
Design Choices in A Compiler Course

or

How To Make Undergraduates Love Formal Notation

Michael I. Schwartzbach

Department of Computer Science

University of Aarhus, Denmark

mis@brics.dk

Abstract

The undergraduate compiler course offers a unique opportunity to

combine many aspects of the Computer Science curriculum. We discuss

the many design choices that are available for the instructor and present

the current compiler course at the University of Aarhus, the design of

which displays at least some decisions that are unusual, novel, or just

plain fun.

1 Introduction

The compiler course is an important component in the undergraduate Computer
Science curriculum. Ideally, it ties together several aspects of the education,
such as formal languages (regular and context-free languages, syntax-directed
translation), programming languages (features and constructs), algorithms and
data structures (ASTs, symbol tables, code selection, optimization), logic (type
systems, static analysis), machine architecture (target platforms), and software
engineering (phase slicing, versioning, testing). At the same time, the compiler
project may involve the largest and most complex piece of software that the
students so far have been required to handle.

Even though most compiler courses obviously have a common basic struc-
ture, a lecturer faces a host of design choices that must be made explicitly or
implicitly. In the following such choices will be presented and discussed, both in
general terms (based on an unscientific study of around 50 courses) and as they
apply to the current compiler course at the University of Aarhus, the design of
which displays at least some decisions that are unusual, novel, or just plain fun.

1

2 Design Choices

A compiler course must teach the students how compilers work. Beyond this ob-
vious statement hides a multitude of different choices that influence the contents
of the lectures, the style of the teaching, and the experiences of the students.
Compiler courses may fill different roles in the curriculum, recruit students with
different backgrounds, and focus on different aspects. Thus, the purpose of this
section is not to describe an optimal point in the design space, but instead to
make the many design choices explicit and to discuss their consequences.

Projects

Many compiler courses are focused on a compiler project where the students
implement a working compiler of parts thereof. It is possible to keep the course
purely theoretical, but it seems to be the consensus that learning-by-doing is
eminently suited for this topic, and that implementing a compiler is a uniquely
rewarding and empowering experience for students.

A project may be monolithic, meaning that the students build a complete
compiler from scratch. While initially appealing, this approach is often too
demanding and may strand students that get a bumpy start. At the other
end of the scale, the course may be segmented into a series of unrelated minor
projects or assignments that each are concerned with different aspects of the
compilation process.

In between these extremes, many courses seek to provide a phase slicing
where the students hand in different parts of the compiler at various deadlines.
The phases may be implicit, or they can be made explicit by specifying strict
APIs for their interfaces or by introducing a string of intermediate languages.
This is more manageable, but fixed interfaces tend to limit the possible software
designs while many intermediate languages tend to be confusing.

The compiler project is often large, time-consuming, and viewed as a rite of
passage. Its solution is typically the largest and most complex piece of software
that the students have written. Correspondingly, it is also a challenge for the
teacher, since the project must be planned and tested in detail.

Source Language

The source language of a compiler is rarely a complete programming language,
such as Java, C#, or Haskell. The many subtle details of such languages and
their specifications are seen as distractions from the essential topics. Also, such
languages typically contain many redundant features that increase the amount
of grunt work in the project. Thus, most source languages are scaled-down ver-
sions of existing languages or invented for the occasion. There is a surprising
fecundity, as a quick look through the hits in Google reveals the following source
languages for compiler projects: Tiny, Cool, UnCool, MinC, MicroGCL, Tiger,
Iota, PCAT, Tiny-C, SampleC, Lake, B-flat, DL07, Simple, Ada/CS, ice9, ALL-
COT, F05, Z#, MiniCaml, MiniPascal, Pascalito, MiniOberon, SOOP, SIMP,

2

CSX, Tigris, Minila, C--, µOCCAM, MLPolyR, Dejlisp, and (Java seems to
spawn the most imitators) Decaf, Irish Coffee, Espresso, TinyJava, MiniJava
(several versions), MicroJava, Fjava, Javelet, StaticJava, CSX, j--, Jack, and
Joos. Most of these languages include essentially the same features, but there
is of course a fundamental distinction between functional and imperative lan-
guages. The huge variety may be viewed as an instance of the Not-Invented-Here

syndrome, but it probably just reflects that most compiler teachers are having
fun with their course and cannot resist the urge to tinker. Quite often the source
languages exist in two or more versions, and the students may earn extra credit
by implementing versions with extra features.

