SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 19(9), 839-856 (SEPTEMBER 1989)

A Language-independent Prettyprinter

MATTI O. JOKINEN
Department of Computer Science, University of Turku, SI-20500 Turku, Finland

SUMMARY

A general-purpose prettyprinting program is presented. The input to the prettyprinter is a linear
stream composed of visible symbols and elementary formatting instructions. The user can
specify a set of alternative formats and the precedence of the alternatives. The prettyprinter
attempts to select automatically the ‘best’ layout that fits on the bounded horizontal space
available on the output medium. The prettyprinter is implemented as a library module, which
makes it more flexible than many traditional prettyprinters that are written as main programs.
For instance, formatted expressions can be mixed with plain text or displayed interactively on
the user’s terminal, and the application program can use several prettyprinters simultaneously.

KEY WORDS Prettyprinting

INTRODUCTION

A prettyprinter takes clauses of a formal language as its input and prints them in a
format that is easy to read. There are many prettyprinters designed for particular
languages'~® but the problem is rather similar in most programming languages and
even in mathematical and logical calculi. Several language-independent algorithms
have been published.%'*

The simplest prettyprinters merely indent source lines without adding or deleting
any new lines. Others break lines unconditionally at certain syntactic positions, e.g.
immediately before keywords such as begin, if and while. In either case the details of
the layout must be processed manually. This is not a big problem in program develop-
ment because programmers know how to fill the details when the program is typed
into a computer, and defects in the layout can be fixed during the debugging process.
However, if the program was originally written by another programmer who had a
different view of a good layout, or worse still, if the program was synthesized by a
computer, then the prettyprinter should solve all details of the layout automatically.

To fit deeply nested clauses into a limited horizontal space, conditional formatting
rules must be used. In a typical case the prettyprinter must decide whether the clause
is printed on a single line or folded on several lines. Potential folding points may be
logically connected. For instance, if a conditional statement does not fit on one line,
then each branch should start on a new line. Similarly, the layout of a subclause may
affect the format of the enclosing clause and vice versa. Thus the prettyprinting
problem can be reduced to a constrained optimization problem: the readability of

0038-0644/89/090839-18$09.00 Received 18 September 1987
© 1989 by John Wiley & Sons, Ltd. Revised 24 January 1989

«©

840 M. O. JOKINEN

the text should be maximized without exceeding the available horizontal space. The
ordering of possible layouts by their readability must be defined by the formatting
rules.

There has been much discussion about the best layout for programs.'s-2* There
appears to be an agreement about certain basic principles, and experimental evidence
has been found in favour of some rules.2+25 N evertheless, many details remain a matter
of taste. Therefore the rules should not be fixed when a prettyprinter is implemented.
A programmable prettyprinter gets the formatting rules as part of its input data.

The prettyprinting package presented in this paper can process a wide variety of
formatting rules. The package was written in CLU2° and jt has been implemented as
an abstract data type. The actual program is rather complicated because of many details
added for flexibility and reliability. Therefore we shall not present the program as such
but describe the basic ideas in a simplified form. The original program and its
documents?’ are available in a computer-readable form upon request.

FORMULATION OF PRETTYPRINTING INSTRUCTIONS

Several authors have proposed formalisms for specifying prettyprinting
rules.#$101113.14 "The formalisms can be divided into two classes, In one approach
programs are fed to the prettyprinter in the form of parse trees, and the rules are
functions that map subtrees into formatted text. There need not be any obvious
similarity between the parse tree and the output, a fact that makes this approach
suitable not only to programs but also to abstract data structures, In the other approach
the input is regarded as a mixed stream of formatting instructions and pieces of visible
text. Formatting instructions can be considered as terminal symbols and they can be
included in the grammar of the language. Although the expressive power of this method
is more limited than that of the first approach, it is sufficient in practice. A stream-
oriented prettyprinter can have a simple interface, which makes it a good general-
purpose library module. This is the main reason why we chose the stream-oriented
approach.
The stream should contain three kinds of items:

1. Visible symbols, or ordinary terminals of the language. \

2. Ttems that specify spaces and newlines to be inserted between visible symbols. |
We use a term familiar from TEX? and call these items glue.

3. Group parentheses that indicate the subclause structure of the text. It need not
be identical with the parsing structure. Group parentheses themselves are invisible
in the output but they mark the current left margin in the folding process:
indentation is always relative to the start of the smallest enclosing subclause.
Parentheses also affect the processing of glue, as will be described below. In this
paper group parentheses are denoted by braces {}. We shall introduce later another
pair of parentheses, called list parentheses, but first we must discuss the nature
of glue in more detail. A clause as a whole (e.g. a complete program) must always
be enclosed in group or list parentheses.

