
An Empirical Analysis of C Preprocessor Use
Michael D. Ernst, Greg J. Badros, and David Notkin, Senior Member, IEEE

Abstract—This is the first empirical study of the use of the C macro preprocessor, Cpp. To determine how the preprocessor is used in

practice, this paper analyzes 26 packages comprising 1.4 million lines of publicly available C code. We determine the incidence of

C preprocessor usage—whether in macro definitions, macro uses, or dependences upon macros—that is complex, potentially

problematic, or inexpressible in terms of other C or C++ language features. We taxonomize these various aspects of preprocessor use

and particularly note data that are material to the development of tools for C or C++, including translating from C to C++ to reduce

preprocessor usage. Our results show that, while most Cpp usage follows fairly simple patterns, an effective program analysis tool

must address the preprocessor. The intimate connection between the C programming language and Cpp, and Cpp’s unstructured

transformations of token streams often hinder both programmer understanding of C programs and tools built to engineer C programs,

such as compilers, debuggers, call graph extractors, and translators. Most tools make no attempt to analyze macro usage, but simply

preprocess their input, which results in a number of negative consequences; an analysis that takes Cpp into account is preferable, but

building such tools requires an understanding of actual usage. Differences between the semantics of Cpp and those of C can lead to

subtle bugs stemming from the use of the preprocessor, but there are no previous reports of the prevalence of such errors. Use of C++

can reduce some preprocessor usage, but such usage has not been previously measured. Our data and analyses shed light on these

issues and others related to practical understanding or manipulation of real C programs. The results are of interest to language

designers, tool writers, programmers, and software engineers.

Index Terms—C preprocessor, Cpp, C, C++, macro, macro substitution, file inclusion, conditional compilation, empirical study,

program understanding.

æ

1 COPING WITH THE PREPROCESSOR

THE C programming language [19], [16] is incomplete
without its macro preprocessor, Cpp. Cpp can be used

to define constants, define new syntax, abbreviate repetitive
or complicated constructs, support conditional compilation,
and reduce or eliminate reliance on a compiler implementa-
tion to perform many optimizations. Cpp also permits
system dependences to be made explicit, resulting in a
clearer separation of those concerns. In addition, Cpp
permits a single source to contain multiple different dialects
of C, such as both K&R-style and ANSI-style declarations.

While disciplined use of the preprocessor can reduce
programmer effort and improve portability, performance,
or readability, Cpp is widely viewed as a source of
difficulty for understanding and modifying C programs.
Cpp’s lack of structure—its inputs and outputs are token
streams—engenders flexibility, but allows arbitrary source
code manipulations that may complicate understanding of
the program by programmers and tools. In the worst case,
the preprocessor makes merely determining the program
text as difficult as determining the output of an ordinary
program. The designer of the C++ language, which shares

C’s preprocessor, also noted these problems: “Occasionally,
even the most extreme uses of Cpp are useful, but its
facilities are so unstructured and intrusive that they are a
constant problem to programmers, maintainers, people
porting code, and tool builders” [37, p. 424].

Given the wide range of possible uses of the preproces-
sor, our research addresses the question of how it is actually
used in practice. Our statistical analysis of 26 C programs
comprising 1.4 million lines of code provides significant
insights with respect to this question. We are not aware of
any similar data or analysis in the literature.

We had three initial motivations for pursuing this line of
research. First, we wanted to evaluate the potential for
reducing preprocessor usage when converting a program
from C to C++. Second, we wanted to know how difficult it
would be to produce a framework for preprocessor-aware
tools. Third, we wanted to develop a tool for identifying
common pitfalls in the use of macros.

These motivations drove our selection of the data we
extracted and the analyses that we performed. Our data,
our analyses, and our insights take substantive steps toward
addressing these three issues. Overall, our analysis con-
firms that the C preprocessor is used in exceptionally broad
and diverse ways, complicating the development of C
programming support tools. About two-thirds of macro
definitions and uses are relatively simple, of the variety that
a programmer could understand through simple but
tedious effort or that a relatively unsophisticated tool could
manage (although, in practice, very few even try). Though
these simple kinds of macros predominate, the preprocessor
is so heavily used that it is worthwhile to understand,
annotate, or eliminate the remaining one-third of the
macros; these are the macros that are most likely to cause
difficulties.
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Different programmers have different backgrounds and
different tasks. These differences lead to substantial varia-
tions not only in how programmers use the preprocessor,
but also in their attitudes toward the preprocessor and what
data about preprocessor use they find of interest. We have
found repeatedly that data that confirms one person’s
intuition comes as a surprise to another—and every
component of our data has had both effects on different
individuals. Therefore, we provide a broad range of
analyses with the expectation that different readers will
focus on different parts and will perhaps choose to extend
our work in specific directions.

The remainder of this paper is organized as follows:
Section 2 provides additional detail about the difficulties
imposed by the preprocessor. Section 3 describes our
experimental methodology. Sections 4-7 present the bulk
of our results about macro preprocessor use. Section 8
discusses related work and Section 9 suggests techniques
for mitigating the negative impact of Cpp on program
understanding. Section 10 presents avenues for future work
and the concluding section discusses the relevance of the
research.

2 BACKGROUND

Tools—and, to a lesser degree, software engineers—have
three options for coping with Cpp. They may ignore
preprocessor directives altogether, accept only postpro-
cessed code (usually by running Cpp on their input), or
attempt to emulate the preprocessor by tracking macro
definitions and the value of conditional compilation tests.
Each approach has different strengths and weaknesses.

. Ignoring preprocessor directives is an option for
tools that produce approximate information, such as
those based on lexical or approximate parsing
techniques. However, if accurate information about
function extents, scope nesting, declared variables
and functions, and other aspects of a program is
required, the preprocessor cannot be ignored.

. Operating on postprocessed code, the most common
strategy, is simple to implement, but the tool’s input
differs from what the programmer sees. Even when
line number mappings are maintained, other in-
formation is lost in the mapping back to the original
source code. Source-level debuggers have no sym-
bolic names or types for constants and functions
introduced via #define nor can tools trace or set
breakpoints in function macros as they can for
ordinary functions (even those that have been
inlined [39]). An example of a tool working on the
postprocessed code is the use of type inferencing to
produce C++ function templates from C; however,
the input “has been preprocessed so that all include
files are incorporated and all macros expanded” [29,
p. 145]. Such preprocessing may limit the readability
of the resulting C++ templates by converting terse,
high-level, well-named constructs into verbose, low-
level code. Preprocessing may also limit reusability:
The macro-expanded code will perform incorrectly
when compiled on a system with different settings

for the macros. Another example is that call graph
extractors generally work in terms of the postpro-
cessed code, even when a human is the intended
consumer of the call graph [26].

A tool that manipulates postprocessed code

cannot be run on a program that will not preprocess

on the platform on which the tool is being run. Some

such tools also reject ill-formed programs that will

not compile without errors. These constraints com-

plicate porting and maintenance, two of the situa-

tions in which program understanding and

transformation tools are most likely to be needed.

Additionally, a tool supplied with only one post-

processed instantiation of the source code cannot

reason about the program as a whole, only about the

version that results from one particular set of

preprocessor variables. For instance, a bug in one

configuration may not be discovered despite ex-

haustive testing or analysis of other configurations.
. The final option, emulating the preprocessor, is

fraught with difficulty. Macro definitions consist of
complete tokens but need not be complete expres-
sions or statements. Conditional compilation and
alternative macro definitions lead to very different
results from a single original program text. Pre-
processing adds complexity to an implementation,
which must trade performing preprocessing against
maintaining the code in close to its original form.
Extracting structure from macro-obfuscated source
is not a task for the faint-hearted. Despite these
problems, in many situations, only some sort of
preprocessing or Cpp analysis can produce useful
answers.

Choices among these options are currently made in the
absence of an understanding of how Cpp is used in practice.
While Cpp’s potential pitfalls are well-known, no previous
work has examined actual use of the C preprocessor to
determine whether it presents a practical or merely
theoretical obstacle to program understanding, analysis,
and modification. This paper fills that gap by examining
Cpp use in 26 programs comprising 1.4 million lines of
source code.

The analysis focuses on potential pitfalls that complicate
the work of software engineers and tool builders:

High total use (Sections 4, 6.1, and 7). Heavy use of either
macro substitution or conditional compilation can over-
whelm a human or tool. Lines that depend on many
macros and macros that affect many lines are more likely
to be problematic.

Complicated bodies (Section 5.1). A macro body need not
expand to a complete C syntactic entity (such as a
statement or expression).

Extra-linguistic features (Section 5.2). A macro body may
exploit features of the preprocessor not available in C,
such as stringization, token pasting, or use of free
variables.

Macro pitfalls (Section 5.3). Macros introduce new varieties
of programming errors, such as function-like macros that

ERNST ET AL.: AN EMPIRICAL ANALYSIS OF C PREPROCESSOR USE 1147



fail to swallow a following semicolon and macros that
modify or fail to parenthesize uses of their arguments.

Multiple definitions (Sections 5.4-5.6). Uncertainty about
the expansion of a macro makes it harder to confidently

understand the actual program text. Even more proble-
matically, two definitions of a macro may be incompa-

tible, for instance, if one expands to a statement and the
other to an expression or type.

Inconsistent usage (Section 6.2). A macro used both for
conditional compilation and to expand code is harder to

understand than one used exclusively for one purpose.

Mixed tests (Section 6.3). A single Cpp conditional (#if

directive) may test conceptually distinct conditions,
making it difficult to perceive the test’s purpose.

Variation in use. Preprocessor use varies widely. In the
absence of a clear pattern of use or commonly repeated

paradigms, no obvious point of attack presents itself to
eliminate most complexity with little effort. We examine

this issue throughout the paper.

We report in detail on each of these aspects of
preprocessor use, indicating which are innocuous in

practice and which problematic uses appear more fre-
quently. We also taxonomize macro bodies, macro features,

macro errors, and conditional tests. These taxonomies are
more detailed than previous work and they reflect actual

use more accurately.

3 METHODOLOGY

We used programs we wrote to analyze 26 publicly

available C software packages that represent a mix of

application domains, user interface styles (graphical versus

text-based, command-line versus batch), authors, program-

ming styles, and sizes. We intentionally omitted language-

support libraries, such as libc, for they may use macros

differently than application programs do.

Fig. 1 describes the packages and lists their sizes in terms

of physical lines (newline characters) and noncomment,

nonblank (NCNB) lines. The NCNB figure disregards lines

consisting of only comments or whitespace, null prepro-

cessor directives (“#” followed by only whitespace, which

produces no output), and lines in a conditional that cannot

evaluate to true (such as #if 0 && anything; all our

analyses skip over such comments, which account for

0.9 percent of all lines). All of our per-line numbers use the

NCNB length.