An entirely different approach is to use domain-specific source languages,
which is probably how most students will potentially apply their compiler skills.
In this case the students may even be allowed to design their own languages in
response to challenges from various application domains. The advantage is
that the project then includes a component of language design, but the main
disadvantage is that the resulting languages may omit many important features
(and that the teacher faces a Babylonic confusion).

Target Language

The choice of target language is less varied. Languages in the Java or C# fami-
lies generally translate into the corresponding virtual machines (since JVM and
.NET are quite accessible) and Pascal derivatives translate into a P-machine.
Many courses choose assembly code as the target, generally x86, SPARC, or
MIPS, sometimes in simplified forms such as SPIM. A third choice is to generate
C-code, which seems to be a good match for domain-specific source languages.
The choice of target language is also related to the discussion of frontends vs.
backends in Section 5.

Implementation Language

The implementation language is generally one with which the students are al-
ready familiar, typically Java, C#, ML, or C++. The many Java-based source
languages are almost always linked with Java as implementation language, which
yields a certain elegance. Other courses explicitly use distinct source and im-
plementation languages to increase the exposure to different languages.

That Extra Thing

Apart from the basics of compiler construction, a compiler course seems to have
room for something extra. For example, the students may also acquire a de-
tailed knowledge of functional programming if the source and implementation
languages are both functional. Also, if the source language is domain-specific,
then the students may leave the course with significant knowledge of the given
application domain. As a final example, the compiler may be specified com-
pletely in logic programming or using an attribute grammar evaluation system,

3

in which case knowledge of the chosen formalism is added to the outcome of the
course. This also relates to the discussion in Section 5.

This ability to use a compiler course as a vehicle for That Extra Thing is an
important design choice of which teachers should be aware.

Specifications and Formalization

Compiler courses display a large difference in the level of formalization that is
used in the specifications of languages, semantics, machines, and translations.
To a large extent this reflects the pre-qualifications of the students and the
preferences of the teacher. Most aspects of compiler technology may in fact
be completely formalized, but this is rarely the style used, and it is certainly
possible to be precise without being formal. As discussed in Section 6, selling
the idea of useful formalizations may become a main purpose in the course.

The various components of the project are typically specified rather infor-
mally, using examples or prose. If the source language is a subset of a known
language, then it may be specified as the original (often huge) language specifi-
cation mentally projected onto the subset of the syntax that is allowed. This is
actually a brittle technique, since programs in the subsyntax for subtle reasons
are not always legal in the full language (as a stupid example, imagine allowing
excluded keywords as identifiers). Reading full specifications of languages or
target platforms is often a both harrowing and healthy experience for students.

Tools and Technology

Most phases of a compiler may be supported by specialized tools and, of course,
entire compilers may be specified in compiler-generating frameworks. Apart
from the occasional use of attribute grammar systems, compiler courses gen-
erally only automate scanning and parsing. There seems to be a certain air
of conservatism in this respect, with Lex/Flex and Yacc/Bison still reigning
supremely. Java and C# has specific and improved versions of such tools, as
does in fact any major programming language with respect for itself. Generally,
the more modern tools will offer better support, such as integrated scanners
and parsers, automatic generation of AST code, and perhaps expressive power
beyond LALR(1).

An alternative approach uses one-pass compilers, in the style of the classi-
cal Pascal compilers, with handwritten scanners and recursive-descent parsers.
While this possesses some old-school charm, it misses out on important aspects
(such as ASTs, phases, analysis, and optimizations) and it does not generalize
to handle the complexities of modern languages.

Software Engineering

The compiler project is an excellent opportunity for gaining experience with
software engineering techniques. The code is large enough to show how IDEs
may help the programming task, and tools for code sharing and versioning

4

are relevant, particularly if the students work in groups. The architecture of
the compiler may also be used to showcase advanced programming patterns as
discussed in Section 7.

Skeleton Code

Most courses provide the students with a starting point in the form of a skeleton
of the complete compiler. This helps the students structure the code and it
makes their resulting compilers more uniform and thus easier to evaluate. The
skeleton may be more or less detailed, which is a useful parameter for adjusting
the work load.

