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Abstract

We study the problem of learning epistemic uncertainty measures for probabilistic1

logic rules from small imperfect datasets. While Bayesian approaches have had2

tremendous success in learning probabilistic parameters for rules from complex3

relational data, we lack good methods for handling small and incomplete datasets,4

with imprecise and probabilistic data instances containing mutually-dependent5

attributes, being obtained from multiple heterogeneous sources in the open world6

where new attributes are introduced ad hoc. We propose a Dempster-Shafer ap-7

proach to address these challenges.8

1 Introduction9

There has been a growing interest in combining logic-based representations with probabilistic10

reasoning mechanisms and machine learning techniques [1]. Under the rubrics of probabilistic11

logic learning (PLL) [2] and statistical relational learning (SRL) [3] several approaches combine12

probabilistic mechanisms (e.g., Bayesian Networks, Markov Networks, Stochastic Grammars),13

with logical representation schemes (propositional logic, first-order logic), and machine learning14

techniques that allow for automated learning of probabilistic parameters or relational structure from15

data. Some popular PLL and SRL paradigms include Bayesian Logic Programs (BLP), PRISM, ICL,16

LPADs, ProbLog, P-Log, CP-Logic, PITA, Markov Logic Networks (MLN), Probabilistic Relational17

Models (PRM), Bayesian Logic Networks (BLN) and Relational Dependency Networks (RDN).18

These approaches adopt an underlying Bayesian probability framework expressed graphically as19

Bayesian networks or Markov Networks and can learn probabilistic weights from data [4]. The20

Bayesian setting is an intuitive one that already has a number of off-the-shelf tools to make inferences,21

learn parameters and compute estimates relatively efficiently. While Bayesian approaches have22

enjoyed considerable success and shown potential in handling large datasets having a fairly complex23

relational structure such as NELL [5], there is little work on applying these approaches to learning24

from small imperfect open-world datasets.25

Small imperfect open-world datasets can come from multiple distinct heterogeneous sources of26

varying levels of capability and reliability, producing streams of incomplete, ignorant instances for27

known and unknown attributes that may be mutually dependent on each other. This type of data is28

frequently encountered in autonomous agents and perceptual systems that learn normative behavior29

or must learn in contextually-charged environments. Bayesian techniques are not well-suited in these30

situations and can lead to non-intuitive results. Instead, we propose an alternative approach based on31

Dempster-Shafer (DS) Theory of Belief Functions [6] together with an algorithm for automatically32

learning belief-theoretic logic rules from small imperfect datasets in open-world contexts.33
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2 Dempster-Shafer Theory Background34

DS-Theory is a measure-theoretic mathematical framework that allows for combining pieces of35

uncertain evidential information to produce degrees of belief for the various events of interest. It36

has been extensively used in sensor fusion networks, object tracking, and network security [7–9].37

In DS-Theory a set of elementary events of interest is called Frame of Discernment (FoD). The38

FoD is a finite set of mutually exclusive events Θ = {θ1, ..., θN}. The power set of Θ is denoted39

by 2Θ = {A : A ⊆ Θ}. Each set A ⊆ Θ has a certain weight, or mass associated with it. A40

Basic Belief Assignment (BBA) is a mapping mΘ(·) : 2Θ → [0, 1] such that
∑
A⊆ΘmΘ(A) = 141

and mΘ(∅) = 0. The BBA measures the support assigned to the propositions A ⊆ Θ only. The42

subsets of A with non-zero mass are referred to as focal elements and comprise the set FΘ. The triple43

E = {Θ,FΘ,mΘ(·)} is called the Body of Evidence (BoE). For ease of reading, we sometimes omit44

FΘ when referencing the BoE. Given a BoE {Θ,FΘ,mΘ(·)}, the belief for a set of hypotheses A is45

Bel(A) =
∑
B⊆AmΘ(B). This belief function captures the total support that can be committed toA46

without also committing it to the complementAc ofA. The plausibility ofA is Pl(A) = 1−Bel(Ac).47

Thus, Pl(A) corresponds to the total belief that does not contradict A. The uncertainty interval of48

A is [Bel(A), P l(A)], which contains the true probability P (A). In the limit case with no uncertainty,49

we get Pl(A) = Bel(A) = P (A).50

DS-Theory extends Bayesian theory in several ways. First, it allows for assigning probabilistic51

measures to sets of these hypotheses (not just individual ones), including the set of all hypothesis.52

