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Abstract

Profiling is a technique for identifying performance bottle-
necks in programs by measuring the time spent in each sub-
routine as the program runs. In call graph profiling, time
used by each subroutine is also charged to its callers in order
to give a better idea of how the time is divided among major
tasks in the program. In order to do this with acceptable
performance impact, a common implementation technique
(used by GNU gprof among others) is to count the number
of calls of each subroutine, and charge its time to the callers
in proportion to the number of calls they make. Whilst this
gives acceptably accurate results for simple programs, it is
inaccurate for subroutines whose running time depends on
the values of their arguments, and becomes almost useless
for programs that exploit higher-order functions or dynamic
method binding. Programs containing mutually recursive
subroutines cause additional problems with this approach.
In this article, we discuss a way of improving on gprof by
collecting more information during execution, without sig-
nificantly increasing the overhead of profiling. The method
is based on the idea of keeping track of the set of subroutines
that are active at each moment during the execution of the
program being analysed and the calling arcs between these
subroutines. By considering only the most recent activation
of each subroutine, we arrange that even recursive programs
give rise to a finite number of these contexts that is usually
fairly small. The information can be collected efficiently by
dynamically constructing a finite state machine whose states
correspond to execution contexts in the program.1

1 Introduction

Whilst the data produced by gprof is very useful, it is im-
portant to recognise that it is an approximation based on
an assumption that may be inaccurate. The only times that
are directly measured are the total times spent running each
subroutine: the self times. The profiler also counts the num-
ber of times each arc in the program’s call graph is traversed
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during execution; that is, the number of times each routine
calls each of its subroutines. After execution is over, the
time taken by each subroutine is charged also to its parents,
in proportion to the number of times each parent called the
routine. This procedure gives reasonably accurate results
if each call of a subroutine takes approximately the same
time, or if the average time it takes is independent of the
place in the program from which it is called: we call this
the average time assumption. However, serious inaccuracies
will result if the time taken by a subroutine depends on its
arguments, and the arguments are drawn from different dis-
tributions in different calls of the same subroutine. Ponder
and Fateman [11] discuss this problem at length.

The average time assumption is particularly likely to be
violated in programs written in a functional or object-ori-
ented style. For example, a compiler written in a polymor-
phic higher-order language such as ML might represent both
the declarations in a subroutine heading and the subroutines
in a program by instances of the polymorphic list type, and
different parts of the compiler might contain the expressions,

map alloc decls,
to allocate storage for each declaration, and
map translate subrs,

to translate each subroutine into machine code. Both these
expressions use the same polymorphic higher-order function
map to apply a single function to each element of a list,
but we expect the function alloc that allocates storage for a
declaration to be much cheaper than the function translate
that translates a subroutine. Nevertheless, the average time
assumption charges all these costs as child time to map, and
recharges them to the calling routines that contain these two
expressions. The result would be misleading enough if there
were only one evaluation of each of these expressions, but
there are likely to be many lists of declarations but only one
list of subroutines is a typical program; the result is that
almost all the time, both for processing declarations and for
translating subroutines, will be charged to the routine for
processing declarations.

Some concrete numbers may help to make the nature of
the problem clear. Suppose that the program being com-
piled contains 10 subroutines, each with 10 variables, that
allocating storage for a variable takes 1 tick and that trans-
lating a subroutine takes 100 ticks. The profile for this pro-
gram that would be shown by gprof is shown in Table 1. In
this profile, the 100 ticks that are spent running alloc and
the 1000 ticks spent running translate add up to a total of



total self child calls
20 1000 10/11 do_decls
2 100 1/11 do_trans
1122 22 1100 11 map
100 0 100/100 alloc
1000 0 10/10 translate
1030 10 1020 10 do_decls
20 1000 10/11 map
1000 0 10/10 map
1000 1000 0 10 translate
103 1 102 1 do_trans
2 100 1/11 map
100 0 100/100 map
100 100 0 100 alloc

total self child calls
20 100 10/11 do_decls
2 1000 1/11 do_trans
1122 22 1100 11 map
100 0 100/100 alloc
1000 0 10/10 translate
1003 1 1002 1 do_trans
2 1000 1/11 map
1000 0 10/10 map
1000 1000 0 10 translate
130 10 120 10 do_decls
20 100 10/11 map
100 0 100/100 map
100 100 0 100 alloc

