
Quality and Speed in Linear-scan Register Allocation

Omri Traub, Glenn Holloway, Michael D. Smith
Harvard University

Division of Engineering and Applied Sciences
Cambridge, MA 02138

{otraub, holloway, smith}@eecs.harvard.edu
de

has
i-
e
om-
m
ds

er
or
l.
i-

be
at

gen-

ss
to
ing
r-
and
ates
n a

n-

ter
-
e
gn-
m-
he
ol-

es-
of
ay
ted

ns

ro-
tic
-
,

er,
he
or
Abstract
A linear-scanalgorithm directs the global allocation of reg-
ister candidates to registers based on a simple linear sweep
over the program being compiled. This approach to register
allocation makes sense for systems, such as those for
dynamic compilation, where compilation speed is impor-
tant. In contrast, most commercial and research optimizing
compilers rely on a graph-coloring approach to global regis-
ter allocation. In this paper, we compare the performance of
a linear-scan method against a modern graph-coloring
method. We implement both register allocators within the
Machine SUIF extension of the Stanford SUIF compiler
system. Experimental results show that linear scan is much
faster than coloring on benchmarks with large numbers of
register candidates. We also describe improvements to the
linear-scan approach that do not change its linear character,
but allow it to produce code of a quality near to that pro-
duced by graph coloring.

Keywords: global register allocation, graph coloring, linear
scan, binpacking

1 Introduction

Fast compilation tools are essential for high software pro-
ductivity. The register allocation phase of code generation is
often a bottleneck, and yet good register allocation is neces-
sary for making today's processors reach their peak effi-
ciency. It is thus important to understand the trade-off
between speed of register allocation and the quality of the
resulting code. In this paper, we investigate a fast approach
to register allocation, calledlinear scan, and we compare it
to the widely-used graph-coloring method. This fair com-
parison shows linear scan to be faster than coloring under
most conditions, especially on programs with large numbers
of variables competing for the same registers. Since emit-
ting high quality code was our first priority in implementing
our linear scan allocator, we describe some novel improve-

ments to the linear-scan approach that improve output co
without destroying the linear character of the algorithm.

Despite the increasing speeds of modern processors, it
never been more important to find and use efficient comp
lation techniques. The demand for highly optimizing cod
generation is increasing as processors become more c
plex. One response is the trend towards whole-progra
optimization [6,15]. The success of this approach depen
heavily on near-linear optimization techniques. Anoth
growing trend seeks to optimize application code at load
run time. For example, Hoeltzle et al. [10] and Poletto et a
[13] describe the benefits of techniques in adaptive optim
zation and dynamic code generation respectively. To
acceptably responsive, these techniques must operate
speeds measured in a reasonable number of cycles per
erated instruction.

Both graph-coloring and linear-scan allocators use livene
information to find an assignment of register candidates
the machine registers. To achieve this goal, a graph-color
allocator summarizes liveness information as an interfe
ence graph, with nodes representing register candidates
edges connecting nodes whose corresponding candid
are live at the same time and therefore cannot coexist i
register. For ak-register target machine, finding ak-coloring
of the interference graph is equivalent to assigning the ca
didates to registers without conflict.

The standard graph-coloring method, adapted for regis
allocation by Chaitin et al. [4,5], iteratively builds an inter
ference graph and heuristically attempts to color it. If th
heuristic succeeds, the coloring results in a register assi
ment. If it fails, some register candidates are spilled to me
ory, spill code is inserted for their occurrences, and t
whole process repeats. In practice, the cost of the graph-c
oring approach is dominated by the construction of succ
sive graphs, which is potentially quadratic in the number
register candidates. Since a single compilation unit m
have thousands of candidates (including compiler-genera
temporaries), coloring can be expensive.

In contrast to graph coloring, a linear-scan allocator begi
with a view of liveness as alifetime interval. A lifetime
interval of a register candidate is the segment of the p
gram that starts where the candidate is first live in the sta
linear order of the code and ends where it is last live. A lin
ear-scan allocator visits each lifetime interval in turn
according to its occurrence in the static linear code ord
and considers how many intervals are currently active. T
number of active intervals represents the competition f

Appears in the Proceedings of the ACM SIGPLAN 1998 Confer-
ence on Programming Language Design and Implementation,
pages 142–151, June 1998.
1

ut
e
m-

on

e
o

if

erse
.

e
re
ly
n.
an
to
ned
.
e
the
a

the

ar
d in

g a
m
a

in
h

n
re

is-
m-
st

A
rites
r or
e a
ed,
available machine registers at this point in the program.
When there are too many active lifetimes to fit, a simple
heuristic chooses which of them to spill to memory and the
scan proceeds. Because it only tries to detect and resolve
conflicts locally, rather than for an entire compilation unit at
once, linear scan can operate faster than graph coloring. Pre-
vious linear-scan allocators run in time linear in the size of
the procedure being compiled.

In Section 2, we describe our version of a linear-scan alloca-
tor. Our algorithm is based on a variant of linear scan, called
binpacking, that Digital Equipment Corporation uses in its
commercial compiler products [1]. We describe several
improvements to the binpacking approach. The most signif-
icant change involves our algorithm’s ability to allocate reg-
isters and rewrite the instruction stream in a single scan; all
current linear-scan algorithms of which we are aware allo-
cate and rewrite in separate passes. By allocating and
rewriting simultaneously, we introduce flexibility into the
register allocation process by giving spilled allocation can-
didates multiple chances to reside in a register during their
lifetimes. Because of this flexibility, our approach requires a
second pass to resolve the linear-scan assumptions with the
non-linearity of a procedure’s control-flow graph (CFG).
Because the second pass entails a dataflow analysis, its
worst-case asymptotic complexity is quadratic in the pro-
gram size. However, as we explain in Section 2.6, it can be
engineered to give linear performance in all cases. In Sec-
tion 3, we describe our experiments, which use the Machine
SUIF code generation framework to compare the perfor-
mance of our linear-scan algorithm against a modern graph
coloring algorithm [7]. Section 4 discusses related efforts in
linear-scan register allocation, and Section 5 summarizes
our contributions.

