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Abstract
Dempster-Shafer (DS) belief theory is a powerful general framework for dealing with a wider va-
riety of uncertainties in data. As in Bayesian probability theory, the conditional operation plays
a critical role in DS theoretic strategies for evidence updating and fusion. A major limitation as-
sociated with the application of DS theoretic techniques for reasoning under uncertainty is the
absence of a feasible computational framework to overcome the prohibitive computational burden
this conditional operation entails. This paper addresses this critical challenge via a novel general-
ized conditional computational model — DS-Conditional-One — which allows the conditional to
be computed in significantly less computational and space complexity. This computational model
also provides valuable insight into the DS theoretic conditional itself and can be utilized as a tool for
visualizing the conditional computation. We provide a thorough analysis and experimental valida-
tion of the utility, efficiency, and implementation of the proposed data structures and algorithms for
carrying out both the Dempster’s conditional and Fagin-Halpern conditional, the two most widely
utilized DS theoretic conditional strategies.
Keywords: Dempster-Shafer belief theory; Dempster’s conditional; Fagin-Halpern conditional;
data structures; algorithms; computational complexity.

1. Introduction

The Dempster-Shafer (DS) belief theory (Dempster, 1967, 1968; Shafer, 1976), also referred to as
evidence theory, is a powerful and convenient framework that can handle a wide variety of data im-
perfections (Shafer, 1990; Smets, 1999). With the greater expressiveness and flexibility in evidential
reasoning and decision-making that they offer, DS theoretic (DST) methods are finding increased
utilization in numerous application scenarios and have generated an active research field (Yager and
Liu, 2008; Denœux, 2016).

Motivation. As in the Bayesian methods, the conditional operation plays a pivotal role in DST
strategies for evidence updating and fusion, and in general, for reasoning under uncertainty. Among
these various notions that have been proposed over the years, perhaps the most widely used DST
conditional notion is the Dempster’s conditional (Shafer, 1976; Klawonn and Smets, 1992; Nguyen
and Smets, 1993; Xu and Smets, 1996; Smets, 2002). On the other hand, the Fagin-Halpern (FH)
conditional can be considered as the most natural generalization of the probabilistic conditional
notion because of its close connection with the inner and outer conditional probability measures
(Fagin and Halpern, 1990). The recent work on the DST conditional approach (Premaratne et al.,
2009; Wickramarathne et al., 2011) is based on this FH conditional.

Challenges. In spite of the advantages they offer, DST implementations in current use are re-
stricted to smaller frames of discernment (FoDs) because of the prohibitive computational burden
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that larger FoDs impose on existing methods. While this difficulty has been addressed via several
approximation methods (Yager and Liu, 2008; Denœux, 2016), such approaches usually require
one to compromise the quality of the generated results for computational efficiency, and some ap-
proaches cannot be extended for computing the DST conditionals. Exact (or sufficiently precise)
computation of conditionals is of paramount importance because the quality of results generated
from DST strategies depend directly on the precision of the conditional. A review of current imple-
mentations (Yager and Liu, 2008; Augustin et al., 2014; Denœux, 2016; SIPTA, 2017) confirms that
work is needed to overcome these computational limitations associated with the DST conditionals.
A fast Möbius transform (FMT), which is analogous to the fast Fourier transform (FFT), has been
developed and employed for efficient precise computation of DST notions (Thoma, 1989; Kennes,
1992). Polpitiya et al. (2016) proposes several data structures which enable highly efficient exact
computation of the DST notions of belief and plausibility, but it does not address the computation
of DST conditionals.

As for the Dempster’s conditional, perhaps the most thorough discussion for carrying out its
precise computation appears in Klawonn and Smets (1992) and Smets (2002). It provides a matrix
calculus based algorithm to compute Dempster’s conditional masses. However, this approach is
feasible only on smaller frames because of the matrix operations it requires. It is not applicable for
FH conditional computation. As for the FH conditional, the work in Wickramarathne et al. (2013)
provides a method to identify the propositions that retain non-zero support after FH conditioning,
but it does not address conditional computation of these propositions.

