
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2003; 00:1–99 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

Fast, accurate call graph

profiling

J. M. Spivey

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD
mike@comlab.ox.ac.uk

SUMMARY

Existing methods of for call graph profiling, such as that used by gprof, deal badly with
programs that have shared subroutines, mutual recursion, higher-order functions, or
dynamic method binding. This article discusses a way of improving the accuracy of a
call graph profile by collecting more information during execution, without significantly
increasing the overhead of profiling. The method is based on keeping track of a context,
consisting of the set of subroutines that are active at a particular moment during
execution, together with the calling arcs between these subroutines. The profiler records
the time spent in each context during execution of the program, and thus obtains an
accurate measurement of the total time during which each subroutine was active. By
recording arc information for only the most recent activation of each subroutine, it
is possible to arrange that even recursive programs give rise to a finite number of
these contexts, and in typical real programs, the number of distinct contexts remains
manageably small. The data can be collected efficiently during execution by constructing
a finite-state machine whose states correspond to contexts, so that when a context is
entered for a second or subsequent time, only a single access of a hash table is needed
to update the state of the profiling monitor.

key words: call graph profiling

Introduction

Profiling is a family of techniques for gathering information about the behaviour of a program
during execution, and especially for recording the amount of time spent in each part of the
program. The data can be used to help programmers identify performance bottlenecks, and also
to guide optimising compilers. This article focusses on the use of profiling as a programming
tool, and on measuring the time taken by each subroutine in the program, rather than on the
finer-grained data that is often collected for use by a compiler.

Call-graph profiling involves relating the timing information to the call graph of the program.
In one popular way of presenting a call graph profile, used by the gprof profiler [1, 2, 3], the
time taken by each subroutine is also shared out among its callers, so that programmers can

Copyright c© 2003 John Wiley & Sons, Ltd.



2 J. M. SPIVEY

get a good idea of how total execution time is divided among the major tasks carried out by
a program.

In order to minimise the time overhead imposed by profiling, gprof adopts a scheme where
the only times that are directly measured is the total time spent in executing each subroutine,
which gprof reports as the self time of the routine. The profiler also adds instrumentation
code to count the number of times each arc in the call graph is traversed; that is, the number
of times each routine calls each of its subroutines. After execution is over, the self time of each
routine is shared out among its callers as child time. This is done approximately by sharing
out the time in proportion to the number of calls on each arc in the call graph. This procedure
gives reasonably accurate results if every call of a subroutine takes approximately the same
time, or at least if the average time taken by a subroutine is the same for each caller: this
is called the average time assumption. However, inaccuracies will occur if the running time
of some subroutines depends on the values of their arguments, and the arguments are drawn
from different distributions in different calls of the same subroutine. Reference [4] discusses
this problem at length.

The average time assumption is particularly likely to be misleading in programs written in a
functional or object-oriented style. Programs written in a polymorphic higher-order language
such as ML are likely to use standard higher-order functions for many unrelated purposes. For
example, the function map f xs applies the function f to each element of the list xs, gathering
the results into a new list. The time taken by this depends on both the time taken by each call
of the function f and the length of the list xs, and both these are likely to vary significantly
from one caller to another. Serious inaccuracy will result when gprof gathers together all the
time taken by the various functions f that are passed to map and shares this time among the
callers of map indiscriminately.

Similarly misleading profiles can result from common ‘design patterns’ in object-oriented
programming. For example, suppose that buttons in the user interface of a word processor are
bound to Command objects, and when activated, they send these commands to the execute

method of another object app that represents the application itself. The application object is
responsible for saving the file once every 100 commands, maintaining an ‘undo’ list, etc., but
principally calls the perform method on each Command object it receives. The result will be
that all the time spent carrying out commands will be charged as child time to the execute

method of app, and will be recharged to the buttons in proportion to the number of times
each button was clicked, regardless of the relative costs of processing the clicks. If different
buttons are bound to commands with different costs, then the average time assumption leads
to seriously inaccurate results.

If gprof behaves badly for higher-order and object-oriented programs, it becomes even worse
with programs where there is mutual recursion; that is, where two or more routines are linked
in a ring where each calls the next, so that the call graph contains a non-trivial cycle. Since
gprof only counts the number of traversals of each arc in the call graph, but records no
information about longer chains of calls, the best it can do is to lump together all the routines
in each strongly-connected component of the call graph (which it calls a ‘cycle’ in the report),
aggregating the time taken by the routines themselves and the time taken by all routines they
call, and re-charging these times according to the number of calls along arcs that lead into
the component. Functional and object-oriented programming styles naturally lead to programs

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



FAST, ACCURATE CALL GRAPH PROFILING 3

with mutual recursion, since both encourage the development of recursive data structures and
recursive subroutines to traverse them, and the dynamic nature of subroutine calls in both
styles can lead to dynamic mutual recursion that is not detectable in the program text.