When the stream is processed, each glue item is evaluated into a sequence of newlines
and spaces. Conditional folding is indicated by glue that may be evaluated in more
than one way. Most authors have limited the number of alternatives to two: one with
a newline and the other without it. The prettyprinter selects the proper alternative
depending on the length of the clause and the available horizontal space.

A LANGUAGE-INDEPENDENT PRETTYPRINTER 841

Deeply-nested clauses tend to run off the right edge of the output page even if
folding occurs at all allowed positions. The user should have an opportunity to specify
secondary folding points for such clauses. One solution is to add folding priorities to
glues.’® A more general solution is to allow each glue to specify several alternative
formats with an increasing number of folding points and decreasing amount of inden-
tation.

A glue item is represented as a sequence of separators. Each separator defines a
possible sequence of newlines and/or blank spaces. A separator is represented as a
record with two integer components:

separator = record[newlines,spaces: int]

The component newlines indicates the number of newlines to be printed. If it is zero,
the component spaces denotes the number of spaces to be printed in place of the glue.
If newlines is positive, spaces indicates the indentation of the continuation line relative
to the current left margin. In the latter case the spaces component may even be
negative.

In a glue item separators are ordered from the best to the worst and some of them
may be identical. The prettyprinter will frequently need the lowest index 7 such that
all separators 7, i+1, . . . are similar. Efficiency can be increased by storing this index
into each glue object:

glue = record[elems: array of separator,
similar: int]

The index of a separator in the elems list is called a style. For simplicity we assume
that the number of styles is fixed to N. Relaxation of this restriction does not essentially
change the idea of the implementation but adds a number of uninteresting details into
data structures and routines. In the actual CLU module the number of styles is
unlimited.

To simplify the representation we define a shorthand notation for glues. The list of
separators is enclosed in square brackets. The component spaces of each separator is
written as a decimal integer and the value of the component newlines is indicated by
the number of asterisks in front of the integer. Thus *2 denotes a separator with
newlines = 1 and spaces = 2.

Example

Let us consider the printing of expressions of a simple language. Visible symbols
appear in double quotes in the grammar.

ezpr n= { sum }

sum n= tlerm | sum [1,%4,%2,%0] “+ ” term
term u= id | call

call u= {id [0,0,%2,%1] “(” {ezpr_list })" }

| { call [1,1,#2,#1] “(” { ezpr_list })" }

expr_list u= ezpr | ezpr_list “,” [1,%0,%0,%0] ezpr

842 M. O. JOKINEN

These rules state that the preferred layout for expressions is to print everything on one
line and insert one blank space after each comma, on both sides of an addition operator,
and after a closing parenthesis when an opening parenthesis follows. In the second
best style sums and argument lists are folded; the second and consecutive terms of a
sum are indented four columns relative to the beginning of the first term and the
elements of argument lists are left-aligned. In style 3 the indentation is reduced to two
columns in sums and an additional folding point with a two-column indentation appears
between a function and its argument list. In style 4 indentation is further reduced but
there are no additional folding points. The space that always follows ‘+’ was included
in the symbol itself. The symbol ‘+’ followed by the glue item [1,1,1,1] would have
the same effect.

To design the glue items for a given language, decide first which separators are used
in clauses which are so short that the page width is no problem. These separators
determine the style number 1. Then assume that the clause exceeds slightly the
maximum width and decide which changes you are willing to make to fit the clause on
the output. You have then defined the style number 2. Continue until you feel
that there are enough alternatives for clauses that are expected to appear normally.
Programming languages typically require four or five different styles. It is not advisable
to define emergency styles for extremely crowded clauses which are unlikely to occur
in practice (see the beginning of the section on ‘Implementation’ for an explanation).
The prettyprinter can handle bad input decently. If a clause does not fit on the output
page in any style, one or more overwide lines will be printed, but the prettyprinter
attempts to minimize their length by using the last style.

The reader may wonder whether an acceptable default format could be constructed
automatically from the (unformatted) grammar of a language. The above example
demonstrates that it is not easy. For instance, it may appear natural to enclose the
right-hand side of each production rule in group parentheses, but the example shows
that this strategy does not work well unless the representation of the grammar is
selected with special care. Selection of separators is even more delicate: a newline can
precede an opening parenthesis but not a closing parenthesis or a comma. Thus the
construction of a default format would require a lot of knowledge about the habitual
usage of various symbols.

ACCEPTABLE COMBINATIONS

It is not necessary to use the same style throughout a clause. We shall now derive a
set of rules that determine how styles can be combined and which combinations should
be used preferentially. The first rule is obvious:

Rule 1

If glue items G, and G, are enclosed by the same pair of group parentheses and
neither of them is enclosed by an inner pair of parentheses, then G, and G, must be
printed in the same style.