An alternative strategy is to provide the students with a complete compiler
for a different and often simpler source language, sometimes a subset of the
source language for their project. This helps in providing a complete overview
and enables the students to proceed by analogy.

Testing

Testing an incomplete compiler is a challenge. The generally recommended
strategy is to output a version of the annotated AST after each phase and
then manually inspect its contents. If the compiler is structured with explicit
phases, a more ambitious testing harness may be possible, see Section 8. For
the complete compiler it is useful to provide a test suite for diagnosing its
correctness, and perhaps also for grading the project. In any case, it is important
that students acquire techniques beyond black box testing of the completed
compiler.

Documentation

A compiler course is certainly not a writing class. A program as large as the con-
structed compiler seems to call for extensive documentation, but most courses
focus instead on writing code. Almost universally, the students are asked to
comment their code (often using something like Javadoc) and to write two pages
for each hand-in describing the structure of their code and the algorithms the
employ.

Group Work

While a small or segmented project is suitable for an individual student, the
larger projects typically allow or require project groups. The ideal size of a
group seems to be three people, which corresponds well with other programming
experiences. There a several benefits from project groups, including the direct
training in collaboration, planning, and communication. The danger is of course
that the learning outcomes may differ for the group members, in particular there
is a danger of leaving a weaker member in charge of fetching sodas.

5

Exams and Grading

The project is generally the dominating activity on a compiler course, but this
is not always reflected with a equal weight in the examinations. The final grade
is typically a weighted sum of the individual project hand-ins, a number of
midterms, and a final exam. The midterms and the final exam are of course
individual, while the project hand-ins are often made in groups. For group
projects the weight of the compiler code varies between 25% and 50% (with
40% being the median), and for individual projects it varies between 70% and
90% (with 70% being the median). In a few cases the weight of the project is
zero, which seems to provide poor alignment as discussed in Section 11. The final
exam is almost invariably a standard written test, focusing on the underlying
theory.

The compiler code is evaluated by a combination of code inspection and
functional testing. It is a huge advantage to enable automatic evaluation of test
suites, which must of course be able to handle both positive and negative test
cases, as discussed in Section 8.

Quite a few courses supplement the exam with an additional possibility
for winning awards for such feats as “Best Compiler” or “Fastest Runtime”.
Contests like these are a surprisingly effective way of spurring on the better
students. A winner’s cap or t-shirt (or merely a mention on a Web page) is
apparently ample payment for those extra 100 hours of work.

3 The dOvs Course

The Department of Computer Science at the University of Aarhus has an under-
graduate compiler course (called dOvs) in the final year of the B.Sc. program.
It has the unique advantage of being a mandatory course, meaning that it is
attended by around 80 students every year. Following an earlier run in 1997-
2001, the course was redesigned in 2005 based on the past experiences and with
explicit attention to the many design choices presented above.

4 A Case for Large Languages

As mentioned earlier, most source languages for compiler projects are smallish.
The motivation is that the students have a limited time for their project and
that a small language allows them to focus on the important concepts.

In contrast, the source language for the dOvs compiler project is huge chunk
of Java. The largest language we consider is called Joos2, and it corresponds to
Java 1.3 with the omission of package private declarations, some control struc-
tures, and various odds and ends. Conceptually, it is every bit as complicated as
the full language. The Joos2 language is the target for students going for extra
credit. The basic requirement is the Joos1 language, which further omits in-
stance and static initializers, multi-dimensional arrays, interfaces, and simplifies
local initializers and method overloading.

6

The benefits of using a large language is clearly that the students obtain
a realistic insight in to the workings of a full compiler that they have been
using for their entire previous studies. Their sense of achievement and empow-
erment clearly grows with the street credibility of the source language. Also, by
considering a full modern programming language, the students will encounter
many concepts and challenges that are absent in smaller projects, as discussed
in Section 5 and in Section 6.