This allows DS-Theory to consider ignorant and ambiguous information. Second, DS-theory does not53

require assuming any prior distributions, which is useful when priors are difficult to justify, as is the54

case with many open-world sensing and perception tasks. Third, DS-theoretic uncertainty generally55

refers to epistemic uncertainty and corresponds to beliefs held by agents about the world. However,56

probability theoretic uncertainty often refers to aleatory uncertainty as it relates to frequency of57

occurrence, randomness and chance. Bayesian and DS-theories do share many commonalities and58

DS-theory is often viewed as being a generalization of Bayesian theory.59

The history of DS-Theory is not without controversy and has been criticized by some including60

Judea Pearl [10], who subsequently recalled this criticism [11]. Nevertheless, major strides have61

been made to address these concerns including approximation algorithms for reducing the time62

complexity of computation [12], decision theoretic aspects [13], graphical models [14], approaches to63

resolve conflicts that arose from Dempster’s original rule of combination [15], and the development64

of DS-theoretic logical operators [16, 17].65

One recent development in DS-theory, is an evidence filtering strategy that has upgraded Dempster’s
original rule of combination of evidence to accommodate the inertia of available evidence and
address some challenges with respect to conflicting evidence [18]. In particular consider the BoEs
E1 = {Θ,F1,m1(·)} and E2 = {Θ,F2,m2(·)}, and a given A ∈ F2. The updated belief (from
iteration t to t + 1) Belt+1 : 2Θ → [0, 1] and the updated plausibility Plt+1 : 2Θ → [0, 1] of an
arbitrary proposition B ⊆ Θ are 1:

Bel(B)E1t+1 = µt ·Bel(B)E1t + νt ·Bel(B|A)E2t

Pl(B)E1t+1 = µt · Pl(B)E1t + νt · Pl(B|A)E2t

where µt, νt ≥ 0, µt+νt = 1. The conditional in the above equations are Fagin-Halpern conditionals
which can be considered an extension of Bayesian conditional notions [19]. That is for a BoE
E = {Θ,F ,m(·)}, A ⊆ Θ and an arbitrary B ⊆ Θ, the conditional beliefs and plausibility are given
by:

Bel(B|A)E = Bel(A ∩B)E/ [Bel(A ∩B)E + Pl(A \B)E ]

Pl(B|A)E = Pl(A ∩B)E/ [Pl(A ∩B)E +Bel(A \B)E ]

We build on this and other developments to provide a unified probabilistic logic learning framework,66

grounded on a Belief-Theoretic approach.67

1We specify the BoE superscript for Bel() and Pl() as needed to be precise, especially when we are
combining two distinct BoEs.
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3 Proposed Belief-Theoretic Approach and its Unique Properties68

3.1 Rule System69

Consider a propositional alphabet L, in which we have all the standard symbols (variables, predicates,70

functions) and logical connectives. In this alphabet, we define a belief theoretic rule, as follows:71

Definition 1 (Belief-Theoretic Rule System). A belief-theoretic rule is an expression of the form:
R := [α, β] :: ψ =⇒ (¬)φ

where the ψ, φ are Uncertain Logic atoms, i.e., propositional formulas with an associated “uncer-72

tainty interval” [α, β] defined under Dempster-ShaferTheory [20] as α = Bel(R), β = Pl(R) with73

0 ≤ α ≤ β ≤ 1. Thus, under the present formulation both the atoms and the rules have uncertainty74

intervals.2 The (¬) indicates that negation is optional in this rule. A Belief-Theoretic Rule System T75

is a finite set of belief-theoretic rulesR.376

Example 1 Consider an agent reasoning about actions it can perform in a car and in a house. We77

can represent this scenario as a Belief-Theoretic Rule System, T , as follows:78

R1 := [0.8, 0.95] :: inCar =⇒ driving R4 := [0, 0.3] :: inHouse =⇒ running
R2 := [0.9, 1] :: inCar =⇒ texting R5 := [0.3, 0.6] :: inHouse =⇒ smoking
R3 := [0.9, 1] :: inHouse =⇒ texting