2 Second-chance binpacking

Two important goals guide the design of our register alloca-
tion algorithm: speed of allocation and quality of code pro-
duced. In the spirit of the linear-scan family of allocators,
we seek to keep the allocation time to a minimum by avoid-
ing expensive, iterative computations such as the ones used
in graph-coloring register allocation. Furthermore, unlike
any other allocation technique of which we are aware, the
algorithm described below performs allocation and code
rewriting in a single pass over the instructions of a proce-
dure. This approach influences many of our design deci-
sions. After Section 2.1 introduces the general concepts
behind a binpacking allocator, Section 2.2 outlines the tech-
nique and focuses on the novel aspects of our algorithm.
Section 2.3 describes how we handle spills during the linear
allocate/rewrite phase, while Section 2.4 discusses the sec-
ond phase of our algorithm which resolves the assumptions
made during the linear first phase with the non-linear flow
of a CFG. Section 2.5 presents two optimizations related to
the creation of spill code and the elimination of moves. Sec-
tion 2.6 summarizes the computational complexity of our
algorithm.

2.1 Allocation candidates and lifetime holes

We begin by describing some preliminary concepts abo
the objects that we wish to allocate. In our allocator, w
seek to assign registers to both program variables and co
piler-generated temporaries. We shall refer to all allocati
candidates generically astemporaries.

When examining the lifetime of a temporary, we observ
that it may contain one or more intervals during which n
useful value is maintained. These intervals are termedlife-
time holes. Figure 1 illustrates several kinds of lifetime
holes that can appear in the lifetime of a temporary. Even
we assign a registerr to a temporaryt for t’s entire lifetime,
we can assign another temporaryu to r during t’s lifetime if
u’s lifetime fits inside a lifetime hole int. In Figure 1, tem-
poraryT3 fits entirely in T1’s lifetime hole, and thus both
could be assigned the same register. We use a single rev
pass over the code to compute lifetimes and lifetime holes

2.2 The binpacking model

The register allocation model that we adopt views th
machine registers as bins into which temporary lifetimes a
packed. The constraint on a bin is that it may contain on
one valid value at any given point in the program executio
Assuming that we have an infinite resource machine with
unbounded number of registers and that our task is
choose the smallest subset of registers that can be assig
to lifetimes, we can minimize this number in two ways
First, we can assign two non-overlapping lifetimes to th
same register. Second, we can assign two temporaries to
same register if the lifetime of one is entirely contained in
lifetime hole of the other. Under both these approaches,
constraint on a register (bin) is preserved.

A binpacking allocator scans the code in a forward line
order, processing the temporaries as they are encountere
the program text. The processing of a temporaryt involves
the allocation oft to a register ift is not currently assigned a
register. We can view an unoccupied register as containin
lifetime hole that extends to a later point in the progra
where it is no longer free. With this view, the selection of
register to allocate tot involves the search for a register with
a hole big enough to contain the entire lifetime oft. If we
have multiple registers with holes large enough to conta
t’s entire lifetime, we heuristically choose the register wit
the smallest hole that is larger thant’s lifetime. Once we
assignt to a registerr, we would replace all references tot
with references tor (assuming infinite registers).

In reality, the number of registers available on a give
machine is fixed. If at some point in the linear scan there a
more overlapping lifetimes than there are available reg
ters, some of these values will need to be spilled into me
ory. The traditional approach to linear-scan allocation fir
walks the sorted list of lifetime intervals deciding which
temporaries live in a register and which live in memory.
second phase then scans the procedure code and rew
each operand with a reference to the appropriate registe
to memory. For the purposes of discussion, we assum
load/store architecture where a register is always requir
2

to
r

er-
pill
s-
y
in-
is-

te

lue
es

rd,
nce
ry

-
ot

ss

of

the
.

and so a reference to a spilled temporary is modeled as a
point lifetime interval corresponding to the load or store of
the spilled temporary. These point lifetimes are always
assigned a register during allocation.

2.3 Second-chance allocation

Early on in the design of our binpacking register allocator,
we noticed that it is possible to allocate registers to tempo-
raries and rewrite temporary references all in a single linear
pass over the program text. When we encounter a temporary
t for the first time, we interrupt the rewriting process and
determine an allocation fort. If we must spill another tem-
porary to create a free register fort, we proceed in a manner
identical to the approaches that separate the allocation and
rewriting phases—a temporaryu currently residing in a reg-
isterr is spilled to memory andt is assigned tor. Such spill-
ing decisions are based on a priority heuristic that compares
the distance to each temporary’s next reference, weighted
by the depth of the loop it occurs in, picking the lowest-pri-
ority temporary for eviction. Our system is unique among
linear-scan allocators in that a spill point marks a split in the
lifetime of the evicted temporaryu. All references tou up to
this point have already been rewritten to use registerr. Our
algorithm does not go back and change this fact. The spill
decision affects only future references tou.

When encountering a later reference to this spilled tempo-
rary u, we must find it a register to occupy during the
instruction that uses it. If the reference is a read ofu, we
find a free registerr (possibly evicting another temporary in
the process) and insert a load ofu’s memory location intor.
Once we have allocatedu to this new registerr, we allowu
to remain inr until some higher-priority temporary evicts it

(or u’s lifetime ends). In effect, we have splitu’s lifetime
again. The benefit of this approach is that we do not have
reload u if we make another reference to it in the nea
future. We do not need any special mechanisms to “pref
ence” a later spill load to the same register as the last s
load [3]. In this approach, we optimistically, rather than pe
simistically, plan foru’s future references. Since we alread
have to support lifetime splits due to our emphasis on a s
gle allocate/rewrite pass, our allocator supports this optim
tic approach naturally.

