
A Type-Theoretic Approach to Higher-Order Modules with Sharing*

Abstract

Robert Harpert Mark Lillibridge$

School of Computer Science

Carnegie Mellon University

Pittsbwgh, PA 15213-3891

The design of a module system for constructing and main-

taining Ilarge programs is a difficult task that raises a number

of theoretical and practical issues. A fundamental issue is

the management of the flow of information between program

units at compile time via the notion of an interface. Expe-

rience has shown that fully opaque interfaces are awkward

to use in practice since too much information is hidden, and

that fully transparent interfaces lead to excessive interde-

pendencies, creating problems for maintenance and separate

compilation. The “sharing” specifications of Standard ML

address this issue by allowing the programmer to specify

equational relationships between types in separate modules,

but are not expressive enough to allow the programmer com-

plete control over the propagation of type information be-

t ween modules.

These problems are addressed from a type-theoretic view-

point by considering a calculus based on Girard’s system

FU. The calculus differs from those considered in previous

studies by relying exclusively on a new form of weak sum

type to propagate information at compile-time, in contrast

to approaches based on strong sums which rely on substi-

tution. The new form of sum type allows for the specifica-

tion of equational, as well as type and kind, information in

interfaces. This provides complete control over the propa-

gation of compile-time information between program units

and is sufficient to encode in a straightforward way most

uses of type sharing specifications in Standard ML. Modules

are treated as “first-class” citizens, and therefore the sys-

tem supports higher-order modules and some object-oriented

*Thk work was sponsored by the Advanced Research Projects
Agency, CSTO, under the title “The Fox Project: Advanced De-
velopment of Systems Software”, ARPA Order No. 8313, issued
by ESD/AVS under Contract No. F19628-91-C-0168.

t Electro& ~~1 ad&e~~: rWh@c~ , ~mu. ~d~.

~Electronic mail address: mdl@cs . cmu. edu.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantaga, the ACM copyright notica and tha

titfe of the publication and its data appear, and notica ia givan

that copying ia by parrtiasion of the Association for Computing
Machinery. To copy otharwiaat or to repubfish, raquirea a fee
and/or specific permission.

POPL 94- 1/94, Portland Oregon, USA

programming idioms; the language may be easily restricted

to “second-class” modules found in ML-like languages.

1 Introduction

Modularity is an essential technique for developing and

maintaining large software systems [46, 24, 36]. Most

modern programming languages provide some form of

module system that supports the construction of large

systems from a collection of separately-defined program

units [7, 8, 26, 32]. A fundamental problem is the man-

agement of the tension between the need to treat the

components of a large system in relative isolation (for

both conceptual and pragmatic reasons) and the need

to combine these components into a coherent whole.

In typical cases this problem is addressed by equipping

each module with a well-defined interface that mediates

all access to the module and requiring that interfaces be

enforced at system link time.

The Standard ML (SML) module system [17, 32]

is a particularly interesting design that has proved to

be useful in the development of large software sys-

tems [2, 1, 3, 11, 13]. The main constituents of the

SML module system are signatures, structures, and

functors, with the latter two sometimes called modules.

A structure is a program unit defining a collection of

types, exceptions, values, and structures (known as sub-

structures of the structure). A functor may be thought

of as a “parameterized structure”, a first-order function

mapping structures to structures. A signature is an in-

terface describing the constituents of a structure — the

types, values, except ions, and structures that it defines,

along with their kinds, types, and interfaces. See Fig-

ure 1 for an illustrative example of the use of the SML

module system; a number of sources are available for

further examples and information [15, 39].

A crucial feature of the SML module system is the no-

tion of type sharingl which allows for the specification

1The closely-related notion of structur-c sharing ia not consid-

ered in this paper.

@ 1994 ACM C-897914336-IY941001 ..$3.S()

123

signature SYMBOL = slg

type syrobol

val intern : string -> symbol

val pname : symbol -> string

val eq : symbol * symbol -> bool

end

structure Symbol : SYMBOL = struct

structure HashTable : HASH.TABLE = .

type symbol = HashTable.hash_key

fun intern id =

HashTable.enter (HashTable.hash id) id

fun pname sym = HashTable.retrieve sym

fun eq (s1, s2) = HashTable.same-key S1 S2

end

Figurel: Example of the SML Module System

of coherence conditions among a collection ofstructures

that ensure that types defined in separate modules co-

incide. The classic example (adapted from MacQueen)

is the construction of a parser froma lexer and asym-

bol table, each of which make use of a common notion

of symbol (see Figure 2). The parser is constructed by

afunctor that takes as arguments two modules, alexer

and asymbol table manager. The parser composes func-

tionsfromthelexer andsymboltable manager; thecom-

position is well-typed only if the two modules “share”

a common notion of symbol. Within the body of the

functor Parser the types L. S. symbol and T. S. symbol

coincide, as specified by the type sharing specification

in the parameter signature. See MacQueen’s seminal

paper for further examples and discussion [26, 17].

1.1 !t’ransparencyand Opacity

Module bindings in SML are “transparent” in the sense

that the type components ofa module are fully visible

in the scope of the binding. For example, the structure

declaration

structure S = struct

type t = int

type u=t->t

val f = fn x:t => x

end

introduces a structure variable S with type components

S.t and S.u and value component S.f. Within the

scope of S, the type s.t is equivalent to the type int

and the type S.u is equivalent to the type int–>int.

These equivalences are not affected by the ascription of

a signature to the binding. For example, the signature

SIG defined bv the declaration

signature LEXER = sig

structure S : SYMBOL

type token

end

signature SYMTAB = sig

structure S : SYMBOL

end

signature PARSER = sig

structure L : LEXER

val parse : string -> Lexer. token stream

end

functor Parser

(structure L: LEXER and T: SYMTAB

sharing type L.S.symbol=T.S.symbol) :PARSER=

struct

end

Figure 2: Sharing Specifications

signature SIG = sig

type t

type u

val f : u

end

may be correctly ascribed to the structure S without

obscuring the bindings ofs.t and S.u.

Functor bindings are similarly “transparent” in that

the type components of the result of any application

of the functor are fully visible within the scope of the

functor binding. For example, consider the following

functor declaration:

functor F(structure X:SIG):SIG = struct

type t = X.t * X.t

type u = X.u

val f = X.f

end

The bindings ofthet and ucomponents ofanyappli-

cation of F are fully visible as a function of the t and

u components of the parameter X. For example, within

thescope of the declaration

structure T:SIG = F(S)

thetype T.tis equivalent to the type int*int and the

type T.u is equivalent to the type int->int.

It is possible only to a very limited extent in SML

tospecify ina signature the bindings of the types ina

124

module. For example, we may augment the signature

SIG with a sharing specification to specify that t is int

as follows:

signature SIG’ = si.g

type t

sharing type t=int

type u

valf:u

end

This method cannot be extended to specify the bind-

ing of u — sharing specifications may only involve type

names, not general type expressions. To fully determine

the type bindings in S requires a transparent signature:

signature FULL_SIG~ = sig

type t = int

type u = int -> int

val f : int -> int

end

Note that this is not a legal SML signature because of

the type equations. There is no way to express equa-

tions such as u = int -> int in SML signatures. The

signature FULL-SIG-S is the “full” signature of S since

it completely determines the bindings of its type com-

ponents.

