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Abstract 

We show that  the type inference problem for a lambda cal- 
culus with records, including a record concatenation operator, is 
decidable. We show that this calculus does not have principal 
types, but does have finite complete sets of types: that  is, for 
any term M in the calculus, there exists an effectively genera- 
ble finite set of type schemes such that every typing for A4 is an 
instance of one the schemes in the set. 

We show how a simple model of object-oriented program- 
ming, including hidden instance variables and multiple inheri- 
tance, may be coded in this calculus. We conclude that  type 
inference is decidable for object-oriented programs, even with 
multiple inheritance and classes as first-class values. 

1. In t roduc t ion  

A practical motivation for type inference is t o  ensure an op- 
erational safety property of programs that are well-typed: that  
is, when we execute a well-typed program, we are guaranteed 
that we will never get an error message such as “bad function 

Our goal is to extend this safety property to programs involv- 
ing records and objects. Here the safety property is that  we will 
never get a message such as “can’t find field” when we attempt 
to  do a field extraction operation. For object-oriented program- 
ming, we wish to  guarantee that we will never get messages like 
“can’t find method.” 

We begin by reviewing, in Section 2, the basic operations 
on records. In Section 3, we show how objects and classes can 
be modelled as syntactic sugar for record operations. In this 

way, typing results for records can be used for object-oriented 
programs. We then consider the type inference problem for the 
lambda-calculus with records. These properties differ dramati- 
cally depending on the record constructors considered. In Section 
4, we review Rkmy’s solution for type inference when the con- 
structor is extension by a single field (record cons). In Section 
5, we show how this system can be extended to  record concate- 
nation (record append). In Sections 6 and 7,  we show how this 
approach can be extended to handle unbounded sets of labels. 
Sections 8 and 9 discuss related work and conclusions. 

n i l . ”  

2. Records: Basic  Definitions 

Records are composite structures with components indexed 
by a fixed set L of labels. We assume that one can effectively 
determine whether a given label is present or absent in a record. 
Therefore, we model records as total functions 

L + (V + {absent})  

For the moment, we will assume that L is finite; we will remedy 
this assumption in Section 6. 

The basic operations on records are selection, null, extension, 
and concatenation. 

0 Selection along label a,  written ( - ) . a ,  selects the a-th com- 
ponent of the record: 

r.a = .(a) 

0 The null record null is the one with no fields: Xu. absent. 
0 Record extension is the standard extension of a function by 

one point: 

( r w i t h a  = v) = Xb.((b= a )  + v, r ( b ) )  

We write r w i t h [ a l  = V I ; .  . . ; ah  = vk] as an abbreviation for 
T w i t h  [a1 = q] w i t h  . . . w i t h  [ak = 4. 

0 Record concatenation is the standard union of two partial 
functions: 

( r  1 1  r’) = Xa.(inleft?(r‘(a)) + #(a), ? ( a ) )  

Concatenation and extension both overwrite t o  the right: the 
rightmost field which is present is the one which appears in 
the answer. 

Concatenation poses severe problems for typing systems. Con- 
sider the term 

Xzy.((. II y1.a + 1) 
This should be applicable to  any pair of records z and y in which 
y has an integer a field or in which z has an integer a field and 
y has an absent a field. This term does not have a principal type 
in any known system, including [Rkmy 89, Cardelli 881. We shall 
show that its types are generated by two type schemes. 

This Material is based on work supported by the National Science Foun- 
dation under grants numbered DCR-8605218 and CCR-8801591. 
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3. Objects 

Our main practical motivation in considering records is that  
we can model objects and classes using these operations. We 
model an object as a record of methods. These methods are usu- 
ally procedures. They share access to  a set of instance variables 
that  are local t o  the object. The instance variables are hidden 
from the rest of the program by scoping. Furthermore, the meth- 
ods may refer t o  the object itself through the identifier self. A 
class is modelled as a procedure which takes values for the in- 
stance variables and an object (the self) and produces an object. 
With these conventions, we can think of class definition and in- 
stantiation as syntactic sugar for the following record operations: 

class (21,. . . , z,) 

E X(zl, .  . . ,z ,) .Xself .ndwith[al = M I ;  .. .;ak = Mk] 
methods a1 = MI;.  . .; ak = Mk end 

make-instance C( N I , .  . . , N,) E Y ( C  NI . . . N,) 

Here the body of the class definition builds up a record of 
method by starting with the empty record and adding methods 
one at  a time. The make-instance operator uses the fixed-point 
operator Y t o  guarantee that self is bound to the whole object. 