If the next reference to a spilled temporaryu is a write, our
allocator performs a similar optimistic decision. We alloca
u to a registerr (possibly spilling the current temporary in
this register), and we postpone the store of this new va
for u back into memory until some other temporary caus
the allocator to evictu. All following references tou are
rewritten to user, and if we reach the end ofu’s lifetime, we
may never have to produce the postponed store.

We call our optimistic handling of spilled temporariessec-
ond chance, because we give temporaries a second (or thi
etc.) chance at finding a register home. This second-cha
approach is completely generalized to provide a tempora
lifetime with a (potentially) new register for every split in its
lifetime.

There is one other optimization that we perform while allo
cating and rewriting. Similar to the case where we do n
create another load of a spilled temporaryt from memory if
t is already in a register, we can optimize the rewrite proce
so that it does not create a store of a temporaryu currently
residing in a registerr when evictingu, if the value foru in r
matches the value foru in memory. To perform this optimi-
zation, we maintain information about the consistency

Figure 1. Example illustrating the concept of a linear ordering of a procedure’s basic blocks, and the lifetimes and lifetime holes for
temporaries in this procedure. Notice that a block boundary can cause a hole to begin or end in the linear view of the program

B1

T2 ← ..

.. ← T1

T3 ← T2

T4 ← ..

.. ← T3

T1 ← ..

T4 ← ..

.. ← T1

.. ← T4

T4 ← ..

.. ← T4

B2 B3

B4

B1

T1

T2

T3

T4

B2 B3 B4

w

w

r r

r

w r

w w r w

Linear-ordering of blocks

T4’s lifetime
Lifetime hole

in T4

(a) An example CFG
with temporary lifetimes overlaid.

(b) A linear ordering for the example CFG
with lifetime holes indicated for each temporary.

r

3

a
m-

d
ed
If
ge,
we
in a
in

wo
his
of
le

es-
,

ld

n in

n-
-

we
of
t the
ly

ave
the value inr with respect to the value inu’s memory home.
Any spill of u to or from memory makes the memory home
consistent withr. Any write of a value tor invalidates the
consistency of the memory and register values. When we
come to a point where we decide to evictu from r, we avoid
the generation of a store spill ifu is evicted fromr during
one ofu’s lifetime holes (a store is not needed since the next
reference will overwrite the current value) or if the values of
u in r and in memory are consistent.

2.4 Resolution

As we mentioned earlier, the above approach to register
allocation comes with a cost. In giving a temporary a second
chance and multiple register locations at different intervals
in the temporary’s lifetime, we can potentially create con-
flicts in the allocation assumptions at the basic block bound-
aries. The linear processing of the allocation/rewrite phase
of our approach incompletely models the program control
flow. To maintain program semantics, we follow the alloca-
tion/rewrite phase with a traversal of the CFG edges, resolv-
ing any mismatch in the allocation assumptions across each
edge.

We can resolve any conflicts between the allocation
assumptions across CFG edges by inserting an appropriate
set of load, store, or move instructions. During the alloca-
tion pass we maintain a map that gives us information on
the location of a temporary at the top and bottom of each
basic block. Across a control flow edge, there are three pos-

sibilities that require resolution. If the temporary was in
register at the bottom of the predecessor block but in me
ory at the top of the successor block, we insert1 a store
instruction (but only if a temporary’s allocated register an
memory home are inconsistent). If the temporary mov
from memory to a register, we insert a load instruction.
the temporary was in two different registers across the ed
we insert a move instruction. While processing an edge,
are careful to model the data movement across the edge
manner that produces the correct resolution instructions
the semantically-correct order, even in the case where t
(or more) temporaries swap their allocated registers. T
processing is similar to replacing SSA phi-nodes by a set
equivalent move operations [12]. Figure 2 gives a simp
example of resolution.

The linear processing of the CFG can also lead to unnec
sary spill loads. Continuing with the example in Figure 2
assume that we remove the shortest lifetime from blockB3.
With this change, the allocator as currently described wou
still insert the load ofT1 into R2 for the rewrite ini3. This
is because the linear ordering assumes that the last actio
block B2 for T1 left T1 in memory. This is a pessimistic
assumption since there is no control-flow edge directly co
nectingB2 andB3. We would like to be able to take advan

1. If the block at the head of the edge has only a single predecessor,
place the resolution code at the top of this block. If the block at the tail
the edge has only a single successor, we place the resolution code a
bottom of this block. If the edge is a critical edge, we split the edge, safe
creating a location to place the resolution code.

i8: ld R2,T1

{T1 in R1}

{T1 in mem}

Figure 2. Example of conflict resolution at CFG edges. Assume that none of the temporaries contain lifetime holes and that we h
only two registersR1 andR2. When the allocator encountersi1 in B1, it assignsT1 to R1 and rewritesT1 in i1 and theni2 to useR1.
When the allocator encounters the third lifetime inB2, it spills T1 to memory (i5). When it encountersi3 in B3, it inserts a load ofT1

from memory (i6); this timeT1 is given registerR2—a second-chance allocation. The linear scan completes after rewritingT1 in i3 and
theni4 to useR2. During resolution, the allocator inserts a store (i7) at the top ofB3 and a load (i8) at the bottom ofB2.

B1

i2: .. ← T1

i1: T1 ← ..

i3: .. ← T1

i4: .. ← T1

B2 B3

B4

(a) An example CFG before allocation. The CFG
contains 5 temporary lifetimes, but onlyT1’s

(b) The CFG after allocation. Only instructions associated
with T1 are shown. The linear allocation order isB1-B2-B3-B4.

B1

i2: .. ← R1
...
i5: st R1,T1

i1: R1 ← ..

B2 B3

B4

i6: ld R2,T1
i3: .. ← R2

i4: R2 ← ..

