
Type Inference fo r Record Conca tena t ion and Mul t ip l e Inhe r i t ance

Mitchell Wand

College of Computer Science
Northeastern University

360 Huntington Avenue, 161CN
Boston, MA 02115, USA

Abstract

We show that the type inference problem for a lambda cal-
culus with records, including a record concatenation operator, is
decidable. We show that this calculus does not have principal
types, but does have finite complete sets of types: that is, for
any term M in the calculus, there exists an effectively genera-
ble finite set of type schemes such that every typing for A4 is an
instance of one the schemes in the set.

We show how a simple model of object-oriented program-
ming, including hidden instance variables and multiple inheri-
tance, may be coded in this calculus. We conclude that type
inference is decidable for object-oriented programs, even with
multiple inheritance and classes as first-class values.

1. In t roduc t ion

A practical motivation for type inference is t o ensure an op-
erational safety property of programs that are well-typed: that
is, when we execute a well-typed program, we are guaranteed
that we will never get an error message such as “bad function

Our goal is to extend this safety property to programs involv-
ing records and objects. Here the safety property is that we will
never get a message such as “can’t find field” when we attempt
to do a field extraction operation. For object-oriented program-
ming, we wish to guarantee that we will never get messages like
“can’t find method.”

We begin by reviewing, in Section 2, the basic operations
on records. In Section 3, we show how objects and classes can
be modelled as syntactic sugar for record operations. In this

way, typing results for records can be used for object-oriented
programs. We then consider the type inference problem for the
lambda-calculus with records. These properties differ dramati-
cally depending on the record constructors considered. In Section
4, we review Rkmy’s solution for type inference when the con-
structor is extension by a single field (record cons). In Section
5, we show how this system can be extended to record concate-
nation (record append). In Sections 6 and 7, we show how this
approach can be extended to handle unbounded sets of labels.
Sections 8 and 9 discuss related work and conclusions.

n i l . ”

2. Records: Basic Definitions

Records are composite structures with components indexed
by a fixed set L of labels. We assume that one can effectively
determine whether a given label is present or absent in a record.
Therefore, we model records as total functions

L + (V + {absent})

For the moment, we will assume that L is finite; we will remedy
this assumption in Section 6.

The basic operations on records are selection, null, extension,
and concatenation.

0 Selection along label a, written (-) . a , selects the a-th com-
ponent of the record:

r.a = .(a)

0 The null record null is the one with no fields: Xu. absent.
0 Record extension is the standard extension of a function by

one point:

(r w i t h a = v) = Xb.((b= a) + v, r (b))

We write r w i t h [a l = V I ; . . . ; ah = vk] as an abbreviation for
T w i t h [a1 = q] w i t h . . . w i t h [ak = 4.

0 Record concatenation is the standard union of two partial
functions:

(r 1 1 r’) = Xa.(inleft?(r‘(a)) + #(a), ? (a))

Concatenation and extension both overwrite t o the right: the
rightmost field which is present is the one which appears in
the answer.

Concatenation poses severe problems for typing systems. Con-
sider the term

Xzy.((. II y1.a + 1)
This should be applicable to any pair of records z and y in which
y has an integer a field or in which z has an integer a field and
y has an absent a field. This term does not have a principal type
in any known system, including [Rkmy 89, Cardelli 881. We shall
show that its types are generated by two type schemes.

This Material is based on work supported by the National Science Foun-
dation under grants numbered DCR-8605218 and CCR-8801591.

92
CH2753-2/89/0000/0092$01.00 0 1989 IEEE

3. Objects

Our main practical motivation in considering records is that
we can model objects and classes using these operations. We
model an object as a record of methods. These methods are usu-
ally procedures. They share access to a set of instance variables
that are local t o the object. The instance variables are hidden
from the rest of the program by scoping. Furthermore, the meth-
ods may refer t o the object itself through the identifier self. A
class is modelled as a procedure which takes values for the in-
stance variables and an object (the self) and produces an object.
With these conventions, we can think of class definition and in-
stantiation as syntactic sugar for the following record operations:

class (21,. . . , z,)

E X(zl, . . . ,z ,) .Xself .ndwith[al = M I ; .. .;ak = Mk]
methods a1 = MI;. . .; ak = Mk end

make-instance C(N I , . . . , N,) E Y (C NI . . . N,)

Here the body of the class definition builds up a record of
method by starting with the empty record and adding methods
one at a time. The make-instance operator uses the fixed-point
operator Y t o guarantee that self is bound to the whole object.

