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Abstract 

Profilers find speedups, but it cannot be assumed they 

find them all, or that the missing ones don’t matter. An 

example is given of a moderately large program, con-

taining several speedup opportunities, with a distribu-

tion of sizes, that together account for nearly all of the 

execution time. Effecting all of them results in a large 

total speedup factor, but omitting any results in far less. 

Explanation is given why some of these speedups 

would not easily be found using traditional summariz-

ing profilers, but they are found by an ancient but little-

known manual method that looks at a small number of 

samples. The statistical justification for the method is 

explained. 

1. Introduction 

Ammons, et al [Ammons] in 1997 mentioned two cen-

tral issues with profilers, simple metrics applied to stat-

ic constructs like procedures or statements, and aggres-

sive reduction of information.
1
 [Bentley] has empha-

sized the means and importance of squeezing constant 

factors in performance tuning. This paper gives an ex-

ample of a moderately complex program being aggres-

sively accelerated by de-emphasizing metrics and by 

maximizing use of available information. 

In this example, reasonably well-written code, with 

good “big-O” performance, can contain a great deal of 

room for constant factor speedup, in ways that do not 

much hurt maintainability. They exist only because it 

was difficult to foresee, when the code was written, 

what all the appropriate areas for speedup would be. 

While this paper shows some useful techniques to get 

speed, that is not the point. The real issue is finding the 

speedups. If they are fixed before they are found, it is a 

case of “ready-fire-aim”. 

There are different kinds of performance profilers. Ra-

ther than survey them, we suggest the best are the 

stack-samplers, with instruction-level granularity, on 

wall-clock time[Zoom]. Wall-clock time is important 

because it cannot be assumed, in large software, that the 

programmer knows about and approves of all the volun-

tary blocking done by a process. In highly multi-

                                                 
1 “Most profiling systems suffer from two major deficiencies: first, 

they only apportion simple metrics, such as execution frequency or 
elapsed time to static, syntactic units, such as procedures or state-

ments; second, they aggressively reduce the volume of information 

collected and reported, although aggregation can hide striking differ-
ences in program behavior.” 

threaded systems, this still applies to the threads of in-

terest. 

The problem with even the best profilers is the summa-

rizing back-end. Even though each sample contains full 

information about why time is spent, that information 

requires an intelligent agent to understand it, in the con-

text of what the code is trying to do. Simply summariz-

ing it, even with call graphs, hot paths, etc., loses much 

of that information. The result is unrecognized opportu-

nities for speedup. 

Every speedup opportunity has a size, as a fraction of 

wall-clock running time, and that is roughly the proba-

bility it will be seen on any given sample. When it is 

seen on more than one sample, its size is very roughly 

known, as explained below, but the identity of the 

speedup is precisely known. (Infinite or long-running 

loops only need one sample.) 

1.1. Descriptions of Samples 

If any statement is on the stack for fraction X of the 

time (even with recursion), it is responsible for that 

time fraction, regardless of the number of times it is 

executed. If the statement can be made to take no time 

(such as by removing it), total execution time will 

shorten by fraction X. The same goes for any descrip-

tion one cares to make, such as “function F is on the 

stack”, or “function F is calling function G from line 

L”, or “function F is being called with the same argu-

ments as it has been called with previously”, or “the 

program is currently in the process of allocating 

memory in order to grow a particular data structure”, or 

“the program is currently reading a file for a purpose 

that, ten levels up the call stack, could easily be avoid-

ed”. The latter descriptions can only be formulated by a 

human programmer examining a stack sample. 

1.2. Objections 

An objection is that a human cannot examine enough 

samples. However, speedups of large size do not need 

many samples to be seen twice, and when they are ef-

fected, the size of smaller ones is amplified by the 

speedup factor. This is how a series of speedups can be 

found, as explained below. 

Another objection is that examination of a small num-

ber of samples will identify disappointingly small 

speedups (a so-called “false positive” in statistical lan-

guage). However, the probability is small, as explained 



below, and is always accompanied by an equally likely 

performance jackpot. 

