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Abstract
The graph-coloring metaphor leads to elegant algorithms for regis-
ter allocation that have been shown to be quite effective for regular
architectures with plenty of registers. Published attempts to make
these algorithms applicable to architectures that are irregular in
their use of registers have yielded several incompatible extensions
that handle only a small subset of the irregularities seen in modern
architectures. We propose an approach that is able to extend graph-
coloring allocation to a broad class of irregular architectures, and
we show that we can do this without destroying the simplicity of
the basic algorithm. We have implemented our approach in the
Machine-SUIF compiler, and we discuss our initial experiences
with it. In particular, we describe how the irregularities of the x86
instruction set architecture are handled in Machine-SUIF’s graph-
coloring register allocator.

1 Introduction

In the context of global register allocation, graph coloring is a suc-
cessful and popular technique. The graph-coloring approach devel-
oped out of research on RISC architectures [4,5], and thus the vast
majority of the literature on this topic assumes that the target pro-
cessor's instruction set is orthogonal and its register set regular. In
this paper, we consider architectures where the problem of graph-
coloring register allocation is complicated by non-orthogonal
instruction sets and by register files with overlapping registers of
several sizes. We refer to these sorts of architectures as irregular
architectures.

Irregularities appear in many existing microprocessors. Register
pairing is a commonly cited example of an irregularity that com-
plicates register allocation. The 32-bit instruction set architecture
(ISA) of the HP PA-RISC processors and the Sun SPARC proces-
sors use register pairing to create double-precision floating-point
(FP) registers out of two single-precision FP registers. The Motor-
ola 68K ISA and its ColdFire descendants exhibit a different kind
of architectural irregularity. It defines two distinct banks of integer
registers: address registers and data registers. In certain operand
locations, the register allocator is free to use either an address or
data register; in other operand locations, the instruction set restricts
allocation to only one of the two banks. As we illustrate later, the
Intel x86 ISA exhibits both of these kinds of irregularities.

The literature on graph-coloring register allocation is not entirely
devoid of work on irregular architectures. In particular, Nickerson
[9] and Briggs [2,3] both describe approaches that adapt graph-col-
oring-based allocators for regular architectures to a limited class of
irregular architectures. These authors realized that the kinds of
irregularities described above directly affect a graph-coloring allo-
cator’s interpretation of its interference graph. (We expand on this
point later in the paper.) To maintain the important invariants of the
graph-coloring approach, both authors chose to modify the inter-

ference graph by adding extra edges or nodes. Though Nickerson
and Briggs show that interference-graph modification can be made
to work with a limited class of irregularities, their work also shows
that this kind of approach does not present a general solution for
dealing with irregular architectures.

In contrast, we present an approach that does not require any mod-
ification to the interference graph and is able to handle a very wide
range of irregular architectures. We are able to handle this wide
range because our approach maintains separate data structures for
summarizing the program and architectural constraints pertinent to
the problem of register allocation. We find that we can implement
this approach in an existing graph-coloring-based allocator by
making only a few minor modifications to the source code. These
changes essentially comprise the replacement of a couple of con-
stants and architecture-independent functions with architecture-
specific functions.

We begin in Section 2 with a quick review of the key phases
involved in register allocation by graph coloring and continue in
Section 3 with a discussion of those aspects of the algorithm
affected by irregular architectures. Section 4 introduces the con-
cept of a weighted interference graph (WIG), and it describes how
we can use a WIG to hide the unpleasant architectural constraints
of irregular architectures without breaking the graph-coloring
abstraction. Section 5 presents the details of our data structures and
enumerates the small number of modifications we make to the
basic graph-coloring algorithm. It also describes an actual imple-
mentation of our approach for the x86 ISA. We modified the regis-
ter allocator distributed with Machine SUIF [8], which is based
upon the work of George and Appel [6], to allocate for the x86 ISA
using our new approach. In Section 6, we relate our experiences
with this implementation, and we describe our on-going work
exploring the effects of modeling precision. Finally, Section 7 dis-
cusses related work, and Section 8 offers our conclusions.

2 Allocation by Graph Coloring

Figure 1 decomposes the graph-coloring register allocator pro-
posed by Briggs [3] into its constituent phases and illustrates the
algorithmic flow between these phases. We focus our discussion
on optimistic allocators because, as Briggs argues, the optimistic
coloring heuristic produces better allocations than the pessimistic
heuristic used by Chaitin [5]. Furthermore, the truth of this state-
ment is independent of the issue of the regularity in the machine
architecture.