79

The rules in this example have intuitive semantics, whereby the antecedents correspond to context and80

the consequents correspond to actions taken. The location of the uncertainty interval between 0 and 181

suggests the degree of truth and falsity for the rule and the width of the interval generally suggests the82

level of support or evidence for that rule. So, rulesR1,R2, andR3 have tight uncertainty intervals83

close to 1 indicating a confident support for their truth.84

The rule system displays the agent’s current level of belief or epistemic uncertainty about a certain85

set of rules that are influenced by various pieces of evidence. However, it is typically the case that86

the agent is not updating its beliefs about all the rules in a rule-system simultaneously, but instead it87

is considering only a certain subset that might pertain, for example, to a particular context that the88

agent is in, and for which evidence arrives together. For instance, when an agent is collecting data by89

observing cars, they may observe multiple actions being performed together: driving, texting, talking90

etc. In this setting the agent might need to only consider those actions that are relevant in the context91

at the time of data collection, i.e., those relevant to the “in car" context.92

To formalize these intuitions, consider the rule system T of Example 1. The subset of rules from the93

rule system relevant to the context inCar is {R1,R2} ⊂ T . We model the arriving evidence as well94

as the agent’s growing body of beliefs as DS-theoretic frames of discernment ΘinCar
T comprising all95

possible combinations of the rule consequents (and negations) present in the selected subset of rules:96

ΘinCar
T = {(texting, driving), (texting,¬driving), (¬texting, driving), (¬texting,¬driving)}

Modeling the frame of discernment in this exhaustive way ensures that elementary events in the97

frame are mutually exclusive of each other. The subset of rules associated with this frame is called98

a Rule frame RinCarT = {R1,R2}. Now, if we are interested in measuring the amount of support99

in favor of, say rule R1, based on our evidence that is captured in the frame ΘinCar
T , we would100

measure Bel({(texting, driving), (¬texting, driving)}) as this captures the level of support for101

just driving irrespective of texting, from a body of evidence that captures both.102

To generalize, a Rule Frame RψT is a set of rules in rule system T that share the same antecedent103

ψ. Similarly, we can generalize the frame of discernment, Θψ
T , by first defining a DS-theoretic104

elementary event θ as a tuple of all the rule consequents φ (or their negations) present in a rule105

frame RψT . A set of elementary events forms an indexed frame of discernment Θψ
T . Defining an106

elementary event in this way allows us to represent, exhaustively, all possible combinations of the set107

of consequents φ1, . . . , φk and their negations.108

2The concepts presented in this paper are not limited to a propositional logic and are extendable to a first-order
language. The proposed formulation does not preclude the possibility of multiple consequents and antecedents
combined with logical operators.

3RulesR in the rule system T differ from each other either by antecedent and/or consequent.
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3.2 Learning Uncertainty Intervals for Rules from Data109

Data Format. For a rule system T with n rules, consider an indexed FoD Θψ
T and a corresponding110

rule frame RψT comprising k rules. Consider a set S = {s1, . . . , sm} of m evidence sources. Let111

the set of evidence sources provide a set of BoEs, defined as E = {EΘψT
1 , . . . , EΘψT

m }. Each BoE is a112

DS-theoretic BoE E and is associated with an indexed FoD Θψ
T . For simplicity, we will assume that113

all the BoEs in E correspond to the same indexed frame Θψ
T . That is, the sources S provide evidence114

for the same rule frameRψT . We can then define an observation, the set Oi = {oi,1, . . . , oi,k}, made115

by a source si as a form of truth assignment where each oi,j ∈ {0, 1, ε} indicates whether the source116

observes, for a given antecedent ψ, whether a certain consequent φj , 1 ≤ j ≤ k is true (1), false (0)117

or unknown (ε). For instance, an observation that a person in a car is texting, but not driving can118

be represented as Oi = {1, 0}. We can combine the observation Oi with other information about119

the source as well as a DS-theoretic mass assignment to form a data instance, defined as follows.120

A data instance is a tuple d = (si, Oi,mΘψT
(·)si) comprising a specific source identifier si ∈ S, an121

observation Oi, and a DS-theoretic mass assignment mΘψT
(·)si for source si per BoE, EΘψT

i provided122

by that source. A dataset D = {d1, . . . , dn} is a finite set of n data instances.123