We can now add inheritance to the model in a relatively
straightforward way. We introduce the syntax

class (21,. . . ,z,)
inherits P (Q 1 , . . . , Q p)
methods a1 = MI;. . . ; ak = Mk end

which signifies a class which is t o inherit from class P ; the ex-
pressions Q1,. . . , Q p determine how to instantiate the instance
variables of the parent class.

As pointed out by Cook and others [Cook 87, Kamin 88,
Reddy 881, we must be careful at this point t o make sure that in
any instance of this class, self in the methods of the parent class
is bound to the entire object, not just the portion of the object
corresponding to the parent class. Thus the parent class acts like
a virtual class in Simula. This can be easily achieved using the
same protocol we have been using:

class (z l , . . . ,z,)
inherits P(Q1,. . . , Q p)
methods a1 = MI;. . .; a k = Mk end

X(z1,. . .,z,).Xself.
(P (Q l . . .QP)se l f)wi th [a l = M I ; ...; ak = Mk]

Thus, when the class receives the value for self, it creates the
record of methods for P , setting the instance variables for P t o
the values of Q (these may refer to self), and setting the value
of self seen by the methods of P to be the self of the entire
record. It then extends this record by adding the methods in
the daughter class one at a time. The make-instance operator
remains as before.

Multiple inheritance is modellable using records, as well. For
example, we could interpret

class (21,. . . , z,)
inherits P(Q1,. . . , Q p) , P ' (Q { , . . . , Q t)
methods a1 = M I ; . . . ; ak = h f k end

as
X(z1,. . . , z,).Xself.

(~ (Q I . . . Q p) ~ e l f) l J (P ' (Q ; . . . Q ~) ~ e l f)
with[al = MI;. . .; ak = Mk]

In this way, we treat an object-oriented program as syntactic
sugar for a term in the lambda-calculus with records. An unusual
feature of this language is that classes are ordinary data values
which can be passed as parameters. Thus one could write a class
transformer:

Xp. class (z) inherits p (z + 1)
This translation enables us to make the connection between

record concatenation and multiple inheritance. If we have a type
system for the lambda-calculus with records, then we can decide
typing for programs in the object-oriented language, simply by
expanding the syntactic sugar. Results such as subject reduction,
principal types, and semantics are similarly inherited. Some of
the details are worked out in [Wand 881. We proceed, therefore,
t o consider the type inference problem for the lambda calculus
with records.

4. Type Inference for Records

Our basic approach is t o take the type of a record to be
the record of the types of its components. Thus the type of a
record is a function L + (Type + {absent}). This suggests type
constructors of the form:

--* : Type x Type 3 Type
II : [L 3 (Type + {absent})] Type

RCmy [RCmy 891 observed that this may be turned back into
an ordinary algebraic signature by introducing a new kind (which
he called a Field), and using the signature:

-+ : Type x Type * Type
II : FieldL 3 Type

absent : Field
pres : Type 3 Field

In this scheme, a field absent signifies a field which is absent
from the record; a field pres(t) indicates a field which is present
and has a value of type t. Schemas in which a field may be either
present or absent can be modelled by using a field variable. Since
the definition is inductive, semantics can be assigned to these
types in an obvious way. Recursive types can be considered as
well.

Since L is finite, we will write II as an ordinary type con-
structor, of arity card(L). In this system, we can write principal
type schemes for the basic record operations:

93

null : II(absent, . . . ,absent)
(-) . a : n(f1,. . . , p r e s (t) , . . .,fn) -+ t

(-) w i t h a = (-) :

n(f1,. . . > fn) -+ t -+ W l , . . . , p res (t) , . . . I fn)

Here we set n = card(L), the f i are field variables, and the mod-
ified component of the II constructors is the one corresponding
to the label a.

It is instructive to analyze these schema. The first says that
null builds a record all of whose fields are absent. The second
says that selection takes as input any record whose a field is
present, and returns a value of the same type as that a field. The
use of field variables allows this type to express the proposition
that the other fields may be either present or absent. The last
says that extension takes as inputs any record and any value, and
returns a record of the same type as the input, except that the
a field is guaranteed to be present with type t . These types are
consistent with the semantics given earlier.