{T1 not live}

{T1 in R1}

{T1 in mem}

{T1 in R2}

{T1 in R2}

i7: st R1,T1

references are shown. The allocation assumptions forT1 before resolution are shown as sets
at the top and bottom of each block.
4

a

e
n-

ut
he
nt

n-
le,
so

to
re
s
is-
nt
rs.

ter
ee
e
e
we
a

n-
s
a
is
e
to

ng
ce
er

e

a
es
ar
g,
tage of the fact that one of our registers will be unused from
the top ofB3 till i3 and thus allocateT1 to this register for
the entire length ofB3. The best choice is to allocateT1 to
R1 at the top ofB3 (eliminating the generation of any reso-
lution code across the edgeB1-B3); however, this choice
would require us to reconstruct the binpacking state when
the linear traversal transitions between two blocks not con-
nected by a control-flow edge. We consider this too expen-
sive an operation considering thatR1 may be needed for
another temporary (as in the original example in Figure 2)
before the use ofT1 in i3. An alternative solution is to run a
later code motion pass that tries to sink stores and hoist
loads until they meet. When loads and stores to the same
stack location meet, we can replace the two operations with
a move from the store’s source register to the load’s destina-
tion register. The resulting move may then be eliminated by
subsequent copy propagation and dead-code elimination
passes.

Though we do not perform any dataflow analyses during
register allocation to minimize the generation or improve
the placement of spill code, we do perform, during the reso-
lution phase of our allocator, one dataflow analysis for cor-
rectness. If we decided not to insert a store instruction when
evicting a temporary (see Section 2.3), we used the fact that
the memory and register contents were consistent. This
assumption may hold along one or more paths through the
control flow graph, but not necessarily through all paths
reaching the point where the consistency information was
used. In order to determine if and where spill stores need to
be inserted to guarantee consistency along all paths, we
solve the following iterative bit-vector dataflow problem.

Each bit vector used in our analysis requires as many bits as
there are allocation temporaries that are live across basic
block boundaries. During the linear scan, we maintain a
working bit vector calledARE_CONSISTENT. Let At be the
bit in ARE_CONSISTENTcorresponding to a temporaryt.
At is set as long ast is allocated to a registerr and the con-
tents of r are consistent witht’s memory home. As
described in Section 2.3, a write tor clearsAt, and a spill of
t setsAt. We will not generate a spill store fort during evic-
tion of t from r if At is set. We save a local copy of
ARE_CONSISTENTat the end of each basic block. This
copy is used in the subsequent dataflow analysis.

Also during the linear scan, we generate the local GEN and
KILL sets for each basic blockb. The bit vector
WROTE_TR(b)corresponds to the KILL set. LetWt be the
bit in WROTE_TR(b)corresponding to a temporaryt. Wt is
initially clear; it is set whenever a registerr allocated tot is
written in b. The bit vectorUSED_CONSISTENCY(b)cor-
responds to the GEN set. LetUt be the bit in
USED_CONSISTENCY(b)corresponding to a temporaryt.
Ut is initially clear; it is set wheneverWt is clear and we
usedAt to inhibit the generation of a spill store. In other
words,Ut is set whenever the inhibiting of a spill store relies
on assumptions of consistency not local tob.

Once we have completed the linear scan for the allocate/
rewrite phase, we iterate to find a fixed point for the follow-
ing dataflow equations:

For all blocksb, we initially set USED_C_in(b)equal to
USED_CONSISTENCY(b).

During resolution processing, we insert a spill store for
temporaryt during the processing of a CFG edgep→s if the
bit for t in USED_C_in(s) is set and the bit in
ARE_CONSISTENT(p)is clear. These edges represent th
beginnings of paths reaching program points where the co
sistency oft’s register and memory home was exploited, b
where the register and memory were not consistent. T
placement of this spill store follows the same placeme
rules as the other resolution code.

2.5 Move optimizations

Modern computing systems typically impose usage conve
tions for registers. The caller-saved registers, for examp
are not preserved across procedure calls. As described
far, our algorithm only allows a temporary to be assigned
a register if that register is free for the temporary’s enti
remaining lifetime. Under such a restriction, all temporarie
live across calls compete solely for the callee-saved reg
ters. In a graph-coloring register allocator, this is equivale
to adding an interference edge to the caller-saved registe

In our algorithm, we represent the constraints on regis
usage by considering the intervals in which a register is fr
for use as its lifetime holes. A temporary can now fit insid
a register’s lifetime hole or another temporary’s lifetim
hole. In order to overcome the problem described above,
allow in our algorithm for a temporary to be assigned to
register with a lifetime hole that is not large enough to co
tain the entire lifetime. The algorithm heuristically searche
for the largest of these insufficiently-large holes. When
register’s lifetime hole expires, we check to see if there
still a temporary contained in it. If there is one, we evict th
temporary from that register at this point (corresponding
a call site, for example).

When evicting a temporaryt from a registerrt that is needed
by some convention, we could insert a spill store, reloadi
its value the next time we need it through our second-chan
mechanism. But it might be true at this point that some oth
registerrs now contains a hole that could containt’s remain-
ing lifetime. If t’s lifetime fits in the lifetime hole inrs, it is
more efficient to insert a move fromrt to rs now than insert
a store now and a load later, provided thatt is not evicted
from rs before t’s next reference. We therefore insert th
move now only if we can find an empty registerrs and if
evicting t from rt would result in a spill store. We refer to
this mechanism asearly second chance.

Although a move instruction can be more efficient than
load-store instruction pair, we also want to eliminate mov
during register allocation when possible. During our line
scan, we perform a check, in the spirit of move coalescin

USED_C_out b() USED_C_in s()
s succ b()∈

∪=

USED_C_in b() USED_CONSISTENCY b()=

USED_C_out b() WROTE_TR b()–()∪
5

u-
by
to
is
ow
re
r-

e

at
all

the
t

a
th
F
ch

e
cal
lgo-
ies
th

is-
or
ns
the
In

lim-
at
ing

at
g
d
s
to
it

gs
ss-

tly
rt
e
-

that attempts to assign both the source and destination of a
move to the same register; such moves are eliminated by a
separate peephole pass. The check works as follows: once
we have assigned a register to the source of a move instruc-
tion, we check to see if that register has a hole starting
immediately after the move’s source use and if the lifetime
of the move’s destination temporary fits within this hole. If
so, we bypass the normal allocation mechanism and rewrite
the move destination to use the same register as the move
source.

