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Work on the TILT compiler for Standard ML led us to study 
a language with singleton kinds: S(A) is the kind of all types 
provably equivalent to the type A. Singletons are interesting 
because they provide a very general form of definitions for 
type variables, allow fine-grained control of type computa- 
tions, and allow many equational constraints to be expressed 
within the type system. 

Internally, TILT represents programs using a predicative 
variant of Girard’s F, enriched with singleton kinds, de- 
pendent product and function kinds (C and II), and a sub- 
kinding relation. An important benefit of using a typed lan- 
guage as the representation of programs is that typechecking 
can detect many common compiler implementation errors. 
However, the decidability of typechecking for our particular 
representation is not obvious. In order to typecheck a term, 
we must be able to determine whether two type construc- 
tors are provably equivalent. But in the presence of singleton 
kinds, the equivalence of type constructors depends both on 
the typing context in which they are compared and on the 
kind at which they are compared. 

In this paper we concentrate on the key issue for de- 
cidability of typechecking: determining the equivalence of 
well-formed type constructors. We define the Xn<” calcu- 
lus, a model of the constructors and kinds of TILT’s inter- 
mediate language. Inspired by Coquand’s result for type 
theory, we prove decidability of constructor equivalence for 
X2” by exhibiting a novel - though slightly inefficient - 
type-directed comparison algorithm. The correctness of this 
algorithm is proved using an interesting variant of Kripke- 
style logical relations: unary relations are indexed by a single 
possible world (in our case, a typing context), but binary re- 
lations are indexed by two worlds. Using this result we can 
then show the correctness of a natural, practical algorithm 
used by the TILT compiler. 
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1.1 Motivation 

The TIL compiler for core Standard ML [21] was structured 
as a series of translations between explicitly-typed inter- 
mediate languages. Each pass of the compiler (e.g., com- 
mon subexpression elimination or closure conversion) trans- 
formed the program and its type, preserving well-typedness. 
One advantage of this framework is that typechecking the in- 
termediate representation can detect a wide variety of com- 
mon compiler implementation errors. The typing informa- 
tion on terms can also be used to support type-based op 
timizations and efficient data representations; TIL used a 
type-passing interpretation of polymorphism in which types 
were passed and analyzed at run-time [15]. In the future, it 
should be possible to use such typing information for anno- 
tating binaries with a certification of safety [16, 171. 

The results from TIL were very encouraging, but the 
compiler implementation was inefficient and could only han- 
dle complete programs written without use of modules. The 
Fox Project group at Carnegie Mellon therefore decided to 
completely re-engineer TIL to produce TILT (TIL Two), a 
more practical compiler which could handle separate com- 
pilation and the complete SML language. 

One challenge in scaling up the compiler was properly 
handling the propagation of type information. For exam- 
ple, in the Standard ML module language we can have a 
structure Set with the signature 

sig 
type item = int 
type set 
type setpair = set * set 

val empty : set 
val insert : set * item -> set 
val member : set * item -> boo1 
val union : setpair -> set 
val intersect : setpair -> set 

end 

From this interface it is apparent that the module Set has 
three type components: the type Set .item known to be 
equal to int, the type Set .set about which nothing is 
known, and the type Set. setpair which is the type of pairs 
of Set. set’s. 

There are two important points to note about this exam- 
ple. First, equivalences such as the one between Set. item 
and int are open-scope definitions available to “the rest of 
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the program”, which may not even be written when this 
module is compiled. Such definitions cannot be eliminated 
by a simple local substitution and forgotten. Second, in a 
type-passing implementation like TILT these type compo- 
nents really are computed and stored by the run-time code. 
Although it is possible get rid of type definitions in signa- 
tures by replacing all references to these components with 
their definitions [19] we do not wish to do so; such sub- 
stitutions could substantially increase the number of type 
computations performed at run-time. 

The choice we made for TILT was to use an typed in- 
termediate language based on F, with the following kind 
structure (recall that kinds classify type constructors): 

A kind T classifying ordinary types such as int or 
bool->bool. 

Singleton kinds S(A) classifying all types of kind T 
provably equivalent to A; 

Dependent record kinds classifying records of type 
constructors and dependent function kinds classifying 
functions mapping type constructors to type construc- 
tors’ ; 

A sub-kinding relation induced by S(A) 5 T. 

Modules are represented in this language using a phase- 
splitting interpretation [8, 191. The main idea is that mod- 
ules can be split into type constructor and a term, while 
signatures split in a parallel way into a kind and a type. Sin- 
gleton kinds are used to model definitions and type sharing 
specifications in module signatures, dependent record kinds 
model the type parts of structure signatures, dependent 
function kinds model the type parts of functor signatures, 
and subkinding models (non-coercive) signature matching. 

For example, the kind corresponding to the above signa- 
ture is a dependent record kind saying that there are three 
type components: the first component item has kind S( int) 
because its definition is known; the second component set 
has kind T because its definition is not known; finally the 
third component setpair has kind S(setxset), which takes 
advantage of the record kind being dependent by referring 
to the value of a previous field. 

Singletons are used to describe and control the propa- 
gation of type definitions and sharing in the compiler. The 
type A has kind S(B) if and only if the types A and B are 
provably equivalent. Thus, the hypothesis that the variable 
(Y has type S(A) essentially says that CJ is a type variable 
with definition A. This models open-scope definitions in the 
source language. 

Furthermore, singletons provide “partial” definitions for 
variables. If Q is a pair of types with kind S( int)xT this 
tells us that the first component of this pair, ~10, is int. 
However, this kind tells us nothing about the identity of 
the ~2a. As in the above example, partial definitions allow 
natural modeling of definitions in a modular system, where 
some components of a module have known definitions and 
others remain abstract. 

Interestingly, in a language with singleton kinds we can 
additionally express with delimited scope (closed-scope) def- 
initions. The expression 

let cr:T = int x int in id[a](3,4)end 

‘A record of type constructors should not be confused with a 
record type, which would have kind ‘7. Similarly, functions of type 
constructors are not the types of term-level functions, which would 
also have kind T. 

does not typecheck when expressed as a function application 

(Aa:T.id[cr](3,4))[intx int]; 

the application of id[cr] to a pair of integers is only well- 
formed if cy is known to be intx int, which is not apparent 
while checking the abstraction. We can express this informa- 
tion, however, by annotating the argument with a singleton 
kind to get the well-formed term 

(I\a:S(int xint).id[a](3,4))[intxint]. 

Now let-bindings of types can be added as a primitive no- 
tion to the calculus, and this is probably a more efficient 
arrangement. Nevertheless, the general ability to turn types 
into function arguments (particularly into new arguments 
of pre-existing functions) is necessary for a low-level de- 
scription of type-preserving closure-conversion in the type- 
passing framework [14]. It also enables finer control of when 
type computations occur at run time, permitting optimiza- 
tions such as improved common subexpression elimination 
of types. 

Given that we wish to typecheck our intermediate repre- 
sentation, the question that arises is whether typechecking 
is decidable. This question reduces to the decidability of 
equivalence for well-formed type constructors. This latter 
question is non-trivial because the equivalence of two con- 
structors can depend both on the singletons (definitions) in 
the context and - less obviously - on the kind at which 
the constructors are being compared. (See Section 2.2.) The 
common method of implementing equivalence via context- 
insensitive rewrite rules is inapplicable for our calculus. The 
goal of this paper is to show that constructor equivalence is 
nevertheless decidable. 