The problem addressed in this article is how to improve the accuracy of the data produced by
a tool like gprof without increasing too much the runtime overhead of profiling. This overhead
consists largely of the time spent running instrumentation code that is added to the program
in order to collect timing and call-count data during execution. To a certain extent, this time
can be excluded from the final statistics and thus ignored, unless the overhead is so high that it
makes the runtime of the profiled program impractically long. However, instrumentation code
may also have an effect on the memory consumption and cache performance of the subject
program, and these effects are less easy to assess and compensate for. It seems reasonable to
take the time overhead of profiling as a rough guide to the likely size of these effects. As will
be shown towards the end of the article, initial results indicate that the proposed technique
has an overhead comparable with that of gprof for typical programs.

The techniques described in this article are the subject of U.K. and U.S. patent applications.

Tracking the execution context

It is clear that the need for the average time assumption and the confusion that arises from
mutual recursion could both be eliminated by recording more data during execution of the
program. In the extreme, we could record the entire state of the program’s subroutine stack at
each subroutine call or return; this would then allow us to find which subroutines were active
at each point in execution, and where they were called from, and charge the elapsed time to
them with perfect accuracy. This proposal, however, would generate huge volumes of profiling
data, and the time required to record this data would completely swamp the execution time
of the program. Nevertheless, this complete set of profiling data provides an ideal at which we
should aim.

Instead of traversing the call stack at each call or return, an alternative is to create a
collection of contexts during execution. Each context records the identity of the running
subroutine, and the set of subroutines that are active. It also records some further information
about arcs that will be discussed later. The profiling monitor keeps track of the current context,
and creates new contexts dynamically as the need arises. Each tick of the profiling clock
increments a counter associated with the current context. In interrupt-driven profiling, the
counter is incremented directly at each interrupt. Alternatively, a hardware cycle counter
could be used by updating the counter for the current context each time the context changes,
increasing it by the elapsed time since the previous change of context.

The key idea is that the context does not record the entire layout of the subroutine stack,
so that there may be many stack states that correspond to each context, and even recursive
programs need only a finite number of contexts to describe their execution. In theory, the
number of such contexts, though finite, may be very large; practical experiments indicate,
however, that the number remains manageable for real example programs.

At each subroutine call, it is necessary to compute the context that applies when the newly-
called subroutine is added to those already active, and this may cause the creation of a new

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



4 J. M. SPIVEY

C0:Main†

C1:Main, P †

C2:Main, P, Q†

C3:Main, P, Q, R†

C4:Main, P †, Q, R

C5:Main, P, Q†, R C6:Main, P, Q, R, S†

Figure 1. Contexts for Main → (P → Q → R)n → P → S

context if it has not occurred before during execution of the program. When a subroutine
returns, the context should be reset to the value it had before the call, and for this purpose
the profiler maintains a stack of contexts that shadows the subroutine stack of the program.
At the end of execution, the list of contexts created during execution is written to a file, saving
for each context the set of active subroutines and the time spent in the context. This data
can then be analysed to obtain an accurate account of the execution time during which each
subroutine was active.

Consider a program that has a main routine Main, together with three mutually recursive
subroutines P , Q and R that call each other in the pattern P → Q → R → P , and another
subroutine S that is called by P . During the execution of the program, there may be many
copies of P , Q and R on the subroutine stack, but there will only be a small number of distinct
contexts, as shown in Figure 1. Each context shows the set of active routines, with the routine
that is actually running identified by a dagger sign †. As the first few subroutine calls are
made, in the sequence

Main → P → Q → R,

a new context is added for each call; these contexts are labelled C1, C2, C3 in Figure 1. When
R calls P recursively, this leads to another new context C4; it is different from C1 even though
P is running in both, because in C1 only Main is also active, but in C4 subroutines Q and R

are active. A recursive call of Q from P leads to another context C5, but a recursive call of R

from Q leads back to C3, because the set of active routines remains the same. Thus the finite
number of contexts shown in Figure 1 is sufficient, however many times the cycle of mutual
recursion is traversed.

In addition to information about the set of active subroutines, we would also like to
record some information about the arcs by which one subroutine called another. To see what
information must be gathered, we should consider what is necessary in order to produce a

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



FAST, ACCURATE CALL GRAPH PROFILING 5

gprof -like report that attaches time to arcs as well as routines, but (unlike gprof ) does so in
the presence of mutual recursion. In simple, non-recursive programs, it is sufficient simply to
record the incoming and outgoing arcs for each active subroutine; thus context C2 in Figure 1
might become

C2 : [Main]P,Main[P ]Q,P [Q†],

where the item A[B]C denotes that the subroutine B is active with incoming arc A → B

and outgoing arc B → C. Naturally, the main program has no incoming arc, and the running
routine has no outgoing arc.

As with gprof, direct recursion can be identified and treated specially, so we should next
consider the effects of mutual recursion. Suppose a procedure A has been called recursively
via B, so that the call stack looks like this:

Main → . . . → A → B → . . . → A → C → . . . → D.