The renumber phase makes an initial scan of code segment and
identifies the live ranges. During this phase, we also classify each
live range by the set of hardware resources that would satisfy its
allocation needs. Briggs [3] introduces the concept of register
classes for this purpose. A register class is simply a set of hard-
ware registers. For each class, there is a distinct set of operations
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that can act on any member of the class, and these operations are
what define the class. For example, the integer registers in the
Compaq Alpha ISA define a class, since any Alpha integer opera-
tion can use any integer register as an operand. The Alpha FP reg-
isters define a separate class, and this class uses a set of register
resources completely distinct from the integer class. We revisit the
concept of classes when we discuss the problems involved in sup-
porting irregular architectures.

The build phase constructs the interference graph. Each node in the
interference graph represents a live range that is a candidate for
register allocation. An edge connects two nodes (register candi-
dates) if the lifetimes of the two candidates overlap at any point in
the program’s execution and those nodes compete for the same
register resources.

The coalesce phase uses the interference graph to identify and
remove unnecessary move instructions. The interference graph is
rebuilt after successful coalescing. The following phase computes
a spill cost for every candidate remaining in the interference graph.

The simplify and select phases cooperate to color the interference
graph or to mark nodes for spilling in case no coloring can be
found. If we are able to color the graph, the allocator has found a
feasible allocation. Otherwise, we spill the set of marked candi-
dates and start the process again.

3 Effects of Irregularity

The irregular architectures mentioned in Section 1 complicate a
graph-coloring register allocator in several, subtle ways. This sec-
tion discusses each complication in turn.

3.1 Effect on colorability

The interference graph and its interpretation plays a pivotal role in
a graph-coloring register allocator. Regularity in an ISA allows
simplify to use the degree of a node as an accurate indicator of its
colorability: A node with less than k neighbors is trivial to color
given k colors. Irregular architectures affect the interference graph
so that a node’s degree being less than k is no longer a sufficient
condition for determining that node’s colorability. A challenge of
graph-coloring register allocation on irregular architectures is to
find an accurate way to determine the colorability of each register
candidate in the interference graph. A complete solution to this
challenge must address both of the following two characteristics of
irregular architectures.

First, as Nickerson [9] states, register candidates requiring multiple
registers destroy the equivalence between “the number of interfer-
ence relations (edges) in the interference graph and the number of
coloring constraints they imply.” In other words, a multi-register
neighbor of a node n implies more than one coloring constraint on
n, and thus the degree of n no longer directly reflects its colorabil-
ity. Register pairs in the HPPA and SPARC floating-point register
banks and the overlapping general-purpose registers in x86 (e.g.,
AL and AH are two allocable pieces of EAX) are examples of such
a complication.

A second complication arises from non-orthogonal instruction sets
that allow a set S of register candidates in one operand location and
a different set T in another operand location, where and

. As mentioned earlier, such an irregularity appears in
the 68K ISA with its separate but similar address and data regis-
ters. The x86 instruction set also exhibits this kind of irregularity
in that an x86 register allocator can use the registers EDI and ESI
for many but not necessarily all of a program’s general-purpose
register candidates. This kind of irregularity affects the coloring
problem by changing the value of k for a subset of the nodes.

3.2 Effect on register classes

Section 2 introduced the concept of register classes. A graph-color-
ing allocator uses the class of a candidate to know what register
resources are available for use by this candidate and to know when
this and another candidate with an overlapping live range are vying
for the same resources. The issue here is that irregular architectures
require a richer set of register classes than regular architectures.
The key to understanding this richness is to remember that classes
result from an operational partitioning of the hardware registers.
Classes are often confused with what we will call register banks,
which are a result of an architectural partitioning of the registers
resources. For example, the 68K ISA contains three register banks:
the address, data, and FP registers. We must define not only a class
for each register bank but also a class for the register candidates
that can be allocated to either the address or data bank. Such a can-
didate occurs because some 68K operations (e.g., ADD) can write
to either an address or data register. As slightly different example,
consider the FP register bank in the SPARC ISA. Here, we define
three register classes that each use only the single FP register bank
(i.e., a class for single-precision FP operands, one for double-pre-
cision, and one for quad-precision).