1.2 Outline 

In Section 2 we introduce the xyS calculus (a formalization 
of the key features of the type constructors and kinds of 
the TILT intermediate representation). We explain some 
of the more interesting aspects of this calculus, including 
the dependency of equivalence on the typing context and 
the classifying kind. We show that singletons containing 
constructors of higher kinds are definable, and show that 
every constructor has a principal (most-specific) kind. 

In Section 3 we present a sound algorithm for determin- 
ing equivalence of well-formed constructors. We were in- 
spired by Coquand’s approach to ppequivalence for a type 
theory with II types and one universe [3]. Coquand worked 
with an algorithm which directly decides equivalence, rather 
than using a confluent and strongly-normalizing reduction 
relation. However, in contrast to Coquand’s system we can- 
not compare terms by their shape alone; we must take ac- 
count of both the context and the classifier. Where Co- 
quand maintains a set of bound variables, we maintain a 
fuIl typing context. Similarly, he uses shapes to guide the 
algorithm where we maintain a classifying kind. (For ex- 
ample, when he would check whether either constructor is a 
lambda-abstraction, we check whether the classifying kind is 
a function kind.) Although the natural presentation of our 
algorithm defines a relation of the form r k AI ($ AZ : IC, 
we cannot analyze the correctness of this algorithm directly. 
Asymmetries in the formulation preclude a direct proof of 
such simple properties as symmetry and transitivity, both of 
which are immediately evident in Coquand’s case. Instead 
we analyze a related algorithm which restores symmetry by 
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maintaining two typing context and two classifying kinds, 
with the form I’i I- A1 : KI +- rz t- A2 : K2. 

Our main technical result is the proof in Section 4 that 
the algorithm of Section 3 is both complete and terminating. 
Our proof of completeness is inspired by Coquand’s use of 
Kripke logical relations, but our proof differs substantially 
from his. Our “worlds” are full contexts rather than sets 
of bound variables. More importantly, we make use of a 
novel form of Kripke logical relations in which we employ 
two worlds, rather than one. 

In Section 5 we use this completeness result to show the 
correctness of the natural algorithm. This yields the practi- 
cal algorithm used in the TILT implementation. 

Finally we discuss related work and conclude. 

Due to space considerations, the proofs of our results 
have been condensed or omitted in this extended abstract. 
Full details can be found in the companion technical re- 
port [ZO]. 

2 The AT’ calculus 

2.1 Overview 

The Xscs calculus models the type constructors and kinds 
of theTILT intermediate language. Since the term level of 
this language does not enter into the model, X2” can be 
viewed in isolation as a dependently lambda cal&lus. It is 
solely because of our particular application that we prefer to 
refer to the constituents as “type constructors” and “kinds” 
rather than “terms” and “types”. 

The syntax of Ays is shown in Figure 1. The constants 
bi of kind T represent base types such as int. As usual, we 
use the usual notation of K1 x K2 for &:KI .Kz and K1 +K2 
for lh:K1.K2 when cr is not free in K2. 

There is a natural notion of size for kinds where 
site(T) = 1, size(S(A)) = 2, and size(IIcr:K.K’) = 
si.ze(Ccr:K.K’) = size(K) + size(K’) + 2. The size of a kind 
is preserved under substitution of terms for variables. 

The declarative rules defining the kinding and equiva- 
lence system of Xszs are given in Appendix A. For the 
most part, these aG the usual rules for a dependently-typed 
lambda calculus with fin equivalence. We concentrate here 
on presenting the less common rules. 

Since we restrict constructors within singletons to be 
types (constructors of kind T), we have the following well- 
formedness rule for singleton kinds: 

I-I-A:T 
l- t- S(A). 

However, Section 2.3 shows that singletons of constructors 
of higher kind are definable in this language. 

There are two introduction rules for singletons: 

rl-A:T rl-A~-B:x 
r I- A : S(A) I-EAEB:S(A) 

and a corresponding elimination rule: 

r b A: S(B) 
l-‘l-AsB:T’ 

The calculus includes implicit subsumption, where the sub- 
kinding relation is generated by the rules 

l-l--:x rl-A1EA2:T 

r !- S(A) < T I- I- S(A) 5 S(A2) 

and is lifted to subkinding at II and C kinds with the usual 
co- and contravariance rules. Under this ordering, the sin- 
gleton introduction rule above allows a constructor A of kind 
T to be viewed as a constructor of the subkind S(A). Sym- 
metrically, by subsumption any constructor of a singleton 
kind can be viewed as having the superkind T. 

Constructor equivalence includes ,8 and n rules for func- 
tions and pairs. We express the 11 rules as extensionality 
principles: 

l- I- A1 : l’h:K’.K; 
l? t- A2 : !&r:K’.K; 

r, (Y:K’ t Ala E A2cv : K” 

r t- A~ E ~~ : ~K’.K” 

r i- c~x'.K~~ 
l-l-qA~ss~Aa:K’ 

FI-A~AI s 7r2A2 : {cYH~IAI}K” 

I t- Al s A2 : Cm K’.K” 

The constructor well-formedness rules may be seen as re- 
flexive instances of equivalence rules. For example, we have 
the following two non-standard kinding rules corresponding 
to the extensionality rules: 

l- I- &:K’.K” 
l? b A : l-Ia:K’.K; l? l- nlA : K’ 
r,dc' k Aa : K” l- I- 7r2A : {crmrlA}K” 

l-’ I- A : l-Icr:K’.K” IT I- A : Ccv:K’.K” 

Similar rules have previously appeared in the literature, in- 
cluding the non-standard structure-typing rule of Harper, 
Mitchell, and Moggi [S], the “VALUE” rules of Harper and 
Lillibridge’s translucent sums [q, the strengthening oper- 
ation of Leroy’s manifest type system [lo], and the “self” 
rule of Leroy’s applicative functors [ll]. In the presence of 
singletons, these rules give constructors more precise kinds 
than would otherwise be possible. (See Section 2.3.) 

2.2 Examples of Term Equivalence 

As mentioned in the introduction, singletons in the context 
can act as definitions and partial definitions for variables. 
So the provable judgments include: 

(Y : S(bi) I- (a, bi) z (bi,a) : TxT 
(Y : TxS(bi) t- KZ(Y z bi : X 
a : C@T.S(@ I- i~la E 7r2cr : T 
a : C@T..S(fl) !- a E (AI(Y, rr~cu) : XxT. 

In the last two of these equations, the assumption governing 
CY gives a dellnition to Q(Y (namely rlcy) without specifying 
what the two equal components actually are. Notice that the 
last equation is not simply an example of surjective pairing. 

Singletons behave like terminal types, so by extensional- 
ity we can prove equivalences such as: 

(Y : S(bi)+X t- cz E xp:S(bi).(abi) : S(bi)+T 
CY : X+S(bi) I- CY 3 XP:X.bi : T+X 

Notice that in the fist of these equations, the right-hand 
side is not simply an r]-expansion of the left-hand side. 

Because of subkinding, constructors do not have unique 
kinds. The equivalence of two constructors depends on the 
kind at which they are compared; they may be equivalent 
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Contexts 

Kinds 

r,A::= a 
1 r,a:K 

K,L::= T 

I S(A) 

Constructors A, B, C ::= bi 
I a,P,*** 
1 Xa:K.A 

.I AA’ 
I ?.A” 
I * 

Empty context 
Context extension 

Kind of types 
Singleton kind 
Dependent function hind 
Dependent product kind 

Base types 
Variables 
Function 
Application 
Pair 
Projection 

Figure 1: Syntax of X2” 

at one kind but not at another. For example, one cannot 
prove 

k XCYZT.CY 3 Xa:T.bi : T+T 

as the identity function and constant function have distinct 
behaviors. However, by subsumption these two functions 
also have hind S(bi)+T and the judgment 

t Xa:T.a s ,h:T.bi : S(bi)+T 

is provable using extensionality; the functions do yield equiv- 
alent results for every argument of hind S(bi). 

