
Applicative functors and fully transparent higher-order modules

Xavier Leroy

INRIA

B.P. 105, Rocquencourt, 78153 LeChesnay, France.

Xavier.Leroy@inria .fr

Abstract

We present a variant of the Standard ML module system

where parameterized abstract types (i.e. functors returning

generative types) map provably equal arguments to compat-

ible abstract types, instead of generating distinct types at

each application as in Standard ML. This extension solves

the full transparency problem (how to give syntactic sig-

natures for higher-order functors that express exactly their

propagation of type equations), and also provides better sup-

port for non-closed code fragments.

1 Introduction

Most modern programming languages provide support for
type abstraction: the important programming technique
where a named type t is equipped with operations f,g, . . .

then theconcrete implementation oft is hidden, leaving an
abstract type t that can only be accessed through the

operations f, g,. . . Type abstraction provides fundamental
typing support for modularity, since it enables a
type-checker to catch violations of themodular structure of

programs.

Type abstraction is usually implemented through gener-
ative data type declarations: to make atypet abstract, the
type-checker generates anew typet incompatible with any

other type, including types with the same structure. From

this, it is tempting to explain type abstraction in terms of

generativity of type declarations and say for instance that
“a type is abstract because it is created each time its defi-

nition is evaluated”. The Definition of Standard ML [14, 8]

formalizes this approach as a calculus over type stamps that

defines when “new” types are generated and when “old”

types are propagated. This approach is adequate for spec-

ifying a type-checker, but too low-level and operational in

nature to help understanding type abstraction and reason

about programs using it.

Independently, Mitchell and Plotkin [16] have proposed

a more abstract, less operational account of type abstrac-

tion based on a parallel with existential quantification in

logic. Instead of operational intuitions about type generativ-

ity, this approach uses a precise semantic characterization:

representation independence [17, 15], to show that type ab-

straction is enforced. This abstract approach has since been

extended to account for the main features of the Standard

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial acfvanta~e, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copyin is by permission of the Association of Computing

+Machinery. o copy otherwise, or to republish, requires a fee
andor specific permission.
POPL ’951/95 San Francisco CA USA
0 1995 ACM O-89791 -692-l f9uOWl$3.50

ML module system: the “dot notation” as elimination con-
st ruct for abstract types [3, 4] and the notion oft ype sharing
and its propagation through functors [7, 10].

Unfortunately, some features described by operational
frameworks remain unaccounted for in the abstract

approach, such as structure sharing and the “fully
transparent” behavior of higher-order functors predicted

by the operational approach [13]. Also, even though the

abstract approach is syntactic in nature and therefore

highly compatible with separate compilation [10], code

fragments with free functor identifiers could be supported
better (see section 2.4 for an example). MacQueen [13, 1]

claims that the problem with higher-order functors is

serious enough to invalidate the abstract approach
and justify the recourse to complicated stamp-based
descriptions of higher-order functors and separate
compilation mechanisms.

The work presented in this paper is an attempt to solve
two of these problems (fully transparent higher-order func-

tors and support for non-closed code fragments) in a syntac-
tic framework derived from [10]. It relies on a modification

of the behavior of functors (parameterized modules). In

Standard ML and other models based on type generativity,
a functor defining an abstract type returns a different type

each time it is applied. We say that functors are genera-

tive. In this work, we consider functors as applicative if the

functor is applied twice to provably equal arguments, the

two abstract types returned remain compatible. Functors

therefore map equals to equals, which enables equational

reasoning on functor applications during type-checking, In

turn, this allows more precise signatures for higher-order

functors, thereby solving the full transparency problem.

Applicative functors are also interesting as an exam-

ple of a module system that ensures type abstraction (the

representation independence properties still hold) without

respecting strict type generativity (some applications of a

given functor may return new types while others return com-

patible types). In this approach, type abstraction mecha-

nisms are considered from a semantic point of view (how

to make programs robust with respect to changes of im-

plementations?) rather than from an operational point of

view (when are two structurally identical types compati-

ble?). This work illustrates the additional expressiveness

and flexibility allowed by this shift of perspective.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces informally the applicative semantics of

functors and the main technical devices that implement it.

Section 3 formalizes a calculus with applicative functors.

Section 4 shows that the representation independence prop-

erty still holds, and section 5 that higher-order functors are

fully transparent in this calculus. Section 6 discusses related

work and section 7 gives concluding remarks.

142

2 Functor applications in type paths

2.1 Type paths and the propagation oftype equalities

Module systems such as SML’S allow type expressions of

the form x.t, where z is a structure identifier (the name of

a module) and t is the name of a type defined in this struc-
ture. Since structures can be nested, type expressions such
as xl. . . . Zn .t are also allowed, denoting the t type compo-

nent of the xn substructure of . . . the structure z 1. These

type expressions are called type paths or long type identijiem.
When type bindings are transparent (named types are

compared by structure), type paths play no role in type-

checking, since they can always be replaced by the type ex-
pressions to which they are bound. This is not the case

with opaque type bindings, where the definitions of type

identifiers are hidden and types are compared by name.

Opaque bindings are crucial to implement type abstraction

and representation hiding. In SML, they are provided by
the abst ype and dat at ype constructs. Type paths play the

role of witnesses of opaque types [5]: although the definition

of an opaque type is not available, two occurrences of a type

path denoting this opaque type are recognized as compati-
ble types. In other terms, syntactic equality between type

paths implements the name equivalence that characterizes
type abstraction and type generativity [4].

Combined with type definitions in signatures (the abil-

ity to specify type equalities in module interfaces), type

paths can also express how abstract types are propagated
and shared across substructures of a structure, and across

the argument and result of a functor. Consider for instance
the following Set functor that implements sets over any type

equipped with a total ordering:

signature ORD =
sig type t; val less: t -> t -> bool end

functor Set (Elt: ORD): SET =
struct

type elt = Elt. t
dat at ype set = Leaf I Node of set * elt * set

val empty = Leaf

. . . (* Familiar ordered binary tree

implementation omitted *)

end

The following signature for the Set functor captures the fact
that theelt component of the result isthesametype as the
t component of the argument:

functor Set(Elt: ORD): SET =

sig

type elt = Elt. t

type set

val empty: set

val member: elt -> set -> bool

. . .
end

This combination of type paths and dependent functor types
has been used to give complete syntactic accounts of type

sharing inthe SML module system [10, 7, 11].