The importance of transparent signatures only be-

comes apparent when we consider functors and the

closely-related abstraction bindings suggested by

MacQueen [26, 17]. Functor parameters are opaque in

the sense that the ascribed signature is the sole source

of type information for those parameters (this property

is the basis for the reduction of abstraction bindings

to functor applications). Fine control over the ‘(degree”

of opacity of a functor parameter can be achieved by

admitting transparent, or, more generally, translu cent,

signatures that allow for the partial (possibly full) de-

termination of the type components of a module. For

example, the translucent signature

signature PARTIAL-S IG-S-1 = s ig

type t

type, u = t -> t

valf:u

end

is a partially transparent signature that leaves the type

t unconstrained, but determines u up to the choice oft.

The structure S matches the signature PARTIALJ31GS-I

since S. u is equal to S. t->S, t which is itself equal to

int ->int. Conversely, the translucent signature

signature PARTIAL-SIG-S-2 = sig

type t = int

type u

valf:u

end

determines t, leaving u unconstrained. This signature

is essentially equivalent to the signature SIG) above.2 S

mat ches this signature.

Translucent signatures are particularly useful in con-

nection with higher-order functors [43]. Using equations

in signatures it is possible to specify the dependency of

the functor result on the functor argument. For exam-

ple, a natural signature for the functor F defined above

is the following functor signature which fully determines

the type components of F:

funs ig FULLSIGI =

(structure X: SIG):

slg type t= X.t*X. t type u=X. U val f :U end

Another, less precise, signature for F is the functor sig-

nature

funsig PARTIAL51G1 =

(structure X: SIG):

sig type t type u=X .U val f :U end

which only specifies the behavior of F on the component

u, leaving its behavior on t unspecified.

Higher-order functors [43] are particularly important

in connection with separate compilation. A separately-

compiled module may be represented by a variable

whose signature is the “full” transparent signature of

the module itself [42]. By abstracting the client mod-

ule with respect to these variables we obtain a (possi-

bly higher-order) functor whose application models the

process of linking the clients of the module with its ac-

tual implementation. The signature matching process

ensures that the presumed signature of the separately-

compiled module is consistent with the module itself so

as to guarantee type safety. The full signature of the

separately compiled module, is necessary to ensure that

separate and combined compilation yield the same re-

sult

1.2 Static Semantics

The static semantics of SML [32] is defined by a col-

lection of complex elaboration rules that specify the

static well-formedness conditions for SML programs.

The main techniques employed in the semantics are the

use of “unique names” (or “generativity”) to handle

abstraction and sharing specifications, and the use of

non-deterministic rules to handle polymorphism, shar-

ing specifications, and signature matching. The static

semantics has proved useful as a guide to implementa-

tion [28, 2, 41, 40], but is remarkably difficult to modify

2It seems plausible that most uses of type sharing specifications
may be accounted for in this way, provided that we neglect local
specifications and re-binding of variables in specifications, both of
which are of questionable utility.

125

or extend (see, for example, [43]). The naive attempt to

enrich signatures as sketched above is incompatible with

the crucial “principal signature” property [31]. But it is

not clear whether this failure is a symptom of an intrin-

sic incoherence in the language, or is merely an artifact

of the semantic method.3

In an effort to gain some insight into the complexi-

ties of the static semantics several authors have under-

taken a type-theoretic analysis of SML, especially its

module system [27, 33, 35, 7, 20, 19]. Previous studies

of the module system focused on the transparency of

SML-style structures through the use of ‘(strong sum”

or “dependent product” types. These are types of the

form ZZ:A..B(Z) whose elements are pairs (IMl, A/fz)

that are accessed via projections ml(M) and mz(kf).

The crucial properties of strong sums [29] are that if

M : XLE:A.I?(Z), then Tz(lf) : 13(ml(Lf)), and that

ZI ((&fl, Mz)) n &fl. Together, these properties ensure

that type information is propagated in rough accord

with the SML static semantics. (See [27, 33, 20, 19]

for further discussion.) Substitution-based methods are

problematic in the presence of computational effects,

unless care is taken to account for the phase distinc-

tion [20]. Moreover, strong sums fail to account for

sharing specifications and the abstract nature (“gener-

ativity”) of structure and datat ype bindings.

In this paper we extend the type-theoretic analysis of

SML-like module systems by presenting a calculus with

the following features:

*

●

●

translucent sum types, which generahze weak sums

by providing labeled fields and equations governing

type constructors. These mechanisms obviate the

need for substitution, and account for abstraction

and common uses of SML-style sharing specifica-

tions.

A notion of subsumption that encompasses a “co-

ercive” pre-order associated with record fields and

a “forgetful” pre-order associated with equations

that represent sharing information.

Treatment of modules as “first-class” values. The

typing rules ensure that visibility of compile-time

components is suitably restricted when run-time se-

lection is used (see also [34]). If run-time selection

is not used, modules behave exactly as they would

in a more familiar ‘(second-class” module system

such as is found in SML.

Our calculus improves on previous work by providing a

much greater degree of control over the propagation of

3Based on the approach taken here, and a related idea due to
Leroy, Tofte has recently devised a way to accommodate a form
of type abbreviation in Standard MLs ignatures [44].

Kinds K ::= Q [K*K’

Constructors A ::= a [ILu:A.A’ [{DI,Dn} I

k::K.A I AA’ I V.b

Declarations D ::= bpa::~ I bDcr::K=A I yPz:A

Terms M ::= z I XZ:A.M I MM’] M:A I
{B,,..., B.} I M.y

Bindings B ::= bDa=A1ybx=ikf

Values v .._..— z I kz:A. M I {Bvl, Bvn} I

V.y

BV ::= bDa=AlyDz=v

Contexts r ::= c I r,a::K I r,a::K=A I I’, mA

Figure 3: Syntax rules (n ~ O)

type information at compile time so that we can achieve

the effect of SML-like sharing specifications and provide

direct support for abstraction.

2 Overview of the Calculus

Our system is based on Girard’s FW [14] in much the

same way that many systems are based on the second-

order lambda calculus (Fz). That is to say, our system

can be (roughly) thought of as being obtained from FW

by adding more powerful constructs (translucent sums

and dependent functions) and a notion of subtyping and

then removing the old constructs (quantification (V),

weak sums (3), and non-dependent functions (+)) su-

perseded by the new ones. Subtyping interacts with the

rest of the calculus via implicit subsumption. Bounded

quantification is not supported.

Like FW, our system is divided into three levels:

terms, (type) constructors, and kinds. Kinds classify

constructors, and a subset of constructors, called types,

having kind Q classify terms. The kind level is neces-

sary because the constructor level contains functions on

constructors. Example: the constructor k: :L?.cY+a has

kind td+fl and when applied to type Int yields Int+Int.

The syntax rules for our system are given in Figure 3.

The meta variable a ranges over constructor variables

and the meta variable x ranges over term variables. The

meta variable b ranges over constructor field names and

the meta variable y ranges over term field names. We

4 Quantification is derivable from dependent functions and
translucent sums. The basic idea is to transform Acz: :K. M into

kn{b b CX::K}. [c. b/a]kf where z is not free in M and M [A] into

Wf {b D a= A}. Note that this implements constructor abstraction

as a delaying operation unlike the normal SML semantics. See [16]

for a discussion of the differences between these two interpreta-

tions of constructor abstractions and why this choice seems to be

preferable.