We can now add inheritance to the model in a relatively 
straightforward way. We introduce the syntax 

class (21,. . . ,z,) 
inherits P ( Q 1 , .  . . , Q p )  
methods a1 = MI;.  . . ; ak = Mk end 

which signifies a class which is t o  inherit from class P ;  the ex- 
pressions Q1,.  . . , Q p  determine how to instantiate the instance 
variables of the parent class. 

As pointed out by Cook and others [Cook 87, Kamin 88, 
Reddy 881, we must be careful at this point t o  make sure that in 
any instance of this class, self in the methods of the parent class 
is bound to  the entire object, not just the portion of the object 
corresponding to the parent class. Thus the parent class acts like 
a virtual class in Simula. This can be easily achieved using the 
same protocol we have been using: 

class (z l ,  . . . ,z,) 
inherits P(Q1,. . . , Q p )  
methods a1 = MI;.  . .; a k  = Mk end 

X(z1,. . .,z,).Xself. 
( P ( Q  l . . .QP)se l f )wi th [a l  = M I ;  ...; ak = Mk] 

Thus, when the class receives the value for self, it creates the 
record of methods for P ,  setting the instance variables for P t o  
the values of Q (these may refer to self), and setting the value 
of self seen by the methods of P to be the self of the entire 
record. It then extends this record by adding the methods in 
the daughter class one at  a time. The make-instance operator 
remains as before. 

Multiple inheritance is modellable using records, as well. For 
example, we could interpret 

class (21,. . . , z,) 
inherits P(Q1,. . . , Q p ) ,  P ' ( Q { ,  . . . , Q t )  
methods a1 = M I ;  . . . ; ak = h f k  end 

as 
X(z1,. . . , z,).Xself. 

( ~ ( Q I  . . .  Q p ) ~ e l f ) l J ( P ' ( Q ; . . . Q ~ ) ~ e l f )  
with[al = MI;.  . .; ak = Mk]  

In this way, we treat an object-oriented program as syntactic 
sugar for a term in the lambda-calculus with records. An unusual 
feature of this language is that  classes are ordinary data  values 
which can be passed as parameters. Thus one could write a class 
transformer: 

Xp. class (z) inherits p ( z  + 1) 
This translation enables us to make the connection between 

record concatenation and multiple inheritance. If we have a type 
system for the lambda-calculus with records, then we can decide 
typing for programs in the object-oriented language, simply by 
expanding the syntactic sugar. Results such as subject reduction, 
principal types, and semantics are similarly inherited. Some of 
the details are worked out in [Wand 881. We proceed, therefore, 
t o  consider the type inference problem for the lambda calculus 
with records. 

4. Type Inference for Records 

Our basic approach is t o  take the type of a record to  be 
the record of the types of its components. Thus the type of a 
record is a function L + (Type + {absent}). This suggests type 
constructors of the form: 

--* : Type x Type 3 Type 
II : [ L  3 (Type + {absent})] Type 

RCmy [RCmy 891 observed that this may be turned back into 
an ordinary algebraic signature by introducing a new kind (which 
he called a Field), and using the signature: 

-+ : Type x Type * Type 
II : FieldL 3 Type 

absent : Field 
pres : Type 3 Field 

In this scheme, a field absent signifies a field which is absent 
from the record; a field pres(t) indicates a field which is present 
and has a value of type t. Schemas in which a field may be either 
present or absent can be modelled by using a field variable. Since 
the definition is inductive, semantics can be assigned to these 
types in an obvious way. Recursive types can be considered as 
well. 