This rule excludes formats such as

£(a, b, ¢,
d)

A LANGUAGE-INDEPENDENT PRETTYPRINTER 843

We shall write style(G) to denote the style of a glue item G in the output. If E'is a
subclause enclosed by group parentheses, then style(E) denotes the common style of
those glue items in E that are not enclosed by inner parentheses.

Rule 1 is not adequate in all cases. For example, the label part of a Pascal program
should be formatted as

label 1,2,3,4,
5,6,7;

rather than
label 1,

9
»
»
»

?QO‘#(‘)N

To distinguish between the two cases the layout description language must be extended
either with a new class of separators'® or another pair of parentheses. The author has
chosen the latter approach. The additional parentheses are called list parentheses. The
variant of rule 1 for list parentheses is:

Rule 2

If glue items G, and G, are enclosed by the same pair of list parentheses and neither
of them is enclosed by an inner pair of parentheses, then |style(G,) — style(G,)| = 1.

The style of a subclause limited by list parentheses is defined as the maximum of the
styles of its top-level glue items.

Rules 1 and 2 define a horizontal dependency between styles of glues. There are
vertical dependencies too. Style & + 1 is designed for longer clauses than style k;
therefore style & + 1 can be used on the top of the clause hierarchy and style & on the
bottom, but not inversely:

Rule 3

If E, and E, are subclauses limited by pairs of group or list parentheses and if E,
is a part of E,, then style(E,) should not be greater than style(E)).
This rule excludes formats such as

p(x, q(x,
Y,
z), z)

The remaining rules do not exclude any combinations but they define the ordering
of legal formats.

Rule 4

For each clause E, select the first style that is legal by rules 1 to 3. Then apply this
rule to the subclauses of E.

844 M. O. JOKINEN

This rule is applied recursively starting from the top level. It implies that a format
with style 3 on the top level and style 2 on the bottom level is better than a format
with style 4 on the top and style 1 on the bottom.

Sometimes there is a conflict between styles of disjoint subclauses. For instance, the
following formats are legal by rules 1 to 4:

p(x, y) (2,
w)

p(x,
y) (z, &)

In this case the first format is preferable. More generally:

Rule 5

Let S(E)),. . .,S(E,,) be the styles of the immediate subclauses of a clause E. If there
is a conflict between the styles, assign a lower style to the first subclause.

The rule still leaves some freedom in the choice of styles. The styles of subclauses can
be selected in a greedy manner, by choosing the lowest possible style for the first
subclause before considering the rest. Alternatively, the lowest style simultaneously
available for all subclauses can be set as the upper limit before rule 5 is used. The
implementation of both variants will be described in this article.

USER’S INTERFACE TO THE PRETTYPRINTING PACKAGE

In this section we shall first describe the interface of the prettyprinting package and
then demonstrate its use by an example. Details of implementation are described in
‘the next section. ‘

The package is an abstract data type with eight user-callable procedures:

start = proc(ch: channel, width: int) returns(prettystream)
putsymbol = proc(p: pretiysiream, s: string)

putglue = proc(p: pretiystream, g: glue)

begingroup = proc(p: pretlysiream)

endgroup = proc(p: pretiysiream)

beginlist = proc(p: pretlystream)

endlist = proc(p: prettysiream)

finish = proc(p: prettysiream)

We take an object-oriented view of the system and its data. The output channel, the
buffers and other status data are combined into a prettystream-typed mutable object.

A LANGUAGE-INDEPENDENT PRETTYPRINTER 845

The procedure start must be called once at the beginning of printing; it creates and
returns a prettystream object. The output channel is given as the first argument; the
channel must already be open for writing. The second argument is the width of the
output page. The procedure finish flushes the output buffers; it must be called once
at the end of printing. The channel is reserved for prettyprinting between the calls of
start and finish but it can be used for other output before start is called and again
after calling finish. The procedure putsymbol mutates the stream by adding a visible
symbol at the end of the stream. Putglue appends a glue item, begingroup and endgroup
append group parentheses, and beginlist and endlist append list parentheses at the end
of the stream.

The package does not care how the elements of the stream were generated. If the
unformatted clauses are in a text file, a parser (or at least a scanner) is required as a
front end. If the clauses are given as parse trees, the sequence of items is constructed
by traversing the trees in the proper order.