We have implemented only a limited version of the move
elimination optimization. In order to satisfy the Digital
Alpha calling convention, our Alpha code generator inserts
move operations from the parameter registers to the sym-
bolic names of the parameters at the top of a procedure. We
can easily eliminate these moves using our move optimiza-
tion. If we leave them in the code, they can noticeably
degrade the performance of call-intensive programs. Our
current implementation performs the move optimization
only when the source of a move is already in a register. It
would be straightforward to extend our implementation to
attempt move optimization after allocation of a general
move source.

2.6 Complexity analysis

The conflict resolution step of our algorithm, which we feel
is essential for maximizing the quality of the output code,
does not have a linear time bound. Its worst-case complex-
ity is dominated by that of the dataflow calculation
described above. However, this dataflow analysis can be
replaced so that our allocator runs in linear time.

The first two phases of the algorithm, computation of life-
times and holes, then allocation and rewriting, are mani-
festly linear.2 Each is a single sweep over the instructions of
the program being compiled. Allocation has a constant fac-
tor proportional to the number of available registers, since it
may scan the register state in order to choose and assign a
register.

The sweep over edges during conflict resolution is also
effectively linear: in real programs most flow nodes have an
out degree of one or two so that the number of edges grows
as the number of nodes, and not quadratically.

If the equations forUSED_C_in(b)and USED_C_out(b)
given above are solved by the standard iterative bit-vector
calculation, then conflict resolution has a worst-case run-
ning time ofO(N2) bit-vector operations, whereN is the size
of the program. If the size of the bit-vectors is the number of
temporaries, then the bound is cubic, since the total number
of register candidates is typically proportional to the size of
the program. The common experience with the standard
method, however, is that it terminates in two or three itera-

tions at most, which brings its time cost down toO(N) bit-
vector operations.

In our implementation, the time spent in this dataflow calc
lation rarely reaches one percent of the time consumed
the overall algorithm. We have therefore not attempted
tune this phase. For situations in which strict linearity
necessary, one could easily replace our iterative datafl
calculation with a more conservative solution. To ensu
that we avoid a spill store only when legal, we can conse
vatively initialize the working copy of the
ARE_CONSISTENTbit vector at the top of each blockb
encountered during the linear scan. We initialize it with th
intersection of the savedARE_CONSISTENTbit vectors at
the bottom of allb’s predecessor blocks. We assume th
any predecessor with an uninitialized bit vector clears
bits in the working bit vector.

In our experiments, conflict resolution including dataflow
analysis has never consumed more than five percent of
total time for allocation. Sacrificing strict linearity has no
had a major impact.

3 Experimental evaluation

To compare fairly our linear-scan register allocator with
graph-coloring allocator, we have implemented them bo
in the Machine SUIF extension [14] of the Stanford SUI
compiler system [16]. SUIF makes it easy to mix and mat
compiler passes. Keeping the rest of the compiler fixed, w
created two alternative register allocation passes, identi
in every respect except the central register assignment a
rithms. In both passes, for example, we use shared librar
to construct CFGs and perform liveness and loop-dep
analysis, with the results attached to the CFG prior to reg
ter allocation. Moreover we use a common set of utilities f
scanning the code and updating it to insert spill instructio
or to reflect register assignments. Loop depth is used in
same way to weight occurrence counts in both allocators.
each case, register allocation is preceded by dead code e
ination and followed by a peephole optimization pass th
removes moves that can safely collapse into the preced
or succeeding instruction.

The coloring method used is an implementation of th
described by George and Appel [7]. This is a pure colorin
approach in the style originated by Chaitin [5] and refine
by Briggs et al. [2]. Its principal departure from that style i
that it integrates register coalescing (copy propagation) in
the coloring phase of allocation, rather than performing
repeatedly beforehand in a loop. The usual Chaitin-Brig
method builds a new interference graph after each succe
ful round of coalescing. George and Appel take the cos
graph-building operation out of the inner loop. They repo
that it also improves code significantly by eliminating mor
copy instructions. Our implementation is faithful to the pub
lished algorithm [7] with two exceptions:

• We use a lower-triangular bit matrix, rather than a
hash table, to record the adjacency relation of the
interference graph.

2. We assume the liveness information used in finding lifetimes and
holes is available when register allocation begins. The cost of gathering
and storing it is amortized over many optimizations in a typical optimizing
compiler.
6

st

f a
in
e-
tal
by
ve
of

ns,
is
.

by
d-
• We perform liveness analysis only once, before allo-
cation, rather than once per round of coloring. For
both linear scan and graph coloring, temporaries that
are live only within a single basic block are excluded
from dataflow analysis, which greatly reduces bit
vector sizes and makes repeated dataflow analysis
unnecessary between coloring iterations.

The latter simplification is possible for both linear scan and
graph coloring, because the temporaries generated by spill
code insertion are live only within a single basic block. Glo-
bal liveness information is not affected by such temporaries.

When targeting the Digital Alpha, our graph-coloring allo-
cator deals separately with general-purpose registers and
floating-point registers. On current Alpha implementations,
data moved between register files must go through memory,
and each register operand of a given instruction can only
reside in one file or the other. With coloring, the non-linear
costs of building the interference graph and choosing tem-
poraries to spill make it more efficient to solve the two
smaller problems separately. (This is the approach used, for
example, in the compiler for which George and Appel
designed their algorithm.) Our linear-scan algorithm, on the
other hand, processes both register files at once.