The classifying hind at which constructors are compared 
depends on the context of their occurrence. For example, 
from this last equation it follows that 

/3 : (S(bi)+T)+T k P(X~:T.CY) E P(Xa:T.bi) : T 

2.3 Labelled Singletons 

In our calculus S(A) is well-formed if and only if A is of hind 
T. Aspinall [l] has studied equivalence in a lambda calculus 
with labelled singletons of the form S(A : K).’ This repre- 
sents the kind of all constructors equivalent to A at kind I<. 
Because equivalence depends on the classifier, the label K in 
these labelled singletons does matter: it follows from the ex- 
amples of the previous section that S(Xa:T.bi : IIa:S(bi).T) 
and S(Xa:T.b; : T+T) are not equivalent; only the former 
classifies the identity function Xa:T.a. 

Our system does not contain such labelled singletons as 
a primitive notion because they are all definable; Figure 2 
gives an inductive definition. 

For example, if S has kind T+T, then S(/3 : T+T) is 
defined to be lk:T.S(/k~). This can be interpreted as “the 
hind of all functions which, when applied to an argument of 
hind T, yield the same answer as /3 would”. By extension- 
ality, this is indeed the kind of all functions equivalent to ,Ll 
at hind T+T. The non-standard kinding rules mentioned 
in Section 2.1 are vital here, as they are necessary in order 
to prove that p has this hind. 

The following proposition shows that the definitions of 
Figure 2 do have properties analogous to Aspinall’s labelled 
singletons. 

‘Aspinall’s notation for our S(A : K) is {A}K. Our S(A) is not 
the same as Aspinall’s unlabelled singleton {A}, but rather would 
correspond to {A)*. 

Proposition 2.1 
1. If l? t A2 : K and !Z I- AI : S(A2 : K) then 

l-l-A1 sA2:K. 

2. If l? I- AI s A2 : K then r I- A1 G A2 : S(A1 : K). 

3. If F k A : K then I’ I- S(A : K) and I? +- A : S(A : K). 

4. If r I- A : K then r I- S(A : K) < K. 

5. If l? t- Al c A2 : Kl and l? I- Kr 5 K2 then 
l- t- S(Ai : Kl) 5 S(A2 : K2). 

It is curious to note that in our system, as in Aspinall’s, 
,&rules become derivable in the presence of singletons. This 
can be easily seen using Proposition 2.1; for example, 

r, cY:K2 b A : K 
r,a:K2t-A:S(A:K) 

r I- Xa9C2.A : IIa:K2.S(A : K) 
I-’ I- A2 : 11-2 

r I- (hK2.A)A2 : S(~CW+A&~ : {~tc+&lK) 

l? C‘(Xa:K2.A)A2 E.~~HA~}A : (atiA2)K’ * 

For convenience we have chosen to formulate the system 
with a stronger form of the S-rules (though we conjecture 
this does not change the system) and we do not use this 
admissibility result in the remainder of the paper. 

2.4 Principal Kinds 

Figure 3 gives an algorithm for determining the principal 
hind of a well-formed constructor; given a well-formed con- 
structor A in the context P, then there exists K such that 
I? I- A fi I< and k is the most-specific kind of A. Correct- 
ness is shown by the following lemma, which uses a slightly 
strengthened induction hypothesis. 

Lemma 2.2 
IfI’kA:LthenI’t-AfiK,??i-A:K,and 
I- I- K <, S(A : L). 

3 An Algorithm for Constructor Equivalence 

Following Coquaud, we present the equivalence test by defin- 
ing a set of rules defming algorithmic relations, shown in Fig- 
ure 4. It is clear that these rules can be translate directly 
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S(A : T) := S(A) 
S(A : S(A’)) := S(A) 
S(A : ~-II~:K~.K~) := l-Ia:K1.(S(Aa : I&)) 
S(A : CCX:KI.K~) := (S(nlA : KI))x(S(RZA : {cwr~A}&)) 

Figure 2: Encodings of Labelled Singletons 

rFbi fiS(bi) 
I- I- ck fi S(a : r(a)) 
r t- Xa:K’.A fi IILYX’X” where r, (Y : I<’ k A fi K” 
r I- AA’ fi {al-+A’)K” where I’l- A fi IIa:K’.K” 
r I- (A’, A”) fi K’XK” where r t- A’ fi IC’ and r I- A” fi I<“. 
rhlAfiK where r I- A fi IIa:K’.IC” 
l- I- ir2A e {cw+n~A}K’ where r t- A fi ll~a:K’.K” 

Figure 3: Algorithm for Principal Kind Synthesis 

into a deterministic algorithm, since for any goal there is at 
most one algorithmic rule which can apply. Then decidabil- 
ity of the algorithmic relations corresponds to termination 
of the algorithm. 

Our algorithm is somewhat more involved than that of 
Coquand because of the context and kind-dependence of 
equivalence. We divide the algorithmic constructor equiva- 
lence rules into a kind-directed part and a structure-directed 
part, while Coquand needs only structural comparison. Our 
weak head normalization includes looking for definitions in 
the context. We have also extended the algorithm in the 
natural fashion to handle C kinds, pairing, and projection. 

Define an elimination context to be a series of applica- 
tions to and projections from “on, which we call the con- 
text’s hole. If E is such a context, then E[A] represents the 
constructor resulting by replacing the hole in E with A. If 
a constructor is either of the form E[a] or of the form E[bi] 
then we will call this a path and denote it by p. 

E ::= o J EA 1 XIE 1 nzE 

The kind extraction relation r I- p t I< attempts to 
determine a kind for a path by taking the kind of the head 
variable or constant and doing appropriate substitutions and 
projections. A path is said to haoe a definition if its ex- 
tracted kind is a singleton kind S(B); in this case we say B 
is the definition of the path. 

The extracted kind is not always the most precise kind. 
For example, cr:T I- cy p T but the principal kind of (Y in 
this context would be S(a). We can show that given a well- 
formed path, kind extraction succeeds and returns a valid 
kind for this path using induction on the well-formedness 
proof for the path (with a strengthened induction hypothe- 
sis). 

Lemma 3.1 

Corollary 3.2 
IfrkE[p]:Kandrl-ppS(A) thenI’FEE[p]EE[A]:K. 

The weak head reduction relation I’ I- A Q B contracts 
the head &redex of A, if such a redex exists. Otherwise, 
when the head of A is a path with a definition reduction 
replaces the head with the definition. 

Weak head normalization l? I- A JJ B repeatedly applies 
weak head reduction to A until a weak head normal form is 
found. Weak head reduction and weak head normalization 
are deterministic, since the head P-redex is always unique if 
one exists, and a path can have at most one prefix with a 
definition. 

The algorithmic constructor equivalence relation 

is intended to model the declarative equivalence rl k A1 G 
AZ : lcl, when I- r1 = rz and r1 k Kl z lcZ. The method 
used is to use applications and projections to drive the con- 
structors down to a base kind, at which point they can be 
head-normalized and compared structurally. The algorithm 
can terminate immediately, however, when comparing two 
constructors at two singleton kinds because of our assump- 
tions that the inputs are all well-formed: l?I I- A1 : S(Bl), 
r2 I- A2 : sp2), b rr 3 r2, and rl t- s(B~) E sp2). 
It follows that rl I- A1 E B1 s B2 E A2 : T and SO by 
transitivity the algorithm can immediately succeed. (This 
is an effect of singletons behaving as terminal types.) As 
an alternative for this case the algorithm could make the 
(redundant) check that I’1 I- A1 : T ++ l72 I- A2 : T. For cer- 
tain theoretical purposes this might be preferable, and the 
following proofs appear to go through essentially unchanged. 

