
Multiplicative Speedup of a Moderate-Size Program in Multiple Stages

Michael R. Dunlavey, Certara/Pharsight Corp.

Abstract

Profilers find speedups, but it cannot be assumed they

find them all, or that the missing ones don’t matter. An

example is given of a moderately large program, con-

taining several speedup opportunities, with a distribu-

tion of sizes, that together account for nearly all of the

execution time. Effecting all of them results in a large

total speedup factor, but omitting any results in far less.

Explanation is given why some of these speedups

would not easily be found using traditional summariz-

ing profilers, but they are found by an ancient but little-

known manual method that looks at a small number of

samples. The statistical justification for the method is

explained.

1. Introduction

Ammons, et al [Ammons] in 1997 mentioned two cen-

tral issues with profilers, simple metrics applied to stat-

ic constructs like procedures or statements, and aggres-

sive reduction of information.
1
 [Bentley] has empha-

sized the means and importance of squeezing constant

factors in performance tuning. This paper gives an ex-

ample of a moderately complex program being aggres-

sively accelerated by de-emphasizing metrics and by

maximizing use of available information.

In this example, reasonably well-written code, with

good “big-O” performance, can contain a great deal of

room for constant factor speedup, in ways that do not

much hurt maintainability. They exist only because it

was difficult to foresee, when the code was written,

what all the appropriate areas for speedup would be.

While this paper shows some useful techniques to get

speed, that is not the point. The real issue is finding the

speedups. If they are fixed before they are found, it is a

case of “ready-fire-aim”.

There are different kinds of performance profilers. Ra-

ther than survey them, we suggest the best are the

stack-samplers, with instruction-level granularity, on

wall-clock time[Zoom]. Wall-clock time is important

because it cannot be assumed, in large software, that the

programmer knows about and approves of all the volun-

tary blocking done by a process. In highly multi-

1 “Most profiling systems suffer from two major deficiencies: first,

they only apportion simple metrics, such as execution frequency or
elapsed time to static, syntactic units, such as procedures or state-

ments; second, they aggressively reduce the volume of information

collected and reported, although aggregation can hide striking differ-
ences in program behavior.”

threaded systems, this still applies to the threads of in-

terest.

The problem with even the best profilers is the summa-

rizing back-end. Even though each sample contains full

information about why time is spent, that information

requires an intelligent agent to understand it, in the con-

text of what the code is trying to do. Simply summariz-

ing it, even with call graphs, hot paths, etc., loses much

of that information. The result is unrecognized opportu-

nities for speedup.

Every speedup opportunity has a size, as a fraction of

wall-clock running time, and that is roughly the proba-

bility it will be seen on any given sample. When it is

seen on more than one sample, its size is very roughly

known, as explained below, but the identity of the

speedup is precisely known. (Infinite or long-running

loops only need one sample.)

1.1. Descriptions of Samples

If any statement is on the stack for fraction X of the

time (even with recursion), it is responsible for that

time fraction, regardless of the number of times it is

executed. If the statement can be made to take no time

(such as by removing it), total execution time will

shorten by fraction X. The same goes for any descrip-

tion one cares to make, such as “function F is on the

stack”, or “function F is calling function G from line

L”, or “function F is being called with the same argu-

ments as it has been called with previously”, or “the

program is currently in the process of allocating

memory in order to grow a particular data structure”, or

“the program is currently reading a file for a purpose

that, ten levels up the call stack, could easily be avoid-

ed”. The latter descriptions can only be formulated by a

human programmer examining a stack sample.

1.2. Objections

An objection is that a human cannot examine enough

samples. However, speedups of large size do not need

many samples to be seen twice, and when they are ef-

fected, the size of smaller ones is amplified by the

speedup factor. This is how a series of speedups can be

found, as explained below.

Another objection is that examination of a small num-

ber of samples will identify disappointingly small

speedups (a so-called “false positive” in statistical lan-

guage). However, the probability is small, as explained

below, and is always accompanied by an equally likely

performance jackpot.

Another objection is that competition from other pro-

cesses will skew the results. That has the same effect as

running on a slower CPU, or under a simulator; it does

not affect time fraction seriously enough to be an issue.

2. Statistics of Sampling

It is not necessary to know the statistics of sampling to

do profiling. It is included here only to explain why a

small number of samples is sufficient for finding rea-

sonable-size speedups.

Figure 1. Distribution of X, given s/n.

Figure 1 shows the distribution of X given that s out of

n samples exhibit a common description. Technically

we say X ~ Beta(s+1, n-s+1)[Lee, Evans]. The shaded

area is for s/n = 2/5, and the darker areas show the

probability of getting a small speedup, and a large

speedup.

Figure 2. Distribution of Y, given s/n.