We built each package three times during the course of

our analysis, then ran our analysis programs over a

marked-up version of the source code created by the third

build. The first compilation was a standard build on a

RedHat-4.x-based (libc5) GNU/Linux 2.0.x system to

generate all the source files for the package. For example,

the configure script prepares a package for compilation

by creating header files such as config.h and, often, other
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source files are also automatically generated.1 The second

compilation identified global variables. We made all

variables nonstatic (by making static a preprocessor

macro with an empty expansion), then recompiled (but did

not link, as linking would likely fail because of multiple

definitions of a variable) and used the nm program to read

the global symbols from the resulting object files and

executables. (Static file-global variables would not have

shown up in the compilation output.)
The third compilation used PCp3 [2], an extensible

version of the C preprocessor, in place of a compiler. This
step has three main purposes. First, it identifies the code
and header files processed by the compiler (see below for
details). Second, it saves information regarding the flags
passed to the compiler that indicate which preprocessor
macros are defined or undefined on the command line.
Third, our extension to PCp3 creates a copy of the source
code in which identifiers that are possibly macro expanded
are specially marked (but no macros are expanded or
conditionals discharged). This PCp3 analysis performs a
conservative reaching-definitions analysis: It examines both
sides of every Cpp conditional and an identifier is marked
as possibly expanded if any #define of the identifier
occurs before the use site (even if on only one side of a Cpp
conditional) unless a #undef definitely was encountered
subsequently (outside any conditional or on both sides of a
conditional).

While we examine code in all Cpp conditionals that may
evaluate to true, our PCp3 analysis treats #include

directives just like the real preprocessor does: The included
file is processed if and only if all Cpp conditional guards
evaluate to true. We thus avoid attempts to include header
files not present on our system. This analysis examines only
files actually compiled into the application; it omits plat-
form-dependent (e.g., MS-DOS or VMS) files and source
code used only during the build process. As a result, we do
not see multiple versions of system-dependent macros, but
we do analyze all possible configurations of a software
package under one operating system and hardware setup.

After marking the potentially expanded macros, we
processed all the source files using a program that we wrote
for this study. This program collects the statistics about
macro definitions, uses, and dependencies that are reported
in the paper; more details of its operation are reported as
appropriate along with those results. Our tool includes
approximate, Cpp-aware parsers for expressions, state-
ments, and declarations. It performs approximate parsing
because the input may not be a valid C program; as a result,
we may misinterpret some constructs, but we can cope with
uncompilable C and with partial constructs in conditional
compilation branches.

The results reported in this paper omit macros defined
only in external libraries (such as the /usr/include/

hierarchy), even when used in the package source code; we
also omit all macro uses in libraries. There are many such

macros and uses; omitting them prevents library header
files and uses of macros defined in them from swamping
the characteristics of the package code, which is our focus in
this study. The programmer generally has no control over
libraries and their header files and may not even know
whether a library symbol is defined as a macro.

The raw data, which includes considerable data not
reported here, and the programs used to generate and
manipulate them are available from the authors. The
packages are widely available on the Internet or from the
authors.

4 OCCURRENCE OF PREPROCESSOR DIRECTIVES

Fig. 2 shows how often preprocessor directives appear in
the packages we analyzed. The prevalence of preprocessor
use makes understanding Cpp constructs crucial to pro-
gram analysis. Preprocessor directives make up 8.4 percent
of program lines. Across packages, the percentage varies
from 4.5 percent to 22 percent. These figures do not include
the 25 percent of lines that expand a macro or the 37 percent
of lines whose inclusion is controlled by #if; see Section 7.

Conditional compilation directives account for 48 per-
cent of the total directives in all packages, macro definitions
comprise 32 percent, and file inclusion makes up 15 percent.
Packages are not very uniform in their mix of preprocessor
directives, however. (If they were, each group of bars in
Fig. 2 would be a scaled version of the top group.) In
particular, the prevalence of #include is essentially
independent of incidence of other directives. The percen-
tage of directives that are conditionals varies from
16 percent to 73 percent, the percentage of directives that
are #defines varies from 18 percent to 45 percent, and the
percentage of directives that are #includes varies from
3.5 percent to 49 percent. This wide variation in usage
indicates that a tool for understanding Cpp cannot focus on
just a subset of directives.

4.1 #line, #undef, and Other Directives

The definedness of a macro is often used as a Boolean value.
However, #undef is rarely used to set such macros to false:
32 percent of #undef directives precede an unconditional
definition of the just-undefined macro, generally to avoid
preprocessor warnings about incompatible macro redefini-
tions, and 43 percent of #undef directives unconditionally
follow a definition of the macro, with 81 percent of such
uses in gs alone. This usage limits a macro definition to a
restricted region of code, effectively providing a scope for
the macro. When such macros appear in the expansions of
macros used in the code region, the result is a kind of
dynamic binding.

Every use of #line appears in lex or yacc output that
enables packages to build on systems lacking lex, yacc, or
their equivalents. For instance, flex uses itself to parse its
input, but also includes an already-processed version of
its input specification (that is, C code corresponding to a
.l file) for bootstrapping.

Fig. 2 omits unrecognized directives and rarely appearing
directives such as #pragma, #assert, and #ident. Among
the packages we studied, these account for 0.017 percent of
directives.
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4.2 Packages with Heavy Preprocessor Use

The gzip, remind, and perl packages deserve special
attention for their heavy preprocessor usage—22 percent,
19 percent, and 14 percent of NCNB lines, respectively.

gzip disproportionately #defines many macros as

literals and uses them as system call arguments, enumerated

values, directory components, and more. These macros act

like const variables. gzip also contains many conditional

compilation directives because low-level file operations

(such as accessing directories and setting access control

bits) are done differently on different systems. In bash,

which is also portable across a large variety of systems, but

which uses even more operating system services, 97 percent

of the conditional compilation directives test the defined-

ness of a macro whose presence or absence is a Boolean flag

indicating whether the current system supports a specific

feature. The presence or absence of a feature requires

different or additional system calls or other code.
remind supports speakers of multiple natural languages

by using #defined constants for essentially all user output.

It also contains disproportionately many conditional
compilation directives; 55 percent of these test the defined-
ness of HAVE_PROTO in order to provide both K&R and
ANSI prototypes.

perl’s high preprocessor usage can be attributed in part
to #define directives, which make up 43 percent of its
preprocessor lines. Of these, 38 percent are used for
namespace management to permit use of short names in
code without colliding with libraries used by extensions
or applications that embed perl. perl also frequently uses
macros as inline functions or shorthand for expressions,
as in

#define sb_iters cx_u.cx_subst.sbu_iters

#define AvMAX(av) \

((XPVAV*) SvANY(av))->xav_max

5 MACRO DEFINITION BODIES

This section examines features of macro definitions that
may complicate program understanding. The results
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indicate the necessity and difficulty of a thorough under-

standing of macro definitions to a software engineer or tool.

For example, 12 percent of macro bodies expand to a partial

or unidentifiable syntactic entity (not a symbol, constant,

expression, or statement; see Section 5.1), 14 percent of

macros take advantage of Cpp features that lie outside the

C programming language (see Section 5.2), and 23 percent

of macros contain latent bugs (see Section 5.3). The second

half of this section considers macro names with multiple

definitions, which can also complicate understanding. In

the packages we examined, 14 percent of macro names have

multiple definitions (see Section 5.4), although only

8.9 percent of macro names have definitions with different

abstract syntax trees (see Section 5.5). Of macros with

multiple definitions, 4 percent have syntactically incompa-

tible definitions that cannot be substituted for one another

in code (see Section 5.6). Given categorizations (according to

Section 5.1) of macro definitions, Section 5.4 shows how to

categorize macro names with multiple definitions.

5.1 Macro Body Categorization

We categorized macro bodies into 28 categories, although,

for simplicity of presentation, this paper coalesces these into

10 higher-level categories, then omits one of them as

insignificant. We started with a set of categories that we

expected to occur frequently (similar to other macro

taxonomies [37], [4]), then iteratively refined them to break

up overly broad categories and add unanticipated ones.

Fig. 3 reports, for each package, how many definitions
fall into each category. Macros that act like C language
constructs—such as variables or functions—are easiest to
analyze, understand, and perhaps even translate into other
language constructs. Thus, the 75 percent of macros whose
bodies are expressions and the 5.1 percent that are
statements may be handled relatively easily by people
and tools. Other macros, especially those that do not expand
to a complete syntactic construct, are more problematic.

The 10 macro body categories are as follows: Each
example in this paper comes from the packages studied.

Null define. The macro body is empty, as in #define

HAVE_PROTO. In Cpp conditionals, such macros fre-
quently act as Boolean variables. When expanded in
code, they often represent optional syntax. For instance,
macro private may expand either to static or to
nothing, depending on whether a debugging mode is set.

Constant. The macro body is either a literal (96 percent of
this category) or an operator applied to constant values
(4 percent of this category). For instance, #define

ARG_MAX 131072 and #define ETCHOSTS ”/etc/

hosts” define literals, while #define RE_DUP_MAX

((1<<15)-1) and #define RED_COLS (1 << RED_

BITS) (where RED_BITS is a constant, possibly a literal)
define constants. These macros act like const variables.
This category includes both macros whose value is
invariant across all configurations of the package and
those that depend on other compile-time values.
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Expression. The macro body is an expression, as in
#define sigmask(x) (1 << ((x)-1)) or #define

mtime mailfiles[i]->mod_time. Such a macro acts
like a function that returns a value, though the macro
need not take any arguments, so its uses may look
syntactically unlike function calls.

Statement. The macro body is a statement such as

#define SIGNAL_RETURN return 0

#define L_ORDINAL_OVERRIDE plu = ”.”;

#define FREE(x) if (x) {free(x); x=NULL;}

#define SWALLOW_LINE(fp) { int c; \

while ((c = getc(fp)) != ’\n’ && c != EOF); }

Such a macro is similar to a function returning void,
except that, when the macro body is a complete
statement, its uses should not be followed by a
semicolon.

To reduce the number of categories in our presenta-
tion in this paper, the statement category aggregates six
categories that are distinct in our analysis: single
complete statements (comprising 37 percent of the
category), statements missing their final semicolon
(49 percent of the category, as in #define QUIT if

(interrupt_state) throw_to_top_level()),
multiple statements (5.4 percent), multiple statements
where the last one lacks its semicolon (6.5 percent), and
partial statements or multiple statements where the last
one is partial (together, 2.2 percent of the statement
category, as in #define ASSERT(p) if (!(p))

botch(__STRING(p)); else).

Type. The macro body is a type or partial type (55 percent
of the category; for example, a storage class such as
static), a declaration (2.4 percent of the category), or a
declaration missing its terminating semicolon (43 percent
of the category). Examples include

#define __ptr_t void *

#define __INLINE extern inline

#define FLOAT_ARG_TYPE union flt_or_int

#define CMPtype SItype

Partial types cannot be eliminated via straightforward
translation (though C++ templates may provide some
hope). Typedefs may be able to replace full types; for
instance, typedef void *__ptr_t could almost re-
place the first example above. (Adding a const prefix to
a use of __ptr_t would declare a constant pointer if the
typedef version were used, instead of a pointer to
constant memory.)