Since L is finite, we will write II as an ordinary type con- 
structor, of arity card(L). In this system, we can write principal 
type schemes for the basic record operations: 
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null : II(absent, . . . ,absent) 
( - ) . a  : n(f1,. . . , p r e s ( t ) ,  . . .,fn) -+ t 

(-) w i t h  a = (-) : 

n(f1,. . . > fn) -+ t -+ W l , .  . . , p res ( t ) ,  . . . I  fn) 

Here we set n = card(L), the f i  are field variables, and the mod- 
ified component of the II constructors is the one corresponding 
to  the label a.  

It is instructive to analyze these schema. The first says that 
null builds a record all of whose fields are absent. The second 
says that selection takes as input any record whose a field is 
present, and returns a value of the same type as that a field. The 
use of field variables allows this type to express the proposition 
that the other fields may be either present or absent. The last 
says that extension takes as inputs any record and any value, and 
returns a record of the same type as the input, except that the 
a field is guaranteed to  be present with type t .  These types are 
consistent with the semantics given earlier. 

If L is finite, then this is a conventional type system (al- 
beit with a slightly non-standard kind system), t o  which all the 
usual results on polymorphic typing apply. In particular, one can 
infer principal types with or without reflexive (infinitely deep) 
types and with or without polymorphic values created using the 
standard le t  construct of ML. We conjecture that other exten- 
sions, such as Mitchell’s extension to subtyping on ground types 
[Mitchell 841 or O’Toole and Gifford’s quantification schemes 
[O’Toole & Gifford 881 are easily incorporated. 

This gives a solution for the case of record extension (see 
[Rkmy 891 for some variants). We next turn to the more difficult 
case of type inference for concatenation. 

5. Deal ing  w i t h  Concatena t ion  

Unfortunately, in this system it is impossible to  assign a prin- 
cipal type to the concatenation operator. For example, let us 
show that X z y . ( ( z  11 y) .a  + 1) has no principal type in this sys- 
tem. Let L be { a } .  Then this term should have type 

II(absent) --+ II(pres(int)) -+ int 

and it should also have type 

II(pres(int)) -+ II(absent) -+ int 

Therefore, if it had a principal type, that type must be at  least 
as general as 

n(f1) -+ WZ) -+ int 

This is not a reasonable type for this term. Therefore concate- 
nation has no principal type which satisfies these minimal expec- 
tations. 

In order t o  analyze concatenation, we need to look more 
closely a t  the type assignment rules for the lambda calculus. 

It is useful to think of the ordinary type inference rules (in 
the absence of let)  as a set of constraints on the type expressions 
which appear in the derivation. In this view, we assign a type 
variable to every subterm and to every binding occurrence of a 
variable. The type inference rules may be stated as constraints 
on the types which can appear in the corresponding positions in 
the derivation. We write a constraint for each node in the parse 
tree (isomorphic, of course, to the derivation tree): 

for each applied occurrence of a variable I, generate the con- 
straint t ,  = A ( z ) ,  where t ,  is the type variable corresponding 
to  this applied occurrence of x and A ( z )  is the type variable 
corresponding to the relevant binding occurrence of x. 
for each occurrence of an application ( M  N )  generate the 
constraint tM = t N  -+ t ( ~  N), where each type variable is 
the type variable corresponding to the occurrence of the in- 
dicated term. 
for each occurrence of an abstraction X x M ,  generate the 
constraint t(A,,M) = t ,  + tM, where each type variable is 
the type variable corresponding to the indicated occurrence 
( a  binding occurrence in the case of t z ) .  
It is easy to see that this formulation is equivalent t o  the 

usual inference rules, so that the solutions to  the generated set of 
equations correspond to the possible type derivations. Thus the 
existence of most general unifiers implies the existence of princi- 
pal types. This reduction is folkloric [e.g.  Cardelli 85, Clkment 
et al. 861, and is implicit in [Hindley 69, Milner 781. 