Speedup factor Y is 1/(1-X)[Amdahl], and its distribu-

tion is Y ~ BetaPrime(s+1, n-s+1) + 1. It is shown in

Figure 2.

Both of these probability distributions would show nar-

rower peaks if n were larger, thus reducing the proba-

bility of false positives and small speedup. That’s what

summarizing profilers do. The price paid for that preci-

sion is less information about what the speedup actually

is, thus less chance of finding it and getting any im-

provement. Such a failure to find a speedup is a “false

negative”. It is much more costly than a false positive,

as shown below.

2.1. The Cost of False Negatives

It cannot be assumed a program contains only one pos-

sible speedup. Figure 3 shows a hypothetical program

as an illustration. It originally takes 100 seconds. It con-

tains six possible speedups, A through F, in a range of

sizes. If all six speedups are effected, the overall

speedup factor is 100/11.8 = 8.5. If one of them hap-

pens to be omitted, such as D, then the overall speedup

factor is 100/(11.8+10.3) = 4.5. The ratio between

speedups of 4.5 and 8.5 is the price paid for omitting D.

2.2. Magnification Effect

Consider speedup F. It is only 5%, so it is small, and

would take on the order of 40 samples to see it twice.

However, speedup A takes 30% of time, and the aver-

age number of samples needed to see it twice is 2/0.3 =

6.67 samples (negative binomial distribution). So 10 or

Figure 3: Hypothetical multiple speedups.

20 samples locate it with ease. Fixing it reduces execu-

tion time to 70 seconds. Now B is 30%, not 21%, be-

cause 21/70 = 0.3. (This reduction of the denominator

can be called a magnification effect.) This means B is

easier to find on the second iteration of the technique.

When all of A through E have been found and effected,

F is no longer 5%, it is 30%, so it is easy to find.

3. The Example – Initial Time: 2700 usec

The purpose of this example is to show that there are

speedups in real software that profilers would have

trouble finding, it at all, that are found by the manual

technique.

The example[Dunlavey] is a discrete simulation of a

real program for sequencing tasks through an automat-

ed factory. It is about 800 lines of C++. It processes a

series of work units called “jobs”, and the primary

measure of performance is the time per job, which ini-

tially was 2700 microseconds. Timing figures were

gotten by running 10
4
 and 10

5
 jobs, and counting sec-

onds, which is why the overall times have only two

digits precision. This amount of time gave ample op-

portunity to take samples.

In the following stack samples, the content of every line

is not shown, but attention is drawn to certain source

code by including it and shading it.

3.1. First Iteration – Save 900 usec

Five stack samples were taken. Here are two of them:

main() Line 317
doit() Line 296
CJobReq::Handler() Line 103
 CBop* pBop = new CBop;
 pJob->bops.push_back(pBop);
std::vector<CBop *,std
 ::allocator<CBop *>>
 ::push_back() Line 823
std::vector<CBop *,std
 ::allocator<CBop *>>
 ::insert() Line 878

main() Line 317
doit() Line 296
COpReq::Handler() Line 131
 CTask* pTask = new CTask(i, (i % 2));
 pOp->tasks.push_back(pTask);
std::vector<CTask *,std
 ::allocator<CTask *>>
 ::push_back() Line 823
std::vector<CTask *,std
 ::allocator<CTask *>>
 ::insert() Line 878

Difficulty with profiling (DWP): If these five samples

were typical of a large number, they would tell the

summarizing profiler the insert function of the alloca-

tor class of the std::vector class was taking a lot of

time. (That is of little use to the programmer, because

the programmer cannot alter those functions). It shows

that functions vector<CBop*>::push_back, and vec-

tor<CTask*>::push_back are taking time. They are not

aggregated when summarized, due to templating. Simi-

larly the source code lines 103 and 131 are not aggre-

gated because they are different lines.

The human programmer can see that roughly 2/5 of

time is spent in push_back, regardless of class. This

suggests a speedup opportunity of about 40%. If the

program runs for 60 seconds, it is spending around half

of that time growing vectors for the purpose of pushing

things on their backs. Surely there is a better way to do

that.

There are different ways this can be remedied, all more

or less effective. This paper is about how to find

speedup opportunities, not about how to effect them. In

this case, since it was done in Visual C++ using Mi-

crosoft Foundation Classes (MFC), the classes derived

from std::vector were switched to CTypedPtrArray,

hoping it would be more efficient. It was, saving 33%,

giving an overall speedup factor of 1.5. This saves 900

microseconds, bringing the total down to 1800.