Contributions. The main contribution of this paper is a completely new generalized model
for computing DST conditionals. This conditional computational model — DS-Conditional-One
— offers significantly greater flexibility and computational capability for implementation of DST
conditional strategies. We provide the DS-Conditional-One computational model along with its
complexity analysis, experimental validation of the utility, efficiency, implementation of the asso-
ciated data structures and algorithms. This model can be employed to compute both the FH and
Dempster’s conditional beliefs of an arbitrary proposition. This is exactly the challenge that Shafer
refers to in Shafer (1990, p.348), viz., “It remains to be seen how useful the fast Möbius trans-
form will be in practice. It is clear, however, that it is not enough to make arbitrary belief function
computations feasible.”

By reducing the number of operations being executed, the proposed approach takes significantly
less computational and space complexity when compared with other approaches for conditional
computation. As an example, our experiment results demonstrate that the average computational
time taken to compute the conditional belief of an arbitrary proposition by the proposed approach is
less than 2 (µs) for a FoD of size 10 and 0.7 (ms) for a FoD of size 20 (∼1 million focal elements).
This new model can also be utilized as a visualization tool for conditional computations and in an-
alyzing characteristics of conditioning and updating operations. All software routines are available
at ProFuSELab (2017). We believe that this computational model and the associated data structures
constitute a significant step toward filling the void between what the DST framework can offer for
reasoning under uncertainty and the practical implementation of DST strategies.

This paper is organized as follows: Section 2 provides a review of essential DST notions and
computational tools. Our DS-Conditional-One computational model and our algorithms for efficient
computation of DST conditionals appear next in Sections 3 and 4, respectively. The experimental
results are provided next in Section 5. Finally, Section 6 offers some concluding remarks.
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2. Preliminaries: DS Belief Theory

2.1 DST Basic Notions

In DS theory, the frame of discernment (FoD) refers to the set of all possible mutually exclusive and
exhaustive propositions (Shafer, 1976). We consider the case where the FoD is finite and we denote
it as Θ = {θ0, θ1, . . . , θn−1}. Proposition {θi}, which is referred to as a singleton, represents the
lowest level of discernible information. The power set of Θ, denoted by 2Θ, form all the propositions
of interest in DS theory. A proposition that is not a singleton is referred to as a composite. The set
A \B denotes all singletons in A ⊆ Θ that are not included in B ⊆ Θ, i.e., A \B = {θi ∈ Θ | θi ∈
A, θi /∈ B}. We use A to denote Θ \A and |A| to denote the cardinality of A. Note that |Θ| = n.

In DS theory, the ‘support’ that is being strictly allocated to a proposition is captured via

Definition 1 (Basic Belief Assignment (BBA) or Masses) The mapping m : 2Θ 7→ [0, 1] is said
to be a basic belief assignment (BBA) or a mass assignment if

m(∅) = 0 and
∑
A⊆Θ

m(A) = 1.

The mass of a composite proposition is free to move into its individual singletons, which allows
one to model the notion of ignorance. Complete ignorance can be modeled via the vacuous BBA,
viz., m(Θ) = 1 and m(A) = 0, ∀A 6= Θ. Propositions that possess nonzero mass are referred to as
focal elements; the set of all focal elements in a FoD is referred to as its core F, i.e., F = {A ⊆ Θ |
m(A) > 0}. Note that |F| is the number of focal elements. E = {Θ,F,m(·)} is referred to as the
body of evidence (BoE).

Definition 2 (Belief) Given a BoE E = {Θ,F,m(·)}, the belief and plausibility functions are the
mappings Bl : 2Θ 7→ [0, 1] and Pl : 2Θ 7→ [0, 1], respectively, where

Bl(A) =
∑
B⊆A

m(B); Pl(A) =
∑
B⊆Θ

B∩A6=∅

m(B).