Syntactic. The macro body is either punctuation (63 percent
of this category; for example, #define AND ;) or
contains unbalanced parentheses, braces, or brackets
(37 percent of this category). The latter are often used to
create a block and perform actions that must occur at its
beginning and end, as for BEGIN_GC_PROTECT and
END_GC_PROTECT; some other examples are

#define HEAPALLOC do { int nonlocal_useheap \

= global_heapalloc(); do

#define LASTALLOC while (0); \

if (nonlocal_useheap) global_heapalloc(); \

else global_permalloc(); } while(0)

#define end_cases() } }

#define DO_LARGE if ( pre->o_large ) \

{ size = pre_obj_large_size(pre); {

#define DO_SMALL } } else \

{ size = pre_obj_small_size(pre); {

Macros in this category are inexpressible as abstractions
directly in the C programming language—they depend
on the preprocessor’s manipulation of uninterpreted
token streams. They act like punctuation, or syntax, in
the programming language. (C++ can enforce block exit
actions via the destructor of a block-local variable.)

Symbol. The macro body is a single identifier that is either a
function name (95 percent of this category) or a reserved
word (5 percent of this category, 65 percent of which are
uses of variable names, such as true or delete, that are
reserved words in another C dialect). Examples include

#define REGEX_ALLOCATE_STACK malloc

#define THAT this

A macro body that is a macro name inherits that macro
name’s categorization rather than appearing in the
“symbol” catagory.

Unknown identifier. The macro expands to a single
identifier that is not defined in the package or in any
library header file included by the package. For example,

#define signal __bsd_signal

#define BUFSIZE bufsize

The symbol may be defined by compiler command
arguments or may be used inside a conditional compila-
tion guard because it is only meaningful with a
particular architecture, system, or library (for which we
did not have header files available).

Unknown identifiers can also be local variables or
variables or functions that we failed to parse. Our
approximate parser can succeed where an exact parse
would not (as for nonsyntactic code that deviates from
the language grammar or for entities interrupted by
preprocessor directives), but, occasionally, it fails to
recognize declarations or definitions. In perl, unknown
identifiers make up 31 percent of macro definitions,
compared to 9.0 percent in mosaic, which has the second
largest proportion of unknown identifiers; the average is
6.9 percent. In order to avoid link-time collisions when
the Perl interpreter is embedded in another application,
perl conditionally redefines over 1,000 global symbols to
add the prefix Perl_, as in #define Xpv Perl_Xpv.

Not C code. The predominant use of such macros is for
assembly code and for filenames and operating system
command lines. The assembly code component includes
only macros whose expansion is assembly code, not all
expressions and statements that contain snippets of
assembly code; however, we encountered such macros
only in system libraries, not in the packages we
examined.

Our tool processes only C source code, not Makefiles
or other non-C files not compiled when a package is
built. However, some header files are used both for code
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files and to customize Makefiles during the build
process;2 those files contribute macros expanding to
filenames or command lines, as in

#define LIB_MOTIF -lXm -lXpm

#define LIB_STANDARD \

/lib/386/Slibcfp.a/lib/386/Slibc.a

The package-defined macros in this category all appear
in emacs. They comprise only 17 definitions, 12 names,
and 10 uses in C code files, so we omit them from all
figures.

Other. This category contains all macros not otherwise
categorized. Of these macros, 12 percent either expand to
a macro that was not defined in the package or have
multiple definitions with conflicting categorizations (so
that the macro being defined cannot be unambiguously
categorized itself).

Some categorization failures resulted from limitations
of our parser, which does not handle pasting (token
concatenation) and stringization (converting a macro
argument to a C string); together, these represent
3 percent of failures. Handling of partial entities is
incomplete, so case labels (4 percent of failures), partial
expressions (6 percent), and some declarations (14 per-
cent) are left uncategorized, as are bodies that pass a
non-first-class object (such as a type or operator) to
another macro (7 percent). The biggest problem is
macros with adjacent identifiers, which is generally not
permitted in C (35 percent of macros). These macro
bodies often use a macro argument that is a statement or
operator or expand to a partial declaration or cast.
Examples include

#define zdbug(s1) if (zdebug) syslog s1;

#define PNG_EXPORT(type,symbol) \

__declspec(dllexport) type symbol

#define gx_device_psdf_common \

gx_device_vector_common; \

psdf_distiller_params params

There were also some cases in which uses of macros
categorized as “other” caused macro bodies in which
they appeared to be similarly categorized.

Our categorization is conservative: We categorize a
macro body as (for example) a statement only if it can be
definitively parsed as such, not merely if it has some
tokens that predominantly appear in statements or if
certain arguments passed to it will result in a statement.
As a result, our “other” category contains macros that
might otherwise have been heuristically placed in some
other category, at increased risk of miscategorizations of
other macros. Because the number of categorization
failures is small overall (1.9 percent of the 26,182
definitions; eight of the 26 packages have no such macros
and 10 more have only one or two such definitions) and
because no variety of failure stands out among these
classification failures, a more extensive categorization is
unlikely to affect our conclusions.

5.2 Extra-Linguistic Capabilities

The C preprocessor has capabilities outside the C program-
ming language; indeed, this is a primary motivation for
using Cpp. Such constructs can present special challenges to
program understanding, especially reducing the use of the
preprocessor by translation into C or C++. This section lists
extralinguistic constructs whose effect is to provide a
feature unavailable in the C language. (This is orthogonal
to the “syntactic” category of Section 5.1, which contains
macros that act like punctuation.) It also reports their
frequency of appearance, both individually and in combi-
nation, in the code we analyzed. These capabilities are
based on the effects of the macro’s code, not the coarse
categorization of its body; a full list of difficult-to-under-
stand macros would include, for example, macros classified
as syntactic as well as those described in this section.

We expected problems dealing with macros that use
stringization (conversion of a preprocessor macro argument
to a C string) and pasting (creating a new identifier from
two existing identifiers), the two explicit extralinguistic
features of Cpp. However, these features appear in only 0.07
percent of all macro definitions. Far more prevalent, and
more problematic for program understanding tools, is the
exploitation of Cpp’s lack of structure to effect mechanisms
not available in C. Cpp’s inputs and outputs are unin-
terpreted token streams, so Cpp can perform unstructured
transformations using non-first-class or partial syntactic
constructs, such as types or partial declarations.

Overall, 14 percent of macros contain an extralinguistic
construct. Fig. 4 breaks down these macros by the
constructs they contain. In addition to showing the
prevalence of each construct, the figure shows which ones
occur together. The following list describes in detail the
constructs appearing in Fig. 4.

Free variables. The macro body uses as a subexpression
(that is, applies an operator or function to) an identifier
that is not a formal argument, a variable defined in the
macro body, a global variable, a reserved word, or a
function, macro, or typedef name. Such identifiers are
typically local variables at the site of macro invocation.
Uses of local variables (in which the local definition in
scope at the point of use captures the free variable in the
macro body) can produce dynamic scoping, which C
does not directly support. Examples of this usage include

#define INV_LINE(line) &invisible_line \

[L_OFFSET((line), wrap_offset)]

#define atime mailfiles[i]->access_time

Side effects. The macro body directly changes program
state via assignment (of the form =, op=, ––, or ++).
Indirect side effects due to function or macro calls are not
counted in this category. The side effect may be due to a
global variable, a variable local to the macro body, a
macro parameter, or a local variable in scope at the point
of macro invocation. Examples of the four varieties of
side effects are:

#define INIT_FAIL_STACK() \

do { fail_stack.avail = 0; } while (0)

#define SWALLOW_LINE(fp) { int c; while ((c \
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2. Cpp’s specification states that its input should be syntactic C code, so
it can avoid performing replacements in comments and string constants. In
practice, uses of Cpp on non-C files have forced many C preprocessors to
relax their assumptions about their input.



= getc(fp)) != ’\n’ && c != EOF); }

#define FREE_VAR(var) \

if (var) free (var); var = NULL

#define ADD_CMD(x) \

{ if (cmd) specific_limits++; cmd |= (x); }

A macro that assigns a global variable presents few
difficulties in understanding and may be translated into a
C++ inline function. Assignment to variables local to the
macro body is also easy to understand as the assignment
may be ignored by users of the macro. A macro argument
that is assigned to is similar to a pass-by-reference
function argument and need only be noted in the macro’s
documentation; however, this may be unexpected be-
cause C lacks reference arguments, so, ordinarily, a
function call cannot change an argument’s value. The
remaining macro bodies with side-effects involve assign-
ments to dynamically bound variables. These macros
make a bad situation worse: However unexpected

dynamic binding may be, modification of such variables
is even more unexpected and harder to understand.

Use macro as type. In this macro’s body, the result of
another macro invocation is used as a type—for instance,
in a declaration or a type cast, as in

#define function_cell(var) \

(COMMAND *)((var)->value)

#define bhcd_declare_state \

hcd_declare_state; int zeros

C cannot simulate this behavior because its types are not
first class and may not be passed to functions, returned
as results, or otherwise manipulated.

Pass type as argument. In this macro’s body, a literal type is
passed to another macro, as in #define PTRBITS

__BITS(char*). Like using a macro result as a type,
this is impossible in C without the preprocessor.

Use argument as type. This macro uses one of its
arguments as a type, as in a declaration or cast. Like
using a macro result as a type, this too is impossible in
the C language proper.

#define dda_step_struct(sname, dtype, \

ntype) \

struct sname { dtype dQ; ntype dR, NdR; }

#define REVERSE_LIST(list, type) \

((list && list->next) \

? (type)reverse_list \

((GENERIC_LIST *)list) \

: (type)(list))

Not all uses can be unambiguously identified lexically
because our analysis focuses on macro definitions and
potential uses, not only on uses that happen to appear
in the program. For instance, the macro #define

MAKE_DECL(type, name) type name; is not identi-
fied as necessarily using its first argument as a type
because it might be invoked as MAKE_DECL(printf,

(”hello world\n”)) or as MAKE_DECL(x =, y+z).

Pasting. The body uses symbol pasting (##), which treats its
arguments not as tokens but as strings, constructing a new
token out of their concatenation. After #define

_SIZEOF(x) sz_##x, the macro invocation _SIZEOF

(int) expands to the identifier sz_int. The resulting
identifier might appear literally, or only as a pasted
identifier, at its other uses. Pasting is often abstracted out
into a separate macro—such as #define __CONCAT

(x,y) x ## y—but such pasting macros are used less
frequently than average in the programs we analyzed.

Stringization. The body uses argument stringization (#),
which replaces its argument (a preprocessor symbol) by
the symbol’s contents as a C string. After #define FOO

BAR BAZ, the expression #FOO expands to ”BAR BAZ”.
Examples using stringization include

#define spam1(OP,DOC) {#OP, OP, 1, DOC},

#define REG(xx) register long int xx asm (#xx)

No C or C++ language mechanism can replace such
macros. This feature is particularly useful in debugging
in order to record the exact operations being performed.
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Fig. 4. Usage of the extra-linguistic capabilities of the C preprocessor
listed in Section 5.2. The table indicates usage of each feature and
shows which features tend to be used together. These data assist in the
interpretation of the overlapping uses (the sums of the column totals are
larger than the total number of macros with any extra-linguistic feature).
The features are listed across the top, along with the percentage of
macro definitions exploiting each. Each row of the table reports the
percentage and absolute number of macro definitions that use a
particular combination of the capabilities, indicated by black squares.
For instance, the sixth line indicates that 35 macro definitions—0.13
percent of all definitions—both perform assignments and use the result
of a macro invocation as a type, but use none of the other extra-linguistic
features listed.