The challenge of a large language is of course to make the projects succeed
in the given time frame. Clearly, this requires that the starting point is a
large skeleton compiler. Our model implementation of the Joos2 compiler is
12,207 lines of code (hand-written that is—SableCC generates a further 64,290
lines). The skeleton that is provided is 8,466 lines of code. The remaining
3,741 lines of code must then be written by the project groups (but generally
they require between 5,000 and 10,000 lines to fulfill this task). The skeleton
code includes 3,000 lines of code for defining Java bytecodes and the peephole
optimizer discussed in Section 10. This leaves around 5,000 lines of real compiler
code that the students are given for free. Clearly, the danger is that they could
miss important points by not fully understanding this code. However, it seems
impossible to complete the skeleton without having a detailed understanding of
its inner workings.

The students are provided with a complete compiler for the Joos0 language,
which is a tiny static subset of Joos1 that corresponds to many of the source
languages used for other compiler courses. For completeness, a lecture is used
on the implementation of a narrow, one-pass compiler for a subset of C that is
compiled into the IJVM architecture (in 841 lines of code).

5 Frontend, Backend, or Middle-End?

Compiler courses can roughly be divided into two categories: those that are
frontend-heavy and those that are backend-heavy (with only a few large courses
managing to be both at the same time).

The first category spends a large part of the course on formal languages, in
particular on finite automata and context-free parsing. The construction and
correctness of LALR(1) parsing tables is still a cornerstone of many courses,
sometimes consuming half the available time. Of course, LALR(1) parser gen-
erators are still the most common choice, even if many other alternatives are
available, including general parsers that can handle all unambiguous languages.
These compiler courses often double as formal languages courses, but even in
this setting LALR(1) parsing theory is probably not the most vital topic.

The second category spends a large part of the course on code generation,
register allocation, and optimization for a realistic processor architecture. In
this setting, the project source language is often a simple static subset of Java
or C that allows the frontend to be dealt with as painlessly as possible.

Wedged between the traditional frontend and backend is the middle-end

which deals with the semantic analysis, including symbol tables and type check-

7

ing, which the majority of compiler courses dispenses with in a single week.
This actually seems paradoxical, since e.g. the vast majority of the Java and
C# language specifications deal with exactly this topic. The dOvs course has
been designed to be middle-end-heavy.

For the frontend, dOvs has the advantage of following a mandatory course
on formal languages, so little time needs to be spent on the basic definitions.
The students learn how LALR(1) tables work, but not how they are constructed.
This provides a sufficient basis for understanding LALR(1) conflicts and reading
error messages from SableCC. The students are provided with a SableCC spec-
ification for the Joos1 language, but with a dozen missing features that must
then be added (an the resulting LALR(1) conflicts must be resolved).

The backend is naturally light, since our compiler generates Java bytecode
and the JVM has a simple architecture. Even so, optimization does play a major
role in the course, as discussed in Section 10.

But the majority of the course deals with the voluminous middle-end of a
Java compiler: weeding of ASTs for non-LALR(1) syntactic restrictions, build-
ing the global class library, building environments, linking identifiers to decla-
rations, resolving import declarations, checking well-formedness of the global
class hierarchy, disambiguating compound names, type checking, making im-
plicit coercions manifest, constant folding, and performing static analyses for
reachability and definite assignments. Such tasks are the main challenges of
modern compilers and, consequently, it seems reasonable to give them a pro-
portional amount of attention.

6 Learning to Love Formal Notation

The dOvs course is designed with the clear goal that the students should learn
to love formal notation. This is not a trivial task, since many students start out
with the exact opposite attitude. But it is generally the case that a tool is best
appreciated when it is desperately needed.

The Joos languages are formally defined by a combination of its syntax, the
Java Language Specification (JSL), and a list of excluded features. As mentioned
earlier, it is actually a subtle task to ensure that every Joos1 program is also
a legal Joos2 program, and that every Joos2 program is also a legal Java 1.3
program.

The JLS is a formidable document that is heavy reading for anyone, in
particular for undergraduate students. Thus, the lectures present compact for-
malized explanations of the difficult aspects of the Joos (and Java) semantics.
The lectures (and the accompanying 600 slides) use appropriate formal notation
to explain the sometimes convoluted semantics of Java. This happens at a time
when the students are highly motivated, since they are trying to implement that
semantics at the same time, and they quickly notice that the formal notation is
often a direct guide to the code that must be written.