Learning Problem. The learning problem can be defined as follows: Given an “unspecified” rule124

frame −RψT (“−” suggests that parameter values are unspecified) with k rules, and a dataset D,125

compute the parameters of the rule frame α1, . . . , αk, β1, . . . , βk.126

Learning Algorithm. The rule learning algorithm (Algorithm 1) assigns uncertainty parameters to127

each rule, updating those values as it considers each new data instance. Algorithm 1, displayed below,128

achieves this form of rule learning. The algorithm iterates though each data instance d in the data set129

D (line 5) and, per instance, through each ruleR in the rule frameRψT (line 6). For each iteration, we130

first set the hyper-parameters µ and ν (line 7) that specify how much weight the algorithm will place131

on previous learned knowledge (µ) and on each new data instance (ν). These hyper-parameters are132

then used to compute a conditional belief and plausibility for a rule given that particular instance of133

data (lines 8,9). The conditional beliefs and probabilities then yield an updated belief and plausibility134

for each rule (lines 10, 11). Finally, the algorithm updates the uncertainty interval for each rule with135

the new belief and plausibility values (lines 13,14). The result is a set of belief-theoretic rules (rules136

accompanied with uncertainty intervals) (lines 16,17).137

4 Comparing the Bayesian Approach with the Proposed Approach138

To evaluate the proposed approach, we compare it to a Bayesian approach used in many PLL and SRL
formulations (e.g, BLP, ProbLog). Consider a Bayesian clause of the formRB := p :: ψ =⇒ (¬)φ,
where ψ, φ are Bayesian atoms and p is a point probability estimate. To learn p from data, we can
establish a prior distribution and then update the distribution for each instance. We can assume an
uninformative prior over each rule, as a uniform distribution: p ∼ Beta(1, 1) = Uniform(0, 1). We
now suppose that given a specific value of pj for rule j, each individual source i will provide an
observation oi,j . We can compute the conditional, as follows: P (oi,j |pj) = p

oi,j
j (1− pj)1−oi,j . We

can then compute the posterior, for n sources, where each source has a reliability measure or mass
m′i as follows:

P (pj |o1,j , . . . , on,j) =

n∏
i=1

[
p
oi,j
j (1− pj)1−oi,j

]m′
i

which simplifies to a Beta distribution:

pj|o1,j , . . . , on,j ∼ Beta

(
n∑
i=1

m′joi,j + 1,

n∑
i=1

m′j(1− oi,j) + 1

)

In this case, the value of p in a Bayesian rule could be sampled from the distribution p. Since we do139

have a distribution, we can potentially estimate confidence intervals (or credible intervals) to generate140

measures more akin to the proposed DS-based approach.141
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Algorithm 1 getParameters(D,−RψT )
1: Input: D = {d1, . . . , dn}: Dataset containing n data instances
2: Input:−RψT : An unspecified rule frame containing k rulesR
3: Initialize a DS Frame Θψ

T = {θ1, . . . , θ2k}
4: m(Θψ

T )← 1
5: t← 0
6: for all d ∈ D do
7: Let Ed be a BoE that corresponds to the data instance d
8: Let EΘ be a BoE that corresponds to the indexed frame Θψ

T
9: for allR ∈− RψT do

10: Set learning parameters µt and νt
11: Bel(R|d)Ed = Bel(R∩ d)Ed/(Bel(R∩ d)Ed + Pl(d \ R)Ed)
12: Pl(R|d)Ed = Pl(R∩ d)Ed/(Pl(R∩ d)Ed +Bel(d \ R)Ed)

13: Bel(R)EΘt+1 = µt ·Bel(R)EΘt + νt ·Bel(R|d)Ed

14: Pl(R)EΘt+1 = µt · Pl(R)EΘt + νt · Pl(R|d)Ed

15: end for
16: Set frame Θψ

T with Bel(R)t+1 and Pl(R)t+1

17: t← t+ 1
18: end for
19: for allR ∈ RψT do
20: αR ← Bel(R)EΘ

21: βR ← Pl(R)EΘ

22: end for
23: Output: α1, . . . , αk, β1, . . . , βk

4.1 Dataset and Experimental Conditions142

We consider a small sample dataset D shown in Table 1 containing ten data instances d from several143

different sources, corresponding to an unspecified and modified version of the rule frame −RψT from144