Thus A has called B, and this has lead to a recursive call of A. That invocation of A has
in its turn called another routine C, and routine D is running, called directly or indirectly
by C. Clearly, the execution time spent in this context should be charged as self time to
D, and as child time to the other active routines, including Main, A, B and C, just once
to each. The time must be also be charged to the active arcs in some way, and that means
we must choose between charging it to the outgoing arc A → B from A or the outgoing arc
A → C. The choice made in our profiler is to attribute this time to the arc A → C, i.e., to
the outgoing arc from the most recent activation of the subroutine. It is necessary to know
of this convention in order to make a detailed interpretation of the profiling results that are
produced, but in fact the convention helps in answering natural questions. For example, if C

is a low-level subroutine that is not mutually recursive with A, we might want to know what
effect would be produced by eliminating the call from A to C and replacing it with faster
special-case code. With these conventions, an upper bound for the time saved can be obtained
by looking at the time associated with the arc A → C, and this is true whether or not A is a
routine that is involved in mutual recursion.

The convention is that arc information is recorded only for the most recent activation of each
subroutine. Returning to the P–Q–R example, and adding arc information to the context, we
obtain the set of contexts shown in Figure 2. One more context has been added, in that the
context C3 of Figure 1 has become two contexts C3 and C6 here. Those two contexts differ
because one contains Main[P ]Q and the other contains R[P ]Q. But again, a finite number of
contexts suffices, however deeply nested the mutual recursion may become.

The contexts shown in Figure 2 are represented in a redundant way, since (reading from left
to right) an item A[B]C is often followed by another item B[C]D that overlaps with it. As we
shall see in the next section, there is a compact representation for contexts that removes this
redundancy, representing the whole context by a partial copy of the subroutine stack. Even in
that representation, however, a context remains a set of active subroutines. When a subroutine
is called, a new item is added to the context, but (unlike a stack) that can cause other items
to disappear: for example, in the transition from context C3 of Figure 2 to context C4, the
item Main[P ]Q is deleted as the item R[P †] is added.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



6 J. M. SPIVEY

C0:Main†

C1: [Main]P,Main[P †]

C2: [Main]P,Main[P ]Q, P [Q†]

C3: [Main]P,Main[P ]Q, P [Q]R, Q[R†]

C4: [Main]P, P [Q]R, Q[R]P, R[P †]

C5: [Main]P, Q[R]P, R[P ]Q, P [Q†]

C6: [Main]P, R[P ]Q, P [Q]R, Q[R†] C7: [Main]P, P [Q]R, Q[R]P, R[P ]S, P [S†]

Figure 2. States for Main → (P → Q → R)n → P → S with arcs

Data structures for fast profiling

In implementing the profiling scheme outlined in the previous section, there are two main
problems to solve:

1. How to represent contexts compactly, and in such a way that the new context after a
subroutine call can be efficiently computed from the context before the call, without
having to traverse the subroutine stack of the program.

2. How to organise the contexts that have been created thus far, so as to find quickly at
each subroutine call whether an existing context can be used, or whether a new one must
be created.

To address the first of these problems, each context is represented by a history, a partial
copy of the subroutine stack with irrelevant entries eliminated. A history is a sequence
s = 〈s1, s2, . . . , sn〉 of subroutines, where a subroutine may be represented by the address
of its entry point. The idea is that the context contains items of the form si−1[si]si+1. Let us
adopt the convention that s0 = sn+1 = Λ for some fictitious value Λ, and that Λ[B]C denotes
the item [B]C and A[B]Λ denotes A[B†]. Then the context

[Main]P,Main[P ]Q,P [Q]R,Q[R†],

(context C3 of Figure 2) is represented by the sequence

〈Main, P,Q,R〉,

i.e., by a copy of the subroutine stack.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



FAST, ACCURATE CALL GRAPH PROFILING 7

A difficulty arises when (because of mutual recursion) the entire contents of the stack has
not been kept: for example, context C4 of Figure 2 contains the items

[Main]P, P [Q]R,Q[R]P,R[P †],

but does not contain the item Main[P ]Q. Such contexts may be dealt with by introducing a
sequence m = 〈m1, . . . ,mn〉 of mark bits, and adopting the convention that an item si−1[si]si+1

is part of the context only if mi = T , and not if mi = F . If we represent the condition mi = T

by underlining si, then the context above is represented by the sequence

〈Main, P,Q,R, P 〉.

Formally, the context represented by the sequences s and m is

{ si−1[si]si+1 | 1 ≤ i ≤ n,mi = T }.

Given this representation of contexts, we must solve the problem of computing the new
context after a subroutine call from the context before it. This is done in the following steps:

A1. [Direct recursion.] If P = sn, where P is the procedure being called, then stop: the new
context is the same as the old.

A2. [Add P .] Set sn+1 = P and mn+1 = T , and increase n by 1.
A3. [Unmark previous call.] For each i in the range 1 ≤ i < n, if si = P , then set mi = F .

[There will be at most one such i where mi = F does not already hold.]
A4. [Squeeze out redundant entries.] If mi−1 = mi = mi+1 = F for any i with 1 < i < n,

then delete si and mi and decrease n by 1. Repeat until no further such deletions are
possible.

A5. If si = si+1 and mi = mi+1 = F for any i with 1 ≤ i < n, then delete si and mi and
decrease n by 1. Repeat until no further such deletions are possible.