126

have placed field names in bold in order to help empha-

size that they are names, not variables. The complete

typing rules appear in appendix A.

Our handling of dependent functions (Ax:A.M) is

standard [29] except that our elimination rule only al-

lows for the application of functions having arrow-types5

(non-dependent function types). The normal elimina-

tion rule for dependent functions does not have this re-

striction, requiring functions only to have a II-type. We

make this restriction because we intend to extend this

system in future work with effect-producing primitives.

In the presence of effects, the unrestricted rule is un-

sound because of interactions with the first-class nature

of translucent sums.6

Translucent sums ({Bl, Bn }), the central contri-

bution of the calculus, will be discussed at length in

the next section. Very briefly, they are n-ary labeled

dependent sums whose types can optionally contain in-

formation about the contents of their constructor fields.

Traditional records and weak sums (existential) are de-

generate forms of translucent sums.

A mechanism (written &f :A) for forcing a term i14 to

be coerced to a supertype A is provided. The subtyp-

ing relation allows for both generalized record subtyp-

ing [7, 6, 9] (fields which are not depended on by the

other fields in a translucent sum may be dropped) and

for the forgetting of information about the contents of

constructor fields.

There are two basic forms of constructor definitions.

A constructor definition is opaque if within the scope

of the definition there is no information available about

the identity of the constructor variable being defined.

By contrast, a transparent constructor definition makes

available the identity of the constructor variable that is

being defined.

Contexts in our system can contain both opaque

(a::K) and transparent (a::K=A) definitions. The ef-

fect of transparency is implemented by a typing rule

(ABBREV’) for the constructor equality relation judge-

ment that establishes that a = A when a: :K=A is in

the context. (This is similar to mechanisms used in AU-

TOMATH and LEGO [12, 45, 25].)

Our calculus is intended to be interpreted using a call-

by-value semantics. The typing system is not sound

for call-by-name in the presence of effects.7 We re-

strict terms in constructors to values in order to avoid

the problem of trying to give a meaning to a construc-

tor cent aining a side-effecting terms In our system,

5The arrow-type A+A’ can be regarded as an abbreviation for

fIEA.A’ where a is not free in A’.
‘Abbreviated example: (((kc. z.Y)lf).2) (((~z. z.Y)~).1)

where A9 is the example in section 4.6.
7To see this consider the outermost g?-redex of (Az. (r. y.2)

(z. Y.1)) &f where A4 is the example in section 4.6.

8 It is not clear that allowing general terms in constructors

values (V) are considered to be term variables, term

A-expressions, translucent sums containing only values

and constructors, and selections of term fields from val-

ues. We allow V.y to be a value in order to allow paths

like x. y. y’ to be values while still keeping the set of val-

ues closed under the substitution of a value for a term

variable.

3 Translucent Sums

A translucent sum has the form of a possibly empty

sequence of bindangs written between curly braces

({ B,,..., B.}). The corresponding translucent sum

type is similar except that declarations are used instead

of bindings ({ D1, . . . ,D~}).

Translucent sums differ from traditional records in

a number of ways. In addition to normal term fields,

they can contain constructor fields. The type or content

of later fields in a translucent sum can depend on the

content of earlier fields. As an example, consider the

following translucent sum, call it F’, that packages up a

type with a value of that type:g

{bb a=Int, y b z=3} : {bb cr::~, yb z:a}

Binding r to P would give r.b :: Q and r.y : r.b.10

The scope of variables bound in bindings and decla-

rations is all the following bindings/declarations in that

translucent sum (type). For example, the scope of x in

the following translucent sum includes &f’ and A’ but

not J4 or A:

{bp a=A, y b z=kf, y’ B z’=M’, b’ b a’=A’}

Scoping for the other constructs is as normal. We re-

gard terms, constructors, etc., that differ only by a-

conversion of variables as equivalent.

Note that field names cannot be a-converted, Chang-

ing a field name in a translucent sum term/type results

in a different term/type because the set of legal field

names which can be selected changes. Failure to distin-

guish between field names which cannot be a-converted

and the internal names for fields which must be able

to a-convert in order to permit substitution to work,

leads to problems. 11 For example, the equivalent of the

would be that useful anyway since the substitution of general

terms for term variables would be prohibited in a call-by-value

8etting in any case.
9we suggest pronouncing “D” ~ “as”! “‘“ as “has type”, and

“: :“ as “has kind”.
10Note the distinction between r and P here: r is a te~ vari-

able (and hence a value) while P is a term met a-variable denot-

ing a non-value. This distinction is important because the typing

rules treat values specially.
11TO avoid verbosity, a real prOW amming language based on

ours yst em would probably provide that by defanlt only one name

need be given per field, to be used as both the field name and the

internal name.

127

following cannot be written straightforwardly in SML: 12

{bb a=Int, y D z={bp a’=Bool, y’ D x’=k:a’. 3}} :

{b Da::fi, y~z:{bpa’::fl, /Dz’:cr’+a}}

Because SML does not distinguish the two kinds of

names, it is problematic to express that the type of the

y’ field depends on both the outer and inner b fields.

The field names of any given translucent sum (type)

are required to be distinct. Translucent sum types that

differ only in that their declarations have been reordered

without violating any dependence are considered equiv-

alent. For example, the following first two types are

equivalent but both are different from the third type:

It may help to think of translucent sum types as be-

ing directed acyclic graphs (DAGs) where the nodes are

declarations and the edges are dependencies by one dec-

laration on a variable declared in another declaration.

It is possible to include information in a translucent

sum type on the contents of the constructor fields of

its instances. This ability can be used to give a more

expressive type to P:

{b~a=Int, yb z=3} : {bpa::fl=Int, yDz:a}

If it can be shown that r has this type, then it can be

inferred that r.b = Int. This can not be inferred if it

can only be shown that r has the less expressive type.

The use of nested translucent sums and constructor field

component information can give rise to more complex

dependencies as the following example illustrates:

{y P z={b~ a=Int}, y’ D x’=3, bp a=z.b} :

{y~z:{bpa::~}, y’ D z’:x.b, b> a:: f2=z.b}

3.1 Introduction and elimination rules

The introduction rule for translucent sums is as follows:

1-17 valid

Vi G [1.. n]. r, Dl, D._l t- B, : D,
(TSUM)

rt-{~l,. ... Bn}:{DI,Dn}

(The overline function (~) merely strips off the field

name.) Note that each of the bindings is being type

checked under a context which takes account of the ef-

fect of all of the previous bindings. Constructor bind-

ings result in transparent definitions, both when type

12 It is ~o~~ible to write thk in SML by using a combination of

1ocal specifications and type sharing in the signature. Thanks to

Mads Tofte for pointing this out. Unfortunately, however, some

SML implementations (e.g., SML/NJ) do not implement local

specifications in signatwes properly so this is not very helpful in

practice.

checking later bindings and in the resulting type. Thus,

the introduction rule gives P the more expressive type.

The less-expressive type is obtained by the use of the

subsumption rule afterwards.

There are two elimination forms with corresponding

rules for translucent sums, one for constructor fields and

one for term fields:

I’\V:{b Da::K}

rFv.b::K
(C-EXT-0)

ri-&f:{y Dz:A}

rFM.y:A
(EXT-V)

In order to apply these rules to translucent sums with

multiple fields, it is first necessary to use the subsump-

tion rule to drop the fields that are not being selected.