2.2 Restriction ofprojections to paths

An obvious generalization of type paths is to allow projec-

tions of type components from arbitrary structure expres-

sions:’ then, m.t would be a valid type expression for any

structure expression m whose result contains at component

[12,9]. This extension adds considerable expressive power,

but raises delicate issues. First, when aretwotypeexpres-
sions m.t and m’.tcompatible? Clearly, we cannot check

that m and m’ reduce to the same structure, since equal-

ity of structure expressions is undecidable. Second, even if
we compare structures by mere syntactic equality (m.t and
m’.t are compatible if and only if the structure expressions

mandm’ are syntactically identical), some type abstraction

is lost. For instance, two occurrences of the type expression

(struct abstype t = r with decls end). t

would be recognized as compatible, while the two abstract

type definitions can come from different parts of the pro-

gram andshould create two distinct abstract typest. This

problem is particularly apparent in the syntactic module
systems [10, 7], which have a typing rule (the “self” rule)
that transforms abstract types into types “manifestlyequal

to themselves”: if the structure path p has signature

P : sig . . . typet; . . . end

thenit also has signature

P : sig . . . type t = p.t; . . . end

If all structure expressions are allowed in paths, the “self”
rule makes abstract types that happen to have the same
implementation automatically compatible:

structure A = struct abstype t = T with decls end
structure B = struct abstype t = r with decls end

By application of the “self” rule, we obtain the following

signatures for A andB:

A: sig type t =

(struct abstype t = r with decls end).t;

. . . end

B: sig type t =

(struct abstype t = T with decls end).t;

. . . end

Hence A.t =B.t, which violates type abstraction.
To avoid this problem, all module-language constructs

whose evaluation can generate new types (by evaluating

an abstype or datatype definition) must not occur in

type projections. This excludes structure construction

(struct, . . end) and functor application as well (the body

of the functor can generate new types at each application).
The only constructions that remains are access to a
structure identifier (z) and access to a substructure
(ZI.ZZ), that is, the type paths (p ::= z [p.x), as in SML.
The restriction of type projections to paths is therefore
equivalent to the strict notion of type generativity found in

SML.

2.3 Functor applications in paths

In spite of these considerations, there are situations where
it would be extremely useful to extend slightly the class of

paths (the syntactic class p of structure expressions such
that p.t is a legal type expression) to include simple cases
of functor applications, where the functor and its argument
are themselves paths. Let us therefore take

p::=zlp.z]Pl(p2)

and illustrate the consequences of this choice, ontheexpres-
siveness of the language and on the notion of type abstrac-
tion.

143

2.4 Local applications of functors

A first situation where this extension proves useful is to sup-

port functors that apply other functors locally. Consider the

following Diet functor implementing dictionaries:

signature DICT =

sig

type key

type ‘a diet

val empty: ‘a diet

val add: key -> ‘a -> ‘a di.ct -> ‘a diet

val find: key -> ‘a

end

functor Dict(Key: ORD):

struct

type key = Key.t

datatype ‘a diet =

Leaf

I Node of ‘a diet *

diet -> ‘a

DICT =

kev * ‘a * ‘a diet

. . . (* Binary tree irnpieinentation omitted *)

end

Assumewe need to extend this functor with a domain op-

eration that returns the set of keys of a dictionary. To do

so, we need a structure implementing sets of keys. The sim-

plest approaches to construct this structure inside the Diet

functor, using the Set functor:

signature DICT =

sig

. . .

structure KeySet: SET sharing KeySet.elt = key

val domain: ‘a diet -> KeySet.Set

end

functor Dict(Key: ORD): DICT =

struct

. . .

structure KeySet = Set(Ord)

fun domain diet = . . .

end

Unfortunately, the signature above does not reflect that

KeySet has been obtained by applying Set to Oral; there-

fore, thetype Key Set. set in the result structure of Diet is

assumed incompatible with other set types obtained by ap-

plying Set elsewhere to the same ordered type. Continuing

the example, assume we have another functor, say an im-

plementationof priority queues, that uses the same trick as

Diet:

signature PRIOQUEUE =

s ig

type elt

type queue

val empty: queue

val add: elt -> queue -> queue

val extract: queue -> elt * queue
structure EltSet: SET sharing EltSet.elt = elt

val contents: queue -> EltSet.set

end

functor PrioQueue(Elt: ORD): PRIOQUEUE =

struct

. . .

structure EltSet = Set(Elt)

,,.

end

Then, Dictand PrioQueue cannot beusedtogether, because

the set types used by the contents and domain functions

are not compatible:

structure IntOrder =

struct type t = int; fun less x y = (x<y) end

structure IntDict = Dict(IntOrder)

structure IntPrioQueue = PrioQueue(IntOrder)

Thetypes IntDict .KeySet.set and IntPri.oQueue.EltSet.

set are incompatible, therefore the following expression does

not type-check:

IntDict.domain d = IntPrioQueue. contents q

The SML solution to the problem above is to avoid ap-

plyinglocallythe Set functor and parameterize instead Diet

and PrioQueue by the required Set structure:

functor Dict(

structure Key: ORD

structure Set: SET

sharing Set.elt = Key.t): DICT =

struct

. . . structure KeySet = Set . . .

end

functor PrioQueue(

structure Elt: ORD

structure Set: SET

sharing Set.elt = Elt.t): PRIOQUEUE =

struct

,.. structure EltSet = Set . . .

end

structure IntSet = Set(IntOrder)

structure IntDict =

Dict(structure Elt = IntOrder

structure Set = IntSet)

structure IntPri.oQueue =

PrioQueue(structure Elt = IntOrder

structure Set = IntSet)

By hoisting the application Set(IntOrder) outside ofDict

and PrioQueue, we have made explicit that the KeySet and

EltSet substructures ofIntDict and IntPrioQueue provide

compatible set types. Therefore, the following expression

now type-checks:

IntDi.ct.domain d = IntPri.oQueue.contents q

However, what appeared to be an incremental change of

the program (add some operations coexisting functors) has

required major changes to the modular structure of the pro-

gram:

●

☛

☛

All other uses ofDict and PrioQueue in the program

must be modified to provide the extra Set argument,

even if they do not use the new operations.

Higher-order functors that take Diet or PrioQueue as

arguments must also be modified.

Hoisting the application Set(IntOrder) from the

points where it is actually used toa common ancestor

ofthese pointsin the dependency graphis anon-local

program transformation, as in MacQueen’s “diamond

import” example [12].

144

Introducing functor applications in paths enables a much

more elegant solution: the functors Diet and PrioQueue can

apply Set locally, as in the original attempt, and receive the

following signatures:

functor Dict(Key: ORD):

sig

type key = Key.t

type ‘a diet

. . .

val domain: ‘a diet -> Set(Key).set

end

functor PrioQueue(Elt: ORD):

sig

type elt = Elt.t

type queue

. . .

val contents: queue -> Set(Elt).set

end

Since the signatures show explicitly how the set types are

derived from the functor arguments, the structures obtained

byapplying Diet and PrioQueue to the same ordered type

now interact correctly:

structure IntDict = Dict(IntOrder)

(* : sig

,..
val domain: ‘a diet -> Set(IntOrder).set

end *)

structure IntPrioQueue = PrioQueue(IntOrder)

(* : sig

. . .

val contents: queue -> Set(IntOrder).set
end *)

From the signatures above, it follows that the two types
IntDict.KeySet.set and IntPrioQueue.EltSet.set are
equalto Set(IntOrder).set, and therefore compatible.