Example

Let us apply the package to the language defined in the previous chapter. We assume
that expressions are given as objects of types expr and term:

printezpr = proc(p: pretlysiream, e: erpr);
begingroup(p);
printterm(p, pick_term(e, 1));
for i: int from 2 to no_of_terms(e) do
putglue(p, [1,%4, %2, %0]);
putsymbol(p, “+ ”);
printterm(p, pick _term(e, 1))
od;
endgroup(p)
end printezpr

printterm = proc(p: pretiystream, t: term)
case ? in
(s: string):
putsymbol(p, s)
(c: call):
begingroup(p);
printterm(p, function(c));
if is_id(function(c))
then putglue(p, [0, 0, *2, *1])
else putglue(p,[1,1,2,*1])

putsymbol(p, “(”);

begingroup(p);

printezpr(p, pick _arg(c, 1));

for i: int from 2 to no_of _args(c) do
putsymbol(p, “,”);
puiglue(p, [1,%0, %0, x0]);
printezpr(p, pick _arg(c, 1))

846 M. O. JOKINEN

od;
endgroup(p);
putsymbol(p, “)”);
endgroup(p)
esac
end printterm

IMPLEMENTATION

In the first version of the prettyprinter the output was first stored in a tree which had
one node for each subclause. Sizes of subclauses in each style were computed when
the tree was built and the computed values were stored in the tree. When finish was
called, the tree was traversed, final styles were selected and the text was printed into
the output file. Since the tree and its attributes take much more space than the program
text, this version could not handle large programs.

Usually the layout of a piece of program depends on items that come later in the
stream, but the effect is rather localized. In typical cases fewer than 100 successive
items need to be examined to fix the layout. Thus it is unnecessary to save the whole
program in the main memory: each clause can be printed as soon as its final format 1s
known.

The maximum size of the buffer depends mainly on the glue items on the outer
levels of the clause hierarchy. The final layout of a clause can be computed only when
all legal styles are identical with the worst style. Therefore the glue items on the outer
levels should not contain separators that are rarely required. For instance, programs
composed of nested procedures are usually formatted by indenting each procedure two
columns or so relative to the enclosing procedure. If the last style defines an indentation
of only one column, it will probably never be selected and the layout of the program
cannot be resolved until the whole program is in the buffer.

In practice it suffices to print incomplete clauses only when a line of text is complete
(that is, when a freshly-added glue item produces a newline) and this restriction makes
the algorithms somewhat simpler.

Data structures

A prettystream object is represented as a record of the following type:

pretiysiream = record[chan: channel,
width: snt,
col: int,
aclive: int,
stack: stack of frame)

The component chan is the output channel, width is the maximum line length, col is
the length of the last, incomplete line in the output, and the component stack is a
stack of incomplete subclauses. Element 7 of stack represents the immediate subclause
of the clause represented by element 7 — 1. An element is pushed on the stack when
an opening group or list parenthesis is encountered and it is popped out when the
corresponding closing parenthesis is met. At the start (immediately after the call of the

A LANGUAGE-INDEPENDENT PRETTYPRINTER 847

procedure start) the stack contains one element, and at the end (immediately before
the call of finish) it should again contain exactly one element. The component active
is used by the flush procedure to remember which stack components have not been
printed. Elements of the stack are of the following type

frame = record[clause: clause,
room: array [1..N] of int,
lmarg: int,
best: 1..N,
similar: 1..N]

The jth element of 7o0m contains the maximum horizontal space available for this
clause in style j. The component best denotes an optimistic approximation of the style
of the clause; the final style may be greater but not less than the approximation. The
component similar is the first style such that all styles similar to N produce identical
outputs (best = similar). Lmarg is used by the flush procedure to remember the left
margins of the clauses.

Clauses are represented as records of the following type:

clause = record[tezt: list of item,
tight: bool,
printed: int,
width,last: array [1..N] of int]

item = union(string,glue,clause)

The component text represents the text of a clause as a list of symbols, glue items and
completed subclauses. The component tight is true if the glues of the clause are ‘tightly
connected’, that is if the clause is enclosed by group rather than list parentheses. Width
and last are vectors with N elements. The ith element of width contains the width of
the clause in style 7, that is, the length of its longest line measured from the current
left margin. Similarly, the 7th element of last contains the length of the last line in
style 7. Width and last are computed assuming that all subclauses are printed in the
same style. The component printed indicates the width of the initial part that has
already been printed and therefore removed from the buffer.

The minimal length of the last and the longest line of a clause ¢ may be smaller
than that indicated by c.width and c.last if some subclause of ¢ is wider in style 7 than
in style — 1. In that case the prettyprinter may select a non-optimal style. It occurs
rarely, however, and the output is still a good approximation of the optimum. Therefore
it seems inadvisable to pay the extra cost of finding the real optimum.