The constructor field case may also require that type

information about the field to be selected be dropped.

Unlike traditional records, with translucent sums it is

not always possible to drop all the other fields because

the field we wish to select may depend in an essential

way on them. Thus, the fact that M has a translucent

sum type with a y field is not in itself sufficient to en-

sure that M.y is well-typed. 13 It is always possible to

drop fields from the type of V because of the VALUE

rules which we will discuss in section 3.3.

3.2 Translucency

When z:A appears in the context where A is a translu-

cent sum type which cent ains information about the

contents of the constructor fields of its instances, it gives

rise to equations via the following rule:

r t- V : {b~a::K=A}

rt-V.b=A::K
(ABBREV)

Thus it is possible to infer that r.b = Int when it can

be shown that r has the type ({b D a::&=Int, y D z:cY})

but not when it can only be shown to have the type

({b ba::~, YD$X~}).

This rule also gives rise to equations such as

{b b a=Int, b’ D a’=Bool}.b’ == Bool. These equations

allow any valid constructor V.b to be reduced to a

constructor which cent ains only values of the form

x.y~ . ~. .Y~ (n > 0). Because of this, it is not neces-
sary in our system to consider the equality of arbitrary

values (and hence terms) at type-checking time.

When the equality rules compare the parts of a con-

structor that are in the scope of a variable binding, they

do so with the declaration associated with that vari-

able in the context. For example, the equality rule for

‘3 For example, ({b D a=Int, y b x=3} : {bp cK:f2,
y D z:cr}).y is not well-typed.

128

If-types below compares A\ and Aj with Z:A1 in the

context:

I’I-AI=A2::0

This allows use of the ABBREV rule to obtain equa-

tions such as the following:

lh:{b D a:: O= Int}. z.b = IIz:{b D a:: f2=Int}. Int

{b B a:: f2=Int, y D z:a} = {b D a:: fldnt, y D z:Int}

A similar effect occurs while typing terms, For exam-

ple, in the following, we know that ~ .b = Int while type

checking ill:

{y D z:{b> a:: f2=Int}, y’ D z’:?vf}

Because of the ability to substitute away transparently

bound names using the equality rules, no dependency

on a transparently bound name is ever truly essential.

This allows many more field selections and function ap-

plications to type check than would otherwise be the

case.

When translucent sums are given fully opaque types,

they act like weak sums which can be used to create

abstract data types (ADTs) [35]. Because we have de-

pendent functions and a form of dependent pairs (a pair

of terms where the type of the second term depends on

the first component of the pair), our elimination form

for weak sums is more powerful than usual [35, 7, 10].

Consider the following example in SML-like notation,

where weak is used to construct a weak sum:

let structure S = struct

structure Stack = weak

type T = (int ref) list

val makeStack: ()->T = . . .

val push: (int, T)->() = . . .

. . .
end

val my Stack = Stack .makeStacko

end in

S. Stack .push(l, S.myStack)

end

This example is well-typed in our system because we can

determine that S. my Stack has type S. St ack. T which is

the argument type of the function S. Stack. push. Note

that there is no way to type this example using the

open elimination form for weak sums because there is

no scope containing both the initialization of my Stack

and its use that is also inside the scope of Stack.

3.3 The VALUE rules

Suppose the typing context contains the following dec-

laration:

r:{bp a::~, YDz:cY}

What types can we give to the expression r under this

context? Because we have a name, r, for the translucent

sum expression we are trying to type, we have a name

for the contents of its b field, namely r,b. This sug-

gests that we can giver the type {b D a:: fkT.b, y D x:T.b}

which is a subtype of the context type for r.

This technique of giving a more expressive type to

translucent sums when we have a name for their con-

structor components can be generalized to work on ar-

bitrary translucent sum values. The name in this case is

simply V.b where V is the value in question. Attempt-

ing to extend the technique to general terms requires

dropping the restriction that only values may appear in

constructors and results in unsoundness in the presence

of effects. 14 The following two typing rules implement

this technique:

I’k V:{ bDa::K, Dl,. ... D~}

r + V : {b bm:h7=V.b, Dl,..., D~}
(VALUE-O)

rFv.y:A’

rEV:{y Dz:A, ~1, ...,&}

I’k V:{ybz:A’, Dl,..., D~}
(VALUE-V)

(The VALUE-V rule is used in cases of nested translu-

cent sums to apply the technique recursively.)

By alternately applying the VALUE rules to convert

an opaque binding into a transparent one and the sub-

sumption rule to propagate that definition (and hence

removing any dependencies on that binding), we can

give any translucent sum value a fully transparent type

(there are no constructor components for which infor-

mation is lacking) with no dependencies between the

fields (or subfields). Because of this, field selection on

values as well as applications of functions to values do

not run into problems due to the inability to remove de-

pendencies. Without this kind of usage of the VALUE

rules, expressions such as r. y would not type check.

The more expressive type given by the VALUE rules

to translucent sum values is also critical to the propaga-

tion of typing information. For example, ifs is bound to

the result of the expression r, it will be given the more

expressive type, allowing the fact that s.b = r.b to be

inferred.

4 Selected Examples

4.1 Simple structures

Typical SML structures can be translated straightfor-

wardly into our system, with the only complication

being the treatment of polymorphism (as discussed

14 This ~o~d allow field selection to always succeed because

it would permit all dependencies to be removed. Unsoundness

example: (kf.y.2) (kf.y.1) where A4 is the example in section 4.6.

129

in [16].) Consider the following structure S considered

in the introduction:

structure S = struct

type t = int

typeu=t->t

val f = fn x:t => x

end

This translates as:

S = {t D t=Int, uDu=t-+t, f Df=~x:t. x)

The translations of the signatures considered earlier

(only SIG here is actually a valid SML signature) are:

FULL.SIG.S = {t D t::$2=Int, u D u:: f2=Int+Int,

f D f: Int+Int}

PARTIAL-SIG-S-1 = {t D t::~, Ub u::~=t+t, f P f:u}

PARTIAL-SIG-S-2 = {t D t:: f2=Int, u D u::~, f D f :u}

SIG = {t bt::~, UDU::Q, f Df:U}

The subtyping rules for our system establish that

FULL-SIG-S < PARTIAL_sIGJS.i < SIG and

FULL-SIG-S < PARTIALJ31G_S_2 < SIG. The signatures

PARTIAL51G-S-I and PARTIAL-SIG-S-.2 are incompara-

ble.

The signature given to S determines which equations

on S. t and S. u can be deduced. By default our system,

like SML, will give S its full signature, FULL-SIG-S. This

means that we will be able to deduce that S.t = Int

and S.u = Int--+Int. If we insert a coercion to one of the

other signatures before the binding to S, fewer equations

will be deducable in our system. In SML, by contrast,

user-specified coercions never result in the loss of typing

information. They can, however, result in the loss of

fields. Thus, in order to translate a coercion from SML

into our system, we need to enrich the target signature

with all the available typing information.

4.2 Abstraction

SML/NJ [2] supports an extension to SML, called ab-

straction, which is an alternative to the normal struc-

ture binding mechanism. If the keyword abstraction

is used instead of the keyword structure when bind-

ing a structure, all information about the constructor

components of that structure is forgotten. Had S in

the previous example been bound with an abstraction

binding instead of the structure one we used, it would

have been as if we had given S in our system the signa-

ture SIG. That is to say, S. t and S. u would have been

bound opaquely. Note that it is not possible in SML/NJ

to give S a partial signature using this mechanism. Only

the fully transparent (via structure) and fully opaque

(via abstraction) alternatives are available.