2.5 Full transparency in higher-order functors

As previously mentioned, the combination of dependent

functor types and type equalities in signatures makes it

possible to give syntactic signatures to first-order functors

that characterize exactly the “input-output behavior”

of functors: how they propagate type components from

their argument structure to their result structure. (See

for example the signature for Set in section 2.1.) This

property, in turn, enables simple syntactic descriptions

of the module system and simple separate compilation

mechanisms [10], with no loss in expressiveness with

respect to SML [11].

Unfortunately, this result does not extend straightfor-

wardly to higher-order functors: some higher-order functors

do not possess any syntactic signature that characterizes ex-

actly their behavior. Consider forinstance the paradigmatic

higher-order functor:

signature S = sig type t end

functor Apply(functor F(X:S):S; structure A:S) =

F(A)

Theexpected behavior for this kind of functors, called the

“fully transparent” behavior in [13] and predicted by the

models based on strong sums [12, 9], is that at application-

time all type equalities known about its two arguments are

combined to deduce the type equality that holds on the t

component of the result. For instance, if the F argument

is the identity and the A argument has t = int, then the

result also has t = int; if Fis the constant functor returning

t =bool, then the result hast=bool.

functor Identity(X:S) = X

structure Int = struct type t = int end

structure B = Apply(Identity Int)

(* We get B.t = int *)

functor Constant(X:S) = struct type t = bool end

structure C = Apply(Constant Int)

(* We get C.t = bool *)

With the standard notion oftype paths ,it is impossible to
capture this behavior inasyntactic signature for Apply. The

most general signature for Apply,

functor Apply(functor F(X:S):S; structure A:S):

sig type t end

does not propagate any type equalities on thet component

of the result. Apply can be modified to propagate some

equalities in special cases, at the cost of making it unappli-

cable in other cases. For instance, the correct propagation

of equalities in the example Apply(Identity Int) can be

obtained by defining Apply as

functor Apply(

functor F(X: S): sig type t=X.t end

structure A: S)

= F(A)

The signature for Apply is then

functor Apply(

functor F(X: S): sig type t=X.t end

structure A: S)

: sig type t=A.t end

From this signature, it follows that B = Apply(Identity

Int) haaB.t manifestly equalto int. But then theappli-
cation Apply(Constant Int) is ill-typed, since the functor

Constant does not meet the specification of the F argument

of Apply. The modified definition of Apply propagates more

type equations, but makes thehigher-order functorlessgen-
eral. At any rate, full transparency is not achieved.

The introduction of functor applications in type paths

provides a simple, elegant solution tothis full transparency
problem, allowing functors such as Apply to receive syntac-

tic signatures that capture exactly their type propagation
behavior. In the case of Apply, this signature is

functor Apply(functor F(X:S):S; structure A:S):

sig type t = F(A).t end

This is acorrect signature for Apply: since the functor body

F(A) belongs totheextended class ofpaths, it has not only

signature S, but also sig type t = F(A).t end byapplica-

tion of the “self” typing rule.

Moreover, this signature propagates type equalities cor-

rectly, because at application-time F and Ain the result sig-

nature are substituted by the actual arguments ~ and a to

the functor, and all known equalities about the result of f(a)

will also hold for the result of Apply. For instance,

structure B = Apply(Identity Int)

(* : sig type t = Identity(Int).t end *)

145

and Identity (Int) has signature sig type t = Int. t

end, from which it follows B.t = Int.t = int. Similarly,

structure C = Apply(Constant Int)
(* : sig type t = Constant(Int~.t end *)

and Constant(Int).t = bool, hence C.t = bool, as ex-
pected.

As in the first-order case, the propagation oftype equal-

ities through syntactic functor signatures is limited by the

fact that only paths are allowed in type expressions, not type
projections from arbitrary structures. Consider the follow-

ing variant of Apply:

functor ApplyProd(functor F(X:S):S;

structure A:S) =

F(struct type t = A.t * A.t end)

Its natural signature is:

functor ApplyProd(functor F(X:S):S;

structure A:S):

sig

type t = F(struct type t = A.t * A.t end).t

end

Unfortunately, this is not a well-formed signature, since the

argument to F is not a path. We must therefore revert to

the less precise signature

functor ApplyProd(functor F(X:S):S;

structure A:S):

sig type t end

which does not propagate type equalities as expected. To

achieve full transparency, the program must be rewritten

so that the argument to F is a path. Since this argument

contains A as a free variable, we must actually “lambda-lift”

it as follows:

functor G(A:S) =

struct type t = A.t * A.t end

functor ApplyProd(functor F(X:S):S;

structure A:S) = F(G(A))

Then, ApplyProd is assigned the fully transparent signature

functor ApplyProd(functor F(X:S):S;

structure A:S):

sig type t = F(G(A)).t end

which ensures the proper propagation of type equations.

This trick is an instance of a general normalization tech-

nique that transforms an arbitrary program to eliminate ap-

plications of functors tenon-paths, therefore ensuring that

type equations are always propagated as expected (see sec-

tion 5.2).

2.6 Applicative semantics of functor application

As recalled in section 2.2, the standard notion of paths

(P ::= z [P.Z) istheonly one that guarantees strict type

generativity. Inturn, type generativity guarantees type ab-

straction. The question, then, is: how much type genera-

tivity and type abstraction is lost if we allow functor ap-

plications in paths? Some generativity, but no abstraction.

More precisely, theonly difference is that ifwehaveafunc-

tor that returns an abstract type, and we apply it twice to

syntactically identical paths, then we obtain two compatible

abstract types, while with the standard notion of paths we

would have generated two distinct types. Consider:

structure IntSetl = Set(IntOrder)

structure IntSet2 = Set(IntOrder)

With the standard notion ofpaths, we have IntSetl.set #

IntSet2.set. If functor applications are allowed in paths,

by applying the “self” rule, we obtain

IntSetl:

sig . . . type set = Set(IntOrder).set . . . end

IntSet2:

sig . . . type set = Set(IntOrder).set . . . end

from which it follows that IntSetl.set =IntSet2.set.

In other terms, the consequence of adding functor ap-

placations inpaths isthatfunctors returning abstract types

now map equal structure path arguments to equal abstract

types. Wecallthis behavior applicative, byopposition to the

usual generative behavior, where each application of such

functors generates anew abstract type, whether the argu-

ments are identical or not.

The applicative behavior appears only ifthefunctor ar-

guments are syntactically identical structure paths: in all

other cases. the “self” rule does not armlv and the abstract. . .
types in the functor results are considered different. For

instance, if we define

structure IntSet3 = Set(IntOrder: ORD)

structure IntSet4 = Set(IntOrder: ORD)

we obtain IntSet3.set # IntSet4.set, since (IntOrder:

ORD) is not a path. This may look unnatural, and more

refined syntactic criteria could be used to determine equality

of functor arguments; on the other hand, the line has to be

drawn somewhere, and equality of structure paths is easily

explained and understood.