The belief assigned to a proposition takes into account the support for all of its subsets. It
is easy to see that, Pl(A) = 1 − Bl(A) ≥ Bl(A), ∀A ⊆ Θ. So, the plausibility measures the
extent to which a proposition is plausible, i.e., the amount of belief not strictly supporting the
complement of the proposition. Propositions that possess nonzero belief are denoted by F̂, i.e.,
F̂ = {A ⊆ Θ | Bl(A) > 0}.

Given a valid belief function Bl : 2Θ 7→ [0, 1], one may generate the corresponding BBA
m : 2Θ 7→ [0, 1] via the Möbius transform (Shafer, 1976)

m(A) =
∑
B⊆A

(−1)|A\B|Bl(B), ∀A ⊆ Θ. (1)

The following notation will be useful for our work:

S(A;B) =
∑

∅6=C⊆A;
∅6=D⊆B

m(C ∪D). (2)

So, S(A;B) denotes the sum of all masses of propositions that ‘straddle’ both A ⊆ Θ and B ⊆ Θ.
The following result is of critical importance for our work.
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Proposition 3 Consider the BoE E = {Θ,F,m(·)} and A ⊆ Θ. For B ⊆ Θ, consider the map-
pings ΓA : 2Θ 7→ [0, 1] and ΠA : 2Θ 7→ [0, 1], where

ΓA(B) =
∑
∅6=X⊆A

m((A ∩B) ∪X); ΠA(B) =
∑

Y⊆(A∩B)

ΓA(Y ).

Then the following are true:
(i) ΓA(A ∩B) = ΓA(B) and ΠA(A ∩B) = ΠA(B). So, w.l.o.g., we assume that B ⊆ A.
(ii) ΓA(∅) = Bl(A).

Proof These follow by direct substitution.

2.2 Fagin-Halpern (FH) Conditional

FH conditional can be considered the most natural generalization of the probabilistic conditional
notion because of its close connection with the inner and outer conditional probability measures in
probability theory (Fagin and Halpern, 1990).

Definition 4 (Fagin-Halpern (FH) Conditional) (Fagin and Halpern, 1990) Consider the BoE E =
{Θ,F,m(·)} and A ∈ F̂. The conditional belief Bl(B|A) of B given the conditioning event A is

Bl(B|A) =
Bl(A ∩B)

Bl(A ∩B) + Pl(A ∩B)
.

The conditional plausibility Pl(B|A) of B given A is computed as Pl(B|A) = 1 − Bl(B|A).
Of course, once the conditional beliefs of all the propositions are computed, one may obtain the
corresponding conditional BBA via a Möbius transform of the type in (1).

Suppose the BoE {Θ,F,m(·)} is being conditioned w.r.t. the proposition A ∈ F̂. The propo-
sitions that retain a nonzero mass after conditioning are referred to as the conditional focal ele-
ments; the set of all such conditional focal elements is referred to as the conditional core FA, i.e.,
FA = {B ⊆ A ∈ F̂ | m(B|A) > 0}.

In our work, we will exploit several previous results related to the conditional core (Kulasekere
et al., 2004; Wickramarathne et al., 2013). Of particular importance is the following result:

Lemma 5 (Kulasekere et al., 2004) Consider the BoE E = {Θ,F,m(·)} and A ∈ F̂. Then,
(i) m(B|A) = 0 whenever A ∩B 6= ∅, and
(ii) Bl(B|A) can be expressed as

Bl(B|A) =
Bl(A ∩B)

Pl(A)− S(A;A ∩B)
, B ⊆ A.

Note that, (i) states that FH conditioning annuls those propositions that ‘straddle’ the condition-
ing proposition A and its complement A. So, w.l.o.g., for FH conditioning, one may consider only
those propositions B ⊆ A.