Another objection is that competition from other pro-

cesses will skew the results. That has the same effect as 

running on a slower CPU, or under a simulator; it does 

not affect time fraction seriously enough to be an issue. 

2. Statistics of Sampling 

It is not necessary to know the statistics of sampling to 

do profiling. It is included here only to explain why a 

small number of samples is sufficient for finding rea-

sonable-size speedups. 

 

 

 

 

 

 

 

 

 

Figure 1. Distribution of X, given s/n. 

Figure 1 shows the distribution of X given that s out of 

n samples exhibit a common description. Technically 

we say X ~ Beta(s+1, n-s+1)[Lee, Evans]. The shaded 

area is for s/n = 2/5, and the darker areas show the 

probability of getting a small speedup, and a large 

speedup. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Distribution of Y, given s/n. 

Speedup factor Y is 1/(1-X)[Amdahl], and its distribu-

tion is Y ~ BetaPrime(s+1, n-s+1) + 1. It is shown in 

Figure 2. 

Both of these probability distributions would show nar-

rower peaks if n were larger, thus reducing the proba-

bility of false positives and small speedup. That’s what 

summarizing profilers do. The price paid for that preci-

sion is less information about what the speedup actually 

is, thus less chance of finding it and getting any im-

provement. Such a failure to find a speedup is a “false 

negative”. It is much more costly than a false positive, 

as shown below. 

2.1. The Cost of False Negatives 

It cannot be assumed a program contains only one pos-

sible speedup. Figure 3 shows a hypothetical program 

as an illustration. It originally takes 100 seconds. It con-

tains six possible speedups, A through F, in a range of 

sizes. If all six speedups are effected, the overall 

speedup factor is 100/11.8 = 8.5. If one of them hap-

pens to be omitted, such as D, then the overall speedup 

factor is 100/(11.8+10.3) = 4.5. The ratio between 

speedups of 4.5 and 8.5 is the price paid for omitting D. 

2.2. Magnification Effect 

Consider speedup F. It is only 5%, so it is small, and 

would take on the order of 40 samples to see it twice. 

However, speedup A takes 30% of time, and the aver-

age number of samples needed to see it twice is 2/0.3 = 

6.67 samples (negative binomial distribution). So 10 or 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Hypothetical multiple speedups. 

20 samples locate it with ease. Fixing it reduces execu-

tion time to 70 seconds. Now B is 30%, not 21%, be-

cause 21/70 = 0.3. (This reduction of the denominator 

can be called a magnification effect.) This means B is 



easier to find on the second iteration of the technique. 

When all of A through E have been found and effected, 

F is no longer 5%, it is 30%, so it is easy to find. 

3. The Example – Initial Time: 2700 usec 

The purpose of this example is to show that there are 

speedups in real software that profilers would have 

trouble finding, it at all, that are found by the manual 

technique. 

The example[Dunlavey] is a discrete simulation of a 

real program for sequencing tasks through an automat-

ed factory. It is about 800 lines of C++. It processes a 

series of work units called “jobs”, and the primary 

measure of performance is the time per job, which ini-

tially was 2700 microseconds. Timing figures were 

gotten by running 10
4
 and 10

5
 jobs, and counting sec-

onds, which is why the overall times have only two 

digits precision. This amount of time gave ample op-

portunity to take samples. 

In the following stack samples, the content of every line 

is not shown, but attention is drawn to certain source 

code by including it and shading it. 