If L is finite, then this is a conventional type system (al-
beit with a slightly non-standard kind system), t o which all the
usual results on polymorphic typing apply. In particular, one can
infer principal types with or without reflexive (infinitely deep)
types and with or without polymorphic values created using the
standard le t construct of ML. We conjecture that other exten-
sions, such as Mitchell’s extension to subtyping on ground types
[Mitchell 841 or O’Toole and Gifford’s quantification schemes
[O’Toole & Gifford 881 are easily incorporated.

This gives a solution for the case of record extension (see
[Rkmy 891 for some variants). We next turn to the more difficult
case of type inference for concatenation.

5. Deal ing w i t h Concatena t ion

Unfortunately, in this system it is impossible to assign a prin-
cipal type to the concatenation operator. For example, let us
show that X z y . ((z 11 y) .a + 1) has no principal type in this sys-
tem. Let L be { a } . Then this term should have type

II(absent) --+ II(pres(int)) -+ int

and it should also have type

II(pres(int)) -+ II(absent) -+ int

Therefore, if it had a principal type, that type must be at least
as general as

n(f1) -+ WZ) -+ int

This is not a reasonable type for this term. Therefore concate-
nation has no principal type which satisfies these minimal expec-
tations.

In order t o analyze concatenation, we need to look more
closely a t the type assignment rules for the lambda calculus.

It is useful to think of the ordinary type inference rules (in
the absence of let) as a set of constraints on the type expressions
which appear in the derivation. In this view, we assign a type
variable to every subterm and to every binding occurrence of a
variable. The type inference rules may be stated as constraints
on the types which can appear in the corresponding positions in
the derivation. We write a constraint for each node in the parse
tree (isomorphic, of course, to the derivation tree):

for each applied occurrence of a variable I, generate the con-
straint t , = A (z) , where t , is the type variable corresponding
to this applied occurrence of x and A (z) is the type variable
corresponding to the relevant binding occurrence of x.
for each occurrence of an application (M N) generate the
constraint tM = t N -+ t (~ N), where each type variable is
the type variable corresponding to the occurrence of the in-
dicated term.
for each occurrence of an abstraction X x M , generate the
constraint t(A,,M) = t , + tM, where each type variable is
the type variable corresponding to the indicated occurrence
(a binding occurrence in the case of t z) .
It is easy to see that this formulation is equivalent t o the

usual inference rules, so that the solutions to the generated set of
equations correspond to the possible type derivations. Thus the
existence of most general unifiers implies the existence of princi-
pal types. This reduction is folkloric [e.g. Cardelli 85, Clkment
et al. 861, and is implicit in [Hindley 69, Milner 781.

It is not possible to state a typing rule for concatenation as an
equation in this style, since concatenation has no principal type,
but it is possible to express a sound typing rule for concatenation
using a disjunction of equations:

For each occurrence of a concatenation (MI1 N) , generate
the following cons train t s:

These constraints reflect the following analysis: all of hf,
N , and M 1 1 N must be records, of some yet-to-be-determined
composition. For each field, either the field is present in N , in
which case the field in N is present in the result, or else the field
is absent in N , in which case the field in the result is the same
as it is in M , whether it be present or absent.

These constraints determine a type inference rule: that is,
they form an acceptance criterion on a type derivation tree. Writ-
ing out the rule in the usual deduction-rule form is left as a te-
dious exercise for the reader.

The constraints can also be used for type reconstruction. We
no longer have a conjunction of equations, but we have a positive
boolean combination of equations. Hence we can expand it into
disjunctive normal form, getting a disjunction of conjunctions
of equations. Each conjunction can be analyzed to get a most
general unifier, yielding a finite set of types whose substitution
instances are precisely the typings of the original term. This
proves the main theorem:

T h e o r e m . Given a closed term M , we can eflectively de-
termine whether M has a type. In particular, we can generate
a finite set of type schemes such that the types of M are ezactly
the substitution instances of these schemes.

(Here, for convenience, we have stated the result for closed
terms; the result for terms with free variables is slightly harder
to state but no more difficult.)