For our work, we will need the following alternate expression for the FH conditional:

Proposition 6 Consider the BoE E = {Θ,F,m(·)} and A ∈ F̂. Then, we may express Bl(B|A) as

Bl(B|A) =
Bl(A ∩B)

1−Bl(A)− S(A;A ∩B)
, B ⊆ Θ.

Proof This follows directly from Lemma 5(ii) by using the fact that Bl(A) = 1− Pl(A).
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2.3 Dempster’s Conditional

Dempster’s conditional is perhaps the most widely employed DST conditional notion.

Definition 7 (Dempster’s Conditional) (Shafer, 1976) Consider the BoE E = {Θ,F,m(·)} and
A ⊆ Θ s.t. Bl(A) 6= 1, or equivalently, Pl(A) 6= 0. The conditional belief Bl(B‖A) of B given
the conditioning event A is

Bl(B‖A) =
Bl(A ∪B)−Bl(A)

1−Bl(A)
.

One may compute the corresponding conditional mass m(B‖A) and Pl(B‖A) from Bl(B‖A).
Similarly to FH conditioning, Dempster’s conditioning also annuls masses of all those propositions
that ‘straddle’ the conditioning proposition A and its complement A. So, w.l.o.g., for Dempster’s
conditioning, one may consider only those propositions B ⊆ A.

For our work, we will need the following alternate expression for the Dempster’s conditional:

Proposition 8 Consider the BoE E = {Θ,F,m(·)} and A ⊆ Θ s.t. Bl(A) 6= 1. Then, Bl(B‖A)
can be expressed as

Bl(B‖A) =
Bl(A ∩B) + S(A;A ∩B)

1−Bl(A)
, B ⊆ Θ.

Proof This follows directly from Definition 7 by using the fact thatBl(A∪B) = Bl(A∪(A∩B)) =
Bl(A) +Bl(A ∩B) + S(A;A ∩B).

Propositions 6 and 8 highlight an important fact: the three quantities Bl(A), Bl(A ∩ B), and
S(A;A∩B) fully determine both FH and Dempster’s conditionalsBl(B|A) andBl(B‖A), respec-
tively. It is this fact that we exploit for computing the conditionals of an arbitrary proposition.

2.4 The REGAP Property

The work in Polpitiya et al. (2016) proposes new data structures — DS-Vector, DS-Matrix and DS-
Tree — and computationally efficient algorithms for computing the basic DST operations of belief
and plausibility. For this purpose, the authors utilize what is referred to as the REGAP (REcursive
Generation of and Access to Propositions) property.

To be more specific, consider the FoD Θ = {θ0, θ1, . . . , θn−1}. Suppose we desire to determine
the belief potential Bl(A) associated with A = {θk0 , θk1 , . . . , θk|A|−1

} ⊆ Θ. Then, REGAP (A)

recursively generates all the 2|A| − 1 propositions whose masses are required to compute Bl(A),
viz., all subsets ofA (includingA itself). It is implemented in the following manner: Start with {∅}.
First insert the singleton {θk0} ∈ A. Only one proposition is associated with this singleton, viz.,
{∅}∪ {θk0} = {θk0} itself. Next insert another singleton {θk1} ∈ A. The new propositions that are
associated with this singleton are {∅} ∪ {θk1} = {θk1} and {θk0} ∪ {θk1} = {θk0 , θk1}. Inserting
the next singleton {θk2} ∈ A brings the new propositions {∅} ∪ {θk2} = {θk2}, {θk0} ∪ {θk2} =
{θk0 , θk2}, {θk1} ∪ {θk2} = {θk1 , θk2}, and {θk0 , θk1} ∪ {θk2} = {θk0 , θk1 , θk2}. In essence, when
a new singleton is added, new propositions associated with it can be recursively generated by adding
the new singleton to each existing proposition. Of course, all propositions of interest within the FoD
Θ can be generated by REGAP (Θ), i.e., when A = Θ.

5



POLPITIYA ET AL.