rulesR1 andR2 in Example 1. For the evaluation, we consider four conditions that are variations145

on the dataset in Table 1: (I) Reliable-Complete – the situation when there are no missing values146

and the agent considers all the sources to be reliable and certain (ε are replaced with a 1 or 0, and147

the masses all equal 1.0); (II) Reliable-Incomplete – while masses are still set to 1.0, several values148

are missing in the data; (III) Unreliable-Complete – masses are set between 0 and 1, but there are149

no missing values; and (IV) Unreliable-Incomplete – masses are set between 0 and 1, and there are150

several missing values. We hypothesize that, even for such a simple dataset, the proposed approach151

will be able to differentiate between these conditions and provide a richer sense for the uncertainty in152

the data than the competing Bayesian Approach.153

Source ID driving texting mass

1 0 1 0.8
2 0 1 0.95
3 1 0 0.65
4 1 0 0.95
5 1 ε/0 0.8
6 ε/0 0 0.65
7 0 ε/1 0.9
8 ε/1 0 0.9
9 0 0 0.5

10 ε/0 ε/1 0.85

Table 1: Experimental Dataset D. The ε refers to missing data entries. Variations of experimental
conditions involve replacing ε with either a 1 or 0 as indicated, and mass values with 1.0.

We set the learning parameters νt = 1/|dataset|, µt = 1− νt in the algorithm to emphasize that new154

information will be assigned a weight of 0.1, while the inertia of existing knowledge will be assigned155

a weight of 0.9. To remove order effects of the DS-based updating process, we ran the algorithm156

through 100 epochs, randomizing the order prior to each run. This allowed us to both reduce order157

effects and analyze convergence characteristics when compared to the Bayesian approach. On the158

Bayesian side, we looked at the maximum a posteriori (MAP) estimate and a 95% credible interval159

computed from the inverse CDF.160
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5 Results and Discussion161

Ignorance, Reliability and Convergence. In this experiment, we set p of the Bayesian rules to162

the MAP of p. The general limitation with point estimates is that we cannot distinguish between the163

actual real-valued truth estimate and uncertainty in the truth value. Thus, for a value of 0.5 we do not164

know the amount of confidence in this estimate. We plot the MAP estimates (red circles) for both165

rules across the four conditions (Figure 1). Although there is some slight variation across various166

cases, the MAP estimates do not shed light on the reliability or completeness of the data.167

Figure 1: Learned parameters provide richer sense of uncertainty. The proposed approach (blue)
exposes more aspects of the epistemic uncertainty associated with small imperfect datasets than a
traditional Bayesian approach (red). When the data is reliable and complete, the proposed approach
converges to Bayesian. However, when the data displays unreliability or contains missing values,
then the proposed approach allows for variable length intervals to express this uncertainty of evidence

We could also extend the definition of a Bayesian Clause to have an interval, corresponding to a168

credible interval (CI) of p, allowing us to capture some of the richness present in the probability169

distribution. We computed a 95% CI for the probability distributions for each of the rules. The170

CI suggests that there is a 95% chance that the calculated confidence interval from some future171

experiment encompasses the true value of p. It does not, however, suggest that it contains the value172

of true probability with 95% certainty, whereas the proposed Belief-theoretic uncertainty interval173

states that the true value exists within the stated interval. Similar to the MAP estimate, the intervals174

are also not informative, and although there is some widening in the presence of (un)reliability and175

incompleteness, generally, there is not much variation between the conditions. Moreover, even if176

the CI is suggestive of uncertainty more broadly, the upper and lower limits of the CI themselves,177

do not provide any further information about the uncertainty of the rule. The belief-theoretic limits,178

on the other hand, are well-defined and have specific meaning that pertain to the level of support179

provided by the evidence. That is, the Bel() (lower limit) specifically represents the measure of180

evidence supporting a proposition and the Pl() (upper limit) specifically measures evidence that181

do not contradict the proposition. Thus, conversely, 1− Bel() represents the level of doubt in the182

evidence for the proposition and 1− Pl() represents the level of disbelief in the evidence. This type183

of information is not captured in a Bayesian CI.184

The proposed approach captures variation in the data (conditions I-IV), while still converging to185

Bayesian estimates when there is perfect data (condition I). Moreover, in one condition (condition186