Various formalisms are in play here. The well-formedness of a class hierarchy
is defined by sets and relations (DECLARE, INHERIT, and REPLACE) that are

8

populated through inductive rules and subjected to constraints phrased in first-
order logic. Static type checking is defined through ordinary inference rules,
with inductively defined relations as side conditions. The static analyses for
reachability and definite assignment are defined using least solutions for set
constraints. Code generation is specified as a syntax-directed translation based
on templates. Finally, peephole optimization is presented as the fixed-point
closure of a transition relation.

As an illustration why the practicality of formal notation becomes clear,
consider the rules for definite assignments. In the JSL these are defined in 474
lines of prose of the following poetic form:

The definite unassignment analysis of loop statements raises a special problem. Consider the statement
while (e) S. In order to determine whether V is definitely unassigned within some subexpression of e,
we need to determine whether V is definitely unassigned before e. One might argue, by analogy with
the rule for definite assignment, that V is definitely unassigned before e iff it is definitely unassigned
before the while statement. However, such a rule is inadequate for our purposes. If e evaluates to true,
the statement S will be executed. Later, if V is assigned by S, then in the following iteration(s) V will
have already been assigned when e is evaluated. Under the rule suggested above, it would be possible to
assign V multiple times, which is exactly what we have sought to avoid by introducing these rules. A
revised rule would be: V is definitely unassigned before e iff it is definitely unassigned before the while
statement and definitely unassigned after S. However, when we formulate the rule for S, we find: V is
definitely unassigned before S iff it is definitely unassigned after e when true. This leads to a circularity.
In effect, V is definitely unassigned before the loop condition e only if it is unassigned after the loop as
a whole! We break this vicious circle using a hypothetical analysis of the loop condition and body. For
example, if we assume that V is definitely unassigned before e (regardless of whether V really is definitely
unassigned before e), and can then prove that V was definitely unassigned after e then we know that e
does not assign V.

In the formal notation, the definite assignment analysis is phrased in 7 slides
with set constraints of the following form (that directly translates into code
using a DepthFirstAdapter visitor pattern from SableCC):

{σ x = E; S} :
B[[E]] = B[[{σ x = E; S}]]
B[[S]] = A[[E]] ∪ {x}
A[[{σ x = E; S}]] = A[[S]]

while (E)S :
B[[E]] = B[[while (E)S]]
B[[S]] = At[[E]]
A[[while (E)S]] = Af [[E]]

Thus, the students experience that the formal notation is their friend that en-
ables them to meet their deadlines. Hopefully, this will change many skeptical
attitudes.

7 Explicit Phases Through SableCC and AspectJ

As mentioned, there are countless tools for generating scanners and parsers, and
still many even if they are required to be compatible with Java. We have chosen
to use SableCC, which is of course to some degree a matter of taste, though it
does provide most modern conveniences: integrated scanner and parser, auto-
matic parse tree construction, and visitor patterns for tree traversals (in fact,
we use a souped-up version of SableCC with more powerful features for tree
navigation). However, there are more objective reasons why we feel SableCC is
uniquely suited for a compiler course.

9

SableCC allows the specification of ASTs in a separate grammar that is really
just a recursive datatype. It is then possible to specify syntax-directed trans-
lations from concrete to abstract syntax trees. Apart from being convenient,
this teaches the students about inductive translations in a practical setting.
This feature is also used to illustrate desugaring, by translating for-loops into
while-loops during parsing.

Phase slicing can be taken to an extreme length by combining the ASTs
of SableCC with simple features of AspectJ (which is the real implementation
language, though the students hardly notice this). A compiler phase needs
to perform one or more traversals of the AST but also to decorate the AST
nodes with additional information, such as symbol environments and types.
Generally this means that the class definitions for AST nodes must be extended
with phase-specific fields, which poses several problems. First, the actual AST
node classes are autogenerated by SableCC, so it is inconvenient and dangerous
manually to extend them. Second, if the phases are considered one at a time,
then it requires an awkward prescience to declare these extra AST node fields in
advance. Third, the specification of a given phase will be scattered over several
files, which is an inconvenient software architecture.