3.1 Run times

We compare the quality of generated code on a number of
benchmarks. Table 1 presents run-time results both in terms
of instruction counts and actual run times. For each metric,
we also calculate the ratio of the result under linear scan to
the result under graph coloring. Larger ratios mean poorer
performance of the linear-scan-produced executable. The
target machine for these experiments is a Digital Alpha run-
ning Digital UNIX 4.0. Most benchmarks are from the
SPEC92 suite, except forcompressandm88ksim(SPEC95)
and sort and wc (UNIX utilities). The instruction count
results were obtained using the HALT tool within Machine
SUIF to instrument each benchmark after code generation.
The run-time results were obtained with the UNIX time

command on a lightly-loaded Alpha. Each time is the be
of five consecutive runs.

Overall, our approach produces executables that are o
quality near to those produced by coloring. To help expla
the variation in the instruction count results, Table 2 pr
sents a statistic indicating what percentage of the to
dynamic instruction count was due to spill code inserted
the register allocator. This counts load, store, and mo
instructions inserted for allocation candidates only. Five
our benchmarks (alvinn, li , tomcatv, compress, andwc) had
no spill code under either approach. For these applicatio
the difference in the dynamic instruction counts in Table 1
entirely due to the lack of move coalescing in our algorithm
We expect that we could remove much of this difference
following register allocation by copy propagation and dea
code elimination optimizations.

Benchmark
Ratio

(binpack/GC)
Ratio

(binpack/GC)

alvinn 5859032035 5850062031 1.002 20.56 20.67 0.995

doduc 1610607538 1565260889 1.029 7.36 7.23 1.018

eqntott 2782873030 2777476231 1.002 6.92 6.90 1.003

espresso 1510435454 1390526882 1.086 3.54 3.34 1.060

fpppp 6775315066 6262634084 1.082 25.79 24.73 1.043

li 9878244999 9694580392 1.019 23.91 24.76 0.966

tomcatv 6531688057 6531662363 1.000 14.29 14.36 0.995

compress 94956007702 91999060755 1.032 281.30 275.79 1.020

m88ksim 1112471957 1101374080 1.010 2.97 2.90 1.024

sort 1030126044 989670114 1.041 4.35 4.02 1.082

wc 1046734 1046722 1.000 0.92 0.91 1.011

Run time (sec)Instruction counts
Second-chance

binpacking
Graph

coloring
Second-chance

binpacking
Graph

coloring

Table 1: A comparison of the dynamic instruction counts and the run times of executables using either our second-chance
binpacking approach or George/Appel’s graph-coloring approach.

Benchmark

alvinn 0% 0%
doduc 0.460% 0.492%
eqntott 0.001% 0.000%
espresso 0.783% 0.148%
fpppp 18.561% 13.397%
li 0% 0%
tomcatv 0% 0%
compress 0% 0%
m88ksim 0.030% 0.045%
sort 1.339% 0.905%
wc 0% 0%

Second-chance
binpacking

Graph
coloring

Table 2: Percentage of total dynamic instructions due to
spill code for each allocation approach. If no spill code

was inserted during register allocation, the percentage is
reported as simply “0%”.
7

s
ed
ce
d-
se
th-

o-
ed

op
d-
po-

the
o-

the
eg-
es

b”
h
e

For the applications with spill code, Figure 3 presents a
detailed look at the composition of the spill code produced
both by second-chance binpacking and by graph coloring.
In both doducandm88ksim, binpacking produces less spill
code than coloring. The majority of the difference is due to
the insertion of extra spill loads during coloring. Our bin-
packing produces more spill code than coloring foreqntott,
espresso, fpppp, and sort. A significant proportion of this
increase appears due to extra stores (resolution and evic-
tion). These stores can, as in the case ofeqntott, lead to a
large number of resolution loads. A review of the output
code shows that a global optimization pass run after alloca-
tion can eliminate unnecessary load/store pairs as well as
partially redundant spill instructions using hoisting and
sinking techniques.

In order to evaluate the advantages of our second-chance
binpacking over traditional two-pass binpacking, we created
a version of our allocator that assigns a whole lifetime to

either memory or register. This implementation still take
advantage of lifetime holes during allocation. We observ
two classes of applications with respect to the performan
of this allocator. The first, represented best by the wor
count (wc) benchmark, contains those applications who
performance degrades substantially under binpacking wi
out second chance. Thewc benchmark ran 38% slower
(1445466 vs. 1046734 dynamic instructions) when all
cated using two-pass binpacking than it did when allocat
with our second-chance approach. Thewc benchmark has a
large number of temporaries that are live throughout a lo
that contains a procedure call to an I/O routine. Our secon
chance mechanism manages to allocate some of the tem
raries to caller-saved registers, evicting them just before
procedure call but avoiding unnecessary stores. The tw
pass binpacking approach, however, is not able to use
caller-saved registers (there is no hole in a caller-saved r
ister large enough to contain the lifetimes of the temporari

0.0

0.5

1.0

1.5

doduc-
b

doduc-
c

eqnto
tt-

b

eqnto
tt-

c

esp
re

ss
o-b

esp
re

ss
o-c

fp
ppp-b

fp
ppp-c

so
rt-

b
so

rt-
c

m
88ks

im
-b

m
88ks

im
-c

Benchmark-scheme

S
pi

ll
co

de
co

un
ts

no
rm

al
iz

ed
to

bi
np

ac
ki

ng

Figure 3. A categorization of the spill code inserted by each allocator. Results for our binpacking approach are labelled with a “-
while those for coloring are labelled with “-c”. For each benchmark, we normalize the counts to the total spill code inserted wit
binpacking. We have separated the “eviction” spill code inserted during our linear scan and the coloring algorithm’s spill phas

from the “resolve” spill code inserted during our resolution phase.

evict loads

evict stores

evict moves

resolve loads

resolve stores

resolve moves
8

o-
-

er
t-
r

r
-
its
-
e.

its
he

g
c-
dds
a
or

e
r-

ut
lly
rs

a
e

in

ch
s
ill

en
ing
ss

and
an
His
the

to
live across the call), thus evicting temporaries out of the
callee-saved registers. Since this algorithm does not avoid
unnecessary stores, costly spill code is inserted inside the
loop. The other class of applications, exemplified byeqn-
tott, has almost identical performance under two-pass bin-
packing and second-chance binpacking (2783984589 vs.
2782873030 dynamic instructions). Theeqntottbenchmark
spends a vast majority of its time in the procedurecmppt(),
which contains a very small number of temporaries and
therefore requires no spilling.