We claim that the applicative semantics for functorap-

placations does not violate type abstraction and does not

weaken the robustness of programs. First, even though the

applicative semantics makes some previously incompatible

abstract types compatible (IntSetl.set and IntSet2.set

in the example above), the representations of these abstract

types are still hidden, and outsiders still cannot forge or in-

spect directly values of these types. Section 4 formalizes this

argument as a representation independence property.

Moreover, several module-level construct still generate

new types predictably, because they still do not belong

to the extended class of paths: structure construction

struct. . end and restriction of a structure by a signature

(st~exp : sigezp). The programmer can rely on these
constructs to obtain new, incompatible types, if desired for
added safety. Continuing the example above, the types

IntSetl.set and IntSet2.set can be made different by

adding a signature constraint:

structure IntSetl = (Set(IntOrder): SET)

structure IntSet2 = (Set(IntOrder): SET)

The oDaaue interpretation of constraints in our module,, .
calculus guarantees that all equalities known about the set

component are forgotten. Moreover, (Set(IntOrder):

SET) is syntactically not a path, hence the “self” rule

cannot be used to derive a type equality between

IntSetl.set and IntSet2.set. In other terms, functor

application can no longer be used to force the generation of
new types (as is sometimes done in SML using functors

with no arguments), but other constructs such as signature

constraints can be used for the same purposes.

146

2.7 Applicative functors and side-effects

In an imperative language such as ML, one may wonder

whether the hypothesis that functors map equals to equals

is sound, In a language with side-effects and modules as

first-class values [3, 7], the applicative semantics for functors

is actually unsound:

val r = ref false
f unctor F() : sig type t end =

(r := not !r;
if !r then struct type t = int end

else struct type t = bool end)
structure II = F()
structure B = F()

Semantically, A. t is int and B. t is bool, but the applicative

semantics for functors assumes A.t = B.t.

The problem is avoided in a stratified language such

as SML: type components of structures cannot depend on

values, only on types, and the language of types is purely

functional; hence, theapplication ofafunctor totwostruc-
tures with identical type components returns two structures
with identical type components. The applicative semantics
is therefore sound.

It is true, however, that value components of afunctor

body maydepend on the store. Itwould therefore beincor-
rect to generalize the applicativity hypothesis to “a functor

maps two structures that share (in SML’S structure shar-

ing sense) to two structures that share”. In this paper, we
only consider sharing between type components of struc-

tures. (See [6] foratreatment ofstructure sharing in functor

signatures.)

3 A calculus with applicative functors

In preparation for representation independence and expres-

siveness results, we now define a module calculus with ap-

placative functors, derived from [lO, 11].

3.1 Syntax

In the following grammar, v, t, andx are names (for value,

type, and module components of structures, respectively),
and vi, t,, andxi are identifiers (for values, types, and mod-

ules). All identifiers (e.g. z~) have aname part (here, z) and

a stamp part (i) that distinguishes identifiers with the same
name. Bound identifiers can be renamed, but a-conversion
must preserve the name parts of identifiers and can only
change the stamp part. This way, access by name inside
structures is meaningful, yet a-conversion can still be per-

formed to avoid name clashes.

Access paths:
p ::=xi module identifier

I p.z access to a module component

I PI (P2) functor application

Value expressions:

e ::= v% value identifier

I p.v value field of a structure

. . . base language-dependent

Type expressions:

::= ti type identifier

T Ip.t type field of a structure

lintl~+~l... base language-dependent

Module expressions:

m ::= z;

I p.z

]struct s end

I functor(zi : M) m

I ml(mz)

l(m:M)

Structure body:

s ::=eld; s

Structure components:

d::=val v,=e

ltypet=~

I module z~=m

Module types:

M::=si~ S end

module identifier

module field of a structure

construction of a structure

functor

functor application
restriction by a signature

value definition

type definition

module definition

signature type

I f unctor(z, : Ml)kfz functor type

Signature body:

s::= &lD; s

Signature components:
D ::= val v, : r value specification

I type t, abstract type specification
I type t, = 7 manifest type specification

I module w : M module specification

Programs:

P ::= prog s end

We assume given a base language (value expressions e, type

expressions ~) that is left mostly unspecified. It can refer
to value and type components bound earlier in the same

structure through identifiers (vi and ti), and to value and

type components of other structures through paths (p.v and
p.t).

At the level of the module language (m), we have struc-
tures, functor abstractions and functor applications. Struc-
tures are collection of bindings for values, types and mod-
ules (either substructures or functors). The correspond-

ing module types M are signatures (collections of decla-

rations for values, types and modules) and functor types

(dependent function types). Type components in signatures

can be declared either abstractly (type ti)or transparently
(type ti = ~).

Signatures are treated as opaque for signature matching,

meaning that a transparent type binding (type ti= T) re-
stricted by an abstract type specification (type t;)becomes
abstract: the type equality t,= r is forgotten. SML’S gen-

erat ive bindings abst ype and dat at ype can therefore be ex-

pressed as a transparent type binding followed by a restric-

tion by an abstract signature.

Complete programs P are sequences of definitions s that

define an integer-valued field named res, which is the ob-

servable result of the program execution.

3.2 Typing rules

The typing rules for this calculus are shown in figure 1.

The rules define the following judgments:

Ekm:M The module m has module type M.

EI-M1<:M2 The module type AIl is a subtype

of the module type M2.

E 1- M modtype The module type M is well-formed.

Ei-Pok The program P is well-typed.

We write IIV(S) for the set of identifiers bound by the sig-

nature S, and similarly for typing environments. We assume

147

ryping of module expressions (II t- m : I@, structures (I3 E s : S) and programs (k P ok):

E k p : (sig S1; module zi : ill; S2 end) EFs:S
Et- ~i : E(z~) (1)

Et- p.z : M{n, - p.n I n, 6 BV(S~)}
(2)

E + (struct s end) : (sig S end)
(3)

E K M modtype ~i @ BV(E) E; module xi : M k ~ : M’

E 1- (functor(r, : Al)m) : (functor(z, : Lf)A1’)
(4)

Et- rnl : functor(z, : Lf)kf’
‘km2:M (5)

E 1- rnl(mz) : M’{z, - WL2}

E 1- M modtype EFm:M Et-m:M’ EFM’<:M

EF(m:M):M
(6)

E1-m:M
(7) ‘EP’M (8) Et-E:& (9)

EFp:MJp

Et-e:r v, @ J3V(E) E;valv, :rt-s:S E \ ~ type t,@ BV(E) E;typeticr Fs:S
(lo) (11)