Abstraction bindings can be translated into our sys-

tem by inserting a forced coercion just before the bind-

ing to the appropriate opaque type. For example, con-

sider the following implementation of an abstract data

type (ADT):

abstraction Stack = struct

type T = (int ref) list

val push: (T, int)->() = . . .

val pop: T->int = . . .

val isEmpty: T->bool = . . .

end

This translates to:

Stack = ({ T b T=list(ref Int),

push D push= (.. .):(T, Int)+(),

pop D pop=(. . .): T+Int,

isEmpty D isEmpty=(. . .): T+BooI }

):{ TDT::f2,

push D push: (T, Int)+.(),

pop D pop: T+Int,

isEmpty D isEmpty:T--+Bool }

Note that because the type information about the iden-

tity of the T field is lost in the coercion, the rest of the

program will be unable to break the abstraction. sML

provides an abstraction mechanism, abstype, at the core

language level. Because translucent sums are first-class

in our

stype

4.3

system, we can achieve the effect of SML’S ab-

using the abstraction binding mechanism.

Sub-structures

Sub-structures are also easily translated. For example,

suppose we wanted to use the Stack structure in a bigger

structure as follows:

structure Big = struct

structure ourStack = Stack

type T = ourStack. T

. . .

end

This translates into:

Big = {ourStack p ourStack=Stack, T P T=ourStack.T, . . .}

Big will be given the following full signature:

{ourstackb ourStack:{ T D T:: Q= Stack.T,

push b push: (T, Int)_(),

pop b pop:T+Int,

isEmpt y D isEmpt y:T+Bool },

T b T:: fl=ourStack.T, . . .}

Note that we have that Big.ourStack.T = Big.T =

Stack.T.

130

4.4 Functors

Functors translate into dependent functions in the ex-

pected way. Consider the following example from the

intro duction:

functor F(structure X: SIG) :SIG = struct

type t = X.t * X.t

type u = X.u

Val f = X.f

end

This translates into:

F = Ax:sIG. ({t D t=x.t * x.t, UbU=X.U, f D f=x.f} :

{t D t::~=x.t * x.t, uDu::~=x.u, f D f:U})

(The coercion on the result type of the functor is an

abbreviation for a coercion on the functor body.) Note

the enriched signature we have to give instead of SIG

in order to make the coercion have the same effect as

it does in SML. llanslating the functor signatures we

considered for F gives:

FULL-SIG-F = nx:sIG. {t ~ t:: fkx.t * x.t, UP U::!kx.U,

f Df:U}

PARTIAIdIG.F = nX:SIG. {t D t::~, U P u: f)=x.u, f D f :u}

SIG.F = lIx:sIG. sIG

Here, FIYLL.SIGI < PARTIAL_SIG1 < SIG1.

Suppose T was bound to the result of applying F to

S. Before the APP rule can be applied to determine

T’s type, the subsumption rule must be used to co-

erce F’s type (FULL_SIG1) to an arrow type. one way

this could be done is shown in Figure 4. First, F’s ar-

gument type is coerced to a subtype (remember that

FULL_SIG_S < SIG) using the fact that subtyping of

function types is contra-variant. Next, the equality rules

are used to remove the dependencies on X by the result

type, resulting in an arrow type. The result is that T

gets assigned the following type:

{t D t:: fkInt * Int, u D u:: C2=Int-+Int, f D f :u}

If F had instead had the type PARTIAL51GI, T would

have been assigned the type:

{t D t::~, u D u:: f2=Int+Int, f D f :u}

4..5 Sharing specifications

The basic idea in translating sharing specifications is

that for each set of names that are asserted to be equal,

pick one with maximal scope as representative of the

equivalence class and set the others equal to it using

transparent definitions. For example, the following SML

signature:

signature E = sig

type t

type u

type v

sharing type t = u

and type v = u

end

translates into:

H = {t D t::fl, UDU::~=t, VD V::~=t)

A more interesting case is provided by the argument

signature of the Parser functor in MacQueen’s example

from the introduction:

s ig structure L: LEXER

structure T: SY14TAB

sharing type L. S. symbol=T. S. symbol

end

This translates into:

{L D L: LEXER, T D T:{S D S:{syxubol D symbol::O=L.S.symbol,

. ..}!...}}

The omitted parts are the usual translation of the rest

of SYMTAB and SYMBOL. This translation method also

works on sharing between constructors in the argument

and result of a functor.

4.6 First-class modules

So long as we restrict ourselves to simple module op-

erations like binding, functor application of a named

functor to a named or fully transparent module, and se-

lection from a named module, we never lose any typing

information. In fact, the only module operation avail-

able in SML that causes a loss of information when used

in our system is coercing a module to a user-specified

type. This is not surprising, however, since the purpose

of coercions is controlled information loss.

Due to the fact that modules are first-class in our

system, it is possible to write module expressions which

force the loss of typing information in order to preserve

soundness. For example, consider the following: 15

if flipo then {b D a=Int, Y D z=(3, Succ)}

else {b D a= Bool, y b z=(true, not)}

While both parts of the if can be given fully transpar-

ent types, these types are not equal. In order to make

the if type check, we must give them equal types. The

only way to do this is to use the subsumption rule to

coerce both of their types to {b D CY::Q, y D z:(a, o-a)}.

15For the -,0-&e.s .xa,mpkS, f 1 ip iS a f~ction ‘fi& a-

ternates ret-rig t rue and f alse. It is easily implemented using

a global variable.

131

FULL.SIG-F

= nx:sIG. {t P t:: fkx.t * x.t, ubu::fkx.u, f D f:u}

< ~x:FULL-SI&S. {t D t::kx.t * x.t, UDU::kx.U, f P f:U}

= lIX:{t D t:: f2=Int, UD u:: f2=Int-+Int, f D f: Int+Int}. {t b t:: Gl=X.t * X.t, ubu::~=X.u, f D f:u}

= HX:{t b t::~=Int, u D u:: fl=Int&+Int, f D f :lnt+Int}. {t D t::~=Int * Int, u D u:: L?= Int-+Int, f P f :u}

= FULL_SIG_S-+{t D t:: fl=Int * Int, u D u:: Q= Int+Int, f D f :u}

Figure 4: Steps in coercing F’s type to an arrow type

The system described in [34] displays similar behav-

ior, namely a forced loss of typing information when

using modules in conditionals and other primitives. In

that system, types are divided into two universes, U1,

the universe of “normal” types like Int and Bool--+Int,

and U2, the universe of module types. The loss in this

system is caused by the need to apply an implicit co-

ercion from a strong sum (which belongs to U2) to a

weak sum (which belongs to WI) because primitives op-

erate only on terms with types in U1. This coercion

causes a total loss of typing information. Our system is

more flexible than this because it only loses just enough

information to ensure soundness.

The possible uses for first-class modules have not been

well explored. One known use discussed in [35] is to

select at runtime between two or more ADTs which im-

plement the same abstraction using different algorithms

based on expected usage conditions. For example, we

could use one particular hash table implementation for

small tables and another for large ones.