We must deal with the rich variety of register classes in irregular
architectures directly. To see this, recall that register allocation by

Figure 1. Briggs’s Optimistic Allocator [3].

renumber build coalesce spill costs simplify select

spill code

S T≠
S T∩ ∅≠
2



Submitted to PLDI’01 — Please do not distribute
graph coloring is done on a bank basis: We consider all of the can-
didates for a register bank in single allocation pass in order to
achieve the best allocation possible for the candidates in this bank.
Since the register resources in a single bank may be available to
the candidates from several different classes, any proposed solu-
tion must be able to deal with an interference graph containing
nodes of different classes. Furthermore, as in the 68K example
above, a class may include register resources from multiple differ-
ent banks, and thus a complete solution must be able to allocate
multiple banks simultaneously from a single interference graph.

4 Weighting the Interference Graph

Our solution to the complications enumerated in the previous sec-
tion is to weight the nodes in the interference graph, resulting in a
data structure we call a WIG. Sections 4.1 and 4.2 gently introduce
the details and interpretation of this data structure by focusing ini-
tially on the problem of register pairs. We borrow two examples
from Briggs’s thesis [3] and present the WIGs that are equivalent
to his interference graphs. However, as we point out at the end of
each section, our approach is not limited to register pairs and in
fact works for multi-registers of all sizes. Section 4.3 completes
the overview of our solution by addressing the issue of coloring
with nodes whose classes contain resources in multiple banks.

4.1 Aligned multi-registers

Consider the interference graph in Figure 2a. It contains two sin-
gle-precision register candidates (nodes a and b) and two double-
precision register candidates (nodes c and d). Let us assume

(i.e., we have four single-precision registers) and that the
double-precision registers consume an aligned and adjacent pair of
single-precision registers. Since no node in this interference graph
has a degree larger than 2, a graph-coloring allocator would incor-
rectly assume that all nodes are trivially colorable. This is not true
since the coloring of c could be blocked an appropriate coloring of
a, b, and d.

Briggs [3] presents an approach that addresses the problem of reg-
ister pairs. His solution is to modify the interference graph so that
the degree of a node in his interference graph always reflects its
colorability, independent of whether the node is a register candi-

date that requires a single register or a register pair. Figure 2b
shows the interference multigraph proposed by Briggs to solve the
problem with Figure 2a. His graph correctly models the colorabil-
ity of each node: a double-precision candidate consumes two col-
ors, and a single-precision candidate can block any neighboring
double-precision candidate from two colors (due to alignment
restrictions).

Figure 2c shows our WIG for this same example. The first item of
note is that we do not add or remove edges from the interference
graph. Two register candidates are never connected by more than a
single edge in the WIG, and thus the existence of an edge between
two nodes simply indicates that the lifetimes of the register candi-
dates represented by those nodes overlap. In other words, the edges
in a WIG summarize only the program constraints on register allo-
cation.

The second item of note in Figure 2c is that we have associated a
weight w with each node n in the graph. For this simple example,
single-precision candidates get a and double-precision a

. (Below, we explain exactly how weights are chosen.) To
determine the colorability of a node n in the WIG then, we evalu-
ate the following equation:

(E.1)

The function adjacent takes a node n and returns a set correspond-
ing to the neighbors of n. We organize this calculation so that it is
not much more expensive than the calculation performed in
today’s graph-coloring allocators to determine the degree of n.1

The reader can verify that the left-hand side of Equation (E.1)
when evaluated for each node in Figure 2c produces the same
value as the degree of that node in Figure 2b. As a result, a graph-
coloring allocator could use the WIG and Equation (E.1) in place
of Briggs’s multigraph and the equation . We can

k 4=

Figure 2. An example with 4 interfering live ranges. The interference graph in (a) does not correctly model the effects of
the double-precision candidates. The interference graph in (b) is Briggs’s solution, while the WIG in (c) is our solution.
For (c), the numbers at the top of each node indicate the weight of the node. This example was taken from Briggs [3].
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1. At the start of simplify, we calculate and store the left-hand side of Equa-
tion (E.1) for each node in the interference graph. As simplify removes a
node n, it decrements each neighbor of n by the appropriate weighted
factor (in contrast to decrementing by 1).
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see why this approach works by realizing that, in this example, wn
equals the number of colors (registers) required by node (register
candidate) n. Furthermore, the term represents the num-
ber of color groups (placements in the register file) for n that its
neighbor j can exclude n from, and thus multiplying this term by
wn simply expresses this number in terms of colors.