3.1. First Iteration – Save 900 usec 

Five stack samples were taken. Here are two of them: 

main() Line 317 
doit() Line 296 
CJobReq::Handler() Line 103 
  CBop* pBop = new CBop; 
  pJob->bops.push_back(pBop); 
std::vector<CBop *,std 
    ::allocator<CBop *>> 
    ::push_back() Line 823 
std::vector<CBop *,std 
    ::allocator<CBop *>> 
    ::insert() Line 878 
 
main() Line 317 
doit() Line 296 
COpReq::Handler() Line 131 
  CTask* pTask = new CTask(i, (i % 2)); 
  pOp->tasks.push_back(pTask); 
std::vector<CTask *,std 
    ::allocator<CTask *>> 
    ::push_back() Line 823 
std::vector<CTask *,std 
    ::allocator<CTask *>> 
    ::insert() Line 878 
 

Difficulty with profiling (DWP): If these five samples 

were typical of a large number, they would tell the 

summarizing profiler the insert function of the alloca-

tor class of the std::vector class was taking a lot of 

time. (That is of little use to the programmer, because 

the programmer cannot alter those functions). It shows 

that functions vector<CBop*>::push_back, and vec-

tor<CTask*>::push_back are taking time. They are not 

aggregated when summarized, due to templating. Simi-

larly the source code lines 103 and 131 are not aggre-

gated because they are different lines. 

The human programmer can see that roughly 2/5 of 

time is spent in push_back, regardless of class. This 

suggests a speedup opportunity of about 40%. If the 

program runs for 60 seconds, it is spending around half 

of that time growing vectors for the purpose of pushing 

things on their backs. Surely there is a better way to do 

that. 

There are different ways this can be remedied, all more 

or less effective. This paper is about how to find 

speedup opportunities, not about how to effect them. In 

this case, since it was done in Visual C++ using Mi-

crosoft Foundation Classes (MFC), the classes derived 

from std::vector were switched to CTypedPtrArray, 

hoping it would be more efficient. It was, saving 33%, 

giving an overall speedup factor of 1.5. This saves 900 

microseconds, bringing the total down to 1800. 

3.1. Second Iteration – Save 300 usec 

On the second iteration, ten samples were taken. What 

stands out to the human programmer is that four of 

them are in operator[](), the overloaded array indexing 

operator. (This was a debug build. It is true that if it had 

been a release build, this operator function would not 

have been used. However, the paper is about how to 

find speedups, not how to prevent them. A problem 

with release builds is that they are hard to debug, so 

let’s just say that we effectively found and roughly 

quantified a problem that didn’t really have to be there.) 

DWP: The question is, would a profiler have found this 

problem? First of all, if it only summarized at the func-

tion level, it would have shown that the operator[]() 

function of the CTypedPtrArray class had about 40% 

inclusive time. That does not point to the lines from 

which the costly calls came. If the profiler summarizes 

at the level of lines of code, those lines do not aggregate 

much time because they are in at least four places scat-

tered over the code. 

main() line 318 
doit() line 297 
CMhAck::Handler() line 165 
TcProcess() line 246 
  COperation* pOp = oplist[i]; 
CTypedPtrArray<CPtrArray,COperation *> 
  ::operator[]() line 1555 
 
main() line 318 
doit() line 297 
COpAck::Handler() line 145 
SchProcess() line 212 
  pJob = joblist[i]; 
CTypedPtrArray<CPtrArray,CJob *> 
  ::operator[]() line 1555 
 
main() line 318 



doit() line 297 
CMhAck::Handler() line 165 
TcProcess() line 249 
  pTask = pOp->tasks[pOp->iCurTask]; 
CTypedPtrArray<CPtrArray,CTask *> 
  ::operator[]() line 1555 
 
main() line 318 
doit() line 297 
CTskAck::Handler() line 193 
TcProcess() line 259 
COperation:: 
  `scalar deleting destructor'() 
COperation::~COperation() line 57 
  ~COperation(){ 
    for (int i = tasks.GetSize(); 
         --i>=0;) 
    { 
      CTask* p = tasks[i]; 
      tasks[i] = NULL; 
      delete p; 
    } 
  } 
CTypedPtrArray<CPtrArray,CTask *> 
  ::operator[]() line 1555 
 

At any rate, the human programmer can easily see that 

40% of the time is spent in calling the vector indexing 

function, and that a simple fix is to switch to direct in-

dexing. This was done, saving 300 microseconds or 

17%, bringing the total down to 1500, with a speedup 

factor of 1.2. It was not a problem that the percent was 

wrong, because the speedup was found and effected. 