For our motivating example X z y . ((z 1 1 y) .a + I), it is easy to
see that a complete set of types is

n(f1,. . . ,pres(int), . . . , fn) + I I (g 1 , . . . ,absent , . . . , g n) -+ int

94

and

II (f1 , . . . , f n) -+ I I (g 1 , . . . ,pres(int), . . . ,gn) + int

where, as usual, the expanded argument to II is the one corre-
sponding to the a field. From this it is also easy to see that this
term has no principal type, as any type which has both these
types as instances also has instances which are not legitimate
types for this term.

The number of types generated can be large of course: i t
may be as large as 2'", where n = card(L) and k is the number
of occurrences of concatenation in the program. In practice, one
would attempt to solve the equations as much as possible before
expanding the disjunctions, and to prune unsatisfiable disjunc-
tions as quickly as possible. This is a reflection of a real difficulty
in object-oriented programming systems: systems with multiple
inheritance go to great lengths to determine from which ancestor
a particular method is inherited.

6. Dealing with Infinite Label Sets

In general it is not enough to typecheck programs with finite
L. If one is checking a small module of a very large system, one
may not know in advance what labels may be used in the larger
system. Similar problems arise if one is incrementally checking a
piece of a program in an interactive system. Hence i t is necessary
to provide for the infinite set of labels which are possible in the
language.

When L is infinite, we will need some notation for specifying
functions in FieldL, which we sometimes call TOWS. Let us assume
without loss of generality that the labels which actually appear
in the program are numbered 1 through n , and let p , p', etc. be
a new class of variables called extension variables. We write

for the product type

II(Fl,. . ., Fn, absent, absent, . . .)

and
n[F', . . ., F ~] P

for the product type

n (4 , . . .rFn,fp,n+l,fp,n+lr. . .)

where the f p , i are fresh field variables. We refer t o the first n
labels as explicit labels, and to the others as implicit. We can
think of an extension variable as a labelled ellipsis.

In this way we reduce II from an infinitary constructor to a
finitary n + 1-ary constructor, with a kind structure given by:

+ : Type x Type + Type
II : Field" x Extension + Type

absent : Field
pres : Type 3 Field

empty : Extension

Note that the kind Extension has only extension variables
and the constant empty, denoting the ellipsis whose components
are all absent. We then observe:

All the constants have principal types which are finitely rep-
resentable in this scheme.
Any two finitary terms have a unifier if and only if their infini-
tary translations do, and their most general unifier represent
the most general unifier of their translations.

Hence we can deal with unification (and principal types for
the language without concatenation) by simply calculating with
the representations.

We next consider how to deal with concatenation in the pres-
ence of infinite L. We cannot directly extend the version for
finite L because it would require generating infinitely many dis-
junctions. Instead, let us define an extension constraint to be a
formula of the form

P1 II Pz = P3

An extension constraint abbreviates the infinite set of disjunc-
tions

(fpz,n+i = Pres(tn+i) A fp3,n+i = fp2,n+i)
V (fpz,n+i = absent A fpj.n+i = fpl,n+i)

for i > 0. We say that a substitution satisfies a set of extension
constraints iff it assigns types and fields to all the type and field
variables to make each of these disjunctions true. Note also that
every set of extension constraints is satisfiable: just set all the p,
to empty.

Now we can state the rules for generating the constraints.
We generate constraints for the ordinary terms as before. The
rule for concatenation is:

0 For each occurrence of a concatenation (M I I N) , generate
the following constraints:

We can expand into disjunctive normal form again, to get a
disjunction of formulas of the form (E A C), where E is a set of
equations and C is a set of extension constraints. We can then
unify each disjunct individually to get a most general unifier and
a set of row constraints.

In doing the unification, substitutions for extension variables
are of course performed on C as well. The row constraints can
also be simplified using the rules

(empty II P) = P

(P I1 empty) = P

but this is not necessary to obtain the result.

for the case of closed terms:

erate a finite set S such that

constraints and T is a type scheme, and

a substitution U such that U satisfies C and T' = Tu.

termine whether M has a type.

This gives us our main theorem, which again we state just

Theorem. Given a closed term M , we can effectively gen-

(1) S consists of pairs (C , T) such that C is a set of extension

(2) T' is a type for M i f f only there is a pair (C , T) in S and

Corollary. Given a closed term M , we can effectively de-

95

Proof: Generate a set of pairs as above. If the set is empty,
then M has no type. If the set is non-empty, choose one pair,
and substitute empty for all the the extension variables. This
gives a type for M . QED

7. Dealing Better with Infinite Label Sets

While this development is adequate theoretically to deal with
infinite label sets, it is inadequate to deal with the problem that
led us to consider infinite label sets in the first place: namely,
the problem of incrementally checking a portion of a program,
without knowing the entire set of labels needed.