It is not possible to state a typing rule for concatenation as an 
equation in this style, since concatenation has no principal type, 
but it is possible to express a sound typing rule for concatenation 
using a disjunction of equations: 

For each occurrence of a concatenation (MI1 N ) ,  generate 
the following cons train t s: 

These constraints reflect the following analysis: all of hf, 
N ,  and M 1 1  N must be records, of some yet-to-be-determined 
composition. For each field, either the field is present in N ,  in 
which case the field in N is present in the result, or else the field 
is absent in N ,  in which case the field in the result is the same 
as it is in M ,  whether it be present or absent. 

These constraints determine a type inference rule: that  is, 
they form an acceptance criterion on a type derivation tree. Writ- 
ing out the rule in the usual deduction-rule form is left as a te- 
dious exercise for the reader. 

The constraints can also be used for type reconstruction. We 
no longer have a conjunction of equations, but we have a positive 
boolean combination of equations. Hence we can expand it into 
disjunctive normal form, getting a disjunction of conjunctions 
of equations. Each conjunction can be analyzed to get a most 
general unifier, yielding a finite set of types whose substitution 
instances are precisely the typings of the original term. This 
proves the main theorem: 

T h e o r e m .  Given a closed term M ,  we can eflectively de- 
termine whether M has a type. In particular, we can generate 
a finite set of type schemes such that the types of M are ezactly 
the substitution instances of these schemes. 

(Here, for convenience, we have stated the result for closed 
terms; the result for terms with free variables is slightly harder 
to state but no more difficult.) 

For our motivating example X z y . ( ( z  1 1  y ) .a  + I), it is easy to 
see that a complete set of types is 

n(f1,. . . ,pres(int), . . . , fn) + I I ( g 1 , .  . . ,absent , .  . . , g n )  -+ int 
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and 

II ( f1 , .  . . , f n )  -+ I I ( g 1 , .  . . ,pres(int), . . . ,gn)  + int 

where, as usual, the expanded argument to II is the one corre- 
sponding to  the a field. From this it is also easy to  see that this 
term has no principal type, as any type which has both these 
types as instances also has instances which are not legitimate 
types for this term. 

The number of types generated can be large of course: i t  
may be as large as 2'", where n = card(L) and k is the number 
of occurrences of concatenation in the program. In practice, one 
would attempt to solve the equations as much as possible before 
expanding the disjunctions, and to prune unsatisfiable disjunc- 
tions as quickly as possible. This is a reflection of a real difficulty 
in object-oriented programming systems: systems with multiple 
inheritance go to  great lengths to determine from which ancestor 
a particular method is inherited. 

6. Dealing with Infinite Label Sets 

In general it is not enough to  typecheck programs with finite 
L.  If one is checking a small module of a very large system, one 
may not know in advance what labels may be used in the larger 
system. Similar problems arise if one is incrementally checking a 
piece of a program in an interactive system. Hence i t  is necessary 
to  provide for the infinite set of labels which are possible in the 
language. 

When L is infinite, we will need some notation for specifying 
functions in FieldL, which we sometimes call TOWS. Let us assume 
without loss of generality that the labels which actually appear 
in the program are numbered 1 through n ,  and let p ,  p', etc. be 
a new class of variables called extension variables. We write 

for the product type 

II(Fl,. . ., Fn, absent, absent, .  . .) 

and 
n[F', . . ., F ~ ] P  

for the product type 

n ( 4 , .  . .rFn,fp,n+l,fp,n+lr. . .)  

where the f p , i  are fresh field variables. We refer t o  the first n 
labels as explicit labels, and to the others as implicit. We can 
think of an extension variable as a labelled ellipsis. 

