 1) is defined and, furthermore,

that it is a basic constant. By Theorem 3.10 and Corollary 4.9,

e evaluation, we have to
that the term in the hole is never a direct

A syntactic theory of sequential control 233

component of a standard rcdex. Then it gets thrown away since the result is a basic
constank. The conclusion is immediate. Otherwise, at some point, a closed form of
M or N is an immediate component of some redex in some applicative context.

But note, A, I-- C[M] =y C[N] implies A, I- C[M[x := L]] =y C[N[x := L]] for all
values L. Therefore, with the necessary generalization to multiple substitutions, we

have

A, I- eval,(D[M]) =r eval,(C[[x’:= i]]) =y eval,(C[N[$:= i]]).

Hence, by the Church-Rosser Theorem, D[] and D[N] produce the same

result. Cl

The inverses of both statements are false. This is inherited from the &,-calculus
for which Plotkin has already shown that it is consistent but not complete with
respect to =c.

The second point of Theorem 4.11 is important. Together with the above theorems
and corollaries it yields an interesting system for dealing with continuations. The
theorem implies that it is sufficient to consider all applicative contexts instead of
program contexts for behavioral considerations. Theorem 4.7 and Corollary 4.8
provide the basis for using the context-rewriting rules in conjunction with the
calculus reductions; this is helpful when reasoning about redexes in arbitrary
applicative contexts. In the last section we briefly discuss some possible applications
of this theory.

5. Reasoning with the A,-talc

In the preceding sections we have shown how the A-calculus can be extended to
a control calculus. The resulting system is correct with respect to the C-rewriting
semantics which in turn is equivalent to a classical operational interpretation of a
denotational semantics. Together, the two characterizations form a syntactic theory
of control. The predominant use that we perceive is for symbolic manipulations of
programs, e.g., verification and evaluation.

With our first application, we return to the X$-function from Subsection 2.3.
Recall that Zt sums the numbers in a tree unless a 0 occurs in the tree, in which
case it retllcc- uL113 a 0. Given a predicate as-zero? that tests whether a tree contains a

0 or not, we can formulate and prove a correctness claim.

For all number-trees t, 2,* operationally satisfies its specijication:

(Z$t) sc (if (as-zero? t) [Ol(JT*t)).

Let C[] be an arbitrary applicative context and consider an application of

234 M. Felleisen et al.

where

and

Ek = As. At. (if(mt? t) [o]

(if(zero?(num t))(k [Ol)

(+(num t)(+(s(lson t))(sbo

F= &[k:= (p, C[I)].

At this point, we must show that the recursive function Y,F behaves correctly. To
this end, we split the claim into two subcases:

, then D[Y,Ft] =y D[X*t];

(ii) if (has-zero? t) ST, then D[Y,Ft] =y D[(p, C[])[O]] =y C[[Ol].
For (i), observe that (zero?(num t)) can never be true and hence,

(if(zero?(num t))(k [Ol)(+(num t)(+(s(lson t))(s(rson t)))))

- (+(num t)(s(lson t))(s(rson t))). -C

From this, (i) follows immediately.
The second claim we prove by an induction on the structure of a tree. Suppose

that there is a 0 in the tree and that it is at the root. Then we have the following
evaluation in any applicative context D[1:

D[Y,Ft] =y DRP, CC 1w11.

Otherwise, the valuation lakes the second if-branch and we have

D[(+ (num t)(+(Y,F(lson t))(Y,F(rsoo t))))].

Assuming that a 0 is in the left subtree, the inductive hypothesis yields

. . . =y D[(+bum N+((p, C[l)~~l)W,Fbon O)))l

for the applicative context D[(+(num t)(+[](YvF(rson t))))]. But note, because of
the abortive character of continuation representations in applicative contexts (see
Proposition 4.4), this results in

. . .

For the final case, where the 0 is in the right subtree, the proof relies on part (i),
but is otherwise similar to the above. q

This first application of the AC-calculus demonstrates how to reason about a
specific use of Z-applications. Since % and &applications abstract from an
extension of continuation-passing style programming, a more general question is
whether the &-calculus can prove as many results as the h-calculus about the
respective cps’ed programs. The question naturally divides into two subproblems,
namely whether the AC-calculus-relations preserve equality in the h-calculus. and
vice versa. e refer to the first as the soundness and the second as the completeness

uestion.