E 1- (val vi = e; S) : (val vi : T; S) E + (type ti n ~; S) : (type ti D T; S)

Etm:M z, $ BV(E) E;modulex, :Mks:S @ ~ (struct s end) : (sig val res : int end)

E F (module x, = m; s) : (module ~i : M; S)
(12)

1- (prog s end) ok
(13)

Module subtyping (E t- M <: M’):

EI-M2<:M1 E; module z~ : M2 F Mj <: M;
(14)

E E functor(z. : Ml)Mj <: functor(z, : Mz)M~

EI-Tz T’ EI-M<:M’

E 1- (val v, : T) <: (val v, : ~’)
(16)

E ~ (module z~ : M) <: (module zi : M’)
(17)

Et- (type t, = T) <: (type L) (18) E t- (type t,) <: (type t,) (19)

E1-rzr’

E k (type t, = ~) <: (type ti = ~’)
(20)

E!-t, %r

E + (type t,) <: (type t,= 7-)
(21)

Type equivalence (E t- T x ~’):

Et-p:sig S1; type ti=r; S2 end
E,; type t.= T; E2 t- t, ~ r (22)

E + p.t = ~{n, - p.n I n. 6 BV(S1)}
(23)

(Rules for congruence, reflexivity, symmetry, transitivity and base language-dependent equivalences omitted.)

Well-formedness of module types (E k M modtype): rules omitted.

Figure 1: Typing rules

given typing judgments E 1- e : r and E 1- r type for the 3.3 Denotational semantics

base language. The “self” rule mentioned in section 2.2

(rule 7) uses a type strengthening operation written M/p,
The dynamic semantics of the module calculus is obtained

which enriches the module type M to reflect that its abstract
by erasing all type information and mapping structures to

type components come from the path p, as follows:
records and functors to functions. This is formalized as a

standard denot ational semantics shown in figure 2. We as-

(sig S end)/p = sig S/p end sume given a domain B of values for the base language,

(functor(z, : Ml)Mz)/p = functor(z, : Ml)(Mz/p(~i))
including a constant wrong denoting run-time type errors,

and a meaning function [.] ~ for expressions of the base lan-

‘/P = E

(val Vi :

guage. Writing ‘~n for partial functions with finite domain,
‘T; S)/p z val Vi : 7; S/p the domain V of values for the module language is defined

(type t%; S)/p == type ti s P.t; S/p as:

(type t%= -r; S)/p = type t%= p.t; S/p

(module x, : M; S)/p = module x. : M/p.z; S/p
V = (ValName ‘~” B) x (ModName ‘~n V)

+ (V ~ V) + wrongl

148

Meaning of module expressions and programs:

[ai], = if z, c Dom(p) then p(x~) else wrong

~.z]P = let d = ~], in if z E Dom(cl) then d(z) else wrong

[struct s end], = [s],

[functor(xi : 114)rn]P = Ad. if d = wrong then wrong else [rn]P+t., -~}

[ml (rnz)], = if ~ml], c V ~ V then [rnl],([mz],) else wrong

[(m : M)]p = [m],

[en, = {}

[val v, = e; s], = let d = [e]P in if d = wrong then wrong else

let d’ = [s] P+{ V,xd} in if d’ = wrong then wrong else {v w cl}+ d’

[type t = T; s], = [s],

[module z; = m; s], = let d = [m]P in if d = wrong then wrong else

let d’ = [s] P+{ Z,_d} in if d’ = wrong then wrong else {z = d}+ d’

[prog s end] = let d = [s]O in if res c Dom(s) then s(res) else wrong

Extension of the meaning function on value expressions:

&.v]P = let d = ~], in if w c Dom(d) then d(v) else wrong

Figure 2: Denotational semantics

4 Representation independence

We now show that applicative functors ensure a suitable

notion of type abstraction. Following Reynolds [17] and
Mitchell [15], we use representation independence as the
semantic characterization of type abstraction: a language

enforces type abstraction if two implementations of an ab-
stract type can be observationally equivalent (substituting

one by the other in any program does not change the out-
come of the program), yet use different representation types

to implement this abstract type. The proof is an adaptation
of Mitchell’s proof for the SOL calculus [15], which relies on
logical relations.

We first define binary logical relations for the values and

type expressions of the module calculus. Logical relations

are presented as the judgement r 1= w H v’ : M ~ T, read:

“under the type interpretation 17, the values v and v’ are

equivalent when observed under type M and produce the

type interpretation T“. The type interpretation 17 assigns

a meaning to the type identifiers and type paths appearing
in M. The T component records the relations we used to

prove the equivalence of v and v’. We need T because the
elimination construct we use for abstract types (type paths)

has open scope, in contrast with Mitchell’s open construct,
which has closed scope.

Let BaseRel be the set of admissible relation between

base values (binary relations over B that do not relate wrong

with wrong). Define

ModInterp =

(TypeName ‘4” BaseRel) x (ModName ‘3” ModInterp)

+ (Modlnterp ~ ModInterp)

InterpEnv =

(TypeIdent ‘~n BaseRel) x (ModIdent ‘~n ModInterp)

Module interpretations T c ModInterP are either struc-

ture interpretations (a record mapping type names to base

relations and module names to module interpretations), or

functor interpretations (functions from interpretations to in-

terpretation;). Interpre~ation environments-r E InterpEnv

map type identifiers to base relations and module identifiers
to module interpretations. An interpretation environment 17
provides a meaning to type paths as admissible relations be-
tween base values in the obvious way:

r(p.t) = (r(p))(t)

r(p.z) = (r(p))(m)

r(p1(P2)) = (r(Pl))(r(Pz))

We first define a family (R:) of logical relations over

values of the base language in the usual way:

● (bl,bz) e RF iff bl and b, are equal integers

● (bl, bz) c R: iff ti E Dom(r’) and (bl, bz) E f’(t~)

● (bl, b2) c R~f iff 17(p.t)is defined and (bl, bz) c I’(p.t)

. (bl, bz) c Rr‘+0 iff bl and b, are functions, and for all

base values (al, az) c R;, we have (bl(al), b,(az)) 6
R;

We then define the judgement r \ v % v’ : M + T by
induction over M, as follows.

1.

2.

3.

r* S1~S2: sig S end ~ T M’ S1 and S2 are seman-

tic signatures such that J7 1= S1 = S2 : S * T

rpjl~ j, : functor(z~ : M)N a T M’ jl, f2

and T are functions such that for all values V1, V2 and

interpretations X satisfying 17 ~ u % V2 : M * X,

we have

f,(v,) : N * T(X)

semantic signatures sl

149

4.

5.

6.