The algorithmic path equivalence relation 

will be shown to implement constructor equality for head 
normal paths when t- l?l G T2. As a notational convenience, 
this relation explicitly includes the extracted kinds of the 
two paths being compared. 

Finally, the algorithmic kind equivalence relation 

rl t- lcl N rz t- K2 
determines whether two kinds are equivalent given I- rl 3 
r2. This easily reduces to checking the equivalence of con- 
structors appearing within singleton kinds. 
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Kind extraction 
rtbitT 
r I- a t r(a) 
r b n1p t Kl 

r t x2p t {P+mp}K2 

r~pAt{P+++A}K2 

Weak head reduction 
r I- E[(Xa:K.A)A’] - E[{~HA’)A] 
r k E[~~ (A~, A~)] - E[A~] 
l- t E[Q(AI, Az)] LC* E[A2] 
r !- E[p] cvt E[B] 

Weak head normalization 
I-I-AUB 
l-l-AUA 

Algorithmic constructor equivalence 
I’1 I- Al : T e I-z !- AZ : T 
rl I- AI : S(BI) * r2 t- A2 : S(B2) 

rl I- A1 : IIa:KI.Ll e r2 I- A2 : lx~K2.L~ 
rl I- A1 : C~:KI.LI ++ l-2 t- AZ : Ca:K2.L2 

Algorithmic path equivalence 
rlt-bitzwr2kbJt2- 

rl t at r+) f) rz k at r2(a) 
l-1 t- plA1 t {CMAI}LI t) 

I'2 ~p2Azt{a~Az)L2 
rl t- 7rlpl t Kl C) r2 k 7rlpz t K2 
rl k ~2~1t~~~7h~l)~1 4-b 

r2 t- ~2~ t {a+mpz}La 

Algorithmic kind equivalence 
l-lbT@l?2bT 
rl !- S(A1) * r2 t- S(Az) 
rl t- IIa:KI.Ll 43 r2 t- &:K2.L2 
rl I- Ca:KI.Ll e r2 k Ca:K2.L2 

if r t-p t C/3:K1.K2 
if r I- p t CP:Kl.K2 
if r I-p t llfl:Kr.K2 

ifri-ptS(B) 

ifl-I-AwA’andI-FA’lJB 
otherwise 

ifrl~AlUp~,r2~A2~pz,rl~p1fT+,r2~~tT 
always 
ifI’l,a:K1~A~a:L~~r2,a:K21-A2a:L2 
if JYr I- rlAl : K1 e r2 !- lrlA2 : Kz, and 

rI I- i~A1 : {a+mIAI}LI w r2 I- ?rzA2 : {a+mAz}Lz 

if;=j 
always 
if rI I- p1 t lkK1.L1 f) r2 l-m f I’Ia:Kz.Lz, 

and r‘r t- A1 : K1 e r(2 I- A2 : K2. 
if rl k pl f CCY:K~ .L1 f) r2 t- pz t CCCI(?.L~. 
if rI l- pl t Ca:Kl.Ll t) r2 k pz t Ca:K2.L2 

always 
ifrItA1:T~r2CA2:T 
ifrlt-K1ur2~K2andrl,a:K~~L1~r2,a:K21-L2 
if rl I- K1 s rz I- K2 and rl,a:ICl F L1 w rp,a:K2 I- L2 

Figure 4: Algorithmic Relations 

To prove soundness of this equivalence algorithm, we first 
prove that weak-head normalization preserves equivalence. 

Proposition 3.3 
If I‘ I- E[(Xa:L.A)A’] : K then 
I’ I- E[(Xa:L.A)A’] s E[(w+A’}A] : K 

Proposition 3.4 
1. If r k E[m(A’, A”)] : K then r I- E[nl (A’, A”)] E 

E[A’] : K. 

2. zf$‘,- $m(A’,A”)] : K then I’ I- E[rz{A’,A”)] I 
: , 

Corollary 3.5 
Zfr~A:KalldrkAyBtZlenr~A~B:K. 

Given the fact that weak-head reduction of a well-formed 
constructor yields a well-formed and equivalence construc- 
tor, we can then prove soundness of the algorithm by induc- 
tion on derivations of the algorithmic judgments. 

Theorem 3.6 (Soundness) 
I. zf k rl E r2, rl t- Kl E K2, rl t Al : K1, 

I’2 t 442 : K2, and I’1 I- A1 : Kl ++ J?z I- A2 : K2 then 
rl I- Al sA2:Kl. 

2. IfkIT ~r2,rl~pP1:L1,r2~-::2,and 
lTl k p1 t K1 c) I’2 I- p2 t K2 then l-1 I- ICI = K2 and 
rI kp1 =p2: Kl. 

A key aspect of this algorithm is that it can easily be 
shown to obey symmetry and transitivity properties neces- 
sary for the decidability proof. It is for this purpose that the 
algorithm maintains two contexts and two classifiers. (Sec- 
tion 5 shows that this redundancy can be eliminated in an 
actual implementation.) 

Lemma 3.7 (Algorithmic PER Properties) 
1. If A, t- A1 : K1 e3 A2 I- A2 : KQ then 

A2 I- A2 : K2 u A1 I- A1 : KI. 
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Lemma 4.1 (Monotonicity) 2. lfA,~A1:1(1($A,~AAz:Kzand 
A2 + A2 : K2 e A3 I- AS : KS then 
A,l-Al:KleA3l-A3:Ks. 

3. IfAll-AltK1 +,Azl-AztK2 then 
AZ I- A2 f Kz t) At k AI t KI. 

4. IfA, I-AltK1 +,&l-AztK2 and 
A2 I- A2 t KZ t) As I- A3 t KS then 
Al I- AI t KI f) A3 I- A3 t IC3. 

4 Completeness and Termination 

To show the completeness and termination for the algorithm 
we define a collection of Kripke-style logical relations, shown 
in Figures 5,6, and 7. The strategy for proving completeness 
of the algorithm is to define the logical relations, show that 
logically-related constructors are related by the algorithm, 
and finally show that provably-equivalent constructors are 
logically related. Using completeness we can then show the 
algorithm terminates for all well-formed inputs. 

We use the notation A to denote a Kripke world. Worlds 
are restricted to contexts containing no duplicate bound 
variables; the partial order 5 on worlds is simply the prefix 
ordering. 

The logical kind validity relation (A; K) valid is indexed 
by the world A and is well-defined by induction on the size 
of kinds. Similarly, the logical constructor validity relation 
(A; A; K) valid is indexed by a A and defined by induction 
on the size of K, which must itself be logically valid. 

In addition to validity relations, we have logically-defined 
binary equivalence relations between (logically valid) kinds 
and constructors. The unusual part of these relations is 
that rather than being a binary relation indexed by a world, 
they are relations between two kinds or constructors which 
have been determined to be logically valid under potentially 
difierent worlds. Thus the form of the equivalence of kinds 
is (Al; K1) is (A2; K2) and the form of the equivalence 
on constructors is (A,; Al; K1) is (Az; AZ; K2). With this 
modification, the logical relations are otherwise defined in a 
reasonably familiar manner. At the base and singleton kinds 
we impose the algorithmic equivalence as the definition of 
the logical relation. At higher kinds we use a Kripke-style 
logical relations interpretation of ll and C. 