Tables that interconvert internal names and strings can
also be useful for serialization.

Self-Referential. The body refers to its own name, as in
#define LBIT vcat(LBIT). This feature can build a
wrapper around an existing function or variable. Since
the ANSI C preprocessor performs only one level of
expansion on recursively defined macros, the expanded
macro contains a reference to the original name. (Pre-
ANSI implementations could loop forever when expand-
ing self-referential macros.)

5.3 Erroneous Macros

Differences between C’s execution model and Cpp’s macro
expansion can give rise to unanticipated behavior from
syntactically valid programming constructs. We call a
macro erroneous if its functionality could be achieved by
a C function, but, in some contexts, the macro behaves
differently than that function would. Unlike the extra-
linguistic constructs discussed in Section 5.2, these are
generally bugs rather than uses of Cpp mechanisms to
achieve results outside the abilities of the C language.

We verified that many current uses of erroneous macros
in the packages we examined happen not to expand
erroneously. For example, all arguments to a macro with
a precedence error may be expressions with high prece-
dence, or all arguments to a macro that evaluates its
argument multiple times may be side-effect-free. However,
future uses may well give rise to these dormant errors,
especially by programmers not familiar with the (generally
undocumented) caveats relating to use of each macro. If
caveats for the macro’s use were prominently documented
(such as requiring arguments to be side-effect-free or
parenthesized), then the macro definition could be argued
to be error-prone rather than erroneous, but this was not the
case in practice. We call the macros erroneous because they
fail to adhere to their implied specification—the standard
C execution model.

Because it flags such errors, our tool could play the role
of a macro lint program. It discovered many more problems
than we expected: 23 percent of all macro definitions
triggered at least one macro lint warning and 22 percent of
macro names have a definition that triggers a warning. Fig. 5
further breaks down the warnings, which are described
below.

Unparenthesized formal. Some argument is used as a
subexpression (i.e., is adjacent to an operator) without
being enclosed in parentheses so that precedence rules
could result in an unanticipated computation being
performed. For instance, in

#define DOUBLE(i) (2*i)

... DOUBLE(3+4) ...

the macro invocation computes the value 10, not 14. This
warning is suppressed when the argument is the entire
body or is the last element of a comma-delimited list:
Commas have lower precedence than any other operator,
making a precedence error unlikely. (C’s grammar
prohibits sequential expressions such as a,b as function
arguments, so such a precedence error can occur only for

functions defined via the varargs or stdarg facilities
that take multiple arguments.)

Multiple formal uses. Some argument is used as an
expression multiple times, so any side effects in the
actual argument expression will occur multiple times.
Given a macro defined as

#define EXP_CHAR(s) \

(s == ’$’ || s == ’\140’ || s == CTLESC)

an invocation such as EXP_CHAR(*p++) may incre-
ment the pointer by up to three locations rather than
just one, as would occur were EXP_CHAR a function.
Even if the argument has no side effects, as in
EXP_CHAR(peekc(stdin)), repeated evaluation may
be unnecessarily expensive. Some C dialects provide an
extension for declaring a local variable within an
expression. In GNU C [34], this is achieved in the
following manner:

#define EXP_CHAR(s) ({ int _s = (s); \

(_s == ’$’ || _s == ’\140’ || _s == CTLESC) })

Free variables. Free variables are used to achieve dynamic
scoping, as discussed in Section 5.2. We include them
here because such uses can be error-prone; for instance,
at some uses, a macro may capture a local variable and
other times a global variable and it is difficult for a
programmer to determine which is achieved, much less
intended.

Unparenthesized body. The macro body is an expression
that ought to be parenthesized to avoid precedence
problems at the point of use. For instance, in

#define INCREMENT(i) (i)+1

... 3*INCREMENT(5) ...

the expression’s value is 16 rather than 18. This warning
is applicable only to macros that expand to an expression
(14 percent of expression macros contain the error) and is
suppressed if the body is a single token or a function call
(which has high precedence).

Dangling semicolon. The macro body takes arguments and
expands into a statement or multiple statements (39 per-
cent of statement macros contain the error), for instance,
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Fig. 5. Macro lint: the frequency of occurrence of error-prone constructs
in macro bodies. The second column gives absolute numbers and the
third column gives percentages. Except where specifically noted in the
leftmost column, the percentages refer to the number of macro
definitions.



by ending with a semicolon or being enclosed in { ... }.

Thus, its invocations look like function calls, but it

should not be used like a function call, as in

#define ABORT() kill(getpid(),SIGABRT);

...

if (*p == 0)

ABORT();

else ...

because ABORT(); expands to two statements (the

second is a null statement). This is nonsyntactic

—disobeys the language grammar—between the if

condition and else. This warning is suppressed for

macros without arguments (18 percent of statement

macros), such as #define FORCE_TEXT text_sec-

tion();, on the assumption that their odd syntax may

remind the programmer not to add the usual

semicolon.
The solution to this problem is to wrap the macro

body in do { ... } while (0), which is a partial
statement that requires a final semicolon. To our surprise,
only 276 macros (20 percent of statement macros) use this
standard, widely recommended construct.

Side-effected formal. A formal argument is side-effected,

as in

#define POP(LOW,HIGH) do \

{LOW=(––top)->lo;HIGH = top->hi;} while (0)

#define SKIP_WHITE_SPACE(p) \

{ while (is_hor_space[*p]) p++; }

This is erroneous if the argument is not an lvalue—a

value that can be assigned to, like a[i] but unlike

f(i). A similar constraint applies to reference para-

meters in C++, which can model such macro arguments

(though, in C++, f(i) can be an lvalue if f returns a

reference). While the compiler can catch this and some

other errors, compiler messages can be obscure or

misleading in the presence of macros and our goal is

to provide earlier feedback about the macro definition,

not just about some uses.

Swallows else. The macro, which ends with an else-less

if statement, swallows any else clause that follows it.

For instance,

#define TAINT_ENV() if (tainting) taint_env()

...

if (condition)

TAINT_ENV();

else ...

results in the else clause being executed not if

condition is false, but if it is true (and tainting is

false).
This problem results from a potentially incomplete

statement that may be attached to some following
information. It is the mirror of the “dangling semicolon”
problem listed above which resulted from a too-complete
statement that failed to be associated with a textually
subsequent token. The solution is similar: Either add an
else clause lacking a statement, as in

#define ASSERT(p) \

if (!(p)) botch(__STRING(p)); else

or, better, wrap statements in { ... } and wrap
semicolonless statements in do { ...; } while (0).
An alternative solution would convert macros whose
bodies are statements into semicolonless statements
(wrapped in do { ...; } while (0), as noted above).
Invocations of such macros look more like function calls
and are less error-prone. This solution requires notifying
users of the change in the macro’s interface and changing
all existing macro uses.

Inconsistent arity. The macro name is defined multiple
times with different arity; for example,

#define ISFUNC 0

#define ISFUNC(s, o) \

((s[o + 1] == ’(’) && (s[o + 2] == ’)’))

This may indicate either a genuine bug or a macro name
used for different purposes in different parts of a
package. In the latter case, the programmer must take
care that the two definitions are never simultaneously
active (lest one override the other) and keep track of
which one is active. The latter situation may be caught by
Cpp’s redefinition warnings if the macro name is not
subjected to #undef before the second definition.

Null body with arguments. The macro takes arguments,
but expands to nothing, of the form #define name(e),
which might have been intended to be #define name

(e). An empty comment is the idiomatic technique for
indicating that the null definition is not a programming
error, so a comment where the macro body would be
suppresses this warning, as in

#define __attribute__(Spec) /* empty */

#define ReleaseProc16(cbp) /* */

Bad formal name. The formal name is not a valid identifier
or is a reserved word (possibly in another dialect of C),
as in

#define CR_FASTER(new, cur) \

(((new) + 1) < ((cur) - (new)))

This presents no difficulty to Cpp, but a programmer
reading the body (especially one more complicated than
this example) may become confused and the code may
not be as portable or easily translated to other dialects,
such as C++, where new is a keyword.

Our macro lint tool discovered a number of additional
errors. There are some illegal constructs, such as #module
(which is not a meaningful Cpp directive) and #undef

GO_IF_INDEXABLE_BASE(X, ADDR)(#undef takes just a
macro name, not the arguments as they appeared in the
#define directive).

ANSI C uses ## for pasting, but in K&R C, a
programmer abuts two identifiers with an empty comment
in between so that their expansions form a new identifier
when the compiler removes the comment. For instance, in
K&R C, to/**/ken is interpreted as a single token and
macros might be expanded on either side of the comment as
well. This construct does not perform merging in newer
implementations, so we warn users of its appearance. We
do not report it in our statistics because use of /**/-style
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pasting is rarely a bug and is not uncommon, especially in
CONCAT macros that provide portability across older and
newer versions of the preprocessor.

A number of files we analyzed begin or end inside a
brace scope or an #if scope. Some of these are
intentional—as in files meant to be included by other
files. Others are bugs (such as, in one case, a failure to
close a /* */ style comment) that were apparently not
discovered because testing did not build the package
under all possible configurations.

5.4 Multiple Definitions

A package may contain multiple definitions of a macro and
a macro can even be redefined partway through preproces-
sing. Multiple compatible definitions of a macro do not
complicate its use—such abstraction is often desirable.
However, redefinitions make it harder to determine exactly
which definition of a macro will be used at a particular
expansion site, which may be necessary for program
understanding or debugging; incompatible macro bodies
introduce further complications. This section examines the
frequency of macro redefinition, while the following
sections consider whether multiple macro redefinitions are
compatible with one another.

Our analysis does not distinguish sequential redefini-
tions of a macro from definitions that cannot take effect in a
single configuration. Independent definitions may result
from definitions in different branches of a Cpp conditional,
from intervening #undef directives, or from compilation
conventions, as when compiling different programs in a
package or different versions of a program.

Overall, 86 percent of macro names are defined just once;
10 percent are defined twice; 2.0 percent are defined three
times; 0.8 percent are defined four times; and the other
1.2 percent are defined five or more times. The most
frequently redefined macros are those most complicated to
understand: the “other” and “syntactic” categories. The
more definitions a macro has, the more likely it is that one
of those definitions cannot be categorized or is miscategor-
ized by our system, resulting in a failure to categorize the
macro name. Syntactic macros include those expanding
only to punctuation. These are frequently used to support
variant declaration styles (such as ANSI C declarations and
K&R C declarations); as such, they require a definition for
each variety and they are frequently redefined to ensure
that their settings are correct.

The least frequently redefined macros are those categor-
ized as unknown identifier. This is partially due to our
method of coalescing multiple definitions: Macro defini-
tions categorized as unknown identifier are overridden by
definitions with any other categorization (see Fig. 7). Our
analysis included enough library header files to include
some recognizable definition of most common macros.