Table 1: Profile generated by gprof

1100 ticks spent running children of map, and this is shared
out in a ratio of 10:1 between the callers of map, namely
do_decls and do_trans. Substantially all the time in this
program is taken up with translating subroutines, an activ-
ity that is controlled by routine do_trans, but this routine is
shown with a small time in the profile.

An accurate profile for the compiler is shown in Table 2.
Note that in this profile, the time taken by routines alloc
and translate are correctly attributed to their grandparents
do_decls and do_trans respectively, even though the routine
map acts as intermediary in both cases.

Similarly misleading profiles can result from common ‘de-
sign patterns’ in object-oriented programming. For one ex-
ample, suppose that buttons in the user interface of a word
processor are bound to Command objects, and when acti-
vated, they send these commands to the erecute method of
another object that represents the application itself. The ap-
plication object is responsible for saving the file once every
100 commands, maintaining an ‘undo’ list, etc., but prin-
cipally calls the perform method on each Command object
it receives. The result will be that all the time spent car-
rying out commands will be charged as child time to the
ezecute method of the application, and will be recharged to
the buttons in proportion to the number of times each but-
ton was clicked, regardless of the relative costs of processing
the clicks. If one button puts the current word in bold type,
and takes one tick to execute, while another spell-checks the
entire document and takes 100 ticks, then the same kind of
situation is created as we saw in the previous example, and
the average time assumption will give a seriously misleading
impression.

If gprof behaves badly for higher-order and object-ori-
ented programs, it becomes even worse with programs where
there is mutual recursion; that is, where two or more rou-
tines are linked in a ring where each calls the next, so that
the call graph contains a non-trivial cycle. Since gprof only
counts the number of traversals of each arc in the call graph,
but records no information about longer chains of calls, the
best it can do is to lump together all the routines in each
strongly-connected component of the call graph (which it
calls a ‘cycle’ in the report), aggregating the time taken
by the routines themselves and the time taken by all rou-

Table 2: An accurate profile

tines they call, and re-charging these times according to the
number of calls along arcs that lead into the component.
Functional and object-oriented programming styles natu-
rally lead to programs with mutual recursion, since both
encourage the development of recursive data structures and
recursive subroutines to traverse them.

Note that it is not necessary for mutual recursion to oc-
cur dynamically for gprof to suffer this problem; that is, in
the case of two routines A and B, it is not necessary that
a situation ever arises where A calls B and then B makes a
recursive call to A. The problem occurs whenever there is
a cycle in the dynamic call graph. If sometimes A calls B,
and at other times B calls A, then a cycle exists in the call
graph, and gprof will lump A and B together in its report.

The problem we address in this paper is how to improve
the accuracy of the data produced by a tool like gprof with-
out increasing too much the runtime overhead of profiling.
This overhead consists largely of the time spent running in-
strumentation code that is added to the program in order
to collect timing and call-count data during execution. To
a certain extent, this time can be excluded from the final
statistics and thus ignored, unless the overhead is so high
that it makes the runtime of the profiled program impracti-
cally long. However, instrumentation code may also have an
effect on the memory consumption and cache performance of
the program being analysed, and these effects are less easy
to compensate for.

2 Tracking the call stack

The need for the average time assumption and the confusion
that results from mutual recursion could both be eliminated
by recording more data during execution. In the extreme,
we could record the entire state of the call stack at each
subroutine call or return; this would then allow us to find
which subroutines are active at each point and charge execu-
tion time to them. This proposal, however, would generate
huge quantities of profiling data, and the time required to
record this data would swamp the real execution time of the
program. Nevertheless, this complete set of profiling data
provides the ideal at which we should aim.