3.2 Compile times

To evaluate the compilation speed of the two methods, we
timed both on representative modules from the benchmark
set. Table 3 shows results obtained by timing only the core
parts of the allocators on a lightly-loaded Alpha. In particu-
lar, we record the time of day after setup activities common
to both allocators, such as CFG construction, loop analysis,
liveness analysis, etc., and then record the time of day again
after allocation. The difference in these two recorded times
is summed over all procedures in a compiled module to pro-
duce the times in Table 3. Each is the best of five consecu-
tive runs. The table also includes the average number of
register candidates per procedure in the module and the
average number of edges in their interference graphs.

While the coloring allocator is actually faster on small prob-
lems, its performance rapidly becomes worse on programs
with lots of competing register candidates. These numbers
illustrate that a coloring allocator slows down significantly
as the complexity of the interference graph increases.

4 Related work

The phrase “linear scan” was used by the developers of the
‘C dynamic code generator to describe the register allocator
in their system [13]. Having tried graph coloring, they
developed a simpler method that scans a sorted list of the
lifetimes and at each step considers how many lifetimes are
currently active and thus in competition for the available
registers. When there are too many active lifetimes to fit, the
longest active lifetime is spilled to memory and the scan
proceeds. No attempt is made to take advantage of lifetime
holes or to allocate partial lifetimes. Nevertheless, in con-
text of a run-time code generator, the improvement in com-
pilation speed obtained by using linear scan instead of
coloring justifies a modest decrease in run-time speed.

Digital Equipment Corporation has used a linear-scan alg
rithm for many years in the GEM optimizing code genera
tor, a compiler back-end used in several of its compil
products [1]. The GEM approach to binpacking and trea
ment of lifetime holes [3] was the starting point for ou
work on linear-scan allocation. Binpacking evolved from
work done in the production quality compiler-compile
project at CMU [11,17]. However, the discovery of linear
scan register allocation at Digital was almost an accident:
first implementation was intended as a “throw-away” mod
ule, meant to be replaced by a more elaborate schem
When the throw-away turned out to perform better than
more complicated replacement, it was shipped with t
product instead [9].

Digital’s allocator uses “history preferencing”, which
allows load instructions to be omitted by rememberin
which values in memory are mirrored in registers. Our se
ond chance method subsumes history preferencing and a
the dual optimization of avoiding a store instruction when
register’s value can be shown to exist in memory already
never be needed in memory again.

Laurie Hendren and a group from McGill University hav
experimented with an alternative representation for interfe
ence graphs which they callcyclic interval graphs[8]. This
data structure provides more fine grain information abo
the overlap between two temporary lifetimes, especia
those extending around a loop. Hendren’s algorithm cove
points of maximal pressure with afat cover, a set of non-
overlapping intervals that can fit into one register. This ide
is very similar to binpacking. Hendren also introduces th
concept of a chameleon interval, a temporary that is
assigned different colors, or registers, at different points
its lifetime.

In his recent book, Bob Morgan presents a hybrid approa
to register allocation [12]. He first runs a limiting pas
which reduces the register pressure by introducing sp
code for temporaries that are live through loops. He th
runs his register allocator in three phases: he starts by us
graph-coloring to allocate temporaries that are live acro
basic blocks. He then uses Hendren’s representation
algorithm to allocate those local temporaries that c
occupy the same registers as the global temporaries.
final phase uses a standard local algorithm to allocate
purely local temporaries.

Module
(Benchmark)

Average number of Allocation time (sec)

Register
candidates

Interference graph
edges

Graph coloring
Second-chance

binpacking

cvrin.c (espresso) 245 1061 0.4 1.5

twldrv.f (fpppp) 6218 51796 8.8 3.7

fpppp.f (fpppp) 6697 116926 15.8 4.5

Table 3: A comparison of the allocation times. The average number of register candidates and interference graph edges refer
the coloring allocator. These numbers cover all coloring iterations.
9

-
d

-
-

”

n

a
e

t

//

,”

.

5 Conclusions

Linear-scan methods of register allocation are fast and
effective. They can enable the interprocedural optimization
of large programs, and they are appropriate for run-time
code generation. They avoid the risk of the compile-time
performance degradation that graph-coloring methods suf-
fer on certain program inputs.

We have presented and studied a new implementation of lin-
ear-scan, called second-chance binpacking. This approach
performs register allocation and instruction rewriting in a
single pass, and it pays more attention to spill code minimi-
zation than other linear-scan approaches. We have made a
fair comparison of this new method with a well-designed
coloring algorithm and found linear scan to be competitive
in output quality and much less prone to slow down on com-
plex inputs. We believe there remain ways of tuning the sec-
ond-chance binpacking algorithm so that the run-time
performance of generated code more uniformly matches
that of a coloring allocator.

6 Acknowledgments

We are grateful to Steve Hobbs, Bob Morgan, and August
Reinig of Digital Equipment Corporation for their helpful
discussions on the use of binpacking in the GEM compiler.
We would also like to thank Max Poletto of MIT for his
explanation of the use of linear scan in dynamic code gener-
ation.

This research was funded in part by a NSF Young Investiga-
tor award (grant no. CCR-9457779), a DARPA grant no.
NDA904-97-C-0225, and research gifts from AMD, Digital
Equipment, HP, Intel, and Microsoft.

7 References

[1] D. S. Blickstein, P. W. Craig, C. S. Davidson, R. N.
Faiman, K. D. Glossop, R. P. Grove, S. O. Hobbs and W. B.
Noyce, “The GEM Optimizing Compiler System,”Digital
Equipment Corporation Technical Journal, 4(4):121–135,
1992.