3.1. Second Iteration – Save 300 usec

On the second iteration, ten samples were taken. What

stands out to the human programmer is that four of

them are in operator[](), the overloaded array indexing

operator. (This was a debug build. It is true that if it had

been a release build, this operator function would not

have been used. However, the paper is about how to

find speedups, not how to prevent them. A problem

with release builds is that they are hard to debug, so

let’s just say that we effectively found and roughly

quantified a problem that didn’t really have to be there.)

DWP: The question is, would a profiler have found this

problem? First of all, if it only summarized at the func-

tion level, it would have shown that the operator[]()

function of the CTypedPtrArray class had about 40%

inclusive time. That does not point to the lines from

which the costly calls came. If the profiler summarizes

at the level of lines of code, those lines do not aggregate

much time because they are in at least four places scat-

tered over the code.

main() line 318
doit() line 297
CMhAck::Handler() line 165
TcProcess() line 246
 COperation* pOp = oplist[i];
CTypedPtrArray<CPtrArray,COperation *>
 ::operator[]() line 1555

main() line 318
doit() line 297
COpAck::Handler() line 145
SchProcess() line 212
 pJob = joblist[i];
CTypedPtrArray<CPtrArray,CJob *>
 ::operator[]() line 1555

main() line 318

doit() line 297
CMhAck::Handler() line 165
TcProcess() line 249
 pTask = pOp->tasks[pOp->iCurTask];
CTypedPtrArray<CPtrArray,CTask *>
 ::operator[]() line 1555

main() line 318
doit() line 297
CTskAck::Handler() line 193
TcProcess() line 259
COperation::
 `scalar deleting destructor'()
COperation::~COperation() line 57
 ~COperation(){
 for (int i = tasks.GetSize();
 --i>=0;)
 {
 CTask* p = tasks[i];
 tasks[i] = NULL;
 delete p;
 }
 }
CTypedPtrArray<CPtrArray,CTask *>
 ::operator[]() line 1555

At any rate, the human programmer can easily see that

40% of the time is spent in calling the vector indexing

function, and that a simple fix is to switch to direct in-

dexing. This was done, saving 300 microseconds or

17%, bringing the total down to 1500, with a speedup

factor of 1.2. It was not a problem that the percent was

wrong, because the speedup was found and effected.

3.1. Third and Fourth Iterations – Save 200 and 860 usec

Ten samples were taken. Of them, six were noted.

Two of them were doing new:

main() line 367
doit() line 346
COpReq::Handler() line 139
 COperation* pOp =
 new COperation(iNextOp++, jobid);
operator new() line 65
operator new() line 373

main() line 367
doit() line 346
CMhAck::Handler() line 188
TcProcess() line 320
 else if (pTask->type == 1){
 transactions.Add(
 new CTskReq(pOp->id));
 }
operator new() line 65
operator new() line 373

Two of them were doing Add:

main() line 367
doit() line 346
COpReq::Handler() line 146
TcProcess() line 319
 transactions.Add(
 new CMhReq(pOp->id));
CTypedPtrArray<CPtrArray,CTran *>
 ::Add() line 1539
CPtrArray::Add() line 172

CPtrArray::SetAtGrow() line 183

main() line 367
doit() line 346
CTskReq::Handler() line 233
 transactions.Add(
 new CTskAck(tskid));
CTypedPtrArray<CPtrArray,CTran *>
 ::Add() line 1539
CPtrArray::Add() line 172
CPtrArray::SetAtGrow() line 183

Two of them were running destructors:

main() line 367
doit() line 346
CTskAck::Handler() line 225
TcProcess() line 304
 // delete operation from oplist
 oplist.RemoveAt(i); --i;
 delete pOp;
COperation::
 `scalar deleting destructor'()
COperation::~COperation() line 69
CTypedPtrArray<CPtrArray,CTask *>
 ::~CTypedPtrArray<CptrArray
 ,CTask *>()
CPtrArray::~CPtrArray() line 47
operator delete() line 351

main() line 367
doit() line 346
CTskAck::Handler() line 225
TcProcess() line 304
 oplist.RemoveAt(i); --i;
 delete pOp;
COperation
 ::`scalar deleting destructor'()
COperation::~COperation() line 67
operator delete() line 351

Two changes were done. The first change was, since

objects were always appended to vectors, and removed

from the front, the vectors could be replaced by linked

lists. This was done, saving 200 microseconds or 13%,

bringing the total down to 1300, for a speedup factor of

1.15.

There is a key point here. This change makes irrelevant

the changes done in the first two iterations. It only

works if the programmer is persistent about changing

things, regardless of prior investment. If she is “at-

tached” to the prior code, the whole process stalls.

The second change was to recycle used objects in free

lists, so as to reduce memory allocation and dealloca-

tion. This saved 860 microseconds or 66%, bringing the

total down to 440, for a speedup factor of 2.95. As can

be said of every speedup after the first, its speedup fac-

tor depends on prior speedups having been effected.