Step A3 deletes any previous item for P from the context, whilst leaving an unmarked entry
that provides outgoing or incoming arcs for the marked entries around it. This is the sole
purpose of unmarked entries, and steps A4 and A5 remove unmarked entries that no longer
serve this purpose, either because they are surrounded by other unmarked entries, or because
they are adjacent to an identical unmarked entry. The effect of steps A3, A4 and A5 can
be achieved in a single pass over the sequence s, so the time spent in computing the new
context grows only linearly in the length of the sequence. The size of the context is related to
the number of distinct subroutines that are active, and does not increase with the nesting of
recursion.

In Figure 2, context C4 gives rise to a call of Q. Following the algorithm above, we form the
sequence

〈Main, P,Q,R, P ,Q〉

by adding Q at the end and unmarking the previous copy of Q. No deletions are possible at
this stage, and the new sequence represents the context

[Main]P,Q[R]P,R[P ]Q,P [Q†],

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



8 J. M. SPIVEY

which is identical with context C5 in Figure 2. Deletion does take place in the transition from
context C5 to context C6. Here we add R and unmark a previous copy to obtain

〈Main, P,Q,R, P ,Q,R〉.

In this sequence, Q is redundant, and deleting it yields another sequence that also represents
the items

[Main]P,R[P ]Q,P [Q]R,Q[R†],

i.e., those of context C6 in the figure.
At first sight, the deletion process seems to be an optimisation, aimed at saving a few words

of storage in the representation of contexts. But in fact it is essential to the success of the
method, because it prevents contexts from growing without bound, and allows us to form
cycles in the graph of contexts, representing arbitrarily deep recursion with a finite number of
contexts.

We now turn to the second problem, that of organising the existing contexts so as to avoid
creating a new context unless it is necessary. Here the theme is one of making common cases
as fast as possible. Two methods are used to achieve this: first, the contexts are made into the
states of a finite-state machine M , with transitions labelled by subroutines, and second, there
is a table of contexts that allows an existing context to be found, given the sequence that it
contains.

Consider what happens when the profiler is in context C and subroutine P is called. We
carry out the following steps:

B1. Consult the transition function of M to find whether there is a transition C
P
→C ′ for

some state C ′. If so, then C ′ is the new context.
B2. If step B1 does not succeed, compute the history s for the new context using the algorithm

presented above. Consult the table of contexts to find if a context C ′ exists containing

s. If so, then add the transition C
P
→C ′ to M , and return C ′ as the new context.

B3. If step B2 does not succeed, then create a new context C ′ containing history s, add the

transition C
P
→C ′ to M , and return C ′ as the new context.

In practice, these measures are astoundingly effective. Detailed experimental data is given
later, but in no case was the number of transitions created more than 0.1% of the number of
procedure calls executed. Thus step B1 succeeds in more than 99.9% of cases. Typically, the
number of transitions created is only a little larger than the number of contexts, indicating
that step B2 is only rarely successful, even when step B1 has failed. This reflects the fact that
most programs have rather few cycles of mutual recursion. Nevertheless, step B2 is important
because it creates the cycles in the graph of contexts that are made possible by the deletion
process in the creation of histories.

It may be simpler to view the technique described in steps B1 to B3 as memoizing the
function defined by steps A1 to A5 above. There is an important respect, however, in which it
is fruitful to view the contexts as forming a finite-state machine. This is the observation that,
though the context is a function of the contents of the subroutine stack, the new context after
a subroutine is called can be computed from the old context and the identity of the subroutine,
which is crucial to the efficiency of the profiling scheme.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



FAST, ACCURATE CALL GRAPH PROFILING 9

In summary, the data structures used by the profiling monitor are as follows:

• a collection of context records, each containing a history together with counters for how
often the context was entered and how many direct recursive calls were made, and a
timer that measures how long has been spent in the context.

• a hash table that represents the transition function of the finite-state machine, and also
allows us to find all contexts where a given subroutine is running. This hash table is used
to find the new context to enter on a subroutine call.

• a stack of contexts that shadows the subroutine stack of the program. When a subroutine
is called, the new context is pushed onto this stack, and when the subroutine returns,
the profiler returns to its previous context by popping the stack.

The success of the profiling method depends crucially on the number of different contexts
that arise during execution. Potentially, each acyclic path in the call graph of the program
can give rise to a different context, and the number of such paths may be very large for non-
trivial programs. Thus a theoretical bound on the number of states grows very rapidly with
the number of subroutines in the program. In practice, however, the number of states created
during execution of real-life programs stays fairly small. After an initial period of rapid growth
as the pattern of computation in the program emerges, the number of states typically becomes
nearly stable, with subsequent periods of growth when the program enters a new phase of
operation, such as when a compiler turns from analysis of the source program to optimization
of the object code.

Presenting the results

The data collected during execution can be post-processed in a number of ways to produce
profiling reports. The simplest and perhaps the most useful of these reports follows the format
used by gprof : a flat profile showing the time spent in each routine, and a profile based on
the dynamic call graph of the program. Both of these reports are easy to compute, by simply
taking each context recorded by the profiling monitor and charge the time spent in that context
to the active routines and to their incoming and outgoing arcs.