Our solution is not limited to register pairs; it also works for the
aligned multi-register problem described by Nickerson [9]. We
simply have to choose an appropriate weight for each multi-regis-
ter candidate (or more accurately multi-register class). In general,
for an aligned architecture, we define the weight wn of a multi-reg-
ister candidate n of size s to be the smallest power of 2 greater than
or equal to s. Recall that a multi-register of size s is defined to be
aligned if it begins on a register whose index is 0 or is divisible by
the smallest power of 2 greater than or equal to s. For example, the
quad-aligned triples from the 8-register example in Nickerson [9]
would have .

This approach is precise with respect to the colorability calculation
for multi-register candidates and their neighbors whose sizes are
all a power of 2. Unfortunately, this simple approach leads to an
imprecise answer for colorings with multi-register candidates
whose sizes are not a power of 2. In particular, the weight given to
such a node may overly constrain the colorability calculation of its
neighbors that are smaller than s. For example, when calculating
the colorability of a node n of size 1 that has two quad-aligned tri-
ples as neighbors, simplify will assume that n is constrained (i.e.,
cannot be trivially colored) in a register file of size 8.

This issue of preciseness is not just a characteristic of aligned
architectures, but as we will see, it also occurs with the other archi-
tectural irregularities considered below. To our benefit, we err on
the right side (i.e., we never incorrectly answer yes to a colorabil-
ity question), and we mitigate some of this conservatism through
our use of an optimistic allocator. Still, it would be interesting to
understand how much this conservatism costs us, since it is always
possible to calculate the worst-case placement of a node n’s neigh-
bors and determine if that worst-case placement blocks the color-
ing of n. We explore one instance of this issue in Section 6 with the
x86 ISA.

Finally, we will find it useful later in our discussion to talk in terms
of a worst-case number of placements p for a register candidate of
size s. We define p to be the minimum number of candidates of

size s required in a worst-case coloring (or placement) to block the
coloring of another candidate of size s. In an aligned architecture,

where k is the total number of singleton registers in the
architecture.

4.2 Unaligned multi-registers

Briggs [3] also presents a solution for handling unaligned register
pairs. At first glance, the reader might assume that it would be eas-
ier to allocate register pairs in an architecture that allows unaligned
pairs than in one that forces the pairs to be aligned. But as Briggs
points out, greater freedom in register placement does not translate
into greater colorability. In fact, the colorability of a multi-register
in an unaligned architecture is worse than it is in an aligned archi-
tecture. The left-hand side of Figure 3, from Briggs [3], illustrates
how to color three register pairs (a, b, and c) so that a fourth d can-
not be colored, assuming a register file with eight individual regis-
ters. This observation led Briggs to an approach for unaligned
pairs that requires more edges than his solution for aligned pairs.

We solve this problem more directly. The issue here is not that we
need to adjust the weight associated with a register pair, but that p
(the minimum number of pairs required to block the placement of
another pair) has decreased. For an 8-register file, in an
aligned architecture, but in an unaligned architecture. In
general, the worst-case number of placements for a multi-register
candidate of size s in an unaligned architecture is determined by
the following equation:

(E.2)

In Equation (E.2), k is the number of total registers in the register
file. This equation is based on the observation that a worst-case
placement is achieved by repeating the pattern: consume s registers
for the first multi-register of size s, skip registers, consume s
registers for the second multi-register, skip registers, etc. An
example of this pattern occurs on the left-hand side of Figure 3.

The consequence of Equation (E.2) on coloring is that it is no
longer natural to think about a single k that the allocator can use for
all register candidates. This is not a problem because we do not
need to have a single coloring bound for all candidates, we simply
need a unique bound for each class of register candidate. As illus-
trated by Equation (E.1), the colorability of a node is calculated in

wj wn⁄

w 4=

p k w⁄=

Figure 3. Two example colorings of three register candidates (a, b, and c) that block the coloring of the remaining regis-
ter pair d in an unaligned architecture with an 8-entry register file. The register candidates connected by edges have
overlapping lifetimes. Briggs models the colorability constraints of d by inserting multiple edges between d and each of
its neighboring nodes. The left-hand example was taken from Briggs [3].The right-hand example follows his methodol-
ogy but under-constrains d.
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units related to the characteristics of that node; the effects of the
neighboring nodes are normalized to those units. Thus, we are free
to specify a unique k for each class of register candidate without
affecting the correctness of the simplify step. This should be easier
to see if we rewrite Equation (E.1) in terms of p:

(E.3)

Notice that the weight w of a register candidate of size s is always
equal to s on an unaligned architecture. Notice also that we can
derive Equation (E.3) from Equation (E.1) by substituting
for k and simplifying. Recall from our earlier discussion that this is
just the equation relating p and k on an aligned architecture. We
use Equation (E.3) instead of Equation (E.1) for all of our irregular
architectures.

Returning to the example interference graphs in Figure 3, Briggs
carefully adds edges so that simplify is not able to remove node d
in the left-hand interference multigraph before removing one of the
other nodes. This guarantees that d is colored by select before all
of the other three candidates are colored. We achieve the same
result without the extra edges.

The right-hand interference multigraph of Figure 3 is built follow-
ing Briggs’s methodology, and it illustrates the danger of an edge-
based approach to handling irregular architectures. The node d
cannot be colored given the placements of the other three nodes;
however the d’s degree is less than k (i.e., less than 8). In our
approach, singleton’s like a and c in the right-hand graph are con-
sidered one class with and , while register pairs
comprise a different class with and .

Finally, it should be clear that Equations (E.2) and (E.3) can handle
unaligned multi-registers of any size. As we discussed for aligned
registers, these simple equations are sometimes overly conserva-
tive. Readers can prove for themselves that the answer given by
Equations (E.2) and (E.3) is precise when all of the neighbors of a
node of size s are also of size s or greater, and the equations are
overly conservative otherwise.

4.3 Multi-bank classes

This section is concerned with register candidates that belong to a
class in which they can satisfy their register requirements from
more than one register bank. The class comprising the address and
data registers in the 68K is an example of such a multi-bank class.
We already have all of the analytical tools that we need to handle
such candidates, and thus we simply show how we can apply these
tools and explain where our results are overly conservative.

For purposes of discussion, let us define Ca to be a class containing
only the 68K address registers, Cd to be a class containing only the
68K data registers, and Cm to be a class containing both address
and data registers. We assign a weight to each class, since
the 68K does not support multi-registers in its address and data
banks. The classes do differ in their p values however. The p for
Cm is equal to the sum of the p for Ca and that for Cd, and because

, the p for Ca and that for Cd is simply equal to the number
of registers in each register bank.

As in Section 4.2, we apply Equation (E.3) when determining a
node’s colorability, and we sometimes get an overly conservative
answer. For WIGs with register candidates of multi-bank classes
(multi-bank candidates), Equation (E.3) always provides a precise
answer for any node n that is not a candidate of a multi-bank class,
even if its neighbors are. Imprecision occurs only when n is a
multi-bank candidate and its neighbors are a mix of multi-bank and
single-bank candidates. Figure 4 illustrates such a case.

The imprecision demonstrated in Figure 4 results from the fact that
the worst-case coloring of the neighbors of m1 must simulta-
neously block a coloring of m1 in Ca and Cd. This conjunctive con-
dition was turned into a disjunctive condition when we summed up
the individual p values of Ca and Cd to produce the p for the multi-
bank class Cm. Section 6 explores the question of how much this
particular kind of imprecision costs in the x86 ISA, and it suggests
a slight modification to the simplify phase that invokes more pre-
cise calculation only when simplify is blocked from proceeding
using the simpler one.

5 Implementation Details

The previous sections have introduced the main ideas of our
approach to graph-coloring allocation on irregular architectures
and compared it against existing approaches. In this section, we
present the full details of our data structures and describe exactly
how these structures are used. Many of the structures we describe
already appear in one form or another in a basic graph-coloring
allocator for regular architectures.