With these definitions in hand we construct some derived 
relations. The relation (A,;K, 5 LI) is (AZ; KZ < LS) is 
defined to satisfy the following “subsumption-like” behavior: 

(hl;Al;K~) is (A,;&; KS) 
(A;; K1 5 L1 j is {Ai; K2 5 i;,) 

(Al; AI; Ll) is (AZ; AZ; ~52) 

Finally, we have validity and equivalence relations on envi- 
ronments (substitutions mapping variables to constructors) 
which are defined by pointwise validity and pointwise equiv- 
alence. 

We f&t give some basic properties of the logical rela- 
tions. 

1. 

2. 

3. 

4. 

5. 

6. 

If (Al; K;)valid and A;.>- Al then (A;; Kl)valid. 

Zf(Al; KI) is (AZ; Kz), Ai h AI, and Aa 2 A2 then 
(A:; KI) is (A:; Kz). 

Xf(A,; KI 5 LI) is (AZ; KZ < Lz), A; ? AI, and 
A; 2 AZ then (Ah;; KI 5 LI) 7s (A$; Kz < Lz). 

If (Al;Al; Kl) is (A,; AZ; K2), Ai k A,, and 
Ai k A, then (A{; AI; K1) is (A;; A2; K2). 

If (Al;Al; Kl)valid and A; 2 A, then 
(A{; AI; KI) valid. 

If (Al; yl;rl) is (A,; 72; rZ), A; k AI, and Ai >- A2 
then (A;; ~1; rl) is (A;; ~2; r2) 

We next give a technical lemma which shows that logical 
equivalence of kinds is enough to get logical subkinding. 

Lemma 4.2 
If (Al; Ll) is (AS; Lz), (AI; hi) is (AI; LI), and 
(AZ; ICZ) is (A2; 152) then 
(At; KI 5 Ll) is (As; K2 5 IO). 

An easy corollary of this lemma may be visualized as the 
following rule: 

(Al; AI; KI) is (A,; AZ; K2) 

(hsK1) is (&$2) 

(AI; LI) is (AZ; Lz) 

(AGAG LS) is (A2;A2;L2) 

The logical relations obey reflexivity, symmetry, and 
transitivity properties. The logical relations were carefully 
defined so that the following property holds: 

Lemma 4.3 (Reflexivity) 
1. (A; K> valid if and only if (A; K) is (A; K). 

2. (A;A;K)validifandonIyif(A;A;K) is (A;A;K). 

3. (A; 7; T’) valid if ad only if (A; y; !?) is (A; 7; I’). 

Symmetry is straightforward and exactly analogous to 
the symmetry properties of the algorithmic relations. 

Lemma 4.4 (Symmetry) 
1. If (A,;K,) is (A,; Kz) then (AZ; I(z) is (Al;K,) 

2. If (Al;Al; K1) is (Az;As; KS) then 
(AS; -42; I(2) is (AI; AI; KI). 

3. If (A,; 71; l?l) is (A,; yz;I’z) then 
(A2;y2;r2) is (Al;yl;rl). 

In contrast, the logical relation cannot be easily shown 
to obey the same transitivity property as the algorithm; it 
does hold at the base kind but does not lift to function kinds. 
We therefore prove a slightly weaker property, which is nev- 
ertheless what we need for the remainder of the proof. The 
key difference is that the transitivity property for the algo- 
rithm involves three contexts/worlds whereas the following 
lemma only involves two. 
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l (Al;Kl)valid iff 

1. - KI==T 
- Or, K1 = S(Al) and (A~;A~;T)valid 
- Or, Kl = lkr:K~.K.~ and (Al;K;) valid 

(A;;{a*A1}K,‘) IS (A;);(wAZ}K;) 
and VA; k Al,A;’ t Al if (Ai;Al;Ki) is (A;‘;Az;K;) then 

- Or, K1 = Ca:Kj.K;’ and (Al;Ki)valid and VA), 2 Al,A:) k A, if (Al,;Al;K:) is (A:);&;K;) then 
(A;;{a*A1}K;) IS (Al,;{actAz}K;‘) 

l (al;Kl) is (Az;K2) iff 

1. (AI;Kl)valid and (Az;Kz)valid. 

2. And, 

- K1 = T and h*z = T 
- Or, Kl = S(Al) and K2 = S(A2) and (A~;AI;T) is (A2;Az;T) 

- Or, K1 = IIa:Ki.K;’ and K2 = &:Kj.Kf and (Al;Ki) is (AZ; Ki) and t/Al, 
(A;;Al;Ki) is (A;;Ag;Ki) then (A,;{cM+A~}K;‘) is (A;;(~H&}K~) 

> Al ,A; k A2 if 

- Or, Kl = Ca:K;.Kj’and K2 = Ca:fC~.K[ and (Al;?:) is (Az;Ki) and VA; 
(Ai;A,;Ki) is (A,;Az;K;) then (A,;{a++A~}K~) IS (A~;{LI*Az}K~) 

2 Al,Ag 2 AZ if 

l (Al;Kl 5 L1) is (AZ; K2 5 L2) iff 

1. VA; k Al,A; k A2 if (A;;Al;Kl) is (A;;As;Kz) then (A;;Al;Ll) is (A;;Az;Lz). 

Figure 5: Logical Relations on Kinds 

l (A; A; ICI) valid iff 

1. (A; ICI) valid 

2. And, 

- Kl=TandAtA:T++AtA:T. 
- Or, Kl = S(B) and (A;A;T) is (A;B;T). 
- Or, ICI = IIa:K.L, and VA’ k A, A” 2 A if (A’;#; K) 

(A”; AB”; {ai-+B”}L). 
is (A”; B”; I() then (A’; AB’; {m+ll’}L) is 

- Or, ICI = Ca:K.L, (A; nlA; K) valid and (A; n2A; {cu~-+n~A}L) valid 

l (AI; AI; KI) is (AZ; AZ; ICZ) iff 

1. (Al;Kl) is (AZ; K2) 
2. And, (Al;Al;K~)valid and (Az;Az;K2)valid 

3. And, 

- K1=K2=TandAltA1:T+A2t-A2:T. 
- Or, KI = S(R), K2 = S(&), and (Al;Al;T) is (A2;A2;T) 
- Or, K1 = l-Icr:K;.Kl’, K2 = l-Ia:K;.K;, and VA: k Al,Ai t A2 if (A;;&; I<;) is (A;;&; K;) then 

(A;; AI&; {cwl-+B~}K~) is (A:; AZ&.; {a~&}K~). 
- Or, Kl = CCY:K;.K~, I(z = Ccv:K~.K;), (Al; xlA1; K;) is (A2; r1A2; Ki) and 

(AI; ~2.41; {~--~IAI}K:‘) is (AZ; 7r2A2; {(Yc)T~A~}K[) 

Figure 6: Logical Relations on Constructors 

l (A; y; I’) valid iff 

1. Vcr E dom(I’). (A; ycy; y@‘(a))) valid. 

l (Al;rl;rl) is (AZ; ‘yz;I’z) 8 

1. (A,; yl; rl) valid and (A2; y2; r2) valid 

2. And, t/a E dom(rl) = dom(r2). (A,; rla; yl (r,a)) is (AZ; “~ZCY; yz(lY2a)). 

Figure 7: Logical Relations on Substitutions 
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Lemma 4.5 (Transitivity) 
1. If(Al;Kl) is (Al; 151) and (Al;&) is (Az;Kz) 

then (A,;Kl) is (Az;Kz). 