The propositions recursively generated via the REGAP property can be represented as a vector,
DS-Vector, a matrix, DS-Matrix, or a tree, DS-Tree, and utilized to capture a BoE. We will utilize
this REGAP property and the DS-Matrix structure in this work too.

3. DS-Conditional-One Computational Model

DS-Conditional-One is a computational model that enables one to compute the FH and Demp-
ster’s conditional beliefs of an arbitrary proposition. DS-Conditional-One model facilitates the
representation, access, and efficient computation of the quantities that are needed to compute these
conditionals (see Propositions 6 and 8).

Henceforth, we will denote the conditioning proposition A, its complement A, and the condi-
tioned proposition B as {a0, a1, . . . , a|A|−1}, {α0, α1, . . . , α|A|−1}, and {b0, b1, . . . , b|B|−1}, re-
spectively. Here, Θ = {θ0, θ1, . . . , θn−1} denotes the FoD and ai, αj , bk ∈ Θ. When dealing with
FH and Dempster’s conditioning, it is implicitly assumed that A ∈ F̂ and Bl(A) 6= 1, respectively.

Furthermore, we will represent singletons of the conditioning event A = {a0, a1, . . . , a|A|−1}
as column singletons and singletons of the complement of conditioning event A = {α0, α1, . . . ,
α|A|−1} as row singletons in a DS-Matrix. See Fig. 1.

∅ a0 a1 a0a1 a2 a0a2 · · · a0. . .
. . .a|A|−1

α0 a0α0 a1α0 a0a1α0 · · · · · · · · · · · ·

α1 a0α1 a1α1 a0a1α1 · · · · · · · · · · · ·

α0α1 a0α0α1 a1α0α1 a0a1α0α1 · · · · · · · · · · · ·

α2 · · · · · · · · · · · · · · · · · · · · ·

...
...

...
...

...
...

...
...

α0. . .
. . .α|A|−1

· · · · · · · · · · · · · · · · · · · · ·

ΓA(∅) ΓA(a0) ΓA(a2) ΓA(a0a2) · · · ΓA(α0. . .
. . .α|A|−1)

columns(j)

row
(i)

REGAP (A)×REGAP (A ∩B)→ S(A;A ∩B)

REGAP (A ∩B)→ Bl(A ∩B)

REGAP (A)

REGAP (A)→ Bl(A)

Figure 1: DS-Conditional-One model. Quantities related to Bl(B|A) computation when A =
{a0, a1, . . . , a|A|−1} and A = {α0, α1, . . . , α|A|−1}, and B = {a0, a2} ⊆ A.
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The proposed DS-Conditional-One computational model allows direct identification of REGA
P (A),REGAP (A),REGAP (A∩B), (REGAP (A)×REGAP (A∩B)), (REGAP (A)×REG
AP (A)), and ΓA(C), ∀C ⊆ B. Among these, the following three quantities are required to com-
pute both FH and Dempster’s conditional beliefs (see Propositions 6 and 8): (a) REGAP (A ∩B):
Use this to compute Bl(A ∩ B) (see Algorithm 1). (b) REGAP (A): Use this to compute Bl(A)
(see Algorithm 2). (c) (REGAP (A)×REGAP (A ∩ B)), the Cartesian product of REGAP (A)
and REGAP (A ∩B): Use this to compute S(A;A ∩B) (see Algorithm 3).

Fig. 1 depicts these quantities for A = {a0, a1, . . . , a|A|−1} and B = {a0, a2} ⊆ A
In the algorithms to follow, we use a lookup table named power to enhance the computational

efficiency. It contains 2 to the power of singleton indexes in increasing order and it is implemented
using a dynamic array that replaces run-time computation of 2 to the power values with a simpler
array indexing operation. power[i], the i-th entry of the power table, refers to 2i. index[] is a
dynamic array which keeps the indexes of subset propositions of A ∩B.