In [11], Ponder and Fateman propose a scheme with a
global clock and a timer associated with each routine. When
a routine is called, the timer is decremented by the current
clock time; when it exits, the timer is incremented by the
clock time, so that the net effect is to increase the timer
by the overall time spent in the routine. By keeping track
of the number of activations of the routine, it is possible
to deal with recursion by increasing the timer only for the
outermost activation of each routine. This technique deals
in a satisfactory way with both direct and mutual recursion,
but it does not collect any information that relates timing
to the call graph of the program. It is difficult to determine
what methods are used by commercial profiling tools, but it
seems likely that this technique is used by several of them.

Where time is measured by PC sampling, it is possible to
record the state of the call stack only at timer ticks, which
we expect to be much less frequent than calls or returns, or
to traverse the stack and increment timers for each routine
at each tick. This reduces the profiling overhead in a very
useful way, but it cannot be used with a hardware cycle
timer to get more fine-grained timing information. Also,
unlike the other techniques we consider, it does not record
complete information about numbers of calls that is useful
in itself for debugging and performance evaluation. We do
not consider this approach any further in this paper.

Instead of traversing the stack at each call or return, our
proposal is to create a collection of states during execution.
Initially, each state records the running routine and the set
of all routines on the stack, although we shall add more in-
formation to the states later. The profiling code keeps track
of which state describes the current layout of the subroutine
stack, creating states dynamically as the need arises. At
each tick of the profiling clock, we will increment a counter
associated with the current state. Alternatively, we may
use a hardware cycle counter by updating the counter for
the current state whenever the state changes, adding to it
the elapsed time since the previous change of state.

Because the set of routines active after a subroutine call
can be obtained by adding the called routine (if necessary) to
the set of routines active before the call, we can update the
current state efficiently at a subroutine call by organizing the
states into a finite-state machine, also adding transitions dy-
namically the first time they occur during execution. When
a subroutine returns, we should reset the current state to the
value it had before the subroutine was called, and this can
be achieved by maintaining a stack of states in the profiler
that is parallel to the ordinary subroutine stack.

At the end of execution, we can write to a file the list of
states created during execution, saving for each state the set
of active subroutines and the time spent in the state. This
data can then be analysed to obtain an accurate account of
the execution time during which each subroutine was active.

The success of this profiling method depends crucially
on the number of different states that arise during execu-
tion. Potentially, each acyclic path in the call graph of the
program can give rise to a different state, and the number
of such paths may be very large for non-trivial programs.
Thus a theoretical bound on the number of states grows very
rapidly with the number of subroutines in the program. In
practice, however, we have found that the number of states
created during execution of real-life programs stays fairly
small. After an initial period of rapid growth as the pat-
tern of computation in the program emerges, the number
of states typically becomes nearly stable, with subsequent
periods of growth when the program enters a new phase of
operation, such as when a compiler turns from analysis of
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the source program to optimization of the object code. Mea-
surements of the number of states created for some typical
programs are given in Section 6 of this paper.

We give in Section 7 an extended comparison of the
proposed method of profiling with other techniques, but
it is worthwhile to pause here and underline the difference
between what we propose and the method of calling con-
text trees (CCTs) presented by Larus and others in their
PLDI'97 paper [1]. In both methods, direct recursion is
handled very simply and does not lead to a change of pro-
filer state. In building a CCT, mutual recursion is detected
by finding an ancestor of the current state in the tree that
refers to the same subroutine as is now being called. The
call is handled by adding a back-edge to the tree and re-
turning to the state previously created. Thus after a call
sequence Main — P — Q — R — P, there will be a path
Main — P — @ — R in the CCT, and the profiler returns
to the entry for P in this path. Another subroutine S that
is called from the recursive invocation of P will add a child
labelled S to this state for P (see Figure 1). Time spent in
executing S can be attributed also to P and to Main, but
the fact that Q and R are active has been lost.