[2] P. Briggs, K. Cooper, and L. Torczon, “Improvements
to Graph Coloring Register Allocation,”ACM Transactions
on Programming Languages and Systems, 16(3):428–455,
May 1994.

[3] C. K. Burmeister, K. W. Harris, W. B. Noyce and S.
O. Hobbs, U.S. patent number 5,339,428.

[4] G. Chaitin et al., “Register Allocation via Coloring,”
Computer Languages, 6, pp. 47–57, 1981.

[5] G. J. Chaitin, “Register Allocation and Spilling via
Graph Coloring,”SIGPLAN Notices, 17(6):201–107, June
1982.

[6] M. F. Fernandez, “Simple and Effective Link-time
Optimization of Modula-3 Programs,”SIGPLAN Notices,
30(6):103–115, June 1995.

[7] L. George and A. Appel, “Iterated Register Coalesc
ing,” ACM Transactions on Programming Languages an
Systems, 18(3):300–324, May 1996.

[8] L. J. Hendren, G. R. Gao, E. R. Altman and C. Muk
erji, “A Register Allocation Framework Based on Hierar
chical Cyclic Interval Graphs,”Proc. 4th International
Compiler Construction Conference, pp. 176–191, October
1992.

[9] S. O. Hobbs, Personal communication, July 1997.

[10] U. Hoeltze, “Adaptive Optimization for Self: Recon-
ciling High Performance with Exploratory Programming,
Ph.D. thesis, Stanford University, March 1995.

[11] B. Leverett, “Register Allocation in Optimizing Com-
pilers,” Ph.D. thesis, CMU-CS-81-103, Carnegie-Mello
University, February 1981.

[12] R. Morgan,Building an Optimizing Compiler, Digital
Press, Boston, 1998.

[13] M. Poletto, D. R. Engler and M. F. Kaashoek, “tcc:
System for Fast, Flexible and High-level Dynamic Cod
Generation,”SIGPLAN Notices, 32(5):109–121, May 1997.

[14] M. Smith, “Extending SUIF for Machine-dependen
Optimizations,” Proc. First SUIF Compiler Workshop,
Stanford, CA, pp. 14–25, January 1996. URL: http:
www.eecs.harvard.edu/machsuif.

[15] D. W. Wall, “Global Register Allocation at Link
Time,” SIGPLAN Notices, 21(7):264–275, July 1986.

[16] R. Wilson et al., “SUIF: An Infrastructure for
Research on Parallelizing and Optimizing Compilers
ACM SIGPLAN Notices, 29 (1994), pp. 31–37. URL: http://
suif.stanford.edu.

[17] W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O
Hobbs and C. M. Geschke,The Design of an Optimizing
Compiler, American Elsevier, New York, 1975.
10

	Quality and Speed in Linear-scan Register Allocation
	Omri Traub, Glenn Holloway, Michael D. Smith
	Harvard University
	Division of Engineering and Applied Sciences
	Cambridge, MA 02138
	{otraub, holloway, smith}@eecs.harvard.edu
	Abstract
	1 Introduction
	2 Second-chance binpacking
	2.1 Allocation candidates and lifetime holes
	Figure 1. Example illustrating the concept of a linear ordering of a procedure’s basic blocks, an...

	2.2 The binpacking model
	2.3 Second-chance allocation
	2.4 Resolution
	Figure 2. Example of conflict resolution at CFG edges. Assume that none of the temporaries contai...

	2.5 Move optimizations
	2.6 Complexity analysis

	3 Experimental evaluation
	3.1 Run times
	Table 1: A comparison of the dynamic instruction counts and the run times of executables using ei...
	Table 2: Percentage of total dynamic instructions due to spill code for each allocation approach....
	Figure 3. A categorization of the spill code inserted by each allocator. Results for our binpacki...
	Table 3: A comparison of the allocation times. The average number of register candidates and inte...

	3.2 Compile times

	4 Related work
	5 Conclusions
	6 Acknowledgments
	7 References
	[1] D. S. Blickstein, P. W. Craig, C. S. Davidson, R. N. Faiman, K. D. Glossop, R. P. Grove, S. O...
	[2] P. Briggs, K. Cooper, and L. Torczon, “Improvements to Graph Coloring Register Allocation,” A...
	[3] C. K. Burmeister, K. W. Harris, W. B. Noyce and S. O. Hobbs, U.S. patent number 5,339,428.
	[4] G. Chaitin et al., “Register Allocation via Coloring,” Computer Languages, 6, pp. 47–57, 1981.
	[5] G. J. Chaitin, “Register Allocation and Spilling via Graph Coloring,” SIGPLAN Notices, 17(6):...
	[6] M. F. Fernandez, “Simple and Effective Link-time Optimization of Modula-3 Programs,” SIGPLAN ...
	[7] L. George and A. Appel, “Iterated Register Coalescing,” ACM Transactions on Programming Langu...
	[8] L. J. Hendren, G. R. Gao, E. R. Altman and C. Mukerji, “A Register Allocation Framework Based...
	[9] S. O. Hobbs, Personal communication, July 1997.
	[10] U. Hoeltze, “Adaptive Optimization for Self: Reconciling High Performance with Exploratory P...
	[11] B. Leverett, “Register Allocation in Optimizing Compilers,” Ph.D. thesis, CMU-CS-81-103, Car...
	[12] R. Morgan, Building an Optimizing Compiler, Digital Press, Boston, 1998.
	[13] M. Poletto, D. R. Engler and M. F. Kaashoek, “tcc: a System for Fast, Flexible and High-leve...
	[14] M. Smith, “Extending SUIF for Machine-dependent Optimizations,” Proc. First SUIF Compiler Wo...
	[15] D. W. Wall, “Global Register Allocation at Link Time,” SIGPLAN Notices, 21(7):264–275, July ...
	[16] R. Wilson et al., “SUIF: An Infrastructure for Research on Parallelizing and Optimizing Comp...
	[17] W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs and C. M. Geschke, The Design of an Op...