2. If (Al;Al; K1) is (AI; BI; LI) and 
(A,; BI ; 151) is (A,; AZ; KS) then 
(AI; AI; KI) is (AZ; AZ; hi). 

Because of this restricted formulation, we cannot use 
symmetry and transitivity to derive properties such as “if 
(Al;Kl) is (A,; KS) then (Al;Kl) is (A,; K1)“. An 
important purpose of the validity predicates is to make sure 
that this property does in fact hold (by building it into the 
definition of the equivalence logical relations). 

Next we show that logical relations are closed under head 
expansion and reduction. Define r I- Al II A2 to mean that 
A1 and A2 have a common weak head reduct. The following 
lemma then follows by induction on the size of kinds. 

Lemma 4.6 (Weak Head Closure) 
1. If (A; A; K) valid A I- A’ Y A, then (A; A’; K) valid. 

2. If (A,; Al; K1) is (AZ; AP; K2), AI k A; N Al, and 
A2 t- Al N A2 then (AI; A;; KI) is (AZ; A:; Kz). 

Following all this preliminary work, we can now show 
by induction on the size of kinds that equivalence under 
the logical relations implies equivalence under the algorithm. 
This requires a stronger induction hypothesis: that under 
suitable conditions variables (and more generally paths) are 
logically valid or logically related. 

Lemma 4.7 (Main Lemma) 
1. If (A,; KI) is (AZ; I(z) then Al I- K1 ($ A2 I- K2. 

2. If (Al; Al; K1) is (A,; AZ; Kz) then 
AI I- A1 : KI e- A2 t- A2 : K2. 

3. If (A; K’) valid, A k p t K ti A l-p t K, then 
(A;p; K)valid. 

4. If (A,;K,) is (A,; K2) and 
A~FP~~K~HA~I--~K~ then 
(Al;p~;Kl) is (Az;Pz;Kz). 

Proof: 
Due to space considerations, we show here just the II case in the 
proof of Parts 2 and 3. 

For Part 2, assume 
(A1;Al;Ila:Kj.K.r) is (A2;Az;IIa:Ki.K;). Then 
(AI;H~:K.~.K~‘) IS (A2;lla:K;.K);), so 
(Al;K;) IS (A2;K;). Now 
Al,a:Ki I- Q t K: C) A2,(r:K; I- a t Ki, so inductively by 
Part 4 we have (Al,a:K’;a;Ki) is (A,a:Ki;a;K{). Then 
(Al,a:Ki;Ala;Kr) is t Az,a:Ki;A2a;Kl). By theinductive 
hypothesis, Al ,a:K; I- Ala : K;’ e Az,a:Ki I- Aza : KY. 
Therefore Al I- A1 : IIa:Ki.K;’ ++ A2 I- A2 : l3a:Ki.K;. 

For Part 3, assume (A; K) valid and A k p t K e, A I- p t K 
where K = lTIa:K’.K”. Let A’, A” t A and assume 
(A’;B’; K’) is (A”; B”; K’). Indu&ely by Part 2, 
A’ I- B’ : K’ tj A” I- B” : K’. Since the ainorithmic relations 
are closed under context weakening, 
A’ I- pB’ t {Bha)K” +b A” k pB” t {B”*a}K”. By 
(A; K) valid, (A’; {B’*a}K”) is (A”; {B”++a}K”). 
Inductively by Part 4, 

(A’;pB’; {B’t+a}K”) is (A”; pB”; {B”t+a}K”). Therefore 
(A; p; lla:K’.K”) valid. 

QED 

Finally we come to the Fundamental Theorem of Log- 
ical Relations, which relates provable equivalence of two 
constructors to the logical relations The statement of the 
theorem is strengthened to involve related substitutions of 
constructors for variables within constructors and kinds. 

Theorem 4.8 (Fundamental Theorem) 
1. If r I- K and (AI; 71; r) is (AZ; 72; r) then 

(AI; YIK) is (AZ; XX). 

2. Zfl? I- K, 5 K2 and (A,; n;r) is (A2;yz;I’) then 
(Al;nKl 5 nK2) is (&;mKl 5 79164, 
(Al;wKl) is (A2;72K1), and 
(AI; 7116) is (AZ; xX2). 

3. Zfr t Kl E KZ and (AI; yl;I’) is (A2; ^l~;l?) then 
(&;-rlI~l) is (A2; YZKZ), (AI;YIKI) is (As;rzKl), 
and (&;ylK2) is (&;y~K2). 

4. If I’ I- A : K and (A,; yl; r) is (A2; y2;r) then 
(AI; YIA; YI K) is (AZ; WA; YzK). 

5. Zfr t- A1 z A2 : K and (A,; yl;r) is (A,;y,;I’) then 
(&;rlAl;rlK) is (A~;Y~AI;Y~K), 
(Al;rlA~;ylK) is (Az;y2A2;72K), and 
(AI; ~14; ~110 is (4 7~42; -M). 

Proof: We show here the proof of just one case, for 
derivations ending in Rule 20. 

l?,a:K’ t A : K” 

l- t Xa:K’.A : l-Ia:K’.K” 

By an easy lemma there is a strict subderivation r t K’, so by 
induction, (Al;ylK’) is (Az;-yzK’). 
Let (Ai,Ai) h (Al, As) and assume that 
(Aj; Bl;mK’) is (AL; Bg;+-ygK’). By monotonicity, 
(A1;~l[a++B1];r,a:K’) is (A’;yz[a~Bz];r,a:K’). By 
induction, (Al,; (-yl[ao+B1])A;&[a1+B1])K”) is 
(A;; (~z[a*&])A; (rzb-+Bzl)K”). Now 
Al I- (rl[ati&])A N (-yl(Xa:K’.A))Bl and 
A2 t (Ys[actBz])A N (72(Xa:K’.A))B2. By Lemma 4.6, 
(Aj; (-yl(Xa:K’.A))&; (yl[ac+B~])K”) is 
(A,; (-y~(Xa:K’.A))&; (-y2[aw+B2])K”). Similar arguments 
show that (Al;~~(Xa:K’.A);~~(%:K’.K”))valid, that 
(A2;72(Xa:K’.A);72(IIa:K’.K”))valid, and that 
(Al; yl(TIa:K’.K”)) is (A2;72(I’Ia:K’.K”)). Therefore 
(Al;71 (Xa:K’.A);~l(lTa:K’.K”)) is 
(A~;y~(Xa:K’.A);m(Ila:K’.K”)). 

QED 

A straightforward proof by induction on well-formed con- 
texts shows that the identity substitution is related to itself: 

Lemma 4.9 
If I’ I- ok then for all P E dam(r) we have 
(r;@; rp) is (r;p;rp). That is, (r;id;r) is (r;id;r) 
where id is the identity function. 

Corollary 4.10 (Completeness) 
1. ZfrI-K1=K2 thenrl-KleJr+Kz. 

2. If r I- Al z A2 : K then I? t- Al : K e r I- A2 : K. 
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Intuitively, the algorithmic constructor equivalence re- 
lation can be viewed as simultaneously and independently 
normalizing the two constructors and comparing the results 
as it goes along. Then termination for both terms individ- 
ually implies their simultaneous comparison will also termi- 
nate. This can be proved by induction on the algorithmic 
judgments (i.e., by induction on the steps of the algorithm). 

Lemma 4.11 
1. If l-1 t- A1 t KI ++ l-1 t- AI t KI and 

r2 I- AZ t KZ tf rz I- AZ t K2 then 
rl k AI t K1 +) I’z l- AZ t K2 is decidable. 