In this way we reduce II from an infinitary constructor to a 
finitary n + 1-ary constructor, with a kind structure given by: 

+ : Type x Type + Type 
II : Field" x Extension + Type 

absent : Field 
pres : Type 3 Field 

empty : Extension 

Note that the kind Extension has only extension variables 
and the constant empty,  denoting the ellipsis whose components 
are all absent. We then observe: 

All the constants have principal types which are finitely rep- 
resentable in this scheme. 
Any two finitary terms have a unifier if and only if their infini- 
tary translations do, and their most general unifier represent 
the most general unifier of their translations. 

Hence we can deal with unification (and principal types for 
the language without concatenation) by simply calculating with 
the representations. 

We next consider how to deal with concatenation in the pres- 
ence of infinite L. We cannot directly extend the version for 
finite L because it would require generating infinitely many dis- 
junctions. Instead, let us define an extension constraint to be a 
formula of the form 

P1 II Pz = P3 

An extension constraint abbreviates the infinite set of disjunc- 
tions 

(fpz,n+i = Pres(tn+i) A fp3,n+i = fp2,n+i) 
V (fpz,n+i = absent A fpj.n+i = fpl,n+i) 

for i > 0. We say that a substitution satisfies a set of extension 
constraints iff it assigns types and fields to all the type and field 
variables to  make each of these disjunctions true. Note also that 
every set of extension constraints is satisfiable: just set all the p, 
to empty.  

Now we can state the rules for generating the constraints. 
We generate constraints for the ordinary terms as before. The 
rule for concatenation is: 

0 For each occurrence of a concatenation ( M I I N ) ,  generate 
the following constraints: 

We can expand into disjunctive normal form again, to get a 
disjunction of formulas of the form ( E  A C), where E is a set of 
equations and C is a set of extension constraints. We can then 
unify each disjunct individually to get a most general unifier and 
a set of row constraints. 

In doing the unification, substitutions for extension variables 
are of course performed on C as well. The row constraints can 
also be simplified using the rules 

(empty II P )  = P 

(P I1 empty) = P 

but this is not necessary to obtain the result. 

for the case of closed terms: 

erate a finite set S such that 

constraints and T is a type scheme, and 

a substitution U such that U satisfies C and T' = Tu.  

termine whether M has a type. 

This gives us our main theorem, which again we state just 

Theorem. Given a closed term M ,  we can effectively gen- 

( 1 )  S consists of pairs (C ,  T )  such that C is a set of extension 

(2) T' is a type for M i f f  only there is a pair (C ,  T )  in S and 

Corollary. Given a closed term M ,  we can effectively de- 
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Proof: Generate a set of pairs as above. If the set is empty, 
then M has no type. If the set is non-empty, choose one pair, 
and substitute empty  for all the the extension variables. This 
gives a type for M .  QED 

7. Dealing Better with Infinite Label Sets 

While this development is adequate theoretically to  deal with 
infinite label sets, it is inadequate to  deal with the problem that 
led us to consider infinite label sets in the first place: namely, 
the problem of incrementally checking a portion of a program, 
without knowing the entire set of labels needed. 

In order t o  deal with this problem, we observe that i t  is not 
necessary for all II types to  have exactly the same set of explicit 
labels. We write a typical II node as 

n[a, : F1,. . .ak : Fk]p 

to  indicate that the explicit labels are al, . . . , ak. 

constants as follows: 
In this language, we can succinctly write the types of the 

null : I I [ ]  empty 
( - ) .a : II[a : pres( t )]p + t 

( - )wi th  a = (-) : II[a : f ] p  + t + II[a : pres(t)]p 

The unification algorithm will work if we maintain the fol- 

All 11 nodes with the same extension variable have the same 
explicit labels, so that each extension variable has a well- 
defined domain. 
When two II nodes are unified, they must have the same 
explicit labels. 

lowing invariants: 