A syntactic theory of sequential control 235

As for soundness, the proof is a tedious but straightforward calculation. The
soundness of the &,-reduction is known from Plotkin’s investigation of the A,-

calculus [14]?

.2 (Soundness). For M E A, and for L E A an abstraction, if M =c N,
then [MJL =p [NjL, and if M =y N, then [M]1

Proof. The pioof is a two-step procedure which for the most part can be carried
out by a program. First, the left-hand side and the right-hand side of each rule is
translated into the h-calculus via cps. Then the resulting expressions are reduced
un;il no P-redexes are left. For the qR and J& cases one needs the assumption that
L is an abstraction; in all other cases, the respective left-hand and right-hand terms

are already equivalent. Cl

Unfortunately, the calculus is not complete as expressed in. the following propo-
sition.

Proposition 5.2’ (Incompleteness). There are M and N such that, for some abstraction
L, [MBL =p [NI)L but M #, N.

Proof. The proposition is a consequence of Theorem 3.8 and of Plotkin’s value-
calculus being a subcalculus. An example is given by M = (oo)y and N =
(Ax. xy)(ww) where w = (hx. XX). Cl

Thus far, we have used the &-calculus as an equational extension of the C-
rewriting system. With the exception of the induction step in Proposition 5.1, the
C-reductions have played no role. The following proposition shows that they are
indeed useful for local program transformations.

Proposition 5.3. De$ne I[.J ,k as a variant of I[l DC:

ur 0: = s
um IMin: = Afa 4UC[IIlXf~)),

UCIYC 11n: = Au l 4IclI III3 W)*

Then the following two statements hold for any applicative context C[1:
] ==&x. &M, and
] -&x. %Ak.

6 See Plotkin’s Translation Theorem [14, p. 1483 which discusses the use of cps’ed programs for the
simulation of a call-by-value abstraction in the traditional A-calculus.

236

roof.

(ii):
If it is

M. Felleisen et al.

(i): By Lemma 4.1, A, t- Ax. C[dM] =c Ax. dM.

We prove the statement by an induction on the structure of the context C[1.
empty, we must show that Ax. %M zChx. %Ak. Mk. But this follows from

%M =c VAk. Mk, which obviously holds. Otherwise, assume, without loss of gener-

ality, that we have a context of the form C[[] N]. Then we get the conclusion by

a simple calculation:

Ax. C[(%M)N] = .&ix. c[cehK. M(Af. d(K(fN)))]

yhx. %Ak. (CehK. M(Af. d(K(fN))))[C[]I:

by inductive hypothesis

=ch~. %Ak. M(Af. d([C[]lj:(fN)))

=,Ax. %Ak. M[C[[IN]]:. Cl

The proposition is useful in two different areas: source-to-source transformations
and compiler optimizations. Moving the %-application to a procedure entrance can
improve a programmer’s understanding about the intension of a procedure body.
At the same time it may save some cost since on various machine architectures it
may be cheaper to label continuations at the invocation of a function.

For non-Von-Neumann machine architectures the reduction characterization of
control operations is even more important. For example, a term-rewriting machine
[10) can reduce all (reduction) redexes in parallel. Only computation steps must
be ordered, yet this happens naturally. At first glance, it may appear that the reduction
system exchanges short C-rewriting steps for long chains of reductions, but these
appearances are deceiving. Newly built &,-redexes within right-hand sides of %‘,_-
and CeR-steps can immediately be reduced. By the time a %-application has reached
the top of the term, it may already have finished the construction of the continuation.
The trade-offs between these two computational models clearly deserve more investi-
gation.

In essence the development of a syntactic theory of control has demonstrated
that our understanding of programming with control operations is far from complete.
It raises the question of what continuations really are. In denotational semantics
they are represented by functions. But this only works because the definitions are
expressed in a particular style, namely continuation-passing style. Their nature as
programming objects remains concealed. We expect that a further investigation of
the A,-calculus will deepen our understanding of progamming with continuations
and the nature of control operations in programming languages.