To aid in our presentation, we will use the general-purpose register
file in the x86 ISA as our allocation target. Having a specific target
will help to make the discussion concrete by allowing us to
describe the contents of each data structure with respect to this tar-
get. The x86 is an interesting target because it is a multi-register
architecture (e.g., AL and AH are individually allocable pieces of
AX) that also has register candidates in a multi-bank class (e.g.,
register candidates that are used as both a 32-bit and an 8-bit value
must be allocated to one of the EAX, EBX, ECX, or EDX registers
on the x86, while pure 32-bit candidates can choose among the
EAX, EBX, ECX, EDX, ESI, or EDI registers).

wj

wn
------

j adjacent n( )∈
∑ 
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p wn⋅

w 1= p 8=
w 2= p 3=
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Figure 4. Example WIG involving multi-bank candidates.
Assume that we have two single-bank classes Ca and Cd with p
equal to 4 and 2 respectively. We also have a multi-bank class
Cm that is a union of the register resources of Ca and Cd, i.e.

. The letter of each candidate indicates its class. Equa-
tion (E.3) produces an overly conservative answer for m1.
Even though m1 has 6 neighbors, no coloring of these neigh-
bors can exhaust all of the available registers in Cd.
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At the heart of every graph-coloring allocator is a color array that
represents the individually allocable register resources in the target
machine. Our allocator is no different. On the x86, our color array
for the general-purpose register file has 10 elements, as shown by
the bit vector at the top of Figure 5.

We use this bit vector in two ways. First, it provides a mapping
between the target-specific register names and the hardware
resources that these names imply, as shown in Figure 5a. Notice
that the register AX consumes the two individual resources used
by AL and AH, and thus we correctly capture the overlapping
nature of these resources. EAX and AX map to the same hardware
resources because you cannot name the upper half of EAX.

Second, we use this bit vector as a component of the register class
data structure. The register class data structure stores four pieces of
architectural information pertinent to register allocation, three of
which are shown in Figure 5b. The first of these is the resource
mask that indicates which hardware resources are available to can-
didates of the class. Two register candidates interfere if their live
ranges overlap and the intersection of the resource masks of their
classes is non-zero (i.e., they compete for the same register
resources).

Briggs in his thesis section on multiple register classes describes a
small bit vector that performs a similar function [3]. Our approach
differs slightly from Briggs in that two register classes may have
the same resource mask; in his approach, the bit vectors uniquely
identify the register class. Figure 5b shows that class Ca and Cb
have the same resource mask but different w and p values. The
class Ca represents the 16- and 32-bit variants of the x86 A, B, C,
and D registers; the class Cb represents the 8-bit registers AL, AH,
BL, BH, CL, CH, DL, and DH. Notice that the union of the hard-
ware resources of these two register sets does indeed yield the
same resource mask.

The next two architectural details of the register class data struc-
ture were discussed in detail in Section 4: each register class is
given a weight w and a worst-case number of placements p. It is
these values that differentiate classes Ca and Cb. We use these val-
ues, as discussed earlier, during simplify. Careful examination of
the code in a graph-coloring register allocator shows that we
always use k and a node’s degree together, and thus we can replace
the code comparing these values with code that looks up w and p in
the node’s register class and evaluates Equation (E.3).

The last piece of the register class data structure is a list of the reg-
ister names available to the register candidates of the class. The list
for each x86 register class is as follows:

Ci : {DI, EDI, SI, ESI}

Cb : {AL, AH, BL, BH, CL, CH, DL, DH}

Ca : {AX, EAX, BX, EBX, CX, ECX, DX, EDX}

Cm : {AX, EAX, BX, EBX, CX, ECX, DX, EDX, DI, EDI,
SI, ESI}

We use this list when allocating a “color” to a stacked register can-
didate during select. In particular, each candidate is given a register
name when colored. Through the map from register names to hard-
ware resources, we can know what resources a colored neighbor
uses. Thus, when select pops the next candidate n off the stack, it
visits each neighbor of n in the interference graph and builds a list
of used (unavailable) colors. It can then intersect a bit vector of
these unavailable colors against the hardware resources used by
each one of the register names in n’s class. If the intersection is the
empty bit vector, that register name is an available “color” for n.
(In the case of the registers AX and EAX, the actual register name
returned is the one whose bit size matches the bit size of the regis-
ter candidate.)

Hardware registers existing in the code before register allocation
(e.g., as part of a parameter passing convention) just appear as pre-
colored live ranges in the interference graph. We assign a class c to
the WIG node representing a hardware register r by first finding
the set of classes that contain r in their name list and then choosing
the class in that set with the smallest resource mask. For example,
a node representing the hardware register EAX would have class
Ca. We choose this class instead of Cm because the node represent-
ing EAX does not compete for resources with a register candidate
of class Ci.