7.

r ~ S1 % 52 : (val v, : ~; S) a T iff (s1(7J), s2(v)) E
R~andr~slzs2:S+T

r 1= S1 w 52 : (type t,; S) * T iff there exists an

admissible base relation R and an interpretation T’

such that I’+{t, wR} #s1~s2:S~T’ and

T={tt-+R}+T’

17~slws2: (type tz=T; s)+ Tiffr+ {ti~

R~}~sI%sz: S+- T’and T={t~R~}+T’

r 1= S1 % 52 : (structure x, : A4: S) a T iff there

exists ~nterp~etations T’ and ~“ such that 17 + SI (z) x

sz(z):A4+ T’andr+{ww T’}~sIxsz:s~
T“ and T = {z w 2“} +T”

Notice that in the fifth case (declaration of an abstract

type t~), we do not require t;to be implemented by the same

type expression in the two structures denoted by s and s’:

we can interpret tiby any admissible relation, not only R?

for some r, as long as the relation makes the remainder of

the two structures related [15],
We define similarly an equivalence relation 17 1= p N p’ :

E + I“ between evaluation environments p and p’ viewed

under the typing environment E. The 17’ component is an

extension of r with interpretations for the identifiers de-
clared in E.

The fundamental lemma of logical relations for the mod-

ule calculus is as follows:

Proposition lIf Et-m: Mand O~p%p’:E+r,
then there exists an interpretation T such that

171= [m], H [m],, : M ~ T.

Proof: standard inductive argument on the derivation of

EFm:M. •1

As a corollary, we obtain the representation indepen-

dence property: two closed module expressions whose mean-

ings are related can be substituted one for the other in any

program. The first formulation is as follows:

Proposition 2 Let ml and mz be two closed module ex-

pressions such that @ 1- ml : M and @ R m2 : M. Assume

01- [ml]@ % [m2]0 : M ~ T for some T. For all pro-

gram contezts C[] such that z, : M t- C[z,] ok, we have
[C[ml]] = [C’[m2]].

Proof: Let D[] be the structure context such that

C[] = prog D[] end. We have [C[ml]] = [D[ml]]O(res)
and similarly for mz. Let pl = {~i * [ml]O} and

P2 = {Zi w [mz]o} and E = (W : M). By hypothesis

on ml and mz, we have 0 l== pl % pz : E + r where

r = {Zi w T}. By hypothesis on C, we have

E + (struct ll[zi] end) : (sig val res : int end).

From the fundamental lemma, it follows that

r ~ [struct D[z;] end]Pl x [struct D[~i] end]o, :

(sig val res : int end) a T’ for some T’. It is

easy to check that [D[~i]]pl = [Il[ml]]o, and similarly

for m2 and p2. Extracting the res integer field from

the denotations of D [ml] and Ll[mz], it follows that

([~[ml]]o(res), [~[mz]]a (res)) G R?’, which means
[C[ml]] = [C[m2]] since R~’ k the equality relation over

integers. ❑

Proposition 2 is a relatively weak result, because the

assumption Xt : M E C[z,] ok requires the program con-

text C[] to be parametric with respect to all possible im-

plementations of the signature A/f and prevents C[] from

taking advantage of more typing hypothesis that could be

derived about a particular implementation. The following

reformulation of proposition 2 shows that even without the

hypothesis z; : M k C[xi] ok, the applicative functor calcu-

lus prevents C[] from depending too closely on a particular

implementation of M.
In the following statement, we say that a module type

M is principal for a module expression m in an environment

E if E H m : M and for all types A/l’ and environments E’

such that 13V(E’) n l?V(E) = 0, if E; E’ E m : M’, then

E;E’ + M <: M’.

Proposition 3 Let ml and mz be two closed module expres-

sions and M be a module type. Assume that M as a principal

type for ml and for m2 in the empty environment. Then, for

all program contexts C[], the program C[ml] is well-typed if

and only if C[m2] is, and if so, [C[ml]] = [C[m2]].

Proofi Assume 0 E C[ml] ok. Using the fact that M is

principal for ml, we can build a derivation of x, : M +

C[z;] ok. Applying proposition 2, it follows that [C[ml]] =

~C’[mz]]. ❑

Two closed modules ml and m2 that have a common

principal type and are equivalent at that type are there-

fore observationally equivalent. Moreover, this condition

does not require that the two modules implement their type

components by the same representation types. Consider the

typical situation:

M = sig type t; val x: t end

ml = (struct type t = ~1; val x = . . . end : M)

m2 = (Struct type t = ‘rz; val x = . . . end : M)

If ml and mz are well-typed, then M is principal for ml and

mz. (Since signature constraints are not paths, the ‘(self”

rule does not apply to ml and m2, and therefore no type

smaller than M can be derived.) Moreover, by definition

of logical relations, the denotations of ml and m2 can be

related even if ~1 is incompatible with r2. This would not

be the case if the class of paths were extended further, e.g. by

allowing any module expression in paths. Then, the “self”

rule would apply to the definitions of ml and m2, allowing

the derivation of the following t ypings:

ml : sig type t = ml. t; val x: t end

m2 : sig type t = m2. t; val x: t end

and M would no longer be the principal type of ml and m2.

The hypothesis that ml and m2 have the same principal

type would force ml and m2 to be syntactically identical,

hence ~1 and I-Z to be identical as well.

This situation cannot happen in the applicative functor

calculus: ml and mz in proposition 3 cannot be paths since

they must be closed, while paths p ::= xi] p.% I pl (pz)

always have at least one free structure identifier. Hence,

the “self” rule does not apply to ml and m2, thus ml and

mz can have the same principal type while implementing

abstract type components differently.

This discussion shows that introducing functor applica-

tions in paths does not compromise representation indepen-

dence as characterized by proposition 3, but further exten-

sions of the class of paths could.

150

l’yping rules:

E;xi:M1t-m:M2 EFmI:IIz; :A4. M’
E + z, : -E(G) (24)

Et- (kr; :MI.m): (IIzi:M1. M2)
(25) ‘+m2’M (26)

E k ml(mz) : M’{zi + mz}

Ei-m:M Ei-M<:M’ E1-m:M
(27)

Eke:r E t- T type

E1-m:M’ E1-m: M/m
(28)

E k Lw(e) : V(r)
(29)

E + L,(T) : Eq(r)
(30)

E1-ml:ilfl E;x%:Ml Fm2:M2 EFm:Ex, :M1. Mz Ekm:Ex, :M1. Mz
(31)

E+(x, =ml, mz) : (Ex; :MI, MZ)
(32) (33)

E1-rl(m):Ml Et- rz(m) : M2{G - rl(m)}

Subt yping and type equivalence: (rules omitted: congruence, transitivity and symmetry for =, transitivity for <:)

E k m ‘ ‘Q(T) (34)
EI-M%M’ E k r type

E+~t(m)=T
(35) (36)

EI-M<:M’ E 1- EtJ(T) <: TYPE

E1-MI<:M~ E; Z,: MI I- M2<:M; EFM{<:MI E;xi:M~t-M2<:M~
(37) (38)