In 22 of our 26 packages (all but gawk, gnuchess,
mosaic, and remind), at least 98 percent of all macros are
defined four or fewer times. Half of all packages have no
macros defined more than 12 times and the overall
redefinition behavior of most packages approximates the
mean over all packages. Notable exceptions are bc,
remind, and gcc. bc is very sparing with multiple
definitions: With the exception of some Yacc macros,

every macro is defined either one or two times. By
contrast, remind defines 10 percent of its macros more
than 10 times (but none more than 15). It supports 10
different natural languages (and various character sets) by
using macros for all user output strings. The tail of gcc’s
graph is longest of all: 1.1 percent of macros are defined
more than five times, including over 30 definitions of
obstack_chunk_alloc and obstack_chunk_free.
(These figures involve only a single configuration; for
all of gcc’s source code, including various architectures
and operating systems but excluding libraries, 4 percent
of macros are defined 20 times and 0.5 percent are
defined 50 times.)

5.5 Multiple Differing Definitions

Section 5.4 counted the number of definitions of a given
macro name, providing an upper bound on the difficulty of
mapping uses of the macro to its definition. Multiple
definitions are less worrisome if their bodies are lexically
similar or identical; this section reports how often that is
the case.

Fig. 6 provides data regarding multiple definitions of
macros, both when each definition is counted individually
and when only definitions with differing canonicalized
bodies are counted. The canonicalization eliminates all
comments and whitespace, canonically renames all formal
arguments, and considers all character and string literals to
be identical. This transformation approximates comparing
abstract syntax trees and is less strict than the rules used by
Cpp when determining whether to issue a warning about
redefinition.

The number of differing canonical redefinitions is
dramatically lower than the number of redefinitions,
indicating that multiple definitions are not so troublesome
as they initially appear. Syntactic macros are particularly
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Fig. 6. Average number of definitions of macro names in each category.
The left pair of columns examines just the files that may be compiled on
a RedHat-4.x-based (libc5) GNU/Linux 2.0.x system (as for all other
values we report), whereas the right pair considers all C files in the
package. The left column of each pair counts each definition, and the
right column merges definitions that are identical modulo whitespace,
comments, string and character literals, and formal argument names.
For example, the third line of the table indicates that macro names that
are categorized as expressions have, on average, 1.3 different
definitions in a single configuration, but those definitions include only
1.2 different abstract syntax trees. When we examine all files in the
package, we find 1.8 definitions (1.4 different definitions) of each
expression macro name. A macro name is categorized based on the
categorizations of its definitions, as detailed in Fig. 7.



reduced: Most of the multiple definitions are one of just a
few alternatives. Additionally, most macros in remind

canonicalize identically—usually, only string contents
differed.

5.6 Inconsistent Definitions

This section continues our analysis of multiply defined
macros. Section 5.5 considered the syntactic structure of
multiple definitions of a particular name; this section refines
that analysis by considering the categorization of the macro
bodies described in Section 5.1. A software engineering tool
may be able to take advantage of higher-level commonal-
ities among the macro definitions (at the level of the
categorizations of Section 5.1) more effectively than if it
relied on syntactic similarity, as in Section 5.5.

In 96 percent of cases, multiple definitions of a macro are
compatible (often, the bodies are lexically identical).
Incompatibilities usually indicate bugs or inconsistent
usage in the package or failures of our categorization
technique.

A macro name is categorized by merging its definitions
pairwise. When all definitions of a name fall into the same
category or are all consistent with a category, the name is
assigned to that category; otherwise, the name is assigned to
the “other” category. Fig. 7 details the rules precisely.

The category breakdown by macro name (detailed in the
legend of Fig. 10) differs from the by-definition breakdown
of Fig. 3 in several ways. The number of null definitions is
lower, as null definitions are often found in conjunction
with other types of definition and are eliminated by the
category merging. (Macros defined only via null definitions
are generally used only in Cpp conditionals.) The number
of statements is lower, largely because some macros names
with statement definitions have other, incompatible defini-
tions, so the macro name is categorized as “other.” The

percentage of unknown identifiers is higher because such
macros tend to have very few definitions, so they are more
prominent in a breakdown by name than by definition. The
number of “other” categorizations increased because it
includes any macro with a definition categorized as “other”
as well as any with incompatible definitions.

Fig. 8 gives more detailed information for the 14 percent
of macro names that have multiple definitions. Macros are
grouped by whether all of their definitions fall into the same
set of categories.

Using nine presentation categories, rather than the 28
categories distinguished by our tool, makes this table
manageable, but does hide some information. For instance,
there are two “expression + statement” groups, one at 1.7
percent and one at 0.39 percent. The more prevalent one
includes expressions and semicolonless statements, cate-
gories that are compatible with one another; those macro
names are categorized as semicolonless statements. The
second group includes definitions that are expressions,
semicolonless statements, and complete statements; those
12 macro names are categorized as “other” and, with one
exception, represent bugs in the packages. One such bug in
zephyr is

#define adjust_size(size) \

size -= 0x140000000

#define adjust_size(size) \

size -= (unsigned int) &etext;

Likewise, the “statement” row at 0.23 percent has a name
categorization of “other” because it includes both semico-
lonless and full statements, which are not interchangeable.
All seven of these are bugs; an example in gcc is

#define TARGET_VERSION \

fprintf(stderr, ” (i860, BSD)”)
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Fig. 7. Rules for unifying two macro definition categories. These rules are used when combining categories of multiple definitions of a macro in order

to assign a category for the macro name.



#define TARGET_VERSION \

fprintf(stderr, ” (i860 OSF/1AD)”);

6 MACRO USAGE

The previous section demonstrated ways in which macro
definitions complicate program understanding; now we
turn to macro uses. First, heavy macro usage makes macro
analysis more important by amplifying the effect of each
macro; Section 6.1 addressees this issue. Macro usage in the
packages we analyzed varies from perl’s 0.60 macros per
line of code to workman’s 0.034. While 50 percent of macro
names are used two or fewer times, 1.7 percent of macros
(364 macros) are used at least 100 times. Macros categorized
as syntactic and type-related are expanded 10 times more
frequently than simpler macros defining constants or
expressions.

Second, consistency of use can resolve some of the
ambiguities inherent in macro definitions, while inconsis-
tent use has the opposite effect. A macro used in a limited

way can be replaced—in a tool’s analysis or in the

source—by a simpler mechanism. Section 6.2 demonstrates

that this approach shows promise: Fewer than 3 percent of

macros are both tested for definedness and expanded in

source code.
Finally, which macros appear in a conditional compila-

tion test can reveal the programmer’s intention underlying

that test. For tests not specific to a particular package, the

separation of concerns is generally good: Section 6.3 shows

that only 4 percent of Cpp conditionals test multiple macros

with different purposes.

6.1 Frequency of Macro Usage

Fig. 9 illustrates how frequently each package uses macros.

Macros pervade the code, with 0.28 uses per line, though

individual packages vary from 0.034 to 0.60 uses per line.

Heavy preprocessor use (high incidence of preprocessor

directives, as reported in Fig. 2) is only weakly correlated

with heavy macro usage, even though many preprocessor
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Fig. 8. Categorization of definitions for each macro name with more than one definition. For instance, for 869 macro names (28 percent of multiply
defined macro names), all definitions fall into the expression category; for 183 macro names (6.0 percent of multiply defined macro names), all
definitions are either expressions or constants. Rows less than 0.2 percent, representing five or fewer macro names, are omitted. The rightmost
column indicates the categorization of the macro name; 4.4 percent of all multiply defined macro names and 2.0 percent of macro names overall are
categorized as “other.” This chart shows which different macro definition categories tend to occur together and assists in understanding the reasons
for macro names whose multiple definitions cause them to be categorized as “other.”



directives use macros. The language implementations in
our study (perl, gcc, and gs) use macros the most.

Fig. 10 illustrates that 50 percent of macros are expanded
no more than twice and 10 percent are never used at all.
Many of these unused macros appear in incomplete or
obsolete code. For example, gnuplot, which does not use
22 percent of the macros it defines, includes several
partially implemented terminal types, such as tgif.

The most frequently used macros are those most likely
to cause difficulty for a tool or software engineer:
39 percent of syntactic macros (those expanding to
punctuation or containing unbalanced delimiters and that
are difficult to parse) and 12 percent of type-related
macros are used more than 32 times. The long tails of the
frequency distribution result from pervasive use of some
syntactic or type macros (e.g., at every variable declara-
tion), which makes understanding these macros critical.
By contrast, macros that act like C variables by expanding
to a constant or expression generally appear only a few
times—58 percent of macros defining constants occur no
more than twice.

6.2 Macro Usage Contexts

Macros have two general purposes: They can control the
inclusion of lines of code (by appearing in a Cpp
conditional that controls that line) or can change the text

of a line (by being expanded on that line). Each of these
uses may correspond to language features—conditional
statements and expressions (if and ?:) or const and
inline declarations (for certain types of substitution).
Understanding is inhibited when a macro is used in both
ways, for there is no easy mapping to an existing language
feature.

We split macro uses into three contexts:

. Uses in C code. The macro’s expansion involves
textual replacement.

. Uses in #if, #ifdef, #ifndef, and #elif condi-
tions. In this section, we disregard uses in
Cpp conditionals whose only purpose is to prevent
redefinition. More specifically, we ignore uses in a
condition that tests only a macro’s definedness and
whose body only defines that macro.

. Uses in the body of a macro definition. Macros used
in such contexts eventually control either textual
replacement or code inclusion (according to uses of
the macro being defined). Overall, 18 percent of
macros appear in macro bodies, and uses in macro
bodies account for 6.0 percent of macro uses.

Fig. 11 reports in which of these three contexts macro
names are used. In general, packages use macros either to
direct conditional compilation or to produce code, but not
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for both purposes. Only 2.4 percent of macros (the fourth

group of Fig. 11) both expand in code and are used in

conditional contexts. Macros are expanded an order of

magnitude more often than they control source code

inclusion (75.9 percent in the first group versus 6.5 percent

in the second). Conditional compilation accounts for

48 percent of Cpp directives, but only 6.5 percent of macro

usage. However, each use in a conditional directive can

control many lines of code, whereas each use in code affects

the final program text for just that line; see Section 7.

6.3 Macro Usage in Conditional Control

Cpp conditionals are used to control inclusion of code for

portability, debugging, efficiency, and other purposes. The

programmer intention behind a #if line can often be

inferred from its structure, its context, or the purpose of the

macros it uses.

Fig. 12 shows the heuristically determined purpose of
each Cpp conditional in our test suite. First, the heuristic
classified some conditionals according to their structure or
context, as follows:

. Commenting. These guards either definitely succeed

and have no effect as written (e.g., #if 1) or

definitely fail and unconditionally skip a block

(e.g., #if (0 && OTHER_TEST)). These guards

comment out code or override other conditions

(e.g., to unconditionally enable or disable a pre-

viously experimental feature).
. Redefinition suppression. These guards test non-

definedness of identifiers and control only a defini-

tion of the same identifier, thus avoiding

preprocessor warnings about a redefinition of a

name (e.g., #ifndef FOO followed by #define FOO
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Fig 10. Number of expansions per Cpp macro. The numbers in the graph represent the percentage of identifiers that are expanded a given number of

times or fewer. For example, 50 percent of all macros are expanded two or fewer times. In this chart, higher lines indicate less usage: syntactic

macros are used the most, null defines and constants the least. Percentages in the legend represent the total number of macro names falling in each

category; Fig. 3 gives similar information broken down by macro definition.