2. If rl I- Ai : K1 o rI t- A1 : K1 and 
r2 I- A2 : K2 u r2 I- A2 : K2 then 
rr k A1 : K1 H r2 l- AZ : Kz is decidable. 

3. If rl l- K1 e rr t K1 and I’z l- KS e r2 t K2 then 
r1 k K1 M r2 I- KS is decidable. 

Then since every well-formed term is declaratively equiv- 
alent to itself, completeness yields the following corollary. 

Corollary 4.12 (Decidability) 
1. If r t- Al : K and r I- A2 : K then I I- AI : K ++ l- F 

AZ : K is decidable. 

2. If r + K1 and r t- Icz then r i- ICI e r i- KZ is 

decidable. 

We conclude this section with an application of complete- 
ness. 

Proposition 4.13 (Consistency) 
Let bl and bz be two distinct constants of kind T. Then 
the judgment “ I- bl z & : T 1, is not provable. 

This inequivalence (and the inequivalence of Acy:T.a and 
Xcu:T.bi at kind T+T mentioned in Section 2.2) is obvious 
for algorithmic equivalence, which by completeness transfers 
to inequivalence in the declarative system. 

In proving soundness of the TILT compiler’s intermedi- 
ate language, these sorts of consistency properties are essen- 
tial. The argument that, for example, the only closed values 
of type int are the integers would fail if the type int were 
provably equal to another base type. 

5 A Simpler Algorithm 

We have shown that constructor equivalence is decidable 
by presenting a sound, complete and terminating algorithm. 
However, as an implementation it inefficiently maintains two 
typing contexts and two classifying kinds. We would prefer 
an algorithm more like the declarative rules for equivalence, 
having only a single typing context and a single classifier. 
The revised algorithmic relations are shown in Figure 8. 

The definition of this simplified algorithm is asymmetric 
because of essentially arbitrary choices between two prov- 
ably equivalent kinds for the classifier or the typing context. 
Because we cannot prove directly that this simplified algo- 
rithm satisfies any symmetry or transitivity properties, we 
cannot simply use the same proof strategy. However, we 
can show the simplification is complete with respect to the 
previous algorithm, from which the remaining correctness 
properties follow easily. 

One other small simplification is that in weak head re- 
duction we need not worry about a path having a proper 
prefix with a definition; for well-formed constructors this 
can never occur. (This follows from Lemma 3.1 and the 
definition of kind extraction.) 

The precise details can be found in the companion tech- 
nical report. We simply state the most important results 
here. 

The proofs use a “size” metric on derivations in the six- 
place algorithmic system. This metric measures the size 
of the derivation ignoring head reduction or head normal- 
ization steps; equivalently, we can define the metric as the 
number of term or path equivalence rules used in the deriva- 
tion. Since every judgment has at most one derivation in the 
six-place system, we can refer unambiguously to the size of 
a provable algorithmic judgment. 

The following lemma follows by induction on the size 
of the given algorithmic judgment. The remaining proofs 
are proved in essentially the same way as the corresponding 
results for the algorithm of Section 3. 

Lemma 5.1 
1. Ift- rl x2, rl + K1 E K~, rl F A~ : K~, 

r2 t- A2 : K2, ad rl t- A1 : Kl * r2 t- AZ : K2 then 
rl t- A1 u .42 : &. 

Corollary 5.2 (Completeness) 
If r !- A1 E A2 : K then r I- Al ++ A2 : K. 

Theorem 5.3 (Soundness) 
1. If I’ I- A1 : K, r I- A2 : K, ad r I- A1 * AZ : K then 

r I- A1 E AZ : K. 

2. IfT~pl:1(1,r~p2:K2,andr~pl+,pzfI(then 
r t-pl spz : I<. 

Theorem 5.4 (Decidability) 
1. If r I- A1 : K and J? I- A2 : K then r I- A1 (j AZ : K is 

decidable. 

2. If r I- K1 and I’ I- K2 then r I- Kr es K2 is decidable. 

6 Related Work 

Severi and Poll [18] studied confluence and normalization 
of @-reduction for a pure type system with definitions (let 
bindings), where 6 is the replacement of an occurrence of 
a variable with its definition. Their calculus contains no 
notion of partial definitions and no subtyping or subkinding. 

David Aspinall [l] studied a calculus X5(1 with singleton 
types and ,&equivalence between terms. Labelled singletons 
are primitive notions in this system; in the absence of r]- 
equivalence the encoding of Section 2.3 does not work. He 
conjectured that equivalence in this system was decidable. 
Karl Crary [4] studied an extension of A”,” with subtyping 
and power kinds and also conjectured thZt typechecking was 

decidable. 
Singleton kinds should not be confused with the identity 

types of extensional Martin-Lijf type theory 1131. There the 
type I(K,A, B) represents the type of proofs that A G B : 
K. Identity types allow arbitrary equational properties to 
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Weak head reduction 
I’ I- E[(h:K.A)A’] cu E[{aeA’}A] 
l- F- E[m (AI, Az)] 13 E[Al] 

r I- E[AZ (AI, AZ)] Q E[Az] 
ri- P-B ifrt-pfS(B) 

Algorithmic constructor equivalence 
l-l-A1(SAz:T ifrtAIUpl,r~AzUPz,andr~pplC)pztT 
l- I- A, M A2 : S(B) always 
r k A1 ti AZ : llcr:K’.K” if I’,a:K I- Ala e A2~ : K” 
I’ I- A1 e A2 : Ccr:K’.K” if l? t- ?rlAl e7r1 A2 : K’ and I? t- 7rpAl (j x2Az : (cu-HT~A~)K” 

Algorithmic path equivalence 
rkbiob,tT 
r t- a f) a t qcr) 
r I- Pl Al ++ pzAz t ++h}Kz 
r I- mp1 e+ mp2 t Kl 

r c- r2p1 -c-s 7r2P2 t {(YwnPl}K2 

Algorithmic kind equivalence 
I’kTMT 
r I- S(A) w S(A2) 
r I- rIcY:l~t.L~ * IIa:K2.L2 
r I- CWKI.LI M Ccx:K2.L2 

if i=j 

ifr+pl ++pztlkK1.Kz andalso rtA1 *A2 : K1 
if r I- p1 f-3. p2 t Ca:K, .K2 
if r k p1 H pi t CC&~ .K2 

always 
ifl-I-AleA2:T 
if r I- K1 e K2 and I?, a:K1 k L1 +a L2 
ifrt-1(1~K2andr,(Y:KI~L1($LZ 

Figure 8: A Simplified Algorithm 

be expressed, in comparison to the simpler definitional con- 
straints allowed by singletons. The cost of identity types 
is that typechecking becomes substantially more difficult, if 
not undecidable. 

Our proof was inspired by that of Coquand [3], but as 
the equivalence considered there was not context-sensitive in 
any way our algorithm and proof are substantially different. 
Because of the validity logical relations and the form of the 
symmetry and transitivity properties for logical equivalence, 
our attempts to use more traditional Kripke logical relations 
(with worlds being pairs of contexts) were unsuccessful. 

Other researchers have considered lambda calculi with 
more interesting equivalences. Lillibridge [12] considered 
a language in which type constructors could be reified as 
values and where equivalence depends on the typing con- 
text. This system contains subtyping but not subkinding, 
so equivalence does not depend on the classifying kind. He 
eliminates context-sensitivity by tagging each path with its 
enclosing typing context and then giving a rewriting strat- 
egy for this t agged system. 