Our approach is more extravagant, because after the re-
cursive call R — P, the set of active routines, { Main, P, Q,
R}, is different from the set { Main, P} that was active at the
previous invocation of P. Therefore a new state is created
for the recursive call, and another new state is created when
P calls S. In this program, each subroutine call creates a
new state; but if the cycle of recursion P - Q — R — P is
traversed multiple times, only one additional set of states is
created, because the second time around the cycle, the set
of active routines is the same as the first time (see Figure 2).
Thus while our method results in more states than Larus’,
there are no more than twice as many for this pattern of
recursion.

3 Recording arcs

So far, we have concentrated on recording the set of active
routines, so that time can be charged to them accurately;



but it is also useful to record the caller of each active rou-
tine and the routine it calls, so as to compile a profile that
identifies the important arcs in the call graph.

To achieve this, we make two extensions to the infor-
mation recorded in each state. First, the active routines are
recorded as an ordered list with no duplicates, by taking the
subroutine stack and eliminating all but the most recent ac-
tivation of each routine. Second, we record for each routine
both the incoming and the outgoing arc in the call graph.

A compact way to represent this information is a list of
subroutine addresses, each with a one-bit mark. The list of
active subroutines is represented by unmarked entries in this
list, and each active subroutine is surrounded if necessary by
marked entries, so that its incoming and outgoing arcs are
recorded. In many execution environments we can find a
spare bit in each subroutine address to hold the mark bit,
so that each history entry is a single word.

When a subroutine is called, we can compute the new
history by appending the subroutine to the end of the cur-
rent history and marking any occurrence of the subroutine
that is already in the history. Following this, any marked
entries in the history that are surrounded by other marked
entries may be deleted, as they are not needed for the pur-
pose of recording incoming or outgoing arcs of surrounding
routines.

It is not necessary to perform this computation of the
new history on every subroutine call, because as before we
can construct a finite-state machine whose states are labelled
with histories, adding states and transitions to the machine
as needed during execution. The current state of the ma-
chine may be represented by a pointer to a state record, and
its transition function may be implemented as a hash table,
with a key consisting of the current state and the address of
the subroutine being called.

In the P-Q—R-S example of Figure 2, the histories that
are created are those that lead up to Main — P — @Q —
R, then further histories as follows, where square brackets
denote marked entries:

1. Main — [P]—- Q@ — R— P.
2. Main — [P] - [Q] = R— P — Q.

3. Main — [P] — [R] - P — Q — R. (Here a marked
entry for @ is elided.)

4. Main — [P] — Q — R — P. (Here the sequence
[P] — [R] — [P] is truncated to [P].)

5. Main - [Pl - Q —-R—P—S.

Observe the history 4 is the same as history 1, so that a cy-
cle of transitions is created in the finite state machine. The
marked entries allow us to identify the outgoing and incom-
ing arcs of each active routine: for example, in history 4 we
can see that work is being done on behalf of Main because
it called P, and that @) was invoked by P — although these
two invocations of P may not be the same.

The decision to keep the most recent activation of each
routine means that the time spent by routine S in state 5
will be charged to the arc P — S rather than the arc P —
Q, as it would be if the earlier activation of P had been
kept instead. This decision means that, when a subroutine
P calls itself by indirect recursion, each activation of P is
treated independently for profiling. Any time spent in other
routines called directly or indirectly by an activation of P,
but not through another activation of P, is charged to that
activation and to outgoing arcs from it. This seems to us

the most meaningful way to make sense of arc times in the
presence of mutual recursion.

The actions of the profiler at a subroutine call are as
follows. Suppose that the profiler is in state s when routine
P calls routine Q. First, determine a new state s’ for the
profiler according to these rules:

1. If P and @ are the same, then this is a direct recursive
call, and the new state s’ is the same as the current
state s.

2. Otherwise, use the hash table to discover whether a
transition exists for calling @ from state s. If so, the
transition specifies the new state s’ that should be en-
tered. This case covers nearly every call encountered
during execution of typical programs.

3. If no such transition exists, compute the history list
of the desired state as described above. Use a table
of states to find whether a state s’ with this history
already exists. If so, create a new transition from s to
s’ for calling Q and add it to the hash table.