... and #endif). The purpose is to provide a

default value used unless another part of the system,

or the compilation command, specifies another

value.

For Cpp conditionals not classified by the above rules,

the purpose of each macro name appearing in the

conditional is determined from the system properties it

reifies. If each macro in the conditional has the same

purpose, then the conditional is given that purpose;

otherwise, the conditional is classified as “mixed usage.”

The macro purposes, which are determined from the

macro’s name rather than an examination of its definitions

(which are often either unavailable or trivial, such as the

constant 1), are as follows:

. Portability, machine. These symbols name the
operating system or machine hardware (e.g.,
sun386 or MACINTOSH).

. Portability, feature. These symbols describe spe-
cific parameters or capabilities of the target
machine or operating system (e.g., BYTEORDER,
BROKEN_TIOCGWINSZ).

. Portability, system. These symbols are commonly
defined constants or pseudoinline functions in
system or language libraries (e.g., O_CREATE,
isalnum, S_IRWXUSR).

. Portability, language or library. These symbols are
predefined by a compiler, defined by a standard
library, or defined by the package as part of the
build process to indicate existence of compiler,
language, or library features (e.g., GNUC, STDC,
HAS_BOOL).

. Miscellaneous system. These symbols are reserved
(they begin with two underscores) and do not fit any
other purpose.
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Fig. 11. Macro usage contexts. Macros may be used in C code, in macro

definition bodies, in conditional tests, or in some combination thereof.

The 10.3 percent of “No uses” is the same number as the 0 uses value of

the Mean line in Fig. 10. This figure groups (for example) macros used in

code only with macros used in both code and macro bodies, on the

assumption that uses in macro bodies are similar to other uses of the

macro.

Fig. 12. Purposes for conditional compilation directives. The legend indicates what percentage of all Cpp conditionals fall into each category,

numerically presenting the information in the top row of the chart.



. Debugging. These symbols control inclusion of
debugging or tracing code. The macro names contain
DEBUG or TRACE as substrings.

. Multiple inclusion prevention. These guards en-
compass an entire file to ensure that the enclosed
code is seen only once per translation unit by the
compiler. Such guards are indicated by convention
with a trailing _H or _INCLUDED in the macro name
they check.

. Package-specific. These symbols are specific to the
given package. They do not fit any of the other
purposes.

. Mixed usage. These guards test multiple symbols
that have different purposes (e.g., #if defi-

ned(STDIO_H) || SYSV_SIGNALS).

There is significant variation among packages and no
clear pattern of use emerges. Portability accounts for
37 percent of conditional compilation directives. Redefini-
tion warning suppression at 17 percent is surprisingly high;
it is essentially a macro definition mechanism, not a
conditional inclusion technique. Mixed usage is relatively
rare. This suggests both that the conventions for macro
names are fairly standardized and that programmers rarely
write conditional tests that combine entirely different
concerns in a single expression.

These data suggest that 23 percent of conditional

compilation directives would be unnecessary if the

C preprocessor had two simple language features: a “define

only if not already defined” directive and an Objective-C-

like #import facility that automatically avoids multiple

inclusions. Another 37 percent of conditional compilation

directives involve variances in target operating systems.

Tools such as the GNU project’s autoconf may account for

the prevalence of these guards by making it easier to

maintain code bases sprinkled with #ifdefs managing

multiple target operating system variants. It would be

interesting to compare these data to those for software that

targets only a single specific platform.

7 DEPENDENCES

Macros control the program that results from running Cpp
via inclusion dependences and expansion dependences.
This section reports the incidence of these dependences,
both by macro and by line.

Inclusion dependence results from Cpp conditionals that

test macros to determine which lines of the Cpp input

appear in the output. A line is inclusion-dependent on a

macro name if and only if the macro’s definedness or its

expansion can affect whether the line appears in the

preprocessor output. In other words, there is a set of values

for all other macros such that the line appears in the output

for one value of the macro (or for the case of the macro

being undefined) and does not appear in the output for the

other value of the macro (or for the case of the macro being

defined). This notion is related to control dependence in

program analysis.

Expansion dependence results from the replacement of

macros outside Cpp conditionals by their definition bodies,

which controls the content of the lines on which the macros

appear. A line is expansion-dependent on a macro name if

the macro’s definedness or value affects the text of the line

after preprocessing. In other words, for some set of values

for all other macros, setting the macro to one value (being

defined) results in a different final text for the line than

setting the macro to a different value (being undefined).

This notion is related to data dependence in program

analysis.
We report both direct and indirect dependences. A line

directly depends upon macros that appear in the line or in a

#if condition whose scope contains the line. It indirectly

depends on macros that control the definitions of directly

controlling macros. After #define S_ISBLK(m) ((m) &

S_IFBLK), the final text of a line that uses S_ISBLK

depends not just on its definition but also on that of

S_IFBLK. An indirect dependence is an expansion depen-

dence if every dependence in the chain is an expansion

dependence; otherwise, the indirect dependence is an

inclusion dependence.

We distinguish must from may dependences. A must

dependence links a use to the macro’s known single

definition site; a may dependence links a use to multiple

definition sites when it is not known which definition is in

effect at the point of use. When a macro is defined on both

branches of a #if conditional, the macro’s definedness does

not depend on the values tested in the conditional, though

its value might. We do track dependences across file

boundaries: If a macro controls whether a file is #included,

then the macro also controls every line of that file.
The statistics reported in this section are underestimates

because they omit emacs, which aggressively uses macros.
Its full dependence information exceeded 512 MB of virtual
memory, in part due to its optional use of Motif, a complex
external library with extensive header files. (While this
paper reports only on macros defined in each package, we
computed dependences and other information for all
macros, including those defined or used in libraries.
Additionally, our implementation is not optimized for
space.) We did generate dependence information for mosaic
and plan, which also use Motif.

7.1 Dependences by Line

Fig. 13 graphs the percentage of lines dependent on a given

number of macros. On average, each line in the 25 packages

for which we did dependency analysis on is expansion-

dependent on 0.59 macros, inclusion-dependent on

8.2 macros, and has some dependence on 8.7 macros. Some

inclusion-controlled lines appear unconditionally in the

package source but are inside a guard to avoid multiple

inclusion—this is the case for many header files.

Expansion dependence on multiple macros is not pre-

valent—only 3.6 percent of lines are expansion-dependent on

more than three macros and only 1.1 percent are expansion-

dependent on more than seven macros. However, one line of

gcc—LEGITIMIZE_ADDRESS (x, oldx, mode, win);

—is expansion-dependent on 41 different macros. (When we

examined all source code, not just one architecture/operat-

ing system configuration, it was expansion-dependent on

ERNST ET AL.: AN EMPIRICAL ANALYSIS OF C PREPROCESSOR USE 1163



187 macros!) Macro LEGITIMIZE_ADDRESS, which creates

a valid memory address for a memory operand of a given

mode, is defined 30 times in gcc, with many of the definitions

dozens of lines long and themselves studded with macro

invocations. Inclusion dependences have a much wider

distribution. Overall, 10 percent of lines are inclusion-

dependent on at least 10 macros and 1 percent of lines are

dependent on over 176 macros.

7.2 Dependences by Macro

Fig. 14 graphs how many lines are dependent on each
macro. (Fig. 13 gave the same information by line rather
than by macro.) Since the 25 packages vary in size, the
graphs of Fig. 14 aggregate them by reporting percentages
of a package rather than absolute numbers.

The expansion dependence chart illustrates that most
macros control few lines, a few macros control many lines,
and the transition between the two varieties is gradual. (The
values follow a variant of Zipf’s law [40]: The product of the
number of macros and the percentage of lines dependent on
those macros is nearly constant. Excluding the first four and
last two buckets, which represent extremal values, the
product’s average is 40, with a standard deviation of 8.7.)
Most #if directives (which account for 2.0 percent of all
lines) expand at least one macro; the rare exceptions include
testing the compiling machine’s character set.

Each of the 20 most frequently used macros is expanded
on at least 3.0 percent of lines in its package. Four of these
(in xfig and perl) rename variables to manage dynamic
binding or linking. Two are user-defined types (rtx in gcc
and SvANY in perl), two are user-defined type modifiers
(private_ in gs and local in gzip), and one creates either
ANSI or K&R function prototypes (P in rcs). One is a user-
defined constant (AFM_ENC_NONE in genscript), another is
an expression (SvFLAGS in perl), and another is incompat-
ibly defined sometimes as a constant taking no arguments
and sometimes as an expression taking arguments (ISFUNC
in bash). The other 10 redefine built-in quantities: fprintf
in gnuplot to substitute a custom version, __far in rasmol,
because that is meaningful only in x86 dialects of C, and
void in perl, const in gs and rcs, and NULL in cvs, fvwm,
gawk, m4, and mosaic. Because we determined which
symbols are macros by running a modified version of the
preprocessor, we report such redefinitions only when the
package may override the built-in version. Generally, only a
few such built-in symbols are overridden.

The inclusion dependence graph is bimodal. While most
macros control inclusion of zero or few lines, quite a few
control over 5 percent of the package and there are not a lot
of macros in between. The graphs for the individual
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Fig. 13. Percentage of lines dependent on a particular number of macros
(or fewer). For instance, 94 percent of all lines are expansion-dependent
on two or fewer macros and 90 percent of all lines are inclusion-
dependent on 10 or fewer macros. Lines higher in the graph indicate
dependence on fewer macros. The values for 0 macros (which does not
fall on the log-scale x axis) are as follows: 75 percent of lines expand no
macros, 63 percent of lines are unconditionally included (or excluded),
and 60 percent of lines are not dependent on any macros at all.

Fig. 14. Dependences by macro name for 19,945 macro names in 25 packages. The first bar represents all macros that are completely unused in a
package. Each other bar represents all macros that control a specified percentage range of the lines in a package. For instance, the 0.17-0.26 bar in
the expansion dependence chart indicates that 257 macros each control between 0.17 percent and 0.26 percent of the entire package that contains
that macro. The maximum falls in the penultimate bucket (i.e., the rightmost bucket is the first empty one). The second bar of each graph represents
all macros controlling at least one line (" is a very small but nonzero value), but no more than 0.01 percent of the entire package. The x axis uses a
log scale.



packages exhibit far higher peaks than the aggregate
inclusion dependence graph of Fig. 14; summing the graphs
tended to average them. The heaviest dependences tend to

be on macros controlling header file inclusion.

7.3 Cpp Partial Evaluation

Support for multiple dialects of a language, such as ANSI C

and K&R C, is a common use of the preprocessor: Three of
the 26 packages support only ANSI C, four support only
K&R C, 13 use the preprocessor to fully support both

dialects, and six prefer one dialect but partially support
another (for instance, part of the package supports both
dialects or a substantial number of functions have both

varieties of prototype). Such support is possible only in the
preprocessor, not in the language, and leads to unstruc-
tured macros (partial declarations and other difficult-to-

handle constructs). Furthermore, these uses are highly
visible and distracting to programmers and tools because
they may change the syntax of every function declaration

and definition.
We performed an experiment to determine whether

eliminating these macros would simplify understanding or
analysis by reducing the complexity of macro definitions

and usage as measured in this paper. We built a Cpp partial
evaluator called Cppp. Given Cpp-style command-line
arguments specifying which macros are known to be

defined or undefined (and, optionally, their expansions),
Cppp discharges Cpp conditionals, including nested con-
ditionals, that depend on those macros. Other conditionals

and macro uses remain in the output. Cppp does not
expand macros inline or use macro definitions found in its
input files. Cppp is similar to the unifdef program

distributed with some Unix variants, except that unifdef
does not permit specifying a value for a defined symbol and
only operates on #ifdef tests.