Routines

The procedure start creates a new prettystream object. The stack will initially contain
one element that represents an empty clause:

start = proc(ch: channel, w: int) returns(pretiystream)
c: clause := record{tezt: empty,
tight: true,
printed: 0,

848 M. O. JOKINEN

width: all zeroes,
last: all zeroes}
s: stack of frame := new stack;
push(s, record{clause: c, room: all w, Imarg: 0, best: 1, similar: 1})
return(record{chan: ch, width: w, col: 0, active: 1, stack: s})
end start

The procedure putsymbol appends a symbol to the clause ¢ in the top frame a and
updates the vectors c.width and c.last. Only the elements a.best to N of the vectors
need to be updated since the other elements (1 to a.best — 1) correspond to styles that
have already been rejected:

putsymbol = proc(p: prettystream, s: string);
a: frame := top(p.stack);
c: clause := a.clause;
c.tezt := append(c.tezt,s);
or i: int from a.best to N do
c.last[i] := c.last[i] + length(s);
c.width[i] := maz(c.last[i], c.width[i])
od
end putsymbol

Note the object-oriented representation: the variable ¢ and the clause component of
the top element of the stack denote the same object, and any changes made in the
former are visible in the latter. There is no implicit copying.

The procedure puiglue resembles putsymbol but the length of the glue is style-
dependent. The legality of styles is checked here and component a.best is increased if
necessary. If all styles produce too wide an output, a.best is set to N. The addition of
a glue item may also affect the similar component, which is updated appropriately.
Finally the procedure checks whether the contents of the buffer can be printed
immediately. That can be done if a.similar = a.best and the freshly-added glue item
produces a newline in the style a.best:

pulglue = proc(p: prettystream, g: glue);
a: frame := top(p.stack);
c: clause := a.clause;
c.tezt := append(c.text,g);
for i: int from a.best to N do
s: separalor := g.elems[i);
if s.newlines > 0
then c.last[i] := s.spaces
else c.last[i] := c.last[i] + s.spaces

c.width[i] := maz(c.last[i], c.width[4])
od;
if c.tight
then
while a.best < N and c.width[a.best] > a.room[a.best] do
a.best := a.best + 1
od -

A LANGUAGE-INDEPENDENT PRETTYPRINTER 849

else
while a.best < N — 1 and c.width[a.best + 1] > a.room[a.best + 1] do
a.best := a.best + 1

od

fi;

a.similar := maz(a.similar, g.similar);

if a.similar = a.best and g.elems[a.best]).newlines > 0 then flush(p) fi

end puiglue

The procedure begingroup pushes a new element on the stack. The new element
represents a subclause that does not yet contain any text. The component room of the
new frame is derived from the corresponding component of the old top frame:

begingroup = proc(p: prettysiream);
a: frame := top(p.stack);
¢: clause := a.clause;
room2: array [1..N] of int := new array;
w: int ;= a.room[N] — c.last[N];
for i: int from N by —1 to a.best do
w := maz(w, a.room[i] — c.last[]);
room2[i] := w
od;
for i: int from 1 to a.best — 1 do room2[i] := w od;
push(p.stack,
record{clause: record{tert: empty,

: tight: irue,
printed: 0,
width: all zeroes,
last: all zeroes},

room: room2,

Imaryg: 0,

best: 1,

similar: a.similar})
end begingroup

The procedure endgroup pops an element from the stack and appends it to the next
lower element of the stack:

endgroup = proc(p: prettystream);

a2: frame := pop(p.stack);

c2: clause := a2.clause;

if not c2.tight then error fi;

al: frame := top(p.stack);

cl: clause := al.clause;

al.best := maz(al.best, a2.best);

for i: int from al.best to N do
c1.last[d] := cl.last[i] + c2.last[i];
cl.width[i] := maz(cl.width[3), c1.last[i])

850 M. O. JOKINEN

od;

cl.lext := append(cl.text, c2);

p.active := min(p.active, size(p.stack))
end endgroup

The procedure beginlist is identical with begingroup except that the tight component
is set to false. The procedure endlist is identical with endgroup except that not is
dropped from the fourth line.

The procedure finish just prints the contents of the buffer.

finish = proc(p: prettystream);
if size(p.stack) # 1 then error fi;
print(p, p.stack[1].clause,0, p.width)
end finish

The auxiliary procedure flush is called from putglue. The active component of the
prettystream is the index of the first frame that may contain something to be printed
(frames 1...p.active—1 have not been changed since the previous call of flush). Flush
updates the best component of all frames in the stack, computes the left margin of
each clause and outputs the clauses by calling the print procedure. Left margins and
active are saved for the next call of flush: :

flush = proc(p: prettystream);
style: int .= 1;
for i: int from size(p.stack) by —1 to 1 do
p.stack[i].best := style := maz(style, p.stack[i].best)
od,;
Imaryg: int := p.stack[p.active].lmary;
for i: int from p.active to size(p.stack) do
a: frame := p.stack[i];
a.lmarg := Imary,
c: clause := a.clause;
prini(p, ¢, Imaryg, Imarg + c.last[a.best]);
Imarg := p.col
od;
p.active := size(p.stack)
end flush