Using AspectJ, extra fields can be injected into the AST nodes using inter-
type declarations. For example, the skeleton code for the type checking phase
starts as follows:

public aspect TypeChecking extends DepthFirstAdapter {

/** The static type of the expression */
public PType PExp.type;

/** The static type of the lvalue */
public PType PLvalue.type;

/** The declaration of the field referenced in this lvalue */

public AFieldDecl AStaticFieldLvalue.field_decl;

/** The declaration of the field referenced in this lvalue */

public AFieldDecl ANonstaticFieldLvalue.field_decl;

/** The declaration of the method invoked by this expression */
public AMethodDecl AStaticInvokeExp.method_decl;

/** The declaration of the method invoked by this expression */
public AMethodDecl ANonstaticInvokeExp.method_decl;

/** The declaration of the constructor invoked by this expression */

public AConstructorDecl ANewExp.constructor_decl;

/** The declaration of the constructor invoked by this statement */

public AConstructorDecl ASuperStm.constructor_decl;

/** The declaration of the constructor invoked by this statement */
public AConstructorDecl AThisStm.constructor_decl;

...

}

Here, several autogenerated AST node classes are extended with extra fields for
information synthesized by the type checker. Using this technique, all concerns
of the type checker is collected in a single file, and the autogenerated code can

10

safely be extended.

8 Unit Testing Through Phase Mixing

Testing a compiler during development is a difficult challenge, since only a
complete compiler has a functional behavior. The students are encouraged to
program an AST pretty-printer that after each new phase is extended to also
print the newly added AST decorations. This simple technique goes a long way,
but we can do better.

The use of AspectJ means that each phase resides in a single file. The use
of SableCC with syntax-directed construction of ASTs mean that the interface
between phases is fixed. This combination means that the phases of two Joos
compilers may literally be mixed to produce a new hybrid compiler. We exploit
this property by providing a complete and correct model implementation with
which the students may build and test hybrid compilers.

Assume that a group is working on the type checker. To perform a functional
test of this phase, they may build a hybrid compiler consisting of the model
compiler with only the type checking phase substituted by their own. To check
the allround progress, they may build a hybrid compiler consisting of their own
phases up to an including the type checking phase mixed with the remaining
phases from the model compiler. The students must of course not be allowed
access to even the class files of the model compiler (since Java is vulnerable to
decompilation), so the building and testing of a model compiler is performed by
submitting phases to a Web service.

The testing of a compiler is quite extensive. In a full test the compiler is
exposed to a test suite of 1,149 Java programs that each test a tiny specific
property. This collection has been constructed over the three years this course
have run, with new test programs being added whenever another potential kind
of error is discovered. A simple positive test looks as follows:

// TYPE_CHECKING

public class J1_constructoroverloading {
public int x = 0;

public J1_constructoroverloading() {
this.x = 23;

}

public J1_constructoroverloading(int x) {
this.x = x;

}
public static int test() {
J1_constructoroverloading obj1 = new J1_constructoroverloading();

J1_constructoroverloading obj2 = new J1_constructoroverloading(100);
return obj1.x + obj2.x;

}
}

By convention, correct runs will always return the value 123. A typical negative
test looks like:

11

// JOOS1: PARSER_WEEDER,JOOS1_THIS_CALL,PARSER_EXCEPTION

// JOOS2: TYPE_CHECKING,CIRCULAR_CONSTRUCTOR_INVOCATION
public class Je_16_Circularity_4_Rhoshaped {

public Je_16_Circularity_4_Rhoshaped() {
this(1);

}

public Je_16_Circularity_4_Rhoshaped(int x) {
this(1,2);

}
public Je_16_Circularity_4_Rhoshaped(int x, int y) {

this(1);
}
public static int test() {

return 123;
}

}

It must generate the kind of error that is mentioned in the comments for re-
spectively Joos1 and Joos2.

In general a test program may produce many different status values, de-
pending on the success or failure of the compilation, the assembling, the class
loading, the runtime, and the output. A snippet of the output from the test
driver looks as follows:

The entries in the table are links that display all further details. In the first year,
the test driver ran directly on a web server which was run to the ground as it
quickly turned out that the students became addicted to using it. Subsequently
we have implemented automatic filtering so only those tests relevant to the
submitted phases are used, and the test driver now uses a farm of 17 dedicated
test servers.

Another advantage of phase mixing is that students failing to complete a
given phase may still continue the project by relying on the corresponding phase
from the model compiler.