4. If the desired state does not exist, create it and create
also a new transition, adding them to the tables.

In each case, the new state s’ is pushed onto a stack of states,
and subsequent timer ticks increment the time counter in s’.

On subroutine return, the stack of states is popped to
reveal the state that was current before the subroutine was
called. Non-local returns such as C’s set jmp/longjmp mech-
anism can be accommodated by popping multiple states
from the stack.

In our implementations of the profiler, the table of exist-
ing states is organized by linking together all state records
for the same subroutine, and using the same hash table as is
used for transitions to find the first state in the chain, given
the subroutine ) that is being called.

4 Presenting the results

The data collected during execution can be post-processed
in a number of ways to produce profiling reports. The sim-
plest and most useful of these reports follow the format used
by gprof: a flat profile showing the time spent in each rou-
tine, and a profile based on the dynamic call graph of the
program. Both of these reports are easy to compute: we
simply take each state recorded in the profiling data and
charge the time spent in that state to the active routines in
the history and to their incoming and outgoing arcs.

When a routine P calls itself indirectly, there will be
states where P appears at the top of the history and a
marked occurrence of P appears lower down. By slightly
modifying the code for computing histories, we can arrange
that an entry (marked if necessary) appears for the rou-
tine ) that was called by this marked occurrence of P, so
that we know which of P’s children led to the mutually re-
cursive call of P. Then we can flag in the profiling display
for P those children that lead to mutual recursion: we do
this by adding a star to the name of these routines when
they are shown as children of P.

For simple programs where there is no mutual recur-
sion, some algebraic relationships exist between the different
times shown in the call graph profile: the child time shown
for a routine is the sum of the self and child times shown for
outgoing arcs, whilst the self and child times for incoming
arcs sum to the self and child times shown for the routine
itself. Finally, the times shown for the arc P — @Q are the



same when ( is shown as a child of P as they are when P
is shown as a parent of Q.

These relationships cannot continue to hold when a pro-
gram has mutual recursion, because the child times shown
for outgoing arcs from a subroutine P must exclude any time
spent running recursive calls of P as a subroutine of the rou-
tines it calls; otherwise, that time would be accounted for
twice. Our preference is to maintain the internal consistency
of the profiling data shown for each routine, but to allow the
times shown for an arc P — @ to differ when it is shown as
an outgoing arc of P and as an incoming arc of @), so that
the times for the incoming arc include time spent running P
as a direct or indirect subroutine of @, but the times for the
outgoing arc do not. This seems to us the most meaningful
way of dealing with this problem.

To implement this solution, we associate two sets of self
and child times with each arc P — @ in the call graph: one
set pertains to the ‘outgoing arc’ from P and the other to
the ‘incoming arc’ to @. In processing a profiling state, we
add the time spent in that state to the first set of times for
each arc P — Q@ if P is unmarked in the state, to the second
set if @ is unmarked, and to both sets if both P and @ are
unmarked. The time in the state is added to one or both
self times if the active routine in the state is @), and to one
or both child times otherwise. If the program has no mutual
recursion, then the two sets of times will be identical.

Much more information is contained in the profiling data
than is shown in the gprof-style output format. As always,
the problem is to present the data in a form that is accessible
to programmers without overwhelming them with a mass of
details. One useful form of display shows all the cycles in the
call graph that were traversed during execution; these cycles
are represented by states where the running routine P also
appears as a marked entry lower down the history. Unlike
gprof, our profiler can detect those cycles that actually oc-
curred during execution, rather than those that simply exist
in the dynamic call graph.

It would be interesting to experiment with interactive,
graphical presentations of the data, but here we mention
only one possibility that is very easy to implement. By
allowing a single routine or a group of routines to be speci-
fied, and accumulating data from only those profiling states
where one of the specified routines is active, it is possible to
generate a profile just for those routines and their descen-
dants.