Algorithm 1 Compute Bl(A ∩B) (with complexity O(2|A∩B|))
1: procedure BLB(Singletons A, Singletons B, DS-Matrix BBA)
2: belief ← 0
3: count← 0
4: for each ai in A ∩B do
5: index[count]← power[i]
6: temp← count
7: count← count+ 1
8: for j ← 0, temp− 1 do
9: index[count]← index[j] + power[i]

10: count← count+ 1
11: end for
12: end for
13: for i← 0, power[|A ∩B|]− 2 do
14: belief ← belief +BBA[0][index[i]]
15: end for
16: Return belief
17: end procedure

Time Complexity of Algorithm 1. This computesBl(A∩B) inO(2|A∩B|) complexity. Line #1:
The algorithm inputs are the conditioning event A, conditioned event B, and the DS-Matrix BBA.
Lines #4-12: The outer loop is executed |A ∩ B| times. Lines #8-11: The inner loop is executed
temp− 1 times. It can be shown that for ` = 0, 1, 2, . . . , |A ∩ B| − 1, temp = (2` − 1). Lines #5
and #9 are constant time operations. Thus, the computational complexity of lines #4-12 is given by

|A∩B|−1∑
`=0

(1 + temp) =

|A∩B|−1∑
`=0

2` = 2|A∩B| − 1 = O(2|A∩B|). (3)

Lines #13-15: The required number of iterations is 2|A∩B| − 1 and the complexity of this segment
is O(2|A∩B|). Line #16: The algorithm output is Bl(A ∩B).
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Algorithm 2 Compute Bl(A) (with complexity O(2|A|))

1: procedure BLCOMP(Singletons A, DS-Matrix BBA)
2: belief ← 0
3: for i← 1, power[|A|]− 1 do
4: belief ← belief +BBA[i][0]
5: end for
6: Return belief
7: end procedure

Time Complexity of Algorithm 2. This computes Bl(A) in O(2|A|) complexity. Line #1: The
algorithm inputs are the complement of conditioning eventA and the DS-MatrixBBA. Lines #3-5:
The required number of iterations is 2|A| − 1 and the computational complexity of this segment is
O(2|A|). Line #6: The algorithm output is the belief potential Bl(A).

Algorithm 3 Compute S(A;A ∩B) (with complexity O(2|A|+|A∩B|))

1: procedure STRAD(Singletons A, Singletons A, Singletons B, DS-Matrix BBA)
2: belief ← 0
3: count← 0
4: for each ai in A ∩B do
5: index[count]← power[i]
6: temp← count
7: count← count+ 1
8: for j ← 0, temp− 1 do
9: index[count]← index[j] + power[i]

10: count← count+ 1
11: end for
12: end for
13: for i← 1, power[|A|]− 1 do
14: for j ← 0, power[|A ∩B|]− 2 do
15: belief ← belief +BBA[i][index[j]]
16: end for
17: end for
18: Return belief
19: end procedure

Time Complexity of Algorithm 3. This computes S(A;A ∩B) in O(2|A|+|A∩B|) complexity.
Line #1: The algorithm inputs are the complement of conditioning event A, the conditioning and
conditioned propositions A and B, respectively, and the DS-Matrix BBA. Lines #4-12: Subset
propositions of A ∩ B are generated via REGAP (A ∩ B). Computational complexity of this
segment is O(2|A∩B|), which can be obtained from equation 3. Lines #13-17: The outer loop is
executed (2|A|−1) times. Lines #14-16: The inner loop is executed (2|A∩B|−1) times. Complexity
of an access operation is O(1). Thus, the computational complexity of lines #13-17 is (2|A| −
1) (2|A∩B| − 1) = O(2|A|+|A∩B|). Line #18: The algorithm output is S(A;A ∩B).
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Space Complexity of Algorithms 1, 2, and 3. The matrix in Fig. 1 is of size 2|A|×2|A|. Hence,
the space complexity associated with each algorithm above is O(2|Θ|).