DWP: Profilers that summarize by line of code would

not be able to aggregate the similarities between the

samples, because they occur in multiple locations and

call multiple functions.

3.1. Fifth Iteration – Save 270 usec

Five samples were taken. Of them, three were noted.

main() line 367
doit() line 530
CTran::Handler() line 277
CTran::HandleOpAck() line 366
SchProcess() line 418
 NTH(pTask, pOp->tasks, pOp->iCurTask);

main() line 367
doit() line 530
CTran::Handler() line 279
CTran::HandleMhAck() line 387
TcProcess() line 468
 NTH(pTask, pOp->tasks, pOp->iCurTask);

main() line 367
doit() line 530
CTran::Handler() line 276
CTran::HandleOpReq() line 356
TcProcess() line 468
 NTH(pTask, pOp->tasks, pOp->iCurTask);

These three samples were all in the NTH macro, a mac-

ro that had been added as part of the conversion to

linked lists. It performs the indexing operation on a

linked list.

DWP: A profiler that summarizes at the level of lines

of code would have aggregated two of these, but not the

third. The similarity is obvious to a human who looks at

the code.

The solution to this is, since the indexes into the lists

were simply stepped along sequentially, to use pointers

to point directly into the lists, rather than integer index-

es. This saved 270 microseconds or 62%, bringing the

total down to 170, for a speedup factor of 2.6.

3.1. Sixth Iteration – Save 166 usec

Four samples were taken. All four looked like the fol-

lowing, meaning they accounted for a fraction of time

close to 100%:

main() line 367
doit() line 346
CJobAck::Handler() line 126
 cout<<"Ack Job "<<jobid<<endl;
std::basic_ostream<char,std
 ::char_traits<char>>
 ::operator<<() line 115
std::num_put<char,std
 ::ostreambuf_iterator<char,std
 ::char_traits<char>>>
 ::put() line 444

... five more layers ...

std::basic_filebuf<char,std
 ::char_traits<char>>
 ::overflow() line 108
std::_Fputc() line 42

DWP: This is a typical stack sample during I/O. Profil-

ers that sample on CPU time instead of wall-clock time

suspend sampling during I/O, so are blind to it. Only if

they sample on wall-clock time, and summarize inclu-

sive time at the level of lines of code, would they high-

light the responsible line.

The human examining the samples is led directly to that

line. Furthermore, the stack lines above that line give

the reason why the I/O is being done, so she can decide

if it is truly necessary.

Whether the I/O was necessary depends on the situa-

tion. (I have certainly seen cases where it was not.) Re-

gardless, the point is that it was found, and found to be

significant, so the choice could be made. In this case, it

was decided that the I/O was not necessary, so it was

commented out. This removed 166 microseconds or

97.8% of the time, bringing the total down to 3.7, for a

speedup of 45.9.

4. Conclusions

The final execution time, of 3.7 microseconds per job,

is 730 times faster than the original.

It is fair to say that the initial performance would have

been much better if a release build had been used, and if

the I/O had been commented out at the beginning. In

that case the initial time would have been 2700 – 900 –

300 – 166 = 1334 microseconds, basically twice as fast

as the original (in which case the speedup would have

been only 365 times). We are still left with the task of

finding the remaining speedups, the ones taking 200,

860, and 270 microseconds, bringing the time down to

3.7.

References
Amdahl, G. Amdahl’s Law,

http://en.wikipedia.org/wiki/Amdahl’s_law.

Ammons, G., Ball, T, Larus, J., Exploiting hardware performance
counters with flow and context sensitive profiling. ACM SIG-
PLAN PLDI, June 1997

Bentley, J., Writing Efficient Code, Carnegie Mellon University,
1981.

Dunlavey, M. Random Pause Demo,
http://sourceforge.net/projects/randompausedemo.

Dunlavey, M. Building Better Applications: a Theory of Efficient
Software Development, New York : International Thomson Pub-
lishing, 1994, ISBN 0-442-01740-5.

Dunlavey, M. Performance tuning with instruction-level cost derived
from call-stack sampling, ACM SIGPLAN Notices, August
2007, Vol. 42(8), pp. 4-8.

Evans, M., Hastings, N., Peacock, B. Statistical Distributions, 2nd
Edition, New York : Wiley, 1993, ISBN 0-471-55951-2.

Lee, P. Bayesian Statistics, an Introduction, 2nd Edition, London :
Arnold, 1997, ISBN 0-340-67785-6.

Liang, S, Visnawathan, D, Comprehensive Profiling Support in the
Java Virtual Machine, USENIX COOTS ’99, May 1999.

http://en.wikipedia.org/wiki/Amdahl's_law

Zoom, Rotate Right, http://www.rotateright.com.