Next let us examine the procedure print:

print = proc(p: pretiysiream, c: clause, lmarg,lasicol: int);
i: list of item := c.lext;
if size(t) > 0 then
stl: int := min{k: 1< k<N
and Imarg + c.width[k] < p.width
and Imarg + c.last[k] < lastcol};
i int := 1,
while i < size(t) do
j: int := the index of the last item of the line starting from ¢[i];
st2: int := style for the line t[i...j];
if j = size(t)

A LANGUAGE-INDEPENDENT PRETTYPRINTER 851

then printsubseq(p,t, i,7,st2, lastcol);
else
printsubseq(p,t,%,J, st2, p.width);
g: glue :=t[j +1];
write g.elems[st1].newlines line feeds to p.chan;
p.col := lmarg + g.elems[st1].spaces;
write p.col spaces to p.chan
fi;
i:=7+2
od;
c.text ;= empty;
c.printed := p.col — Imarg
fi

end prini

The parameter ¢ is the subclause to be printed, lmarg is the left margin of ¢ and
lastcol is the rightmost possible termination column of the last line of c. The parameter
lastcol is important because the last line often cannot be extended to the right edge of
the output page. As an example, consider the subclause hij(x,y).k(z)) in

2(gn(j(x,y),
k(2))))

The procedure print computes first the final style st/ of the clause. Then the text is
divided into subsequences by locating those glue items that produce a newline in style
st1. At this recursion level each subsequence can be considered as a single line, although
it may actually contain multiline subclauses. Computation of j depends on c.tight. If
c.tight is true, then j is the lowest index such that j =1 — 1 and t[j + 1] is a glue
item g with g.elems][st]].newlines > 0; if there is no such g, then j 1s set to size(t). 1f
c.tight is false, j is the highest index such that

1. eitherj = size(t), or t[j + 1] is a glue item g with g.elems[st]].newlines > 0, and

2. the width of t[z. ;] in style st/ or stl — 1 is not greater than the maximum width.
The maximum width is determined by lastcol for the last line and by p.width for
other lines.

The value of st2 also depends on c.tight. 1f c.tight is true, then si2 is always equal
to st1. 1f c.tight is false, st2 is equal to st] — 1 if the subsequence ?[i. ,j] can be printed
in that style; otherwise st2 is again equal to stl.

The subsequences are printed with the procedure printsubseq:

printsubseq = proc(p: prettystream, 1: list of item, low,high,st,lastcol: int)
lastcolumns: array [low..high] of int := new array;
r: int := lastcol;
for i: int from high by —1 to low do
lastcolumns[i] := r;
case t[i] in
(s: string):
r := r— length(s);
(g: glue):
r := r — g.elems[st].spaces;

852 M. O. JOKINEN

(c: clause):
r := min(p.width — c.width[st], r — c.last[st])
esac
od;
for i: int from low to high do
case t[i] in
(s: string):
putstring(p.chan, s);
p.col := p.col + length(s)
(9: glue):
n: int := g.elems[st].spaces;
write n blank spaces to p.chan;
p.col := p.col+ n
(c: clause):
print(p, c,p.col — c.printed, lastcolumns|i])
esac
od
end printsubseq

The glue items in the text segment t[low. . .high] are printed in style sz. Recall that
low and high have been selected so that the glue items in the segment do not produce
newlines in style sz. All subclauses can also be printed in style st, but there may be
room to print some or all of them in a better style. To make this space available,
printsubseq computes the rightmost permissible termination column for each item and
passes it as the lastcol argument to recursive calls of print. Extra space is used in a
greedy manner: the first subclause may be printed in style 1 and the last in style 3
even if there is room to print all subclauses in style 2. The styles can be balanced by
computing the vector lastcolumns for subclause styles 1 to st and choosing the first
vector that satisfies the constraints.

Performance

The existing version of the prettyprinter can process about 75 lines per second in
MicroVAX-II. An obvious source of inefficiency is that the widths of clauses are
computed in all styles even though a majority of clauses is printed in style 1. We have
implemented another version that computes the widths only when they are needed.
This 1s rather insensitive to the number of styles but the overhead of lazy evaluation
is rather high, and the lazy version turns out to be faster only when the number of
styles 1s five or more. Since neither version has been tuned into extremity, these tests
do not necessarily express the limits of attainable performances.

LIMITATIONS AND POSSIBLE EXTENSIONS

In this section we shall discuss briefly certain special problems in prettyprinting. Some
of the problems can be solved with our package, others can be solved with relatively
trivial extensions and some are difficult in the framework presented in this paper.