9 Incremental Feedback

The students receive extensive feedback during the course. The online test driver
provides a continual evaluation of their code. We have a webboard staffed by
teaching assistants, where 12% of the questions receive replies within 5 minutes,
42% within 1 hour, and 94% within 12 hours. Also, each group has a 30 minute
weekly consultation with a teaching assistant. Finally, the groups must maintain
a documentation blog, where they also receive feedback.

We also monitor the students closely. All activity in the system is logged and
used for various statistics. A primary one is the activity curve, which shows how

12

hard the students are working as a function of time (measured as a weighted
sum of the logged activities). Each year has shown exactly the same pattern,
which looks as follows:

There are of course some marked spikes for each deadline, but overall the work
load has a reasonable distribution.

The project is evaluated through points that are awarded for each phase.
These are broken down into tiny individual components in the range between 0
and 2 points, which ensures a uniform evaluation. The students can see these
points on a group homepage as soon as they have been awarded. Chasing points
becomes something of an obsession.

We also maintain a visual presentation of how close the groups are to com-
pleting the next hand-in:

There is one horizontal line for each group showing the proportion between test
programs passed (green) and failed (red), sorted by success rate for effect and
anonymity. The collected pictures are also stored in 10-minute snapshots as a
fascinating movie, showing the struggle between red and green as the groups
work towards the next deadline.

The extensive logging is also useful to prevent cheating. In the few cases
we have experienced, suspicions of code similarity were easily confirmed by
observing anomalous behaviors in the log files.

10 The Peephole Contest

One hand-in deals with peephole optimization of Java bytecode. The syntax-
directed code generation often produces naive code that is ripe for optimization.

13

We have developed a domain-specific language for specifying such peephole pat-
terns, one of which may look as follows:

pattern p25 x: //comparison_in_ifcmp2

x ~ ifcmp (e0, l0)
ldc_int (i0)

goto (l1)
label (l2)

ldc_int (i1)
label (l3)
if (e1, l4)

&& i0 == 0
&& i1 != 0

&& l0 == l2
&& l1 == l3

&& e1 == eq
&& degree l2 == 1

-> 4 ifcmp (negate e0, l4)

ldc_int (i1)

The compiler then contains a peephole engine that will apply all such patterns
on the generated code until no pattern is applicable.

The students are invited to compete in creating the most effective collection
of peephole patterns, measured in the total size of the bytecode generated for a
benchmark suite. The winners receive a highly coveted t-shirt:

2007
dOvs Peephole Competition
Winner

The bar is set fairly high, as the winning group generally produces hundreds
of sophisticated patterns to secure their position. Without the competition, it
is unlikely that this extra effort could be mobilized (at the last stage of the
project).

11 Exams and Grading

The projects are evaluated on a scale between 0% and 110% (including extra
credit). The highest ever score so far is 107%. The project is weighted with 70%
in the final grade, which is large considering that the project is done in a group.
However, the principle of alignment dictates that the exam should reward the
activity which best promotes learning, and this is clearly the project work.

To ensure individual grades, the course concludes with a 75 minute multiple-
choice test (allowing partial knowledge) that covers the basic theory and details
about the project. Multiple-choice tests are unfairly viewed as being superficial,
but the questions may in fact be quite deep:

14

Consider the method invocation A.B(1,2,3). To which category can A not belong?

a A class name.

b A static field name.

c A non-static field name.

d A local name.

e A package name.

f A formal name.

Clearly, superficial knowledge is not enough to answer such questions. The mul-
tiple choice test often yields a final difference of one to two grades among group
members, and it invariably rewards those students that the teaching assistants
predict to be the best.

The students generally do well, and many receive their highest grade in their
degree program in this course:

F FX E D C B A

12 Conclusion and Acknowledgements

Compiler courses are important and have been taught for a long time. We have
identified many design choices that are available to teachers and have discussed
some of their consequences.

The dOvs course has been designed with explicit consideration of these
choices and with the goal of being novel and fun. The main characteristic
of the course is that the project is huge and complicated, forcing the students
to appreciate software engineering techniques and to grow to depend on for-
mal notation as a guide to express the semantics of the source language in the
implementation.

The course and its extensive infrastructure has been developed and imple-
mented in close collaboration with Aske Simon Christensen, Janus Dam Nielsen,
and Johnni Winther.

15