Note that, in the DS-Conditional-One model, REGAP (A) captures all propositions that may
contribute to the conditional core FA, and REGAP (A) and (REGAP (A)×REGAP (A)), the
Cartesian product of REGAP (A) and REGAP (A), capture all propositions whose masses are
annulled (as identified by Lemma 5 (Kulasekere et al., 2004)). See Fig 1.

4. Efficient Computation of DST Conditionals

4.1 Computation of the FH Conditional Belief of an Arbitrary Proposition

To compute the FH conditional belief of an arbitrary proposition B, one can now use the expression
in Proposition 6, where Bl(A ∩B), Bl(A) and S(A;A ∩B) are obtained via Algorithms 1, 2, and
3, respectively. Thus the computational complexity of this computation remains as O(2|A|+|A∩B|).

As an example, to compute Bl(B|A), where B = {a0, a2}, we may proceed as follows:
(a) REGAP (A ∩ B) captures the propositions that contribute to Bl(A ∩ B). Use Algorithm 1
to compute this. (b) REGAP (A) captures the propositions that contribute to Bl(A). Use Al-
gorithm 2 to compute this. Note that Bl(A) is represented by ΓA(∅) in Fig. 1. (c) The Cartesian
product (REGAP (A)×REGAP (A∩B)) captures the propositions that contribute to S(A;A∩B).
Use Algorithm 3 to compute this. S(A;A ∩B) = ΓA({a0}) + ΓA({a2}) + ΓA({a0, a2}).

Then, Bl(B|A) for B = {a0, a2} is computed as

Bl(B|A) =
Bl(A ∩B)

1− ΓA({∅})− ΓA({a0})− ΓA({a2})− ΓA({a0, a2})
. (4)

4.2 Computation of the Dempster’s Conditional Belief of an Arbitrary Proposition

To compute the Dempster’s conditional belief of an arbitrary proposition B, one can use the expres-
sion in Proposition 8, where Bl(A∩B), Bl(A) and S(A;A∩B) are obtained via Algorithms 1, 2,
and 3, respectively. Thus the computational complexity is O(2|A|+|A∩B|).

Consider the same example as before, viz., B = {a0, a2}. Then, we may compute Bl(B‖A) as

Bl(B‖A) =
Bl(A ∩B) + ΓA({a0}) + ΓA({a2}) + ΓA({a0, a2})

1− ΓA({∅}) . (5)

Computation of the Dempster’s Conditional Mass Using Specialization Matrix. It is note-
worthy that Klawonn and Smets (1992) and Smets (2002) have proposed a matrix calculus based
algorithm for direct computation of Dempster’s conditional masses. It employs a 2|Θ| × 2|Θ|-sized
stochastic matrix SA (with each entry ‘0’ or ‘1’) referred to as the conditioning specialization ma-
trix and a 2|Θ|×1-sized vectorm(·) containing the BoE’s focal elements. Thenm(·‖A) = SA ·m(·)
yields Dempster’s conditioning masses without normalization. The computational and space com-
plexity of the specialization matrix multiplication is O(2|Θ| × 2|Θ|), a prohibitive burden even for
modest FoD sizes.

5. Experiments

Recall that Algorithms 1, 2, and 3 yield all the parameters (viz.,Bl(A∩B),Bl(A), and S(A;A∩B))
required for both FH and Dempster’s conditional belief computations. Once these quantities are
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computed, computational times for both conditional belief computations are similar because they
require constant time (see Propositions 6 and 8).

For a given FoD size, we selected a random set of focal elements, with randomly selected mass
values, and conducted 10,000 conditional computations for randomly chosen propositions A and
B ⊆ A. Table 1 lists the average computational times taken by the DS-Conditional-One model and
the specialization matrix based method in Klawonn and Smets (1992) and Smets (2002).