E + (Du : M1. Mz) <: (DDt : M~. Mj) E + (k : MI. M2) <: (IIq : M~.M~)

I’ype strengthening:

V(7)/m = V(7) TYPE/m = Eq(z, (m)) Eq(7)/m = Eq(~, (m))

(Zzi : Ml. M2)/m = Iki : (M1/rl(m)). (MZ/n2(m)) (Ib : MI. Mz)/m = IIzt : MI. (Mz/m(zi))

Figure 3: Typing rules for the manifest sums calculus

5 Full transparency for higher-order functors

In this section, we prove that the module calculus with

applicative functors has fully transparent higher-order func-

tors, in the sense of MacQueen and Tofte [13]. One way to

prove this result is to take their static semantics for higher-

order functors and show that all correct programs in this

semantics are well-typed in our calculus. We have not been

able to show this result due to the complexity of their formal-

ism. Instead, we will show that the calculus with applica-

tive functors can encode a stratified calculus with strong

sums similar to MacQueen’s DL calculus and Harper and

Mitchell’s XML calculus [12, 9]. Strong sums account for

many features of the SML module system, excluding gen-

erativity but including transparent type bindings and fully

transparent higher-order functors. The existence of a type-

preserving encoding into the calculus with applicative func-

tors is therefore a strong hint that the latter ensures full

transparency.

5.1 The manifest sums calculus

To simplify the encoding, we start from the “manifest sums”

calculus, a variant of the strong sums calculus that differs

on the way type equalities are propagated (through compile-

time reductions of terms in the strong sums calculus, but

through enriched types in the manifest types calculus), but

has the same expressive power. All terms well-typed with

strong sums are also well-typed with manifest sums; we omit

the proof, which is along the lines of the proof of proposi-

tion 1 in [10]. The manifest sums calculus has the following

syntax:

Terms:

m ::= z, [XZX : M.m I ml(mz) [Lu(e) I L,(T)

[(U =ml, m,) I m(m) I 72(m)

Types:

M ::= V(T) I TYPE I Eq(~) I ~z~ : Ml. Mz I I@ : Ml. M2

Simple terms:

e ::= . . . \ mu(m)

Simple types:

7 ::= . . . I 7r~(m)

Structures are built from injections ~v (e) of simple terms

(values) and Lt (T) of simple types using the dependent pair

operator (Xi = ml, mz). The corresponding signatures are

V(7) for a value of type ~, Ell(~) for a type manifestly equal

to I-, TYPE for an arbitrary type, and Z-types (dependent

pair types). Access inside structures is provided by the pro-

jections TV for values, ni for types, T1 and 7rz for pair com-

ponents. Functors are presented by A-abstractions and II-

types (dependent function types). The typing rules for the

calculus are shown in figure 3.

5.2 Path normalization

In preparation for the encoding into the applicative functor

calculus, we first show how to rewrite terms to meet the

syntactic restrictions imposed by the latter, such as the re-

striction of projections to paths. Paths p in the manifest

sums calculus are described by the grammar

P ::= ~~ I m(P) I 7n(P) IP1(P2).

To express the rewriting more easily, we extend the syn-

tax of terms and types with a let binding (i.e. explicit sub-

stitutions):

Terms: m ::=... net cri.nm

Types: M ::= . ..l Let ain M

151

Substitutions: cr::=&/z, =rn; a

For the purposes of type-checking and evaluation, let xl =

ml; . . . ; zn = m~ in m is treated as the textual substitu-

tion m{zn + inn}... {zl + ml}.

The first group of rewrite rules introduce names for ar-

guments to projections that are not paths. In the following,

m. ranges over terms that are not paths.

Over terms:

~V(e[Tv(mc)]) + let Z; = m. in L. (e[7rU(zi)])

~t(-r[7rt(riac)]) + let zi = mc in &i(7[7rt(zi)])

7rl (m=) + let z, = mC in 7rl (z,)

7T2(m.) -+ let x, = m. in 7rz(z,)

m(rnC) + let z, = m. in m(x.)

Over types:

V(~[~~(mc)]) + Let z, = m in v(~[mL(z,)])

EQ(-r[r~(rn.)]) + Let x, = m in EQ(-r[T~(cEi)])

The let bindings have no equivalent in the applicative func-

tor calculus, unless they occur immediately below a pair

construction, in which case they can be translated as extra

bindings in a struct. . . end. The second group of rules lift

let bindings upwards until they hit a pair operator.

Over terms:

let a in let a’ in m + let a; a’ in m

(let a in ml)(rm) + let a in ml(mz)

kE~:M. letainm + let Xz, : M.c7 in a(m, z,)

kc, : (Let a in hf). rrz + let a in ~x, :k!. m

Over types:

Let a in Let u’ in M + Let a; a’ in M

Xx, : (Let a in Ml). ibfz + Let u in xx, :iVfl.MZ

Xri : Illl. (Let o in Mz) + Let Jx, : M1. a in

Zzt : M1. C7(M2, X2)

Hz, : (Let a in Nfl).~z + Let a in Hz, : M1. kf2

IIx, : Ml. (Let a in A4z) + Let kc, : ~1.ff in

IIz, : A“fl. a(kfz,w)

Over substitutions:

z; = (let u in m); 0’ + 0; x, =m; u’

To express the introduction of abstractions and applica-

tions when a let-binding crosses a binder (J, X or H), we

have used the following notations: if u is the substitution

yl= ml;...; yn = m%, we write

Ax, : M. c1 for yl=Axi: M.ml;yn=Ax. :M. mn

a(m, Q) for m{yl + YI(XI). . .yn +-- yn(xi)}

It can be shown that the rewrite rules above preserve typing:

if E 1- m : M and m + m’, then E 1- m’ : M. Moreover, a

term in normal form with respect to the rules above is such

that: all projections are applied to paths; all functions ar-

guments in applications are paths; no Let bindings remain;

and let bindings occur only in toplevel position or as ar-

guments to a pair construction. Assuming without loss of

generality that complete programs have a pair in toplevel

position, and identifying m with let s in m as needed, we

can therefore describe normalized programs by the following

grammar:

Paths:

P ::= x, I m(P) I 72(P) I P1(P2)

Normalized terms:

m::=p I ki:M. m I m(p) I L.(e) [L,(T)

[(x, = (let a, in ml), let az in m,)

Simple terms:

e ::= . . . I*U(p)

Simple types:

T ::= . . . I 7rt(p)

5.3 Encoding

Normalized terms are then encoded as module expressions

from the applicative functor calculus by turning injections

and pairs into structures with conventional field names (v

for values, t for types, fst and snd for pair components).