III, texting), the MAP estimate lies outside of the belief-theoretic interval suggesting that there187

is a discrepancy between the different types of uncertainty being captured. We believe that the188

MAP estimate captures aleatory uncertainty while the belief-theoretic approach captures epistemic189

uncertainty, and this observed difference results from the selection of a potentially inappropriate prior190

in the Bayesian approach. Not limited by a prior, the belief-theoretic approach allows for a more191

dynamic update process and convergence to an estimate of epistemic uncertainty.192

One advantageous feature of the proposed approach is that no matter how small the dataset, we can193

obtain a uncertainty interval based on the evidence received thus far. Although we do not show an194

instance-by-instance illustration of the algorithm, we can say that the algorithm begins with complete195

uncertainty [0, 1] and then with each input converges to either a point estimate (as is the case of196
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condition I of reliable and complete data) or to an interval (as in the cases of conditions II, III, IV).197

The rate and degree of convergence is also dependent on the selection of learning parameters m,n,198

which roughly map to a learning rate.199

Independence Between Relations. Another desirable feature of the proposed approach is that we200

can ask a number of other questions of the indexed frame Θψ
T that are not explicitly in the rule201

system. For example, we might ask what is the uncertainty associated with (texting, driving). In202

the Bayesian setting, if we assume these two actions are independent, we can multiply point estimates203

(0.4 and 0.4 for condition I) and generate a non-zero probability of 0.16. In reality, these two actions204

may not be independent of each other, and therefore it may be improper to make such an assumption.205

Moreover, there is absolutely no evidence in Table 1 to support this non-zero probability as none of206

the 10 data instances support both texting as well as driving. In contrast, in the proposed approach,207

we do not make these assumptions, and instead directly query the same frame that was learned in the208

experiment thus far. In doing so, we obtain an interval [0, 0]. This conforms to our intuitions about209

the data as well as acceptable traffic norms.210

6 Learning in an Open-World211

Overall, we are interested in a numerical quantity that represents a degree to which the agent is212

certain of something, or a degree to which the agent believes it, or a degree to which the evidence213

supports it [21]. In the open world, measuring this sort of uncertainty requires the ability to process a214

stream of information from multiple heterogeneous sources, say about a rule like those presented215

above, and then incorporate and update uncertainty measures on this rule. The challenge is that one216

information source may be quite different from another source not only in terms of reliability (as217

discussed earlier) but also its repertoire of capabilities. For example, while one source can detect218

both actions of texting and driving, another might only be able to detect the driving action, while still219

another source might be able to detect a different action of “talking."220

We elaborate this idea by extending the dataset in Table 1 and adding information from three new221

sources 11, 12 and 13, as shown in Table 2.

Source ID texting driving talking eating mass

10 ε/0 ε/1 0.85
11 0 1 1 0.9
12 1 0.4
13 1 1 0.6
12 ε/0 0.4

Table 2: Sample DatasetD′: We extend Table 1 by first re-introducing source 10 and then sequentially
incorporating sources 11, 12 and 13 and again source 10, each with different capabilities. Thus, when
information from source 11 is received, a new attribute of “talking" must be incorporated into the
frame and into the rule frame. When source 12 is processed, a new attribute of “eating" must be
incorporated. Note, the agent does not see all these data instances simultaneously, but instead in
sequence, which is more common in the open-world.

222

The first row of Table 2 includes the last entry of Table 1, which shows source 10 as being able to
detect texting and driving and has provided observations {ε/0, ε/1}, accordingly. At this stage, the
indexed frame Θψ

T is:

Θψ
T = {θ1 : (driving, texting), θ2 : (driving,¬texting), θ3 : (¬driving, texting), θ4 : (¬driving,¬texting)}

Next, the agent receives evidence from source 11, which contains an additional previously unknown
attribute talking and provides an observations for all three attributes texting, driving, and talking.
The agent must now expand its indexed frame to incorporate this new previously unseen attribute and
generate the following expanded frame (Θψ

T
′
):

Θψ
T
′

= {θ′1 : (driving, texting, talking), . . . θ′5 : (driving, texting,¬talking), . . .}