3.1. Third and Fourth Iterations – Save 200 and 860 usec 

Ten samples were taken. Of them, six were noted. 

Two of them were doing new: 

main() line 367 
doit() line 346 
COpReq::Handler() line 139 
  COperation* pOp = 
    new COperation(iNextOp++, jobid); 
operator new() line 65 
operator new() line 373 
 
main() line 367 
doit() line 346 
CMhAck::Handler() line 188 
TcProcess() line 320 
  else if (pTask->type == 1){ 
    transactions.Add( 
      new CTskReq(pOp->id)); 
  } 
operator new() line 65 
operator new() line 373 
 
Two of them were doing Add: 
 
main() line 367 
doit() line 346 
COpReq::Handler() line 146 
TcProcess() line 319 
    transactions.Add( 
      new CMhReq(pOp->id)); 
CTypedPtrArray<CPtrArray,CTran *> 
  ::Add() line 1539 
CPtrArray::Add() line 172 

CPtrArray::SetAtGrow() line 183 
 
main() line 367 
doit() line 346 
CTskReq::Handler() line 233 
    transactions.Add( 
      new CTskAck(tskid)); 
CTypedPtrArray<CPtrArray,CTran *> 
  ::Add() line 1539 
CPtrArray::Add() line 172 
CPtrArray::SetAtGrow() line 183 
 
Two of them were running destructors: 
 
main() line 367 
doit() line 346 
CTskAck::Handler() line 225 
TcProcess() line 304 
  // delete operation from oplist 
  oplist.RemoveAt(i); --i; 
  delete pOp; 
COperation:: 
  `scalar deleting destructor'() 
COperation::~COperation() line 69 
CTypedPtrArray<CPtrArray,CTask *> 
  ::~CTypedPtrArray<CptrArray 
      ,CTask *>() 
CPtrArray::~CPtrArray() line 47 
operator delete() line 351 
 
main() line 367 
doit() line 346 
CTskAck::Handler() line 225 
TcProcess() line 304 
    oplist.RemoveAt(i); --i; 
    delete pOp; 
COperation 
  ::`scalar deleting destructor'() 
COperation::~COperation() line 67 
operator delete() line 351 

 

Two changes were done. The first change was, since 

objects were always appended to vectors, and removed 

from the front, the vectors could be replaced by linked 

lists. This was done, saving 200 microseconds or 13%, 

bringing the total down to 1300, for a speedup factor of 

1.15. 

There is a key point here. This change makes irrelevant 

the changes done in the first two iterations. It only 

works if the programmer is persistent about changing 

things, regardless of prior investment. If she is “at-

tached” to the prior code, the whole process stalls. 

The second change was to recycle used objects in free 

lists, so as to reduce memory allocation and dealloca-

tion. This saved 860 microseconds or 66%, bringing the 

total down to 440, for a speedup factor of 2.95. As can 

be said of every speedup after the first, its speedup fac-

tor depends on prior speedups having been effected. 

DWP: Profilers that summarize by line of code would 

not be able to aggregate the similarities between the 

samples, because they occur in multiple locations and 

call multiple functions. 



3.1. Fifth Iteration – Save 270 usec 

Five samples were taken. Of them, three were noted. 

main() line 367 
doit() line 530 
CTran::Handler() line 277 
CTran::HandleOpAck() line 366 
SchProcess() line 418 
  NTH(pTask, pOp->tasks, pOp->iCurTask); 
 
main() line 367 
doit() line 530 
CTran::Handler() line 279 
CTran::HandleMhAck() line 387 
TcProcess() line 468 
  NTH(pTask, pOp->tasks, pOp->iCurTask); 
 
main() line 367 
doit() line 530 
CTran::Handler() line 276 
CTran::HandleOpReq() line 356 
TcProcess() line 468 
  NTH(pTask, pOp->tasks, pOp->iCurTask); 
 

These three samples were all in the NTH macro, a mac-

ro that had been added as part of the conversion to 

linked lists. It performs the indexing operation on a 

linked list. 