5 Related Work

An early influential attempt to give a comprehensive

type-theoretic analysis of modularity and abstraction

was undertaken by BurstalI and Lampson with the ex-

perimental language Pebble [5]. Their work stresses the

role of dependent types and the mechanisms required to

support abstraction, but does not address the problem

of controlling the “degree” of abstraction. In particu-

lar, Pebble supports type and value bindings as primi-

tive notions, but with an “opaque” typing discipline, in

contrast to our calculus.

Cardelli’s language Quest [7] has exerted a strong

influence on the present work. Our approach shares

with Quest the emphasis on type-theoretic methods,

and is similarly based on Girard’s FW enriched with a no-

tion of subsumption (though we depart from Cardelli’s

approach by omitting bounded quantification). Quest

does not provide an adequate treatment of modularity;

our work can be seen as providing the type-theoretic ba-

sis for an extension of Quest with an expressive module

system.

Mitchell, et al. [34] consider an extension of the SML

module system with first-class modules as a means

of supporting certain object-oriented programming id-

ioms. Their paper is primarily concerned with illustrat-

ing an interesting language design rather than with the

type-theoretic underpinnings of such a language, though

a brief sketch is provided. A comparison with their work

is given in Section 4.6.

The type-theoretic analysis of the SML moduIes sys-

tem was initiated by MacQueen [27], and further devel-

oped by Harper and Mitchell [33, 20, 19]. This work is

summarized and compared with the present work in the

introduction.

Our language bears some relationship to Russell [4]

and Poly [30], but a detailed comparison seems diffi-

cult in the absence of a type-theoretic analysis of these

languages (see [21] for an early attempt).

In an effort to address the problem of separate compi-

lation, Leroy has independently developed a variant of

the SML modules system based on the notion of a “man-

ifest type” which is similar in spirit to our translucent

sum types. See Leroy’s paper in this volume [23] for

a description of his system and some comments on its

relationship to ours.

6 Conclusions

The main contribution of this work is the design of a

calculus of modularity with the following features:

●

●

Fine control over the “degree” of abstraction

through the notion of a translucent sum type.

A treatment of modules as first-class entities with-

out sacrificing the control over type abstraction af-

forded by a second-class module system.

● Support for separate compilation in a form that

ensures the complete equivalence between separate

and integrated compilation of a large system.

The following are some important directions for fu-

ture research:

132

●

●

●

●

Establish the soundness of the type system by prov-

ing preservation of typing under a call-by-value op-

erational semantics.

Investigate the eficiency of type checking and de-

velop practical algorithms that may be used in an

implementation. We show in Appendix B that the

subtyping problem for our system, and hence the

type checking problem, is undecidable. There is

reason to believe, however, that this will not be a

problem in practice.

Design an elaborator to translate an SML-like syn-

tax into the calculus, including a systematic treat-

ment of the reduction of symmetric sharing spec-

ifications to asymmetric definitions in signatures.

Develop an treatment of structure sharing that ac-

counts for structure generativity and interacts well

with computational effects.

Acknowledgements

We are grateful to Andrew Appel, Luca Cardelli, Olivier

Danvy, John Greiner, Nick Haines, Mark Leone, Xavier

Leroy, Brian Milnes, John Mitchell, and Mads Tofte for

their comments and suggest ions.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Andrew W. Appel. Compiling with Continuations.

Cambridge University Press, 1992.

Andrew W. Appel and David B. MacQueen. Standard

ML of New Jersey. In J. Maluszynski and M. Wirsing,

editors, Third Int’1 Symp. on Prog. Lang. Implementa-

tion and Logic Programming, pages 1–13, New York,

August 1991. Springer-Verlag.

Edoardo Biagioni, Nicholas Haines, Robert Harper, Pe-

ter Lee, Brian G. Milnes, and Eliot B. Moss. ML signa-

tures for a protocol stack. Fox Memorandum CMU-CS-

93–170, School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA, July 1993.

Hans-Jiirgen Bohm, Alan Demers, and James Donahue.

An informal description of Russell. Technical Report

80–430, Computer Science Department, Cornell Uni-

versity, Ithaca, New York, 1980.

Rod Burstall and Butler Lampson. A kernel language

for abstract data types and modules. In Kahn et al.

[22], pages 1-50.

Luca Cardelli. A semantics of multiple inherit ante. In

Kahn et al. [22], pages 51-67.

Luca Cardelli. Typeful programming. Technical Re-

port 45, DEC SRC, 1989.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Luca Cardelli, James Donahue, Lucille Glassman, Mick

Jordan, Bill Kalsow, and Greg Nelson. Modula-3 report

(revised). Technical Report 52, DEC Systems Research

Center, Palo Alto, CA, November 1989.

Luca Cardelli and Peter Wegner. On understanding

types, data abstraction, and polymorphism. Computing

Surveys, 18(4), December 1986.

Luca Cardelli and Leroy Xavier. Abstract types and

the dot notation. Technical Report 56, DEC SRC, Palo

Alto, CA, March 1990.

Eric Cooper, Robert Harper, and Peter Lee. The Fox

project: Advanced development of systems software.

Technical Report CMU-CS–91-178, School of Com-

puter Science, Carnegie Mellon University, Pittsburgh,

PA, August 1991.

Nicolas G. de Bruijn. A survey of the project AU-

TOMATH. In J. P. Seldin and J. R. Hindley, edi-

tors, To H. B. Curry: E.ways in Combinatory Logic,

Lambda Calculus and Formalism, pages 589-606. Aca-

demic Press, 1980.

Emden Gansner and John Reppy. eXene. In Robert

Harper, editor, Third International Workshop on Stan-

dard ML, Pittsburgh, PA, September 1991. School of

Computer Science, Carnegie Mellon University.

Jean-Yves Girard. Interpretation Fonctionnelle et

Elimination des CoupuRs clans 1‘Arithvn6tique d’Ordre

Sup&ieum. PhD thesis, Universit6 Paris VII, 1972.

Robert Harper. Introduction to Standard ML. Techni-

cal Report ECS–LFCS–86-14, Laboratory for the Foun-

dations of Computer Science, Edinburgh University,

September 1986.

Robert Harper and Mark Lillibridge. Explicit polymor-

phism and CPS conversion. In Twentieth ACM Sympo-

sium on Principles of Programming Languages, pages

206-219, Charleston, SC, January 1993. ACM, ACM.

Robert Harper, David MacQueen, and Robin Milner.

Standard ML. TechnicaJ Report ECS-LFCS-86-2, Lab-

oratory for the Foundations of Computer Science, Ed-

inburgh University, March 1986.

Robert Harper, David MacQueen, and Robin Milner.

Standard ML. Technical Report ECS-LFCS-86-2, Lab-

oratory for the Foundations of Computer Science, Ed-

inburgh University, March 1986.

Robert Harper and John C. Mitchell. On the type

structure of Standard ML. ACM Transactions on

Programming Languages and Systems, 15(2):21 1-252,

April 1993. (See also [33].).

Robert Harper, John C. Mitchell, and Eugenio Moggi.

Higher-order modules and the phase distinction. In Sev-

enteenth ACM Symposium on Principles of Program-

ming Lcmguages, San Francisco, CA, January 1990.

James G. Hook. Understanding russell: A first attempt.

In Kahn et al. [22], pages 69-85.