5 Implementation

We have made two implementations of the profiling scheme
we have described. The first was part of a bytecode-based
implementation of Niklaus Wirth’s programming language
Oberon—2 [10, 12, 14]. It is easy to add a counter to the
bytecode interpreter that is incremented for each instruc-
tion executed, thus providing a cycle counter in firmware.
More recently, Andreas Sorensen and the author have made
an implementation that can be used as a drop-in replace-
ment for gprof under Linux. It uses a feature introduced
in version 2.95 of the GNU C compiler where the compiler
inserts calls to monitoring routines at the entry and exit of
each C function. These monitoring routines receive as argu-
ments the addresses of the call site and the called routine.
Linux does not directly provide the profil () system call
of Unix, but implements it as a library routine using an inter-
val timer that sends a Unix signal periodically. This imple-
mentation is inferior to one that provides profil() directly,
since each timer tick requires additional context switches

to deliver the signal, whereas in a direct implementation of
profil (), the kernel can increment a counter in the user
address space without the need for a context switch.

In our profiler, we do not need the complication of histo-
gram-based profiling, but just a counter that is incremented
on each tick. We therefore used the Linux setitimer()
system call directly, installing a signal handler that just in-
crements a counter in the current state. On a Unix system
that provides profil() as a system call, a better alternative
would be to set up a trivial histogram that treats the entire
program as a single bin, thereby getting the effect of a single
counter.

At the end of execution, our profiling code writes to
the file amon.out in the current directory information about
each state, including the timer, the call count and the his-
tory list. A separate analysis program reads this file and
produces a report, using the same format as gprof. We used
the GNU Binary File Descriptor library 1ibbfd to read the
symbol table of the program and translate the entry points
recorded in the profiling data into the names of subroutines.

6 Results and evaluation

In order to assess the overhead caused by our profiling tech-
nique, we compared the timings of our profiler with gprof
on three applications:

e TpX is Donald Knuth’s well-known typesetting pro-
gram. In the trials, we used the command

tex texbook.tex

to run TEX on the text of its own manual. The trials
used pre-computed format and font files.

e GCC is the GNU C compiler; we profiled it using the
command

ccl combine.i -03 -o combine.s,

where ccl is the main part of the C compiler (with-
out the C preprocessor and the driver program that is
usually invoked as gcc), and combine. i is the file ob-
tained by pre-processing combine.c, the largest source
file of GCC itself.

e pProlog is a small interpreter for a dialect of Prolog,
described in the book [13]. We translated the source of
the interpreter from Pascal to C using a home-grown
translator, then compiled the result with GCC. For the
trials, we used the command

pprolog queens.pp,

where queens.pp is a Prolog program that finds all
solutions to the ‘9 queens problem’. We included this
program because of its high density of recursive sub-
routine calls.

All these programs were statically linked with the GNU C
library. In each case, the library code was compiled for
profiling in the same way as the application source. The
compiler throughout was GCC with optimization level -02.
Table 3 shows various statistics related to the size of
the programs and the data files generated in profiling. The
columns of the table give the following information:

e Text size gives the size of the text segment for the
program, without instrumentation code.



Program | Text size | Func- Calls States | Trans- Depth Profiling Size of Size of gprof
tions | (millions) itions | (ave) (max) | memory | amon.out | gmon.out | cycles
TEX 0.57 MB 456 32.6 8286 8355 9.30 23 0.66 MB | 0.44MB | 0.27MB 5
GCC 1.97MB | 1703 61.2 55437 | 57777 | 13.13 29 5.24MB | 3.79MB | 0.94MB 15
pProlog | 0.32MB 115 47.6 435 443 | 10.31 19 0.07MB | 0.02MB | 0.14MB 2
Table 3: Data sizes
Program | Bare aprof gprof Dummy
charged  total change | charged total change total change
TEX 4.20s 6.09s 8.20s  (4+95%) 4.34s 9.89s (+135%) | 5.74s  (+37%)
GCC 10.18s | 13.68s 22.24s (+118%) | 10.20s 19.87s  (4+95%) | 12.94s  (+27%)
pProlog 4.00s 5.77s 7.83s  (+96%) 3.77s  11.57s  (+190%) | 5.53s  (+38%)