DS-theory provides some useful notions to determine how Θψ
T relates to Θψ

T
′
, which in turn will223

allows us to dynamically grow and shrink the indexed frame as the agent sees new data. The notion224
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of “refinement” describes how one frame can be obtained from another by splitting some or all225

of the elements of the initial frame. The canonical example of this operation is when a frame226

Θ = {animal, flowers} is split into Θ′ = {dog, cat, rose, lily}. We can prove that expanding a227

frame from Θψ
T to Θψ

T
′

is indeed such a refinement (although we cannot present the full proof here228

due to space limitations), by leveraging the exhaustive elaboration of consequents φ in the elementary229

events θ in Section 3.1, which in turn allows us to relate, for example {(φ1)} ∈ Θ with the expanded230

{(φ1, φ2), (φ1,¬φ2)} ∈ Θ′. Showing that the two frames Θψ
T and Θψ

T
′

are a refinement also lets us231

establish that they are “compatible” in a DS sense. That means, we can show that the frames agree232

on the information defined in them, allowing us to prove that for A ⊆ Θ, BelΘ(A) = BelΘ′(ω(A)),233

where ω is a refinement function ω : 2Θ → 2Θ′
mapping the two frames.234

Next, when the agent receives information for a new attribute eating from source 12, the frame235

is further refined. Because source 12 provides information for only eating, it doesn’t make sense236

to update the entire refined frame.4 Fortunately, DS-theory also defines the notion of “coarsening”237

(inverse of refinement) which allows us to go in the opposite direction from Θψ
T
′

to Θψ
T , an operation238

that can be performed in |Θ| log |Θ′| time [12]. This ability to coarsen a frame allows us the possibility239

of coarsening the frame to just one attribute (namely eating) and then incorporating the masses240

assigned by source 12. The agent can then receive information from source 13, which does not241

induce a refinement because there are no new attributes, φ, however, it does induce a coarsening as242

it does not provide information for all attributes in the currently most-refined frame. Finally, the243

agent might receive a new data instance from a previously known source, in this case source 12. The244

task of coarsening the frame for source 12 is made easier this time because the agent already knows245

the mapping between the frames from the prior computation. Thus, once an agent has encountered246

a source, it remembers the capabilities of the source, and does not have to recompute these frame247

mappings.248

One of the most exciting aspects of the proposed approach is its ability to account for not just the249

reliability of the sources, but as we have discussed, their capabilities as well. In doing so, we can250

expand and grow the set of rules in real time, without always having to recompute joint distributions,251

as we would need to do in a Bayesian approach. We can also update rules more efficiently as updating252

a rule from a source with limited capacity does not impact existing knowledge about a capacity not253

captured by the source. The DS-based approach allows us to speed up certain operations, especially254

when new attributes are added ad-hoc and when sources provide information along a few dimensions;255

this is different from Bayesian approaches where even small open-world extension would require the256

recalculation of the whole distribution.257

7 General Discussion, Limitations and Conclusion258

An advantage of learning belief-theoretic rules is to be able to apply existing DS-theoretic logic259

formalisms (e.g., Uncertain Logic [20, 22]) to perform all manner of inference (e.g., modus ponens,260

AND, OR). This sort of belief-theoretic inference has found applications in many AI and robotic261

cognitive architectures [23, 24], so learning rule parameters from data would be beneficial.262

DS-based operations are typically of exponential time complexity in the size of the frame since263

we consider all possible subsets of the frame. Although there are efficient implementations of264

DS-theoretic methods (graphical models and Monte-Carlo) [12], the proposed approach is generally265

intractable for large datasets. Thus, for large datasets, Bayesian approaches may be preferred.266

Epistemic uncertainty is highly relevant to many open-world datasets. “Whereas the Bayesian267

language asks, in effect, that we think in terms of a chance model for the facts in which we are268

interested, the belief-function language asks that we think in terms of chance model for the reliability269

and meaning of our evidence." [25]. In this paper, we proposed a promising new probabilistic logic270

learning framework that uses a belief-theoretic logical representation combined with a learning271

methodology that allows for learning interval uncertainty for logical rules. The proposed approach272

offers several advantages over traditional Bayesian approaches when learning from small imperfect273

datasets in the open world.274

4Note the distinction between a source that is ignorant (when it is capable of providing an observation on an
attribute but is unsure of its value) and the situation when the source is just incapable of providing any value as
are the cases represented by red-crosses in Table 2.
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