133

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Gilles Kahn, David MacQueen, and Gordon Plotkin,

editors. Semantics of Data Types, volume 173 of Lec-

ture Notes in Computer Science. Springer-Verlag, June

1984.

Xavier Leroy. Manifest types, modules, and separate

compilation. In Proceedings of the Twe nt y-first Annual

ACM Symposium on Principles of Programming Lan-

guages, Portland. ACM, January 1994.

Barbara Liskov and John Guttag. Abstraction and Spec-

ification in Program Development. MIT Press, 1986.

Zhaolui Luo, Robert Pollack, and Paul Taylor. How

to use Lego: A preliminary user’s manual. Technical

Report LFCS-TN-27, Laboratory for the Foundations

of Computer Science, Edinburgh University, October

1989.

David MacQueen. Modules for Standard ML. In 1984

ACM Conference on LISP and Functional Program-

mmg, pages 198–207, 1984. Revised version appears

in [18].

David MacQueen. Using dependent types to express

modular structure. In Thirteenth ACM Symposium on

Principles of Programming Languages, 1986.

David B. MacQueen. An implementation of Standard

ML modules. In Proceedings of the 1988A CM Confer-

ence on LISP and Functional Programming, Snowbird,

Utah, pages 212-223. ACM Press, July 1988.

Per Martin-Lof. Constructive mathematics and com-

puter programming. In Sizth International Congress for

Logic, Methodology, and Philosophy of Science, pages

153–175. North-Holland, 1982.

David C. J. Matthews. POLY report. Technical Re-

port 28, Computer Laboratory, University of Cam-

bridge, 1982.

Robin Milner and Mads Tofte. Commentary on Stan-

dard ML. MIT Press, 1991.

Robin Milner, Mads Tofte, and Robert Harper. The

Definition of Standard ML. MIT Press, 1990.

John Mitchell and Robert Harper. The essence of ML.

In Fifleenth ACM Symposium on Principles of Pro-

gramrnmg Languages, San Diego, California, January

1988.

John Mitchell, Sigurd Meldal, and Neel Madhav. An

extension of Standard ML modules with subtyping and

inherit ante. In Eighteenth ACM Sympos turn on Princi-

ples of Programming Languages, January 1991.

John C. Mitchell and Gordon Plotkin. Abstract types

have existential type. ACM Transactions on Program-

ming Languages and Systems, 10(3):470–502, 1988.

Greg Nelson, editor. Systems Programming with

Modula-3. Prentice-Hall, Englewood Cliffs, NJ, 1991.

Benjamin Pierce. Bounded quantification is undecid-

able. In Proceedings of the Nineteenth Annual ACM

Symposium on Principles of Programming Languages,

Albuquerque. ACM, January 1992.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

A

Benjamin C. Pierce. Programming with Intersec-

tion Types and Bound& Polymorphism. PhD thesis,

School of Computer Science, Carnegie Mellon Univer-

sity, Pittsburgh, PA, December 1991.

Chris Reade. Elements of Functional Programming. In-

ternational Computer Science Series. Addison Wesley,

1989.

Nick Rothwell. Functional compilation from the Stan-

dard ML core language to lambda calculus. Technical

Report ECS–LFCS-92-235, Laboratory for the Foun-

dations of Computer Science, Edinburgh University,

Edinburgh, Scotland, September 1992.

Nick Rothwell. Miscellaneous design issues in the ML

kit. Technical Report ECS–LFCS–92–237, Laboratory

for the Foundations of Computer Science, Edinburgh

University, Edinburgh, Scotland, September 1992.

Zhong Shao and Andrew Appel. Smartest recompi-

lation. In Twentieth ACM Symposium on Principles

of Programming Languages, pages 439–450, Charleston,

SC, January 1993.

Mads Tofte, Principal signatures for higher-order pro-

gram modules. In Nineteenth ACM Symposium on

Principles of Programming Languages, pages 189-199,

January 1992.

Mads Tofte. Type abbreviations in signatures. Unpub-

lished manuscript, August 1993.

Diedrik T. van DaaJen. The Language Theory of AU-

TOMA TH. PhD thesis, Technical University of Eind-

hoven, Eindhoven, Netherlands, 1980.

Niklaus Wirth. Programming in Modula-2. Texts

and Monographs in Computer Science. Springer-Verlag,

1983.

The Typing Rules

Definition A.1 (Judgments)

1- I’ valid valid context

rl-A::K valid constructor

rl-A=A’::K equal constructors

I’k D=D’ equal declarations

r}A<A’ subtype relation

rkD<D’ subfield relation

17t-M:A well- t ypsd term

I’+B:D wel!-typed binding

Definition A.2 (The field name stripping function)

bbcr::K = CY::K

bb ~::K=A = CY::K=A

yb x:A = x:A

134

Definition A.3 (Context Formation Rules)

k ● valid (INITIAL-T) 171- Al = A! :: K+K’

I’1-AIAz=Aj Aj::K’
(E-APP)

1- I’ valid a # dom(r)

1- r, CY::K valid
(DEF-0) r,a::K 1- A :: K’ I’FA’::K

r + (A@::K. A) A’ = [A’/a]A:: K’
(E-BETA)

F r, Q: X- valid I’I-A::K
—

1- r, a::K=A valid
(DEF-T) I’, a:: Kt- Aa :: K’ r F A;: K+-K’

r 1- Aa::K. Acr = A :: K+-K’
(E-ETA)

rt-A::fl ~ fz dom(r)

E r, z:A valid
(DEF-V) r 1- V : {b>a::K=A}

I’FV.b=A::h’
(ABBREV)

Definition A.4 (Constructor Formation Rules)
1- 1? valid a::K=A c r

(ABBREV’)
t- r valid a::K G r

rka::h’
(C-VAR-0)

I’Fa=A::K

Definition A.6 (Declaration Equality Rules)

F I’ valid a::K=A E r

rl-a::K
(C-VAR-T) i- r,a::K valid

(EQ-0)
rkbba::K=b Da::K

r 1- v: {b>a::K}

r t- V.b :: K
(C-EXT-0)

r,x:A t- A’ ::$2

1? 1- IIz:A. A’ :: Q
(C-DFUN)

1- r valid

rb{}::~
(C-UNIT)

r+ A= A’::K + I’, Q::K=A valid

I’ F b D a::h7=A = bb cr::h’=A’
(EQ-T)

rt-A=A’::Q I I’, z:A valid

r+y Px:A=ybz:A’
(EQ-V)

Definition A.7 (Subtyping Rules)
r,~k{~l,..., ~n}::n

(C-TSUM)
rF{D, Dl,.. ., Dn}::C2

I’, a::K + A:: K’

J7 + kY::K. A :: K+-K’
(C-LAM)

r t- Al :: K,*K rl-A2::K2
—

I’I-A1A2::K
(C-APP)

I’1-A=A’::fl

rt-A <A’
(S-EQ)

I’t-A <A’ rl-A’ <A”

I’I-A <A”
(S-TRAN)

Definition A.5 (Constructor Equality Rules)

rJ-A::K

I’1-A=A::h’
(E-REFL) I’I-D <D’ rl-{D’, D;,..., D~}::Q

r,~l-{D1,..., Dn}<{Dj, D~}, D~}

I’E{D, DI,..., Dn} < {D’, D[,..., D~}

(S-TSUM)