Table 4: Execution times

e [unctions gives the number of functions listed by our
profiler as having been called at least once.

e Calls gives the number of function calls traced by our
profiler.

e States and Transitions give the number of profiling
states and transitions created.

e Depth gives the average and the maximum number of
entries (both marked and unmarked) in the history
lists of profiling states.

e Profiling memory gives the total amount of memory al-
located for storage of profiling states and transitions.
This figure does not include the hash table for transi-
tions (0.5 MB) and the profiling stack (64 KB).

e Size of amon.out and Size of gmon.out give the sizes
of the files of profiling data written by our profiler and
by gprof respectively.

e gprof cycles gives the number of ‘cycles’ in the call
graph identified by gprof.

Table 4 shows the execution times for the benchmarks
under various conditions:

e Bare refers to the time taken by the benchmark with-
out profiling.

e aprof and gprof refer to the time taken by the bench-
mark using gprof and our profiler respectively.

o Dummy refers to the time taken when the benchmark
is compiled to call monitoring routines at function en-
try and exit, but linked with routines that have empty
bodies; this allows us to assess the overhead of calling
the instrumentation routines.

For gprof and aprof, the column labelled charged gives the
total time charged by the profiler to the running program,
and the column labelled total gives the total runtime. The
percentage increase of the total time with respect to the time
for bare is also shown. All these timings were obtained by
running the programs 10 times on a Pentium-III machine
with 256 MB of memory and a clock speed of 500 MHz and
taking the mean user time as reported by the Linux time
command. In all cases, the execution times were extremely
consistent between different runs of the programs.

These data allow us to draw some encouraging conclu-
sions about our profiling method in comparison with gprof.

The number of states created is much higher for GCC than
for the other two programs, and this comes about because
there are complex patterns of mutual recursion in parts of
GCC that perform various sorts of analysis of the program
being compiled. Nevertheless, the average depth of a history
remains moderate, and both the amount of memory needed
to store the states and transitions and the size of the result-
ing data file are reasonable by modern standards. In each
case, the profiling overhead in execution time is comparable
with that for gprof, and in two cases is rather smaller. This
reflects the speed gained by using a hash table to find tran-
sitions that have already been created. The figures reveal
that existing transitions cater for all but 57777 of the 61.2
million function calls performed by GCC, i.e. for 99.9% of
the calls.

It is disappointing to see that the time charged by aprof
is so much greater than the running time of the bare pro-
gram. The increase is approximately the same as the extra
time needed to run the program with dummy monitoring
routines, which suggests that the problem is caused by pro-
filing ticks that occur during the calling sequence of these
routines. We are careful to set a flag on entry to the monitor-
ing routines that prevents ticks from being charged during
the search for an existing transition and the creation of new
states, but this does not disable ticks that occur while the
calls are being prepared.

Compared with gprof, our approach suffers more over-
head because a call to a monitoring routine must be in-
serted at both the entry and the exit of each profiled rou-
tine, whereas gprof must monitor only entry to a routine in
order to accumulate arc counts. In addition, the profiling
interface provided by GCC passes more arguments to the
monitoring routines than under gprof, so that the code for
each call takes more time. It seems likely that the effect of
this problem could be lessened by setting the flag to disable
profiling inline before the call sequence. We could also adopt
a simpler profiling interface in order to reduce the cost of the
calls. Both these improvements could be made by building
a special version of the compiler, or by editing the object
code, but we have yet to try them.

In fact, the code for monitoring subroutine exit is very
simple: it just pops the stack of states. This code could be
inlined in order to reduce the profiling overhead. It may also
be worth considering inlining at least part of the monitoring
code for subroutine entry. We expect that the majority of
subroutine calls will use an existing transition in the finite-
state machine, and that the majority of these transitions will
be found by a single probe of the hash table. By inlining the



code for this commonest case, we might be able to reduce
the profiling overhead further, at the expense of a moderate
increase in code size. Care is needed, however, lest the in-
crease in code size interfere with the cache behaviour of the
program.