For simple programs where there is no mutual recursion, some simple algebraic relationships
exist between the different times shown in the call graph profile: the child time shown for a
routine is the sum of the self and child times shown for outgoing arcs, whilst the self and child
times for incoming arcs sum to the self and child times shown for the routine itself. Finally,
the times shown for the arc P → Q are the same when Q is shown as a child of P as they are
when P is shown as a parent of Q.

These relationships cannot continue to hold when a program has mutual recursion, because
the child times shown for outgoing arcs from a subroutine P must exclude any time spent
running recursive calls of P as a subroutine of the routines it calls; otherwise, that time would
be accounted for twice. It is possible to maintain the internal consistency of the profiling data
shown for each routine, but to allow the times shown for an arc P → Q to differ when it is
shown as an outgoing arc of P and as an incoming arc of Q, so that the times for the incoming

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



10 J. M. SPIVEY

arc include time spent running P as a direct or indirect subroutine of Q, but the times for the
outgoing arc do not. This seems the most meaningful way of dealing with this problem.

To implement this solution, two self times, self1(P,Q) and self2(P,Q) are associated with
each arc P → Q in the call graph, and also two child times child1(P,Q) and child2(P,Q). The
times self1(P,Q) and child1(P,Q) pertain to the ‘outgoing arc’ from P and the other times to
the ‘incoming arc’ to Q. A context where P is running is processed by examining each item
A[B]C, and adding the time spent in the context to self1(B,C) or child1(B,C) depending on
whether C = P , and to self2(A,B) or child2(A,B), depending on whether B = P . The items
[Main]C and B[P †] are treated as special cases in the obvious way. When there is no mutual
recursion, the two sets of times will be the same, because what is added to the first set of
times for A[B]C will be added to the second set for the next item B[C]D. In the presence of
mutual recursion, one or other of these items may not exist, so differences between the two
sets of times may occur.

The procedure just outlined allows us to compile a report in the style of gprof. However,
much more information is contained in the profiling data than is shown in this format. As
always, the problem is to present the data in a form that is accessible to programmers without
overwhelming them with a mass of detail. One useful form of display shows all the cycles in the
call graph that were traversed during execution; these cycles are represented by states where
the running routine P also appears as an unmarked entry earlier in the history. Unlike gprof,
our profiler can detect those cycles that actually occurred during execution, rather than those
that exist only in the call graph.

It would be interesting to experiment with interactive, graphical presentations of the data,
but there is space here to mention only one possibility that is very easy to implement. By
allowing a single routine or a group of routines to be specified, and accumulating data from
only those profiling states where one of the specified routines is active, it is possible to generate
a profile just for those routines and their descendants, and thus examine just one part of a
large program.

Implementation

We have made two implementations of the profiling scheme described in this article. The first
was part of a bytecode-based implementation of the programming language Oberon–2 [5, 6, 7].
It is easy to add a counter to the bytecode interpreter that is incremented for each instruction
executed, thus providing a cycle counter in firmware. More recently, we have made an
implementation that can be used as a drop-in replacement for gprof under Linux, and (as
will be seen later) imposes comparable overheads.

The native Linux implementation uses a feature of the GNU C compiler, whereby the
compiler can insert calls to monitoring routines at the entry and exit of each subroutine. The
GCC compiler was modified so that it inserted monitoring code better suited to the present
purpose, eliminating some of the overhead of profiling. It is possible that further improvements
could be made by tuning the instrumentation code at the assembly-language level, but we have
not tried this yet.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



FAST, ACCURATE CALL GRAPH PROFILING 11

The profiler represents the histories described earlier as arrays of entry addresses for
subroutines. Because each subroutine is aligned at a multiple of 16 bytes, we were able to
use a spare low-order bit in each entry address to represent the mark bit. The transition from
one context to the next requires a data structure that represents the transition function of
the finite-state machine M , and a table that allows a context to be found given its history. In
the profiler, both these are represented using a single large hash table. The key of this table
is a pair (C,P ), where C is the address of a context record, and P is the entry address of

a procedure. Each entry in the hash table gives the context C ′ after the transition C
P
→C ′.

This is the implementation of step B1 of the method given earlier. The same hash table gives
access to all contexts in which a given procedure P is running, by looking up (Λ, P ) in the
hash table, where Λ is the null pointer; all contexts for procedure P are chained together, and
a linear search finds whether the desired context already exists in step B2.

At the end of execution, the profiling monitor writes to the file amon.out in the current
directory information about each state, including the timer, the call count and the history.
A separate analysis program reads this file and produces a report, using the same format as
gprof. We used the GNU Binary File Descriptor library libbfd to read the symbol table of the
subject program and translate the entry points recorded in the profiling data into the names
of subroutines. The profiler does not at present handle setjmp() and longjmp(), but there is
no reason why it could not be extended do so.