I’EA’=A::K

rkA=A’::K
(E-SYM)

rl-A=A’::K rl-A’=A’’::K

I’1-A=A’’::K
(E-TRAN)

I’F{D1,..., Dn, D}::Q

rl-{Dl,..., Dn, D} < {Dl,..., D~}
(S-THIN)

r+Al=Az::Q

r,z:Al 1- A; = A; :: Q

r t- IIz:A1. A; = IIz:Az. A; :: Q
(E-DFUN)

I’1-D=D’

r,~+{Dl,.. ., Dn}={Dj, D~}, D~} ::Q

I’F{D, D1, Dn}={D’. Dj,. ... D~}::Q

(E-TSUM)

Definition A.8 (Subfielding Rules)

(S-SAME)

I’KA <A’ i- r,x:A valid

I’kyhx:A<y Dx:A’
(S-VALUE)

h r, a::K=A valid

r t- bD CY::K=A < bb a::K
(S-FORGET)17, a::K + A = A’ :: K’

r k k::K. A = kY::K. A’;: K+-K’
(E-LAM)

135

Definition A.9 (Term Formation Rules)

rPx:A

F,x:At-M:A’

r E Jz:A. M : IIZ:A. A’

rE Ml ; A1+A2 rt-M2:Al

17FM1MZ:AZ

I- r Valid

Vt c [1.. n]. I’, T,. ... D1-1 t- B, : D,

rt-{B1,..., B~}:{D], D~}, D~}

r>~:{y Dx:A}

rl-M.y:A

rl-v:{b ba::K, Dl,Dn}

r+ V:{ b~a::K=V.b, D,,..., D~}

rl-v.y:A’

rt-V:{y ~z:A, Dl,..., Dn}

I’&V:{y c-x: A’, D,,..., Dn}

rt-M:A

rl-M:A:A

17t-M:A’ I’~A’<A

rt-M:A

(VAR-V)

(LAM)

(APP)

(TSUM)

(EXT-V)

(VALUE-O)

(VALUE-V)

(COERCE)

(SUBS)

Definition A.1O (Binding Formation Rules)

1- I’, CY::K=A valwl

rt-b~a=A:b~a::K=A
(BIND-T)

rl-M:A 1- r, x:A valid

I’Fy~x=M:ypx:A
(BIND-V)

Lemma All (Properties of the typing system)

1. if r E A :: K then t- I’ valid

2. ifr+Al= Az::A”then rbAl::Kandr RAz::K

3. if r + D1 = D2 then t- 17, E valid and k r,= valid

~.ifrEAl<AzthenrEAl::O and171-Az::fl

5. if r t- D1 < Dz then E r,~ valid and E 17,n valid

6.ijl?t- M: Athen I’t-A::Q

7. if171-B: Dthenkr, ~ualid

8. if+ I’, ~ valid then 1-17 valid

B Undecidability of Subt yping

The subtyping relation for our system can be shown to

be undecidable by a slight modification to Benjamin

Pierce’s proof of the undecidability of F< subtyping

[38, 37]. The basic source of undecidability is the sub-

typing rule (FORGET) that allows the forgetting of

information about the type components of translucent

sums.

Even a vastly simpler system with transparent and

opaque sums and a forgetting rule is undecidable. In

order to demonstrate this as well as simplify the discus-

sion, we consider now a very simple fragment of our full

system.

B. 1 The fragment A+q3=

The fragment A+qq= is obtained from our system by

restricting the set of constructors to include only types

and restricting the methods of building types to only

allow for arrow types, binary opaque sums (often called

weak sums), and binary transparent sums. We use a

slightly different notation to emphasize that these are

simpler constructs. The syntax for A+’s’q= is as follows:

As before, the meta-variable a ranges over type vari-

ables and we identify types that differ only by a-

conversion. The t ranslat ion back to our earlier not at ion

is as follows:

z = a
—.

Al +/42 = rIx:A1.A2

3a.A = {b~ a::~, yDx:~}

3a= A1.A2 = {b~ ff::~=z, y D X:z}

The effect of the subtyping rules of our system on

this fragment is captured by the following simple set of

rules:

Definition B.1 (Subtyping rules for A+ ‘3]3=)

A<A’

3a.A < 3cY.A’

[A/a]AI < [A/~]Az

3cr=A.Al < 3LY=A.Az

(ARROW)

(SUM-O)

(SUM-T)

(FORGET’)

Note that this set of rules is completely syntax di-

rected and does not require the use of a context because

of the explicit use of substitution. The proof that this

set of rules corresponds to the subt yping rules of the

original system on this fragment is omitted. For the

purposes of the undecidability proof, we will only need

the following lemma:

136

{

al

F(p) =

ifp=cr,

%r, al,. ... an. -@$=a,cl;=r(pl), a~=f(pn). -lqpl)) ifp=[al,an]<ppn>. pn>

%,al,... ,ix~a~a if p = HALT

F(R) = ikl’=c7, al+(pl), . ,an=$-(pn). lF(pl) < u where R = <pl . . . pn> and

u = %, al,*n.1(3a’=a. a;=a,,..., a~=a7a)a)

Here, a, a’, and aj through a ~ are fresh variables.

Figure 5: Modifications to Pierce’s encoding of row machines

Lemma B.2 The subtyping relation for A-313= is re-

flexive.

The proof proceeds by structural induction on the size

of the type using the following measure:16

lal =0

IA1+A21 = l+ IAII+IA, I

1%.AI = l+IAI

p~=A,.A21 = 1 + l[A,/cY]A, I

B.2 Undecidability of A+qq= subtyping

Theorem B.3 If the FORGET’ rule is removed, then

~~,as= subtyping is decidable.

Proofi Each use of the other rules strictly decreases the

following non-negative measure, so the simple syntax-

directed procedure always terminates in this case:

IA, <A,l = IAII+ IA21. ❑

Note that use of the FORGET’ rule does not decrease

this measure and in fact can increase it because the type

on the right side can grow without limit in the recursive

call. This fact can be used to construct examples that

cause the simple syntax-directed procedure for checking

A“3’3= subt yping to loop. For example, consider the

following definitions:

1A = A--d

P(A) = 3cx=A.TA

G~(A) = 3~.TA

The definition of -1A is chosen

where a fresh

so that -Al < -AZ iff

A2 ~ Al. Any type constructor with a contravariant

subtyping rule could be used here. An example which

causes cyclic behavior is then as follows:

P(G~(P(cI))) < GcY(P(cY))

= 3~=G*(P(~)).=G~(P(~)) < 3~.~P(~)

* [G(P(a))/a](+%(P(a))) S [Gx(P(a))/a](=P(a))
— =G~(P(~)) < =P(G&(P(CY)))

~ P(G*(P(~))) < Ga(P(~))

Theorem B.4 A+’a’3= subtyping is undecidable.

Pierce’s proof can be found in chapter 6 of his thesis

[38] or in [37]. Space considerations prevent outlining

it here. The modifications necessary to change his en-

coding of row machines so that it produces /4+ ’3 ’3=

subt yping questions instead are found in Figure 5. The

key diffe~ences are as follows:

. Use of 3a=A.A1 < 3cr.A2 instead of Va.A2

‘d@A.A1 .

. Use of reflexivity to halt computation instead

the FTOP rule. (Compare the two definitions

~(HALT))

16Note that IIAI /CI]A21 =][IAI l/4421 if we defie Iil = ‘.

137