A LANGUAGE-INDEPENDENT PRETTYPRINTER 853

Formfeeds

Proper positioning of formfeeds affects the readability of a long program significantly.
Formfeed control can be incorporated easily as an extension to the package described
above. Each glue item should contain, as an additional component, a penalty of printing
a formfeed at that position (penalties could be also attached to individual separators
but that would probably be waste of space). Formfeed penalties have no effect on line
breaks and indentation, but when the position of a newline is determined the pretty-
printer computes the cost of formfeed at that position as a function of the formfeed
penalty p and the line number n. The position with the lowest cost is selected. A
useful formula for the cost is

cost = 1P 7™ if n is not greater than the page length
« otherwise

Visible text in separators

In some languages line breaks affect the visible text to be printed (for example, in
the Unix shell language newlines are equivalent to semicolons). Rose and Welsh!!
define separators so that they may contain visible text instead of a sequence of spaces
when the number of newlines is zero. In the general case it should be possible to place
visible text also immediately before a sequence of newlines and immediately after
it. Addition of such separators to our system does not introduce any fundamental
problems.

Folding at lexical level

Breaking of identifiers, keywords or numeric literals onto several lines is illegal in
most languages and a need for such an emergency action is unlikely to occur if
styles with sufficiently small indentation are defined. String literals, however, may be
relatively long and in some languages they can be broken legally by inserting catenation
operators between substrings. Actually there is no difference between breaking a clause
and breaking a literal, except that in the latter case additional visible text may be
needed to join the pieces together. Thus the problem reduces to the inclusion of visible
text in separators.

Tables

Sometimes it is reasonable to align clauses by infix operators or some other lexical
tokens in the middle of lines. The following statements might appear in a symbol table
initialization routine:

name[addop] = "+"; priority[addop] = 6;
name[equalop] := "="; priority[equalop] := 8;
name[orop] = "|"; priority[orop] = 10;

Such formats are not supported by our package and there may not be any simple way
to extend it in this direction. In fact specification of the formatting rules may be

854 M. O. JOKINEN

rather complicated. For example, how should the above statements be printed if the
last statement-pair does not fit on one line? At least the following formats are possible:

name [addop]
name[equalop]
name[orop]
priorityl[orop] :

"+"; priority[addop]
"="; priority[equalop] :
nln;

10;

6;
8;

oo
nou ounn

name [addop]
priority[addop]
name[equalop]
priority[equalop]
name [orop]
priority[orop]

/1]
(=]

eo es ae
nw n wn

name[addop] := "+";

name[equalop] := "=";

name[orop] L L

priority[addop] = 6;

prioritylequalop] := 8;

priority[orop] = 10;
Comments

The fact that comments are usually not part of the syntax complicates prettyprinting
of a program when it is given as plain source text. Difficulties arise because it is not
always obvious to which clause the comment should be attached. This problem,
however, is related to parsing rather than prettyprinting. It is discussed in some detail
by Rose and Welsh,'! who also present a fairly good solution.

Comments are long compared to lexical items and the need to fold them onto several
lines occurs frequently. Folding a comment is basically similar to folding a literal.

Short comments are often placed on the right side of the page, clearly separated
from the program text that resides on the left side. Such a format is more readable if
comments are aligned. This is another example of the need to specify tabular output.
It also demonstrates the difficulties in specifying conditional rules for tabular formats:
it is clearly undesirable to align comments at any rate but it is not easy to relate the
cost of unaligned comments to the cost of less attractive styles in the program text
proper.

Context-dependent formatting rules

In a highly-refined print the amount of white space may depend on the structure of
nearby subclauses. For example, many programmers use spaces in the innermost
subexpressions more sparingly than on outer levels, preferring x * (a + b*y) over x * (a
+ b * y) and p(q(x.y). r(x,z)) over pl(q(x, y), r(x, z)). Context-dependent glue items might

A LANGUAGE-INDEPENDENT PRETTYPRINTER 855

be a possible solution, but we believe that it is not the right way to extend the
prettyprinter. Instead, the context dependencies should be handled by the calling
program. The grammar can have separate production rules for clauses with different
glue items, as illustrated by the rules for ‘call’ in the example above.

CONCLUSIONS
The prettyprinter described in this paper has the following properties:

1. It can support a wide variety of formatting styles. In particular, satisfactory rules
can be specified for deeply-nested expressions.

2. Formatting rules can be represented in a simple formalism.

3. The text is written out on the fly as soon as its final format is known. Only a
fraction of the text must be stored in the memory at any time.

4. The prettyprinter is defined as a collection of subroutines rather than as a main
program. Thus it can be embedded in application programs as a library module.