DWP: A profiler that summarizes at the level of lines 

of code would have aggregated two of these, but not the 

third. The similarity is obvious to a human who looks at 

the code. 

The solution to this is, since the indexes into the lists 

were simply stepped along sequentially, to use pointers 

to point directly into the lists, rather than integer index-

es. This saved 270 microseconds or 62%, bringing the 

total down to 170, for a speedup factor of 2.6. 

3.1. Sixth Iteration – Save 166 usec 

Four samples were taken. All four looked like the fol-

lowing, meaning they accounted for a fraction of time 

close to 100%: 

main() line 367 
doit() line 346 
CJobAck::Handler() line 126 
  cout<<"Ack Job "<<jobid<<endl; 
std::basic_ostream<char,std 
  ::char_traits<char>> 
  ::operator<<() line 115 
std::num_put<char,std 
  ::ostreambuf_iterator<char,std 
  ::char_traits<char>>> 
  ::put() line 444 
 
... five more layers ... 
 
std::basic_filebuf<char,std 
  ::char_traits<char>> 
  ::overflow() line 108 
std::_Fputc() line 42 

 

DWP: This is a typical stack sample during I/O. Profil-

ers that sample on CPU time instead of wall-clock time 

suspend sampling during I/O, so are blind to it. Only if 

they sample on wall-clock time, and summarize inclu-

sive time at the level of lines of code, would they high-

light the responsible line. 

The human examining the samples is led directly to that 

line. Furthermore, the stack lines above that line give 

the reason why the I/O is being done, so she can decide 

if it is truly necessary. 

Whether the I/O was necessary depends on the situa-

tion. (I have certainly seen cases where it was not.) Re-

gardless, the point is that it was found, and found to be 

significant, so the choice could be made. In this case, it 

was decided that the I/O was not necessary, so it was 

commented out. This removed 166 microseconds or 

97.8% of the time, bringing the total down to 3.7, for a 

speedup of 45.9. 

4. Conclusions 

The final execution time, of 3.7 microseconds per job, 

is 730 times faster than the original. 

It is fair to say that the initial performance would have 

been much better if a release build had been used, and if 

the I/O had been commented out at the beginning. In 

that case the initial time would have been 2700 – 900 – 

300 – 166 = 1334 microseconds, basically twice as fast 

as the original (in which case the speedup would have 

been only 365 times). We are still left with the task of 

finding the remaining speedups, the ones taking 200, 

860, and 270 microseconds, bringing the time down to 

3.7. 

References 
Amdahl, G. Amdahl’s Law, 

http://en.wikipedia.org/wiki/Amdahl’s_law. 

Ammons, G., Ball, T, Larus, J., Exploiting hardware performance 
counters with flow and context sensitive profiling. ACM SIG-
PLAN PLDI, June 1997 

Bentley, J., Writing Efficient Code, Carnegie Mellon University, 
1981. 

Dunlavey, M. Random Pause Demo, 
http://sourceforge.net/projects/randompausedemo. 

Dunlavey, M. Building Better Applications: a Theory of Efficient 
Software Development, New York : International Thomson Pub-
lishing, 1994, ISBN 0-442-01740-5. 

Dunlavey, M. Performance tuning with instruction-level cost derived 
from call-stack sampling, ACM SIGPLAN Notices, August 
2007, Vol. 42(8), pp. 4-8. 

Evans, M., Hastings, N., Peacock, B. Statistical Distributions, 2nd 
Edition, New York : Wiley, 1993, ISBN 0-471-55951-2. 

Lee, P. Bayesian Statistics, an Introduction, 2nd Edition, London : 
Arnold, 1997, ISBN 0-340-67785-6. 

Liang, S, Visnawathan, D, Comprehensive Profiling Support in the 
Java Virtual Machine, USENIX COOTS ’99, May 1999. 

http://en.wikipedia.org/wiki/Amdahl's_law


Zoom, Rotate Right, http://www.rotateright.com. 

 