We used Cppp to preprocess all 26 programs (and all
library header files) with definitions for all the macros that
can be depended on if using ANSI standard C or C++
(including prototypes and Booleans) and POSIX-compliant

libraries. This reduced the size of the codebase by
1.2 percent overall; individual package reductions ranged
from 3.2 percent for emacs to none for workman. We then

reran all of our experiments, but, to our surprise, the results
were little changed from the full versions of the packages.
The decline in multiple definitions of macros, “other”

categorizations, dependences on macros, and other metrics
we report were single-digit percentages of their original
values. We conclude that extralinguistic macro usage in our

test programs presents no obvious single point of attack:
Even eliminating one highly prevalent and visible use—-
which was also the largest identifiable source of Cpp

conditionals (see Fig. 12)—did not significantly reduce the
complexity introduced by preprocessor.

Discharging selected conditionals can sometimes be

worthwhile, however. The developers of the Scwm window
manager [32] used our Cppp tool to eliminate numerous
compile-time options inherited from Scwm’s predecessor,

fvwm2. This transformation resulted in a cleaner code base
that the developers found easier to understand and modify.

8 RELATED WORK

We know of no other empirical study of the use of the
C preprocessor nor any other macro processor. However,
the literature does contain guidance on using C macros
effectively and on writing portable code, tools for checking
macro usage, and techniques for understanding and
exploring C source code that uses the preprocessor.

8.1 Style Guidelines

Several coding style guides make recommendations on
preprocessor use and on ways to reduce unexpected
behavior resulting from poorly designed constructs. Our
empirical data help refine these sets of suggestions, both by
extending their taxonomies and recommendations and by
indicating which problems occur in practice.

The GNU C preprocessor manual [14] discusses a set of
techniques, including simple macros, argument macros,
predefined macros, stringization macros, concatenation
macros, and undefining and redefining macros. Its list of
“pitfalls and subtleties of macros” include unmatched
parentheses, unparenthesized formals and bodies, dan-
gling semicolons, multiple formal uses, and self-referential
macros. It also discusses three issues not addressed in this
paper: argument prescan (macro arguments are actually
scanned for macro expansions twice), cascaded macros
(macro bodies use the current definition of other macros,
not the ones in effect at the definition site), and newlines
in macro invocations (which can throw off error line
reporting).

The GNU coding standards [35] mention Cpp only to
recommend upper case for macro names and use of macros
to provide meanings for standard symbols on platforms
that don’t support ANSI C. In any event, most GNU
programs do not appear to have been written with an eye to
careful adherence to the standards. The Ellemtel coding
standards [9] recommend that inline definitions appear in
separate files of their own (not in .h header files) that never
include other files, that inline functions and const or enum
constants be used in place of #define, and that prepro-
cessor macro names be prefixed to avoid name clashes.

An adaptation of the Indian Hill C Style and Coding
Standards [3] makes numerous suggestions. Programmers
should use all capital letters for macro names except for
macros that behave like function calls, which are acceptable
only for short functions. Statement macros should be
wrapped in do { ... } while (0), particularly when
they contain keywords. Conditional bodies should be fully
bracketed to avoid dangling semicolons. Macros should
evaluate their parameters exactly once and arguments
should not have side effects. Side effects to macro
parameters should be documented. Macros should avoid
using global variables since the global name may be hidden
by a local declaration. Macros with bodies that are long or
that reference variables should take an empty parameter
list. Programmers should use the ANSI specification rather
than preprocessor tricks such as using /**/ for token
pasting and macros that rely on argument string expansion.
Syntax should not be changed by macro substitution (except
for the PROTO macro). While #ifdef is to be avoided, it
should appear in header files (which should not be nested)
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rather than source code. It can be used to protect uses of
#pragma and to define macros that are used uniformly in
the code, without need for further #ifdef. If a machine is
not specified, compilation should fail rather than using a
default, but conditional compilation should generally test
features, not machines or operating systems. The text inside
an #ifdef-bracketed section should be parsable code, not
arbitrary text.

Stroustrup [37] lists 14 tasks supported by the
C preprocessor and notes C++ alternatives for five of
the eight uses of #define: constants, inline subroutines,
parameterized types and functions, and renaming. While
a principle of C++’s design was the elimination of the
preprocessor, C++ continues to rely on it for the other
uses Stroustrup lists: #define for string concatenation,
new syntax, and macro processing; #ifdef for version
control and commenting; #pragma for layout and control
flow hints (though pragmas are disparaged); and
#include for exporting declarations and composing
source text. Stroustrup proposes moving #include into
the language, which could eliminate some of its quirks
and simplify the task of programmers and tool writers, as
the #import directive does for Objective-C [5]. Stroustrup
remarks that “In retrospect, perhaps the worst aspect of
Cpp is that it has stifled the development of programming
environments for C.”

Carroll and Ellis [4] list eight varieties of non-#include
macro usage, culled in part from Stroustrup’s list [37]. They
say that C++ can replace these uses of the preprocessor
other than declaration macros (such as declaring a class
constructor and destructor via a macro call) and code
versioning (such as debugging versions). They also recom-
mend the use of corporation- and project-specific prefixes to
avoid macro name and header file name conflicts.

8.2 Portability

Two other style guidelines focus on portability concerns.
Dolenc et al. [8] warn of implementation limits permitted by
the C language standard such as 32 nesting levels of
parenthesized expressions, 1,024 macro identifiers, and 509
characters in a logical source line. They also note incompat-
ibilities among preprocessors that usually result from
failure of implementations to conform to the specification.
For instance, some nonstandard preprocessors do not
support the defined operator or the #pragma or #elif
directives; ignore text after the #else, #elif, and #endif

directives; or perform concatenation and stringization in
nonstandard orders during macro substitution. The authors
recommend using some of these incompatibilities—such as
accepting only directives starting in the first column,
without leading whitespace—along with #ifdef to hide
modern Cpp features from older preprocessors. The paper
also treats in detail specific header files that may cause
portability problems, showing how to overcome these
difficulties, generally by using the macro preprocessor to
define some symbols (more) correctly.

Spencer and Collyer [30] provide a set of techniques for
achieving portability without using #ifdef, which they
recommend only for providing default values for macros
and preventing multiple inclusion of header files. The paper
is as much about good software engineering as it is about

the preprocessor per se, but does contain some preproces-
sor-specific recommendations. The authors suggest using
standard interfaces, then providing multiple implementa-
tions if necessary. These implementations should appear in
separate files rather than sharing code via #ifdef and the
build or configure script should select among them; thus, a
choice of files replaces Cpp conditionals. An override
directory early in the search path permits bad include files
to be replaced rather than selectively overridden. More uses
of #ifdef can be eliminated by moving system-specific
tests and operations into shell scripts or by using standard
programs (such as ls or df) instead of accessing system
services from C code. (These strategies can complicate
porting to non-Unix systems and even standard programs
may have different behavior in different places.) Use of the
preprocessor to establish numeric constants should be
viewed with suspicion; dynamically sized objects are a
better approach. Uses of #ifdef should test for features or
characteristics, not machines, and an error is preferable to
selecting a default machine. Spencer and Collyer recom-
mend that #ifdef be restricted to declarations and macro
definitions, never used at call sites, and that #include

never appear inside #ifdef. They also break down the
uses of #ifdef in the 20,717 lines of their C News program.
Of the 166 uses, 36 percent protected a default value for a
preprocessor symbol, 34 percent were used for configura-
tion, 15 percent commented out code, and 3 percent
prevented multiple inclusion of header files.

8.3 Error Checking

Krone and Snelting use mathematical concept analysis to
determine the conditional compilation structure of code
[22]. They determine the preprocessor macros each line
depends upon (in our terminology, they only compute
inclusion dependence, not expansion dependence) and
display that information in a concept lattice. They do not
determine macro relationships directly, but only by their
nesting in #if, and the information conveyed is about the
program as a whole. Each point in the lattice stands for a set
of lines dependent on exactly the same preprocessor
symbols, though not necessarily in exactly the same way.
The lattice can reveal that one macro is only tested within
another one’s influence, for example. When the lattice does
not have a regular grid-like structure, it is possible that the
code does not properly separate concerns. The most closely
related part of our paper is Section 6.3, which analyzed
single compilation directives that tested multiple incompa-
tible macros using a fixed set of macro purposes.

A number of tools check whether specific C programs
satisfy particular constraints. Various lint [17] source-code
analyzers check for potentially problematic uses of C, often
including the C preprocessor. Macro errors are usually
discovered as a byproduct of macro expansion—for
instance, by generating an empty statement that causes lint
to issue a warning—rather than in their own right. A survey
of nine C++ static checkers [25] mentions the macro
preprocessor only in terms of whether such warnings can
be turned off in the tools; however, that paper focuses on
coding style likely to lead to errors rather than on lexical
issues.
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LCLint [10], [11] allows the programmer to add annota-
tions that enable more sophisticated checks than many
other lint programs. LCLint optionally checks function-like
macros—that is, those that take arguments—for macro
arguments on the left-hand side of assignments, for
statements playing the role of expressions, and for con-
sistent return types. LCLint’s approach is prescriptive:
Programmers are encouraged not to use constructs that
might be dangerous or to change code that contains such
constructs. For full checking, LCLint also requires users to
add fine-grained annotations to macro definitions. We tried
to run LCLint version 2.3i on our set of packages with its
macro diagnostics enabled, but LCLint reported either a
parse error or an internal bug on 92 percent of the files in
our test suite.

PC-Lint/FlexeLint [13] is a commercial program checker.
Among the macro errors and problematic uses identified by
our tool, PC-Lint/FlexeLint warns about unparenthesized
bodies, multiple macro definitions (classifying them as
either “identical” or “inconsistent”), unreferenced defined
macros, and macros that could probably be replaced by a
const variable. It also warns of illegal arguments to the
#include directive, header files with none of its declara-
tions used in a module, and names defined as both
C variables and macros. At macro definitions, it warns of
multiple formals with the same name, use of defined as a
macro name, and formal names that appear in strings
(because some noncompliant preprocessors perform sub-
stitution even in strings). At call sites, it warns of incorrect
number of arguments, unparenthesized macro arguments
(“when the actual macro argument sufficiently resembles
an expression and the expression involves binary opera-
tors,” but ignoring operator precedence), and arguments
with side effects (when the formal parameter is used
multiple times in the expression body). Its warnings can be
individually suppressed to accommodate intentional uses
of these paradigms.