Results and evaluation

In order to assess the overhead caused by the profiling technique, we compared the timings of
our profiler aprof with gprof on three applications:

GCC is the GNU C compiler, profiled using the command

cc1 combine.i -O3 -o combine.s,

where cc1 is the main part of the C compiler (without the C preprocessor and the driver
program that is usually invoked as gcc), and combine.i is the file obtained by pre-processing
combine.c, the largest source file of GCC itself.

TEX is Donald Knuth’s well-known typesetting program, profiled using the command

tex texbook.tex,

to run TEX on the text of its own manual.
pProlog is a small interpreter for a dialect of Prolog, described in the book [8]. The source

code of the interpreter was translated from Pascal to C using a home-grown translator, then
the result was compiled with GCC. It was profiled using the command

pprolog queens.pp,

where queens.pp is a Prolog program that finds all solutions to the ‘9 queens problem’. The
pProlog program is included here because of its high density of recursive subroutine calls.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



12 J. M. SPIVEY

Program Text size Func- Calls States Trans- Depth Profiling Size of Size of
tions (millions) itions (ave) (max) memory amon.out gmon.out

TEX 0.57 MB 456 32.6 8286 8355 9.30 23 0.66 MB 0.44 MB 0.27 MB

GCC 1.97 MB 1703 61.2 55437 57777 13.13 29 5.24 MB 3.79 MB 0.94 MB

pProlog 0.32 MB 115 47.6 435 443 10.31 19 0.07 MB 0.02 MB 0.14 MB

Table I. Data sizes

Program Bare aprof gprof Dummy

charged total change charged total change total change

TEX 5.30 s 6.15 s 10.16 s (+92%) 5.32 s 12.37 s (+134%) 6.86 s (+30%)

GCC 12.48 s 14.17 s 27.61 s (+121%) 12.71 s 24.81 s (+99%) 15.64 s (+25%)

pProlog 4.93 s 5.40 s 9.73 s (+97%) 4.62 s 14.53 s (+195%) 6.74 s (+37%)

Table II. Execution times

All these programs were statically linked with the GNU C library. In each case, the library
code was compiled for profiling in the same way as the application source. The compiler
throughout was GCC with optimization level -O2. Higher levels of optimisation than this start
to disturb the structure of the program by inlining, affecting the profiling results.

Table I shows various statistics related to the size of the programs and the data files generated
in profiling. The columns of the table give the following information:

Text size gives the size of the text segment for the program, without instrumentation code.
Functions gives the number of subroutines listed by aprof as having been called at least

once.
Calls gives the number of subroutine calls traced by aprof.
States and Transitions give the number of profiling states and transitions created.
Depth gives the average and the maximum number of entries (both marked and unmarked)

in the history lists of profiling states.
Profiling memory gives the total amount of memory allocated for storage of profiling states

and transitions. This figure does not include the hash table for transitions (0.5 MB) and the
profiling stack (64 KB).

Size of amon.out and Size of gmon.out give the sizes of the files of profiling data written
by aprof and by gprof respectively.

Table II shows the execution times for the benchmarks under various conditions:
Bare refers to the time taken by the benchmark without profiling.
aprof and gprof refer to the time taken by the benchmark using our profiler and gprof

respectively. For each of these, the column labelled charged gives the total time charged by the
profiler to the running program, and the column labelled total gives the total runtime. The
percentage increase of the total time with respect to the time for bare is also shown.

Dummy refers to the time taken when the benchmark is compiled to call monitoring routines
at subroutine entry and exit, but linked with routines that have empty bodies; this allows us
to assess the overhead of calling the instrumentation routines.

All these timings were obtained by running the programs 10 times on a Pentium-III machine
with 256 MB of memory and a clock speed of 500 MHz and taking the mean user time

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



FAST, ACCURATE CALL GRAPH PROFILING 13

as reported by the Linux time command. In all cases, the execution times were extremely
consistent between different runs of the programs.

These data allow us to draw some encouraging conclusions about our profiling method
in comparison with gprof. The number of states created is much higher for GCC than for
the other two programs, and this comes about because there are complex patterns of mutual
recursion in parts of GCC that perform various sorts of analysis of the program being compiled.
Nevertheless, the average depth of a history remains moderate, and both the amount of memory
needed to store the states and transitions and the size of the resulting data file are reasonable
by modern standards. In each case, the profiling overhead in execution time is comparable
with that for gprof, and in two cases is rather smaller. This reflects the speed gained by using
a hash table to find transitions that have already been created. The figures reveal that existing
transitions (step B1) cater for all but 57777 of the 61.2 million subroutine calls performed by
GCC, i.e. for 99.9% of the calls.

The profiling reports generated by aprof allow us to identify subroutines where the average
time assumption would give misleading results. There are many such subroutines in gcc, but
the purpose of most of them means little to an outsider. We can, however, guess at the function
of some of them. There is a subroutine rest of compilation that is always called via one of two
other subroutines, finish function and output inline function. In the trial, the second of these
parent routines accounted for 13 of the 76 calls (17%), but only 0.20 seconds of the 7.62 seconds
(2.6%) spent in the subroutine and its children.