In order t o deal with this problem, we observe that i t is not
necessary for all II types to have exactly the same set of explicit
labels. We write a typical II node as

n[a, : F1,. . .ak : Fk]p

to indicate that the explicit labels are al, . . . , ak.

constants as follows:
In this language, we can succinctly write the types of the

null : I I [] empty
(-) .a : II[a : pres(t)]p + t

(-)wi th a = (-) : II[a : f] p + t + II[a : pres(t)]p

The unification algorithm will work if we maintain the fol-

All 11 nodes with the same extension variable have the same
explicit labels, so that each extension variable has a well-
defined domain.
When two II nodes are unified, they must have the same
explicit labels.

lowing invariants:

When two extension variables appear in an extension con-
straint, they must have the same explicit labels, so that their
domains are the same.
The first invariant is satisfied by the types of the constants

as written above.
Now, under this invariant, consider unifying two terms TM

and TN. As we traverse these trees, we may reach corresponding
II nodes with different sets of explicit labels. In order to unify
these, we first pad the nodes to give them the same set of explicit
labels: let L M be the set of labels explicit in the first node and
LN the set of labels explicit in the second node. For each label
a E L M \ L N , replace every node in TM of the form

by
n[al : Fi, . . .,a,, : F,, a : fp.a]p

and each node of the form

I I [a l : F1,. . .,a, : F,,] empty

by
II[al : F1,. . . , a, : F,,, a : absent] empty

Pad TN similarly. We can do such global padding by substitut-
ing a construction such as [a : fp.a]pl for p, where p1 is a fresh
extension variable. We can then unify as usual.

By construction, extension constraints always start off with
all of their variables having the same explicit labels (in fact, they
will start with the set of explicit variables being empty); as sub-
stitution affects these constraints, we must pad the extension
constraints as well.

Note that the creation of new variables is bounded by the
number of new nodes that would be created had we done all the
padding a t once, by simply choosing to make all the labels in the
whole program explicit before unifying. Hence the algorithm still
halts, even though new variables are being introduced.

The last difficulty to be faced in adapting the usual type
inference algorithms to these infinitary trees is the treatment
of let. The usual treatment of let is to create a typescheme
by quantifying over all type variables not appearing in the type
hypotheses, and then to create new variables for each quantified
variable in the typescheme of an identifier [ClQment et al. 861.
In our system, this might involve quantifying over an infinite
number of field variables. But this is not a problem, as one can
abbreviate this by quantifying over the corresponding extension
variables, and generating new extension variables as needed.

8. Related Work

[Cardelli 881 introduced record models of objects, including
His system did not deal with records of indefinite subtyping.

width, as in
Xr.z with a := (z.a + 1)

nor did his system attempt to do type inference. The inability of
this system, and even of the more powerful system Bounded Fun
[Cardelli & Wegner 851 to deal with this record updating problem
has been a topic of recent discussion on the Types electronic
mailing list [Meyer 881.

The language used in this paper, which is capable of dealing
with record overwriting of this kind, was introduced in [Wand
871, which also attempted to do type inference for this language;
unfortunately the unification algorithm in that paper was incor-
rect. [RQmy 891 introduced the notion of fields, which gave an
obviously correct treatment of records using the usual notion of
unification.

The system we have used focuses on polymorphism in the
procedures; RQmy also introduced another system in which the
records themselves are polymorphic. In this system, a record is
regarded as a polymorphic object, in which any field containing a
value may be instantiated as either present (for use by selection)
or as absent (forgotten). The set of terms typable under this
system is incomparable with those typable under the original
system. This system seems preferable for some applications, but
giving it a plausible semantics remains an open problem.

[Jategaonkar & Mitchell 881 give a type system for extendible
records in ML, including ML patterns and subtyping on ground
(i.e. name-equivalent) types. We conjecture that our system can
replace the cut-restrictions in their system, and that the resulting
systems will fit together nicely. [Stansifer 881 also contributed a
treatment of type inference for records.