Check [31] is a C macro checker that detects some
instances of multiple statements, swallowed #else, side
effects, and precedence errors using largely lexical checks.
Precedence error checks are performed on macro uses
rather than reporting error-prone definitions. The authors
do not report on the effectiveness of the tool in practice nor
do they justify their trade-offs between techniques that
perform parsing and those that do not, although such trade-
offs are a major theme of their paper.

We found no mention in the literature of software
complexity metrics that specifically address the macro
preprocessor (except for a study of program comprehensi-
bility in the dBaseIII and Lotus 1-2-3 macro languages [6]).
As anecdotal confirmation of this neglect of the preproces-
sor, we examined 12 publically available systems for
computing metrics over C programs [24]. spr and metrics
filter out Cpp directives, and c_lines, cyclo, and lc ignore
Cpp. metre requires preprocessed source, csize performs
preprocessing itself and counts Cpp directives, and
c_count, clc, and hp_mas count preprocessor directives;
c_count counts statements but ignores those in expanded
macros. cccc permits users to specify specific macros to
ignore; it skips preprocessor lines and assumes macros

contain no unbalanced braces. ccount (a different program
than c_count, mentioned above) operates on unprepro-
cessed source, but its parser is stymied by Cpp comments
and by macros not expanding to statements, expressions, or
certain types, so users may specify the expansions of certain
macros (so that only one side of Cpp conditionals is
examined) and which macros to ignore.

8.4 Understanding Cpp

A limited number of tools assist software engineers to

understand code with containing Cpp directives. Emacs’s

hide-ifdef-mode [33] enables the programmer to specify

preprocessor variables as explicitly defined or not defined;

the mode then presents a view of the source code

corresponding to that configuration, hiding code that is

conditionally unincluded, much like the Cppp and unifdef

tools. A similar tool is the VE editor, which supports both

selective viewing of source code and automatic insertion of

Cpp conditionals around edited code. Based on evidence

from version control logs, this tool was found to be effective

in making programmers more productive [1]. Various

language construct “tagging” mechanisms (e.g., etags

and ctags) recognize macro definitions and permit tag-

aware editors to move easily from a macro expansion to the

various definitions of that macro name. One of the sample

analyses of the PCp3 analysis framework provides an

Emacs-based tool for editing the unprocessed source while

dynamically updating the current macro’s expansion in a

separate window [2].

Favre suggests that Cpp be expressed in an abstract

syntax similar to that of other programming languages [12].

After a simple semantics (free of loops and other

complicating constructs) is assigned to Cpp, traditional

analyses such as call graph construction, control and data

flow analysis, slicing, and specialization can be performed

on it. The Champollion/APP environment implements this

approach but does not support “the full lexical conventions

of the C language” nor macros that take parameters, which

make up 30 percent of macros in our study. The Ghinsu

slicing tool [23] takes a similar approach, mapping Cpp

constructs—particularly macro substitution—to an internal

representation that supports slicing.
TAWK [15], which permits searches over a program’s

abstract syntax tree, handles some uses of Cpp macros.
Macros whose bodies are expressions or statements are left
unexpanded and entered into the symbol table (Scruple [27]
takes a similar approach); otherwise, the body is reparsed
assuming that each macro argument (in turn) is a typedef;
otherwise, the macro is expanded inline, which the authors
find necessary for 4 percent of non-header-file uses.

9 MAKING C PROGRAMS EASIER TO UNDERSTAND

The combination of C and Cpp often makes a source text
unnecessarily difficult to understand. A good first step is to
eliminate Cpp uses where an equivalent C or C++ construct
exists, then to apply tools to explicate the remaining uses.
Here, we discuss a few approaches to reducing the need for
the preprocessor by improving the state of the art in
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C programming, rather than applying tools to a specific
source code artifact. We do not seriously consider simply
eliminating the preprocessor, for it provides convenience
and functionality not present in the base language.

Since many of the most problematic uses of Cpp provide

portability across different language dialects or different

operating environments, standardization can obviate many

such uses, either in legacy code or, more easily, in new code.

Canonicalizing library function names and calling conven-

tions makes conditional compilation less necessary (37 per-

cent of conditionals test operating system variances) and,

incidentally, makes all programs more portable, even those

that have not gone to special effort to achieve portability.

This proposal moves the responsibility for portability

(really, conformance to a specification) from the application

program into the library or operating system.

Likewise, one of the most common uses of Cpp macros

could be eliminated if the C language and its dialects had

only a single declaration syntax. Declarations are particu-

larly important to tools and humans, who examine them

more often than they examine implementations, and

declaration macros are particularly cluttering. Because

most C compilers, and all C++ compilers, accept ANSI-

style declarations, support for multiple declaration styles

may have outlived its usefulness. The ansi2knr tool [7]

translates a C program using ANSI-style function declara-

tions into one using classical function declarations. This

tool frees authors from maintaining two commonly

required configurations.

Some Cpp directives can be moved into the language
proper or be replaced by more specialized directives. For

instance, Objective-C [5] uses #import in place of

#include. Stroustrup [37] also proposes putting include

in the C++ language; either approach eliminates the need

for the 6.2 percent of Cpp conditionals (and the related

definitions) that prevent multiple inclusion of header files.

A #default or #ifndefdef directive would obviate

another 17 percent of conditionals. Compilers that do a

good job of constant-folding (42 percent of macros are

defined as constants) and dead code elimination (eliminat-

ing many uses of #if, for debugging and other purposes)

can encourage programmers to use language constructs

rather than relying on the guarantees of an extralinguistic

tool like Cpp. It is not sufficient for the compiler to

perform appropriate optimizations—the programmer must

also have confidence that the compiler will apply those

optimizations; skeptical programmers will instead use Cpp

to hide computations from the compiler and guarantee

code is not generated.
Common Cpp constructs could be replaced by a special-

purpose syntax. For instance, declarations or partial
declarations could be made explicit objects, such as by
making type modifiers first-class at compile (or, more
likely, preprocess) time; the language or the preprocessor
could include a dynamic declaration modifier for dynamic
binding (like the special declaration for dynamic vari-
ables in Lisp [36]); and similar support could be provided
for repetitive constructs. Manipulations of these objects
would then be performed through a clearly specified

interface rather than via string and token concatenation,
easing the understanding burden on the programmer or
tool. Such uses would also be visible to the compiler and to
program checkers such as lint. The downside of this
approach is the introduction of a new syntax or new library
functions that may not simplify the program text and that
cannot cover every possible case.

The Safer_C language [28] uses partial evaluation as a
replacement for preprocessing and for source-code tem-
plates in order to support portability and reuse without
runtime cost. Evaluation of expressions occurs at compile
time or at runtime, controlled by programmer annotations.
Maintainability is enhanced due to the elimination of a
separate preprocessing step and the language’s simpler
syntax. Since Safer_C does not support all the features of the
preprocessor, the author recommends recoding in a totally
different style for uses of the preprocessor that extend
beyond the definition of preprocessor constants, inclusion
of header files, and straightforward conditional compila-
tion. The paper remarks that gcc version 2.5.8 contains only
“several instances” of such preprocessor use, but our results
contradict that finding.

Some macro systems have been designed that avoid
particular pitfalls of Cpp. A hygienic macro system [21]
never unintentionally captures variables, though it can do
so via a special construct. Other macro systems require that
their output be a syntactic AST rather than merely a token
stream [38].

An alternative approach that avoids the clumsiness of a
separate language of limited expressiveness is to make the
macro language more powerful—perhaps even using the
language itself via constructs evaluated at compile time
rather than run time. (The macro systems of Common Lisp
[36] and Scheme [18] and their descendants [38] take this
approach.) In the limit, a language can provide a full-
fledged reflection capability [20]. Such an approach is
highly general, powerful, and, theoretically, clean. The
added generality, however, degrades a tool’s ability to
reason about the source code. In practice, such systems are
used in fairly restricted ways, perhaps because other uses
would be too complicated. A dialogue among users,
compiler writers, tool writers, and language theorists is
necessary when introducing a feature in order to prevent
unforeseen consequences from turning it into a burden.

10 FUTURE WORK

Our data and results suggest a wide variety of future
avenues for research, both in terms of expanding under-
standing of uses of the preprocessor in practice and in
addressing the issues identified by this study.

Comparing how Cpp use in libraries differs from its use
in application code may yield insights into the language
needs of library authors. Other comparisons, such as Unix
versus Microsoft Windows packages, packages with differ-
ent application domains or user-interface styles, different
versions of a single package, and the like, may also prove
valuable.

We did not formally analyze any C++ source code.
Preliminary results indicate that many C++ packages rely
heavily on Cpp, even for uses where C++ supports a nearly
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identical language construct. This unfortunate situation
probably stems from a combination of trivial translations
from C to C++ and of C programmers becoming C++
programmers without changing their habits. A useful
analysis of C++ packages would consider the code in the
context of both the history of the package and the back-
ground of its authors.

Further analysis of the macros with free variables is
needed to see which of the roughly 84 percent of expression
macros and 63 percent of statement macros that lack free
variables should be easy to convert to inline functions.

Our framework currently does not benefit from analyz-
ing the context of macro expansions in determining a
macro’s category. For example, a macro used where a type
should appear can be inferred to expand to a type; a macro
used before a function body is probably expanding to a
declarator.

11 CONCLUSIONS

We analyzed 26 packages comprising 1.4 million lines of
real-world C code to determine how the C preprocessor is
used in practice. This paper reported data, too extensive
and wide-ranging to be briefly summarized here, regarding
the prevalence of preprocessor directives, macro body
categorizations, use of Cpp to achieve features impossible
in the underlying language, inconsistencies and errors in
macro definitions and uses, and dependences of code upon
macros.

As the first empirical study of the C preprocessor, this
article serves to confirm or contradict intuitions about use
of the C preprocessor. It indicates the difficulty of
eliminating use of the preprocessor through translation to
C++, shows the way to development of preprocessor-aware
tools, and provides tools including an extensible prepro-
cessor, a Cpp partial evaluator, and a lint-like Cpp checker.
We anticipate that the data presented here may be useful
for other Cpp-related investigations as well. In particular,
the data and analyses in this paper can provide value to
language designers, tool writers, programmers, and soft-
ware engineers.

Language designers can examine how programmers use
the macro system’s extralinguistic capabilities. Future
language specifications can directly support (or prevent)
such practices—for instance, along the lines suggested in
Section 9—thus imposing greater discipline and structure.

Programming tool writers can choose to cope only with
common uses of the preprocessor. By partial preprocessing
(or embedded understanding of some Cpp constructs), a
parser can maintain the programmer-oriented abstractions
provided by preprocessor directives and macro names
without getting confused by programs containing syntax
errors.

Programmers who wish to make their code cleaner and
more portable can choose to limit their use of the
preprocessor to the most widely used and easiest to
understand Cpp idioms. Similarly, they can choose to avoid
constructs that cause tools (such as test frameworks and
program understanding tools) to give incomplete or
incorrect results.

Finally, our results are of interest to software engineering

researchers for all of the above reasons and more. Since this

is the first study of Cpp usage of which we are aware, it was

worth performing simply to determine whether the results

were predictable a priori. Each aspect of our analysis has

been surprising and interesting to some individuals.

Pursuing more highly focused and deeper analyses along

some of these directions could be worthwhile.
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