There are several other similar imbalances associated with specialised routines that
each involve around 5% of the total runtime, but particularly interesting is the routine
splay tree splay, where the parent splay tree insert accounts for 32% of the total runtime
of 0.19 seconds, despite making only 18% of the calls. The other parent, splay tree lookup,
thus accounts for disproportionately little of the total runtime, perhaps indicating that splay
operations are more commonly needed during insertion than during lookup.

Also, the general-purpose sorting routine qsort is called from many places in the compiler,
but the call from global alloc consumes 26% of the total runtime of 0.19 seconds, despite making
only 0.32% of the calls. Admittedly, the times involved in this example and the preceding one
are close to the noise threshold of the profiling data, but nevertheless they illustrate the kind of
conclusion about a program that is supported by the more comprehensive profiling information.

Compared with gprof, our approach suffers more overhead because a call to a monitoring
routine must be inserted at both the entry and the exit of each profiled routine, whereas gprof

must monitor only entry to a routine in order to accumulate arc counts. In fact, the code for
monitoring subroutine exit is very simple: it just pops the stack of states. This code could be
inlined in order to reduce the profiling overhead, although this would require further changes
to the C compiler. It may also be worth considering inlining at least part of the monitoring
code for subroutine entry. The majority of subroutine calls use an existing transition in the
finite-state machine, and the majority of these transitions will be found by a single probe of
the hash table. By inlining the code for this commonest case, it might be possible to reduce
the profiling overhead further, at the expense of a moderate increase in code size. Care is
needed, however, lest the increase in code size should interfere with the cache behaviour of the
program.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



14 J. M. SPIVEY

0:Main

1: P

2: Q

3: R

4: S

Figure 3. CCT for Main → P → Q → R → P → S

Related work

Reference [4] proposes a scheme with a global clock and a timer associated with each routine.
When a routine is called, the timer is decremented by the current clock time; when it exits,
the timer is incremented by the clock time, so that the net effect is to increase the timer by
the overall time spent in the routine. By keeping track of the number of activations of the
routine, it is possible to deal with recursion by increasing the timer only for the outermost
activation of each routine. This technique deals in a satisfactory way with both direct and
mutual recursion, but it does not collect any information that relates timing to the call graph
of the program. It is difficult to determine what methods are used by commercial profiling
tools, but it seems likely that this technique is used by several of them.

Where time is measured by PC sampling, it is possible to record the state of the call stack
only at timer ticks, which are much less frequent than calls or returns, or to traverse the
stack and increment timers for each routine at each tick (see [9]). This reduces the profiling
overhead in a very useful way, but it cannot be used with a hardware cycle timer to get more
fine-grained timing information. Also, unlike the other techniques considered here, it does not
record complete information about numbers of calls that is useful in itself for debugging and
performance evaluation.

James Larus and his collaborators have published a series of papers on different forms of
profiling. Much of this work concerns measurement at a finer granularity than that considered
here, so that the path of control flow within subroutines is recorded. The emphasis is more
on collecting data that could be used for branch prediction in a compiler than on producing
a report for programmers studying the behaviour of the program. We discuss here only the
work that concerns inter-procedural profiling.

A close comparison can be made between the method described here and the method of
calling context trees (CCT’s) [10]. In both methods, direct recursion is handled very simply
and does not lead to a change of profiler state. In building a CCT, mutual recursion is detected
by finding an ancestor of the current node in the tree that refers to the same subroutine as is
now being called. The call is handled by adding a back-edge to the tree and returning to the
state previously created. Figure 3 shows a CCT for the same program as Figures 1 and 2. Here,

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



FAST, ACCURATE CALL GRAPH PROFILING 15

the call sequence Main → P → Q → R results in the creation of a simple branch in the CCT,
leading to the node labelled 3. The subsequent recursive call R → P introduces a back-edge
to the ancestor node for P (labelled 1). Calling S from P adds another child to this node.
Thus time spent executing S can be attributed to P and to Main, but the fact that Q and
R are also active during this time is lost. However, the paper introduces the idea of building
a data structure to record context information dynamically during execution, and encourages
the belief that the size of such data structures may be reasonable even when profiling large
programs.

A more recent paper [11] proposes a profiling scheme that tracks the execution path of the
whole program and uses a compression algorithm on program paths to reduce the volume
of data collected. Our histories can also be viewed as a kind of lossy compression scheme for
program paths, in contrast to the lossless compression used by Larus, in which a simple context-
free grammar for the paths is generated during compression. Larus’ compression scheme,
though asymptotically linear in the size of the paths, is nevertheless much more expensive
in time than the method based on histories.

The profiling techniques described in this article are similar to those described for lazy
functional programming in References [12] and [13]. Building on earlier work [14], this reference
discusses the use of cost-centre stacks to record the execution context of a program, and these
are similar to the histories used in this paper. Our approach differs in the representation chosen
for histories, in the use of a finite-state machine with a fast transition function, and in the
recording of information about incoming and outgoing arcs that enables the profiling report
to mimic that produced by gprof.