[Reddy 881 gives a semantics for objects as closures which is
very close in spirit to ours. He gives a traditional denotational
semantics, whereas we give a concrete semantics [Wand 851: a
translation into an underlying lambda-calculus. By looking at
the type of the resulting terms, we obtain finer type information
than is possible by looking just a t the denotational semantics. We
then derive typing rules for the source language by saying that if
a source language phrase is well-typed, then its translation must
be.

96

9. Conclusions

We have presented an algorithm for doing type inference for
the lambda calculus with records and record concatenation. By
treating object-oriented programs as syntactic sugar for terms
in this language, this system enables us to do ML-style type
inference for object-oriented programs with multiple inheritan.ce,
even including classes as first-class data objects.

Acknowledgements

Conversations with Patrick O’Keefe, Denis Kfoury, and Peter
Wegner were helpful in understanding the issues and refining the
presentation.

References

[Cardelli 851
Cardelli, L. “Basic Polymorphic Typechecking,” Polymor-
phism Newsletter 2,1 (Jan, 1985). Also appeared as Comput-
ing Science Tech. Rep. 119, AT&T Bell Laboratories, Murray
Hill, NJ.

Cardelli, L. “A Semantics of Multiple Inheritance,” Infor-
mation and Computation 76 (1988), 138-164.

ClCment, D., Despeyroux, J., Despeyroux, T., and Kahn,
G. “A Simple Applicative Language: Mini-ML” Proc. 1986
ACM Symp. on Lisp and Functional Programming, 13-27.

Cardelli, L., and Wegner, P. “On Understanding Types, Data
Abstraction, and Polymorphism,” Computing Surveys 17 (19-

[Cardelli 881

[Clkment et al. 861

[Cardelli & Wegner 851

85) , 471-522.
[Cook 871

Cook, W. “A self-ish model of inheritance,” manuscript,
1987.

Hindley, R. “The Principal Type-Scheme of an Object in
Combinatory Logic,” Trans. Am. Math. Soc. 146 (1969) 29-
60.

[Hindley 691

[Jategaonkar & Mitchell 881
Jategaonkar, L.A., and Mitchell, J.C. “ML with Extended
Pattern Matching and Subtypes,” Proc. 1988 ACM Conf.
on Lisp and Functional Programming, 198-211

[Kamin 881
Kamin, S. “Inheritance in Smalltalk-80: A Denotational Def-
inition,” Conf. Rec. 15th Ann. ACM Symp. on Principles of
Programming Languages (1988), 80-87.

Meyer, A. (moderator), types electronic mailing list, t y p e s
0 theory.lcs.mit.edu

Milner, R. “A Theory of Type Polymorphism in Program-
ming,” J . Comp. & Sys. Sci. 17 (1978), 348-375.

Mitchell, J.C. “Coercion and Type Inference (summary),”
Conf. Rec. 11th Ann. ACM Symp. on Principles of Pro-
gramming Languages (1984), 175-185.

O’Toole, J.W., and Gifford, D.K. “Type Reconstruction with
First-class Polymorphic Values,” manuscript, 1988.

[Meyer 881

[Milner 781

[Mitchell 841

[O’Toole & Gifford 881

[Reddy 881
Reddy, U. “Objects as Closures: Abstract Semantics of Ob-
ject-oriented Languages,” Proc. ACM Conf. on LISP and
Functional Programming (1988), 289-297.

RCmy, D. “Typechecking records and variants in a natural
extension of ML,” Conf. Rec. 16th Ann. ACM Symp. on
Principles of Programming Languages (1989), 77-88.

Stansifer, R. “Type Inference with Subtypes,” Conf. Rec.
15th Ann. ACM Symp. on Principles of Programming Lan-
guages (1988), 88-97.

Wand, M. “Embedding Type Structure in Semantics” Conf.
Rec. 12th ACM Symp. on Principles of Prog. Lang. (1985),

[Rkmy 891

[Stansifer 881

[Wand 851

1-6.
[Wand 871

Wand, M. “Complete Type Inference for Simple Objects”
Proc. 2nd IEEE Symposium on Logic in Computer Science
(1987), 37-44.

[Wand 881
Wand, M. “Type Inference for Objects with Instance Vari-
ables and Inheritance,” manuscript, 1988.

97

http://theory.lcs.mit.edu