Curien and Ghelli [S] gave a proof of decidability of term 
equivalence in F< with @preduction and a Top type. Be- 
cause their Top type is both terminal and maximal, equiv- 
alence depends on both the typing context and the type at 
which terms are compared. Context-sensitivity is removed 
by the insertion of explicit coercions to mark uses of sub- 
sumption. They show decidability by giving a rewriting 
strategy for this calculus with coercions. 

A drawback of both Lillibridge’s and Curien and Ghelli’s 
approaches is that they require a studying a separate tagged 
language and proofs that decidability results from this sys- 
tem can be transfered back to the original systems. Also, 
it does not seem particularly efficient in practice to trans- 
late type constructors into a tagged system, normalizing the 

tagged constructors, and compare normaI forms. 

7 Conclusion and Future Work 

We have confirmed that ,f3pequivalence for well-formed con- 
structors is decidable in the presence of singleton kinds by 
providing a sound, complete, and terminating algorithm. 
This algorithm - with minor extensions such as stopping 
early when constructors are found to be a-equivalent - is 
used by the internal typechecker of the TILT compiler. 

The form of our algorithm seems ideally suited for equa- 
tional theories in which equivalence depends on the typing 
context or the classifier. Examples other than A?” include 
systems containing a terminal Top type (where any two 
terms of type Top are equivalent), and systems including 
records and width subtyping (where only the components 
mentioned in the classifying record type matter in determin- 
ing the equivalence of two records). Harper and Pfenning [9] 
have even applied a simplified version of our algorithm to the 
LF type theory, in part because of this sort of flexibility. 

Although the pattern of our logical relations proof is 
fairly standard, our formulation - in particular, the equiv- 
alence relation involving two constructors, two kinds, and 
two worlds - appears novel, as is the extension to subkind- 
ing and singleton kinds. Because our algorithm is defined 
separately from the equivalence rules (rather than being an 
rewriting system based on oriented equivalence rules), the 
correctness proof is not very sensitive to the exact form of 
the X2” typing or equivalence rules. 

WZ ex ect that our proof should generalize well to exten- 
sions of $” such as subtyping and power kinds like those 
found in Crary’s work. The approach may work as well for 
other variants of the algorithm. 

We are currently investigating the addition of singleton 
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types to the TILT compiler. These seem a promising formal- 
ized vehicle for expressing the information needed by cross- 
module inlining [2, 191 and modeling the structure sharing 
feature of original Standard ML. 

The formalization of this paper does not include an ac- 
count of type analysis ‘constructs [IS] such as the Typecase 
type constructor. Extending the algorithm to account for 
these does not seem difficult, but we have not yet checked 
carefully to see whether our proof can be correspondingly 
extended. 

The way in which our algorithm is guided by the classify- 
ing kind bears a superficial resemblance to Goguen’s typed 
operational semantics [6]. It would be interesting to know if 
these techniques could be adapted to our system. This is not 
immediately clear, because Goguen applies his technique to 
a system in which type constructors have unique kinds and 
where extensionality can be implemented via n-reduction. 
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A Rules for X2” 

Well-Formed Context , jIYok[ 

l t ok (1) 

l--l-K a e dom(I’) 

r, a:K I- ok (2) 

Context Equivalence pzq 

tare (3) 

t l-1 s I?2 rl t K1 E Kz a # dom(rl) 
t rlla:KI E rz,d2 (4 

Well-Formed Kind 

I t ok 

I-l-T 

rtA:T 
r I- S(A) 

r,dct I(" 
r t ndt~'.~~~ 

r, a:K’ t K” 
r t Ca:K’.K” 

Subkinding 

rtA:T 
!J t S(A) 5 T 

r t ok 

I’tT_<T 

I-I-AI EA~:T 
I’t S(AI) I S(h) 

r t na:K;.K~ 

fTzq 

(5) 

(6) 

(7) 

(8) 

-K’ 

(9) 

(10) 

(11) 

r t K; 5 K; r,dC: t rc;l 5 K; 
r t rh:~:.~;’ 5 ~:K;.K: (12) 

r t Ca:K;.K: 
r I- K: < II-4 r,dc: t K:’ 5 KC 

r t Ca:K; .K:’ 5 LxK;.K; (13) 

Kind Equivalence Ir t K1 E K2 ( 

rt ok 

I-I-TzT (14) 

l?t-Al zAz:T 
r I- S(AI) s S(A2) 

r t 1-c; 3 K; r,dc; t- K;’ G I(: 
r t l-Ia:K;.K;’ i IIa:K;.K; 

r I- K; G K; r,ax; t Kf z zq 
l-t Ca:K;.K;’ E Ccr:K;.K; 

(15) 

(16) 

(17) 

Well-Formed Constructor 

rt ok 

rtb;:T 

rt ok 

r t (Y: rya) 

T’,a:K’ I- A : K” 
r t Xa:K’.A : IIa:K’.K” 

I I- A : IIcu:K’.K” r I- A’ : K’ 
l- I- AA’ : {a+-+A’}K” 

r t A : Ca:K’.K” 
I’trlA:K 

r t- A: c~:K’.K” 
r t lF2~ : {a~rl~jK” 

r t Ca:K’.K” 
r t AI : K’ 

l? I- A2 : {at-+A~}K” 
r t (Al, AZ) : Ca:K’.K” 

J?t-A:T 
r t- A : S(A) 

l-t Ca:K’.K” 
rtnlA:K' 

l-’ t rr2A : {at+r~A}K” 
r t A : Ccu:K’.K” 

I t A : IIa:K’.K; 
I’, a:K’ I- Acv : K” 
r t A : Jh:K’.K” 

r t A : Kl l-‘t K1 5 K2 
r I- A : Ii-2 

p-v-A:K1 

(18) 

iw 
(20) 

(21) 
(22) 

(23) 

(24) 

(25) 

(26) 

(271 

(28) 

Constructor Equivalence II-t-AzA’:KI 

r, cv:K’ t A1 z Ap : K” rtA;=A;:K’ 
r t (x~:K’.A~)A; 3 +-+A:)A~ : ++A:)K” 

r t A1 : rIa:K’.K; 
l- t A2 : l-Ia:K’.K; 

l-, a:K’ t Ala 3 Asa : K” 
r t A~ I A~ : II~:K’.K” 

r t Ca:K’.K” 
I k al Al G nlAz : K’ 

r t r2~1 E n2~z : +MA~)K~~ 
r t A1 G A2 : Ca:K’.K” 

r k A1 E A; : Kl r t A2 : K2 
r t sl(A~,Az) G A; : KI 

l-l-A, : K1 r t A2 E A; : K2 

r t n2(A1,A2) E A; : K2 

r t A: S(B) 
I’tArB:T 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 
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l-I-A=B:T 
I7 I- A G B : S(A) 

l-‘t-A’rA:K 
I’l-AEA’: K 

l-l-AsA’:K l- I- A’ s A” : K 
I-t-AAA”:K 

rl-ok 
rl-biSbi:T 

I- l-ok 
rb a I&: qcy) 

r I- K: z K; r,a:K; I- A1 3 Az : K” 
r I- hK;.A1 E Xa:K;.Az : IhK’.K” 

I- I- A1 I Az : Ccr:K’.K” 
r I- 7rz.A~ E ?rzAz : {cwr~A~}K” 

r t- Cct:K’.K” 
I-’ t- A; z A; : K’ 

l-l-A;'= A;’ : {m-+A;}K” 
r I- (A;, AI’) I (A;, A;‘) : Ca:K’.K” 

l-l-A1=Az:K l-l-K<Kt 
I I- A1 E A2 : K’ 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 
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