The cited paper aims to store histories more compactly by using a pointer-linked scheme
where each history is represented by a node that contains one routine address and a pointer
to the preceding history. In most cases, new histories can be created by adding a single new
node. However, detection of mutual recursion requires a complete traversal of the chain of
ancestor links, and this traversal may be expensive in cache misses. When mutual recursion
causes the elision of ancestors in the history, it may be necessary to create many new nodes
all at once. The data presented earlier indicate that the depth of histories remains moderate,
so that representing the entire history explicitly in each state does not have an unacceptable
cost in memory, and much better cache performance can be expected in scanning an array of
routine addresses compared with traversing a chain of pointers.

Reference [15] describes a sophisticated profiling scheme for the higher-order logic
programming language Mercury. This scheme depends on an analysis by the Mercury compiler
of the call graph of the program, which discovers among other things the cycles of mutually
recursive subroutines in the program, and produces efficient instrumentation code. Because
Mercury has higher-order features, this analysis is necessarily partial, since the value of
procedure-valued variables cannot be known at compile time. The profiling scheme can
also handle mutual recursion that arises through calls to such procedures, but generates
instrumentation code that is very efficient for the common case of calling a known procedure
with a known pattern of recursion. Techniques such as those proposed in the paper have
the potential to reduce dramatically the cost of profiling. Nevertheless, they rely on compiler
support, and we believe that the simpler techniques proposed in this article also have their
place in programming practice.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



16 J. M. SPIVEY

Conclusions

This article has presented a profiling technique that can be used in place of that used in
profilers like gprof. At comparable cost in execution time, the new technique gathers accurate
data about the relationship between execution time and paths in the call graph. Although the
data collected provides much more information about the behaviour of the subject program,
the volume of data in terms of the amount of memory used for profiling and the size of the
resulting file of profiling data remains moderate.

The new technique can be used to produce an accurate profile in the same format as that
output by gprof, and can also be used to produce reports that focus on a particular routine
and its children, or as the basis for an interactive exploration of the distribution of execution
time with respect to the call graph of the program.

The new technique deals with mutual recursion without lumping together families of
mutually recursive routines, and can give an accurate report of which paths of mutual recursion
were actually taken during execution. This makes it especially attractive for assessing the
performance of higher-order and object-oriented programs, where families of mutually recursive
routines are common.

Acknowledgements

The author is grateful to Andreas Sorensen for his careful and thorough implementation of
the ideas described in this article.

REFERENCES

1. S. Graham, P. Kessler and M. McKusick, ‘gprof: A Call Graph Execution Profiler’, in Proceedings of the
SIGPLAN ’82 Symposium on Compiler Construction, SIGPLAN Notices, 17(6), pp. 120-126, June 1982.

2. S. Graham, P. Kessler and M. McKusick, ‘An Execution Profiler for Modular Programs’, Software –
Practice and Experience, 13, pp. 671-685, 1983.

3. J. Fenlason and R. Stallman, GNU gprof: the GNU profiler, Free Software Foundation, 2000.
4. C. Ponder and R. J. Fateman, ‘Inaccuracies in program profilers’, Software – Practice and Experience, 18,

pp. 459–467, 1988.
5. M. Reiser and N. Wirth, Programming in Oberon: steps beyond Pascal and Modula, ACM Press, New

York, 1992.
6. H. Mössenböck, Object-oriented programming in Oberon–2, Springer-Verlag, Berlin, 1993.
7. J. M. Spivey, ‘The Oxford Oberon–2 compiler’, http://spivey.oriel.ox.ac.uk/mike/obc.
8. J. M. Spivey, An introduction to logic programming through Prolog, Prentice-Hall International, 1995.
9. M. Burrows, U. Erlingson, S.-T. Leung, M. Vandevoorde, C. Waldspurger, K. Walker and R. Weihl,

‘Efficient and flexible value sampling’, Research Report 166, Compaq Systems Research Center, Palo
Alto, CA, October 2000.

10. G. Ammons, T. Ball, and J. Larus, ‘Exploiting Hardware Performance Counters with Flow and Context
Sensitive Profiling’, in Proceedings of PLDI’97, June 1997

11. J. Larus, ‘Whole program paths’, in Proceedings of PLDI’99, May 1999.
12. S. A. Jarvis, Profiling Large-Scale Lazy Functional Programs, Ph.D. Thesis, Department of Computer

Science, University of Durham, 1996.
13. R. G. Morgan and S. A. Jarvis, ‘Profiling Large-Scale Lazy Functional Programs’, Journal of Functional

Programming 8(3), May 1998.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls



FAST, ACCURATE CALL GRAPH PROFILING 17

14. P. M. Sansom and S. L. Peyton Jones, ‘Formally based profiling of higher-order functional languages’,
ACM Transactions on Programming Languages and Systems, 19, 1, pp. 334–385, 1997.

15. T. C. Conway and Z. Somogyi, ‘Deep profiling: engineering a profiler for a declarative programming
language’, Technical report, Department of Computer Science and Software Engineering, University of
Melbourne, Australia.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1–99
Prepared using speauth.cls