It is the combination of these properties that makes the program different from other
prettyprinters published hitherto.

ACKNOWLEDGEMENTS

The author wants to thank Jorma Sajaniemi, Jukka Teuhola, Kai Koskimies and Ulla
Solin for their helpful comments, and Ville Leppénen for assistance in testing.

REFERENCES

1. K. Conrow and R. G. Smith, ‘NEATER2: a PL/I source statement reformatter’, Comm. ACM, 13,
669-675 (1970).

2. J. Hueras and H. Ledgard, ‘An automatic formatting program for PASCAL’, SIGPLAN Notices,
12,(7), 82-84 (1977).

3. I. Goldstein, ‘Pretty printing: converting list to linear structure’, Memo 279, Artificial Intelligence
Laboratory, MIT, Cambridge, Massachusetts 1973.

4. R. Bond, ‘Another note on Pascal indentation’, SIGPLAN Notices, 14,(12), 47-49 (1979).

5. M. Jackel, ‘A formatting parser for Pascal programs’, SIGPLAN Notices, 15,(7&8), 58-63 (1980).

6. R. M. Bates, ‘A Pascal prettyprinter with a different purpose’, SIGPLAN Notices, 16,(3), 10-17
(1981).

7. D. Norris, ‘An Ada prettyprinter’, Journal of Pascal and Ada, 3,(4), 29-48 (1984).

8. D. Waters, ‘User format control in a LISP prettyprinter’, ACM Trans. Prog. Lang. Syst., 5, 513-531
(1983).

9. A. C. Hearn and A. C. Norman, ‘A one-pass pretty printer’, SIGPLAN Notices, 14,(12), 50-58 (1979).

10. D. Oppen, ‘Prettyprinting’, ACM Trans. Prog. Lang. Syst., 2, 465-483 (1980).

11. G. A. Rose and]. Welsh, ‘Formatted programming languages’, Software—Practice and Experience,
11, 651-669 (1981).

12. M. Mikelsons, ‘Prettyprinting in an interactive programming environment’, Proceedings of the ACM
SIGPLAN SIGOA Symposium on Text Manipulation, Portland, Oregon; SIGPLAN Notices, 16,(6),
108-116 (1981).

13. L. F. Rubin, ‘Syntax-directed pretty printing—a first step towards a syntax-directed editor’, IEEE
Trans. Softw. Eng., SE-9, 111-127 (1983).

14. E. Morcos-Chounet and A. Conchon, ‘PPML: a general formalism to specify prettyprinting’, Infor-
mation processing, 86, 583-590 (1986).

15. J. L. Peterson, ‘On the formatting of Pascal programs’, SIGPLAN Notices, 12,(12), 83-86 (1977).

16. M. H. Clifton, ‘A technique for making structured programs more readable’, SIGPLAN Notices,
13,(4), 58-63 (1978).

856 M. O. JOKINEN

17
18
19

20.
21.

22.
23.

24.
25.
26.
27.

28

- P. R. Mohilner, ‘Prettyprinting Pascal programs’, SIGPLAN Notices, 13,(7), 34-40 (1978).

- J. E. Crider, ‘Structured formatting of Pascal programs’, SIGPLAN Notices, 13,(11), 15-22 (1978).
. P. Grogono, ‘On layout, identifiers and semicolons in Pascal programs’, SIGPLAN Notices, 14,(4),
35-40 (1979).

G. G. Gustafson, ‘Some practical experiences formatting Pascal programs’, SIGPLAN Notices, 14,(9),
42-49 (1979).

J. Ramsdell, ‘Prettyprinting structured programs with connector lines’, SIGPLAN Notices, 14,(9),
74-75 (1979).

G. T. Leavens, ‘Prettyprinting styles for various languages’, SIGPLAN Notices, 19,(2), 75-79 (1984).
R. R. Baldwin, ‘Systematic indentation in PL/I: minimizing the reduction in horizontal space’,
SIGPLAN Notices, 21,(9), 22-26 (1986).

J. R. Miara, J. A. Musselman, J. A. Navarro and B. Schneidermann, ‘Program indentation and
comprehensibility’, Comm. ACM, 26, 861-867 (1983).

J. Hansen and B. Sands, ‘Some design considerations for a “C” source code pretty printer’, Sigsmall/
PC Notes, 11,(2), 16-22 (1985). :

B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffer, R. Scheifler and A. Snyder, CLU
Reference Manual, Springer-Verlag, 1981.

M. O. Jokinen, ‘Prettystream—an abstract data type for prettyprinting’, Report A52, Department of
Computer Science, University of Turku, Finland, 1988.

. D. E. Knuth, The Ty:Xbook, Addison-Wesley, 1984.