With the DS-Conditional-One model (which applies to both FH and Dempster’s conditionals),
we use a ‘brute force’ approach to compute all the conditional beliefs (i.e., compute the conditional
belief of every proposition); we then use the FMT to get the conditional masses for all the propo-
sitions (Shafer, 1976; Fagin and Halpern, 1990). The specialization matrix based method (which
applies to the Dempster’s conditional only) yields the conditional masses of all propositions, but
the time taken already far exceeds what the DS-Conditional-One model takes (even including the
FMT). So we did not compute the conditional beliefs with the specialization matrix based method
(which would have required the FMT).

All conditional computations for an arbitrary proposition were done on an iMac running Mac
OS X 10.12.3 (with 2.9GHz Intel Core i5 processor and 8GB of 1600MHz DDR3 RAM). Condi-
tional computations for all propositions were done on the same iMac for smaller FoDs and on a
supercomputer (http://ccs.miami.edu/pegasus) for larger FoDs (underlined in Table 1).
The complete C++ library is available at ProFuSELab (2017).

Method→ DS-Conditional-One Model Specialization Matrix
Conditional→ FH or Dempster’s Dempster’s

Bl(B|A) Bl(B|A) m(B|A)
FoD or Bl(B‖A) or Bl(B‖A) or m(B‖A) m(B‖A)

|Θ| Max. |F| (Arbitrary) (All) (All) (All)
2 3 0.0005 0.0011 0.0016 0.0011
4 15 0.0005 0.0038 0.0050 0.0063
6 63 0.0006 0.0128 0.0170 0.0696
8 255 0.0009 0.0517 0.0679 1.0154

10 1,023 0.0017 0.2428 0.3090 93.1590
12 4,095 0.0040 1.3528 1.6186 1485.6300
14 16,383 0.0120 18.4885 22.4995 25051.8200
16 65,535 0.0405 146.1480 151.9600 ***
18 262,143 0.1516 1,087.2800 1,113.5300 ***
20 1,048,575 0.6011 8,485.4500 8,862.9800 ***

Table 1: DS-Conditional-One model versus specialization matrix based method. Average compu-
tational times (ms). (*** denotes computations not completed within a feasible time).

The significant speed advantage offered by the proposed computational model over the special-
ization matrix based approach is evident from Table 1. For larger FoDs, the computational burden
associated with the specialization matrix based approach becomes prohibitive because of its space
complexity of O(2|Θ| × 2|Θ|). For example, an FoD of size 20 would need 128 (= 220 × 220/8)
GB of memory to represent the specialization matrix, if each matrix entry occupies only 1 bit.
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With increasing FoD size, the computational time requirement of the DS-Conditional-One model is
significantly less compared to what the specialization matrix based approach requires.

6. Concluding Remarks

This paper provides a general framework for computation of DST conditionals. The DS-Conditional-
One model that we propose can also serve as a tool for visualization and further analysis of the
conditional computation process. We believe that the algorithms we have developed constitute a
significant step forward in harnessing the strengths of DST methods in practical applications.

The efficiency of these algorithms is mainly because of the significantly reduced number of
operations that are executed. Computational complexity associated with conditional belief com-
putation of an arbitrary proposition is O(2|A|+|A∩B|). This is a significant improvement over the
O(2|Θ| × 2|Θ|) complexity associated with the specialization matrix based approach. The DS-
Conditional-One model also provides a significant advantage in terms of memory usage: it requires
a O(2|Θ|) space complexity versus O(2|Θ| × 2|Θ|) for the specialization matrix based approach.

Another advantage of the proposed approach is that it can be utilized for either the FH condi-
tional or Dempster’s conditional belief computations. An outcome of this research is a conditional
computation library (in C++) which is available at ProFuSELab (2017). We expect that this library
will be useful for practical application of DST methods.

Our current research work is focused on conditional computations on potentially dynamic FoDs
(where the singletons may have to be removed or new singletons may have to be appended as oper-
ations are carried out). This would be of immense value for enhanced resource utilization. It also
appears possible to further enhance the algorithms that we have developed via parallel computing
optimizations because of the underlying matrix structure.
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