The encoding, written [j, is defined as:

lztj = x,

[m (p)] = ~] .f St

Lfiz(p)] = ~] .snd

lAx, : M. m] = functor(x, : [M]) [mj

L(x, = (let

struct

end

[m(p)j = [m] (~j)

[~v (e)~ = struct val v, = Lej end

[~t(7)] = struct type t, = [-T] end

ml in ml), let C7Z in mz)J =

la,] ;

module f stj = Lmlj;

Lmj {Xt + f St,};

module snd~ = Lmz] {x, + fstj}

The encoding of a substitution is a sequence of module

~in~: 1x1 = ml; X. = mn] is (module XI =

. . . ; module Xn = Lm.j). Types are translated to

module types and signatures as follows:

[V(~)j = sig val v% : 17] end

lTYPE] = sig type t, end

lEQ(~)] = sig type t, = [~] end

[Xx, : MI. M2J = sig module f stj : [MI];

module snd~ : 1M2] {x, +- fst~}

end

[~Xt : Ml . M2J = functor(z, : lMI]) [M2J

Finally, for projections inside values and simple types, we

take

[7rti(p)j = ~] .V [7r,(p)J = ~j .t

We then show that this encoding is type-preserving: if E #

m: M in the manifest sums calculus and E, m, M are

normalized, then [lZJ % Lmj : [MJ in the applicative functor

calculus. This completes the proof that our calculus with

applicative functors can express strong sums.

6 Related work

Several semantics for fully transparent higher-order functors

have been given, first in type-theoretic frameworks based on

strong sums [12, 9], then as extensions of SML’S stamp-

based static semantics [13, 2]. Only MacQueen and Tofte’s

152

formalism [13] handles the full SML module language; both

the strong sums-based models [12, 9] and Biswas’s static se-

mantics based on higher-order variables [2] fail to account for

generative type definitions. Unfortunately, MacQueen and

Tofte’s description is technically involving, in part because

it is oriented towards an efficient implementation (functor

re-elaboration is minimized), The present paper provides a

simpler description of fully transparent higher-order func-

tors with both generative and non-generative type bindings;

the main missing SML feature is structure generativity and

sharing.

Among the formalkms mentioned above, ours is the only

one that provides complete syntactic signatures for higher-

order functors (syntactic signatures that captures exactly

their transparent behavior), which are required to support

Modula-2 style separate compilation. Cr6gut [6] also attacks

the problem of complete syntactic signatures for higher-

order funct ors. His proposal relies on enriching signatures

with equalities between structures (ours uses only equali-

ties between types), which has the advantages of account-

ing for structure sharing and remaining compatible with the

standard generative semantics of functor application, and

the disadvantage of requiring a rather complex stamp-based

formalism.

A notion of functors with applicative semantics appears

in Rouaix’s Alcool language [18], which combines Haskell-

style dynamic overloading with a type abstraction mecha-

nism. In the presence of dynamic overloading, applicative

functors arise naturally as a generalization of ML’s param-

etrized type constructors such as list: when types are

equipped with dictionaries of functions implementing over-

loaded symbols at that type, parameterized types become

functors from types plus dictionaries to types plus dictionar-

ies. Since type constructors are applicative by definition (the

types 71 list and TZ list are equal as soon as n = TZ),

these functors naturally have applicative semantics. The ap-

plicative semantics of functors might therefore prove useful

to account for type classes or Alcool-style abstract types by

translation to a language with structures and functors.

7 Conclusions

The applicative semantics of functor applications seems use-

ful to increase the expressive power of the SML module sys-

tem, and has very little impact both on the semantic proper-

ties of the language and on the complexity of its type system.

It supports precise syntactic signatures for fully transparent

higher-order functors, which facilitates separate compilation

and provides a simple formalization of full transparency. On

the negative side, the applicative semantics precludes mod-

ules as first-class values; also, existing stamp-based type-

checkers cannot easily be modified to implement it. More

practical experience with the applicative semantics is needed

to assess its impact on the modular programming style.

References

[1]

[2]

A. W. Appel and D. B. MacQueen. Separate compi-

lation for Standard ML. In Programming Language

Design and Implementation 1994, pages 13-23. ACM

Press, 1994.

S. K. Biswas. Higher-order functors with transparent

signatures. In 22nd symp. Principles of Progr. Lang.

ACM Press, 1995.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

L. Cardelli. Typeful programming. In E. J. Neuhold

and M. Paul, editors, Formal description of program-

ming concepts, pages 431–507. Springer-Verlag, 1989.

L. Cardelli and X. Leroy. Abstract types and the dot no-

t ation. In M. Broy and C. B. Jones, editors, Proceedings

IFIP TC2 working conference on programming concepts

and methods, pages 479–504. North-Holland, 1990.

L. Cardelli and D. B. MacQueen. Persistence and

type abstraction. In M. P. Atkinson, P. Buneman,

and R. Morrison, editors, Data types and persistence.

Springer-Verlag, 1988.

P. Cr6gut. Compilation s6par6e pour un langage de

modules avec types g6n6ratifs, Sept. 1994. Presentation

given at the 1994 meeting of the G .D.R. “Programma-

tion”, C. N,R.S.

R. Harper and M, Lillibridge. A type-theoretic ap-

proach to higher-order modules with sharing. In .21st

symp. Principles of Progr. Lang., pages 123–137. ACM

Press, 1994.

R. Harper, R. Milner, and M. Tofte. A type discipline

for program modules. In TAPSOFT 87, volume 250 of

LNCS, pages 308-319. Springer-Verlag, 1987.

R. Harper and J. C. Mitchell. On the type struc-

ture of Standard ML. ACM Trans. Prog. Lang. Syst.,

15(2):211–252, 1993.

X. Leroy. Manifest types, modules, and separate compi-

lation. In 21st symp. Principles of Progr. Lang., pages

109-122. ACM Press, 1994.

X. Leroy. A syntactic approach to type generativity and

sharing (extended abstract). In Proc. 1994 Workshop

on ML and its applications, pages 1–12. Research report

2265, INRIA, 1994.

D. B. MacQueen. Using dependent types to express

modular structure. In 13th symp. Principles of Progr.

Lang., pages 277-286. ACM Press, 1986.

D. B. MacQueen and M. Tofte. A semantics for higher-

order functors. In D. Sannella, editor, Programming

languages and systems - ESOP ’94, volume 788 of

LNCS, pages 409–423. Springer-Verlag, 1994.

R. Milner, M. Tofte, and R. Harper. The definition of

Standard ML. The MIT Press, 1990.

J. C. Mitchell. On the equivalence of data represen-

tat ions. In V. Lifschitz, editor, Artificial intelligence

and mathematical theory of computation, pages 305–

330. Academic Press, 1991.

J. C. Mitchell and G. D. Plotkin. Abstract types

have existential type. ACM Trans. Prog. Lang. Syst.,

10(3):470-502, 1988.

J. C. Reynolds. Types, abstraction and parametric

polymorphism. In Information Processing ’83, pages

513–523. North-Holland, 1983.

F. Rouaix. The ALCOOL 90 report. INRIA, 1992.

Included in the distribution available on f tp. inria. f r.

153