When two extension variables appear in an extension con- 
straint, they must have the same explicit labels, so that their 
domains are the same. 
The first invariant is satisfied by the types of the constants 

as written above. 
Now, under this invariant, consider unifying two terms TM 

and TN. As we traverse these trees, we may reach corresponding 
II nodes with different sets of explicit labels. In order to  unify 
these, we first pad the nodes to  give them the same set of explicit 
labels: let L M  be the set of labels explicit in the first node and 
LN the set of labels explicit in the second node. For each label 
a E L M  \ L N ,  replace every node in TM of the form 

by 
n[al : Fi, . . .,a,, : F,, a : fp.a]p 

and each node of the form 

I I [a l  : F1,. . .,a, : F,,] empty 

by 
II[al : F1,. . . , a, : F,,, a : absent] empty  

Pad TN similarly. We can do such global padding by substitut- 
ing a construction such as [a : fp.a]pl for p,  where p1 is a fresh 
extension variable. We can then unify as usual. 

By construction, extension constraints always start off with 
all of their variables having the same explicit labels (in fact, they 
will start with the set of explicit variables being empty); as sub- 
stitution affects these constraints, we must pad the extension 
constraints as well. 

Note that the creation of new variables is bounded by the 
number of new nodes that would be created had we done all the 
padding a t  once, by simply choosing to  make all the labels in the 
whole program explicit before unifying. Hence the algorithm still 
halts, even though new variables are being introduced. 

The last difficulty to  be faced in adapting the usual type 
inference algorithms to  these infinitary trees is the treatment 
of let. The usual treatment of let is to  create a typescheme 
by quantifying over all type variables not appearing in the type 
hypotheses, and then to create new variables for each quantified 
variable in the typescheme of an identifier [ClQment et al. 861. 
In our system, this might involve quantifying over an infinite 
number of field variables. But this is not a problem, as one can 
abbreviate this by quantifying over the corresponding extension 
variables, and generating new extension variables as needed. 

8. Related Work 

[Cardelli 881 introduced record models of objects, including 
His system did not deal with records of indefinite subtyping. 

width, as in 
Xr.z with a := (z.a + 1) 

nor did his system attempt to  do type inference. The inability of 
this system, and even of the more powerful system Bounded Fun 
[Cardelli & Wegner 851 to  deal with this record updating problem 
has been a topic of recent discussion on the Types electronic 
mailing list [Meyer 881. 

The language used in this paper, which is capable of dealing 
with record overwriting of this kind, was introduced in [Wand 
871, which also attempted to  do type inference for this language; 
unfortunately the unification algorithm in that paper was incor- 
rect. [RQmy 891 introduced the notion of fields, which gave an 
obviously correct treatment of records using the usual notion of 
unification. 

The system we have used focuses on polymorphism in the 
procedures; RQmy also introduced another system in which the 
records themselves are polymorphic. In this system, a record is 
regarded as a polymorphic object, in which any field containing a 
value may be instantiated as either present (for use by selection) 
or as absent (forgotten). The set of terms typable under this 
system is incomparable with those typable under the original 
system. This system seems preferable for some applications, but 
giving it a plausible semantics remains an open problem. 

[Jategaonkar & Mitchell 881 give a type system for extendible 
records in ML, including ML patterns and subtyping on ground 
(i.e. name-equivalent) types. We conjecture that our system can 
replace the cut-restrictions in their system, and that the resulting 
systems will fit together nicely. [Stansifer 881 also contributed a 
treatment of type inference for records. 

[Reddy 881 gives a semantics for objects as closures which is 
very close in spirit to  ours. He gives a traditional denotational 
semantics, whereas we give a concrete semantics [Wand 851: a 
translation into an underlying lambda-calculus. By looking at 
the type of the resulting terms, we obtain finer type information 
than is possible by looking just a t  the denotational semantics. We 
then derive typing rules for the source language by saying that if 
a source language phrase is well-typed, then its translation must 
be. 
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9. Conclusions 

We have presented an algorithm for doing type inference for 
the lambda calculus with records and record concatenation. By 
treating object-oriented programs as syntactic sugar for terms 
in this language, this system enables us to  do ML-style type 
inference for object-oriented programs with multiple inheritan.ce, 
even including classes as first-class data objects. 
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