7 Related work

James Larus and his collaborators have published a series
of papers on different forms of profiling. Much of this work
concerns measurement at a finer granularity than that con-
sidered here, so that the path of control flow within subrou-
tines is recorded. The emphasis is more on collecting data
that could be used for branch prediction in a compiler than
on producing a report for programmers studying the be-
haviour of the program. We discuss here only the work that
concerns inter-procedural profiling. We have already men-
tioned (in Section 2) the methods presented in the PLDI’97
paper [1]. This paper introduces the idea of building a data
structure to record context information dynamically during
execution, and encourages the belief that the size of such
data structures may reasonable even when profiling large
programs.

In a more recent PLDI paper [8], Larus proposes a profil-
ing scheme that tracks the execution path of the whole pro-
gram and uses a compression algorithm on program paths to
reduce the volume of data collected. Our histories can also
be viewed as a kind of lossy compression scheme for pro-
gram paths, in contrast to the lossless compression used by
Larus, in which a simple context-free grammar for the paths
is generated during compression. This compression scheme,
though asymptotically linear in the size of the paths, is nev-
ertheless much more expensive in time than the method
based on histories.

The profiling techniques described in this paper are sim-
ilar to those investigated for lazy functional programming
by Stephen Jarvis in his Ph.D. thesis [7, 9]. Jarvis discusses
the use of cost-centre stacks to record the execution context
of a program, and these are similar to the histories used in
this paper. Our approach differs in the representation cho-
sen for histories, in the use of a finite-state machine with a
fast transition function, and in the recording of information
about incoming and outgoing arcs that enables the profiling
report to mimic that produced by gprof.

Jarvis aims to represent histories more compactly by us-
ing a pointer-linked scheme where each history is represented
by a node that contains one routine address and a pointer
to the preceding history. In most cases, new histories can
be created by adding a single new node. However, detec-
tion of mutual recursion requires a complete traversal of the
chain of ancestor links, and this traversal may be expensive
in cache misses. When mutual recursion causes the elision
of ancestors in the history, it may be necessary to create
many new nodes all at once. The data we have presented
indicates that the depth of histories remains moderate, so
that representing the entire history explicitly in each state
does not have an unacceptable cost in memory, and we can
expect much better cache performance in scanning an ar-
ray of routine addresses compared with traversing a chain
of pointers.

Conway and Somogyi [3] describe a sophisticated pro-
filing scheme that they have implemented for the higher-
order logic programming language Mercury. Their scheme
depends on an analysis by the Mercury compiler of the call
graph of the program, which discovers among other things
the cycles of mutually recursive functions in the program,

and produces efficient instrumentation code. Because Mer-
cury has higher-order features, this analysis is necessarily
partial, since the value of procedure-valued variables cannot
be known at compile time. The profiling scheme can also
handle mutual recursion that arises through calls to such
procedures, but generates instrumentation code that is very
efficient for the common case of calling a known procedure
with a known pattern of recursion.

Techniques such as those proposed by Conway and So-
mogyi have the potential to reduce dramatically the cost
of profiling. Nevertheless, they rely on compiler support,
and we believe that the simpler techniques proposed in this
paper also have their place in programming practice.

8 Conclusions

We have presented a profiling technique that can be used in
place of that used in profilers like gprof. At comparable cost
in execution time, the new technique gathers accurate data
about the relationship between execution time and paths in
the call graph. Although the data collected provides much
more information about the behaviour of the program be-
ing profiled, the volume of data in terms of the amount of
memory used for profiling and the size of the resulting file
of profiling data remains moderate.

The new technique can be used to produce an accurate
profile in the same format as that output by gprof, and can
also be used to produce reports that focus on a particular
routine and its children, or as the basis for an interactive
exploration of the distribution of execution time with respect
to the call graph of the program.

The new technique deals with mutual recursion with-
out lumping together families of mutually recursive routines,
and can give an accurate report of which paths of mutual re-
cursion were actually taken during execution. This makes it
especially attractive for assessing the performance of higher-
order and object-oriented programs, where families of mu-
tually recursive routines are common.
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