Note that we never insert a node representing a hardware register
into the interference graph for the sole purpose of excluding
another live range from that hardware register. Our WIG simply
summarizes the program constraints on register allocation, and

Figure 5. An allocator’s view of the general-purpose register
resources in the x86. Each square represents an allocable reg-
ister resource, and the shaded squares indicate which
resources are consumed by a particular register name or are
part of a particular register class. We also list the weight w
and worst-case placement value p for each class.
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(a) Map from register names to hardware resources.
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(b) Map from register classes to hardware details.
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each node represents one live range. (Actually, a pre-colored node
may represent several live ranges.)

The last item in our discussion of the implementation concerns one
of the first data structures used by the register allocator. This struc-
ture is the map from instruction operands to register classes. We
use this map to find the class of each live range. Initially, a live
range is assigned the class required by its first reference point. At
each later reference point in the code, we check to see if the class
Crp of the reference point equals the current class Clv of the live
range. If it does, no further action is required. If not, we intersect
the resource mask of Crp with the resource mask of Clv. The result
of this intersection is the resource mask of either Crp, Clv, or some
class that is more constrained than either Crp or Clv. Notice that the
resource masks must define a partial order on the set of register
classes for the initial scan of the code segment during renumber to
correctly assign a register class for each register candidate.

6 Buying Extra Precision

We have implemented our support for multi-register allocation and
multi-bank classes in the Machine-SUIF compiler from Harvard
University [8]. Machine SUIF is distributed with a coloring regis-
ter allocator that faithfully implements the iterated register coa-
lescing algorithm of George and Appel [6]. This algorithm
integrates coalescing with the coloring heuristic, and in order not
to let coalescing create more over-constrained nodes than existed
anyway, it imposes extra prerequisites for combining two move-
related nodes. As in Briggs-Chaitin style, these tests always com-
pare the degree of a node with the coloring bound k, and thus the
same well-localized kinds of adjustments described in the preced-
ing section suffice to transform the George and Appel algorithm
into one that uses a WIG.

As explained in Section 4, situations exist where our straightfor-
ward use of the WIG yields an overly conservative answer to the
question of a node’s colorability. Figure 4 illustrates the kind of
inaccuracy that can occur in our model of the x86. In fact, the
classes Cm, Ca, and Cd in Figure 4 correspond directly to the
classes Cm, Ca, and Ci in Figure 5b.

To explore how much better we might be able to do with a more
precise calculation of colorability, we inserted a hook in the iter-
ated coalescing algorithm at the point where it cannot find any
more graph simplifications using its colorability heuristic and just
before it is about to make a concession in order to catalyze forward

progress. By concession, we mean that it is either going to give up
on the possibility of coalescing two nodes, or it is going to mark a
node for possible spilling and remove it from the graph. We can
use this hook to insert a routine that scans the interference graph
and identifies high-degree nodes that belong to a multi-bank class.
For each such node n, we invoke a routine that performs a more
precise calculation to determine whether a worst-case coloring of
those neighbors still thwarts the coloring of n. If we find one or
more nodes that are colorable under this more precise calculation,
we remove them from the graph, stack them, and return to simplify.
Otherwise, we proceed as if the hook were not there.

This hook allows us to measure how much benefit the extra preci-
sion yields in coloring cycles avoided and spill instructions
removed. It also allows us to do so without warping the underlying
coloring algorithm. In addition, we also measure how much the
work done in the hook costs in compile time.

Table 1 displays the results for a smattering of benchmarks chosen
from the SPEC92 and SPEC95 suites. It shows the fractional slow-
down of the register allocation pass when extra precision is used,
and it shows the reduction in spill overhead that results. By and
large, the cost of the extra precision in terms of increased compile
time is relatively large, and the reduction in spill code that results
is relatively modest. There may well be more sophisticated ways
of increasing precision without incurring so much compile-time
cost, but the gains to be reaped from going beyond our straightfor-
ward WIG-based approach do not appear to be large for the x86.

7 Related Work

There exists a large body of work on global register allocation by
graph coloring, starting with the work by Chaitin [4,5]. Of this
work, only Briggs [2,3] and Nickerson [9] deal directly with irreg-
ular architectures, and both of these authors modify the interfer-
ence graph to encode the extra constraints in irregular
architectures. The unstated goal of these modifications is to main-
tain the traditional form of the test for colorability, i.e. you simply
compare a node’s degree against a known coloring bound k.