We wish to th lank Carolyn Tz!cot,t, and .Mitche!! Wand for their helpful discussions
and comments on early drafts of this paper. to clarify the

A syntactic theory of sequential control 237

Soundness and Incompleteness Propositions. We also thank John Gately and Chris
Haynes for their comments. The anonymous referees suggested several improvements
to the organization and presentation of the material.

Matthias Felleisen and Eugene Kohl ecker are IBM Research Graduate Fellows.

eferences

PI

PI

131

PI

PI

[61

PI
PI

PI
WI

WI
WI

II131

WI

WI

L-161

cm

WI

WI

Lw

Ial

WI

H.P. Barendregt, 7%e Lambda Calculus: Its Syntax and Semantics (North-Holland, Amsterdam,
1981).

M. Felleisen and D.P. Friedman, Control operators, the SECD-machine, and the A-calculus, in:
Formal Description of Programming Concepts III (North-Hollacd, Amsterdam, 1986) 193-217.
M. Felleisen, D.P. Friedman, E. Kohlbecker and B. Duba, Reasoning with continuations, in: &oc.
First Symp. on Logic in Computer Science (1986) 131-141.

M.J. Fischer, Lambda calculus schemata, in: Proc. ACM Conf on Proving Assertions about Programs,
SIGPLAN Notices 7(l) (1972) 104-109.

D.P. Friedman, C.T. Haynes and E. Kohlbecker, Programming with continuations, in: P. Pepper,
ed., Program Transformations and Programming Environments (Springer, Berlin, 1985) 263-274.

C.T. Haynes and D.P. Friedman, Embedding continuations in procedural objects, TOPLAS 9(4)
(1987).

C.T. Haynes, Logic continuations, J. Logic Programming 4(2) (1987) 157-176.

P.J. Landin, An abstract machine for designers of computing languages, in: Proc. IFIP Congress

(1965) 438-439.
P.J. Landin, The mechanical evaluation of expressions, Comput. Journal 6(4) (1964) 308-320.

G.A. Mago, A network of microprocessors to execute reduction languages, Internat. J. Comput.

Inform. Sci. 8 (1979) 349-385; 435-471.
A.W. Mazurkiewicz, Proving algorithms by tail functions, Inform. and Control 18 (1971) 220-226.
C. Mellish and S. Hardy, Integrating Prolog in the POPLOG environment, in: J. A. Campbell, ed.,
Implementations of Prolog (Ellis Horwood Series in Artificial Intelligence, 1984) 147-162.
J.H. Morris, Lambda-calculus models of programming languages, Ph.D. Thesis, Project MAC,

MAC-TR-57, MIT, 1968.
G.D. Plotkin, Call-by-name, call-by-value, and the A-calculus, Theoret. Comput. Sci. 1 (1975)
125-159.
J. Rees and W. Clinger, eds., The revised3 report on the algorithmic language Scheme, SIGPLAN

Notices 21(12) (1986) 37-79.
J.C. Reynolds, Definitional interpreters for higher-order programming languages, Proc. ACM Annual

Conference (1972) 7 17-740.
J.C. Reynolds, GEDANKEN-A simple typeless language based on the principle of completeness
and the reference concept, Comm. ACM 13(5) (1970) 308-319.
T.B. Steel, ed., Formal Language Description Languagesfor Computer Programming (North-Holland,

Amsterdam, 1966).
C. Strachey and C.P. Wadsworth, Continuations: A mathematical semantics for handling full jumps,

Technical Monograph PRG-11, Oxford University Computing Laboratory, Programming Research

Group, 1974.
G.J. Sussman and G. Steele, Scheme: An interpreter for extended lambda calculus, Memo 349,

MIT AI-Lab, 1975.
C. Talcott, The essence of rum-a theory of the intensional and extensional aspects of Lisp-type

computation, Ph.D. Dissertation. Stanford University, 1985.
M. Wand, Continuation-based program transformation strategies, J. ACM 27(l) (1980) 164-180.