Briggs [2,3] focuses on architectures with aligned or unaligned
register pairs. He presents two heuristics for adding edges to the
interference graph that he claims correctly models the extra color-
ing constraints imposed by register pairs. Though it is intuitively
appealing, this is a tricky approach that increases the complexity of

Allocator
slowdown

Spill code reduction Reduction in
coloring
iterationsBenchmark Loads Stores

espresso 15.7% 3.5% 0.9% 1.2%

m88ksim 7.8% 1.3% 0.8% 0%

perl 11.8% 6.7% 2.7% 1.2%

fpppp 65.3% 0% 0% 0%

Table 1: Experimental results for our investigation into the use of extra precision. This table summarizes the costs
(allocator slowdown) and benefits (reductions in spill code and coloring iterations) of a more precise calculation of

a node’s colorability. These results were obtained by compiling the benchmarks under Machine SUIF.
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the interference graph and is difficult to get right, as illustrated by
our example in Figure 3.

Nickerson [9] presents an approach that handles register candi-
dates requiring two or more adjacent, aligned registers. Like
Briggs, Nickerson’s solution modifies the interference graph, but
in a different manner. A node exists in his interference graph for
each individual register of a multi-register candidate; he refers to
candidates as clusters and the individual registers of a cluster as
cluster-mates. He then presents an approach for identifying and
removing “implicit” interference edges, edges whose interference
relation is already indicated by another edge between related clus-
ter-mates. Though this approach can use a node’s degree to accu-
rately indicate the coloring constraints on some clusters, Nickerson
points out that it does not work in all cases. Finally, as we have
done, he allows the coloring bound k to vary for clusters of differ-
ent sizes.

Sander [10] describes a modification made to the IMPACT graph-
coloring allocator to support register allocation in the x86. The
modification marks live ranges that include byte operations as ones
that cannot be colored using the x86 registers EDI and ESI. The
idea here is simply another formulation of the register classes idea;
however, Sander does not appear to change k for these candidates
during simplify.

Register allocation on irregular architectures has also been done
using approaches other than graph coloring. For example, Kong
and Wilken [7] use a 0-1 integer linear programming formulation
to produce an optimal register allocator for the x86 ISA. They
assign a binary decision variable to each minute decision required
for register assignment and spilling at each program point. They
describe the constraints on register use using linear inequalities
over these decision variables. This approach is able to handle
multi-register and multi-bank architectures.

Finally, our use of separate data structures for summarizing the
program constraints and the architectural constraints on register
allocation is similar in spirit to what is used in instruction schedul-
ing algorithms for pipelined and multi-issue machines. For exam-
ple, a basic-block scheduler may employ a data dependence graph
to summarize the program dependences between instructions and a
finite-state automaton [1] to model the machine's pipeline con-
straints. This separation allows a retargetable compiler to apply the
same basic list-scheduling algorithm to a wide range of machine
models. We have shown how to apply the same basic graph-color-
ing allocator to a wide range of irregular architectures.

8 Conclusions

We have presented a practical approach to graph-coloring register
allocation for irregular architectures. We have shown that our
approach is applicable to a wide range of irregular architectures,
and that it fits neatly into the structure of existing graph-coloring
allocators. We demonstrated the truth of this statement by adapting
the published algorithm for iterated register coalescing [6]. We
have implemented this adaptation in the Machine-SUIF compiler,
and we use it as our everyday allocator for the x86 target.

The key difference between our work and the previous work is that
we allow ourselves to consider an alternate form of the test for col-
orability. In a regular architecture, a node in the interference graph

is trivially colorable if its degree is less than the coloring bound k.
As we discussed, architectural irregularities such as interference
nodes that require a pair of registers make it so that this simple test
is no longer an accurate indicator of a node’s colorability. The pre-
vious work on graph-coloring allocators for irregular architectures
changes the structure of the interference graph so that they can
keep using this simple test for colorability. We, on the other hand,
keep the simple structure of the interference graph and adapt the
test for colorability so that it considers architectural requirements
of the node and its neighbors. We feel that this is cleaner, safer, and
leads to a more generally applicable solution.
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