
Abstract 1 Introduction

Deciding Type Equivalence in a Language with Singleton Kinds*

Christopher A. Stone
cstone+@cs.cmu.edu

Robert Harper
rwh+&s.cmu.edu

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

Work on the TILT compiler for Standard ML led us to study
a language with singleton kinds: S(A) is the kind of all types
provably equivalent to the type A. Singletons are interesting
because they provide a very general form of definitions for
type variables, allow fine-grained control of type computa-
tions, and allow many equational constraints to be expressed
within the type system.

Internally, TILT represents programs using a predicative
variant of Girard’s F, enriched with singleton kinds, de-
pendent product and function kinds (C and II), and a sub-
kinding relation. An important benefit of using a typed lan-
guage as the representation of programs is that typechecking
can detect many common compiler implementation errors.
However, the decidability of typechecking for our particular
representation is not obvious. In order to typecheck a term,
we must be able to determine whether two type construc-
tors are provably equivalent. But in the presence of singleton
kinds, the equivalence of type constructors depends both on
the typing context in which they are compared and on the
kind at which they are compared.

In this paper we concentrate on the key issue for de-
cidability of typechecking: determining the equivalence of
well-formed type constructors. We define the Xn<” calcu-
lus, a model of the constructors and kinds of TILT’s inter-
mediate language. Inspired by Coquand’s result for type
theory, we prove decidability of constructor equivalence for
X2” by exhibiting a novel - though slightly inefficient -
type-directed comparison algorithm. The correctness of this
algorithm is proved using an interesting variant of Kripke-
style logical relations: unary relations are indexed by a single
possible world (in our case, a typing context), but binary re-
lations are indexed by two worlds. Using this result we can
then show the correctness of a natural, practical algorithm
used by the TILT compiler.

*This research was sponsored in part by the Advanced Research
Projects Agency CSTO under the title “The Fox Project: Advanced
Languages for Systems Software,” ARPA Order No. C533, issued by
ESC/ENS under Contract No. F19628-95-C-0050.

Permission to make digital or hard copies of all or part of this work for
personal or classrootn use is granted without fee provided that copies
arc not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and!or a fee.
POPL 2000 Boston MA USA
Copyright ACM 2000 I-581 13-125-9/00/1...$5.00

1.1 Motivation

The TIL compiler for core Standard ML [21] was structured
as a series of translations between explicitly-typed inter-
mediate languages. Each pass of the compiler (e.g., com-
mon subexpression elimination or closure conversion) trans-
formed the program and its type, preserving well-typedness.
One advantage of this framework is that typechecking the in-
termediate representation can detect a wide variety of com-
mon compiler implementation errors. The typing informa-
tion on terms can also be used to support type-based op
timizations and efficient data representations; TIL used a
type-passing interpretation of polymorphism in which types
were passed and analyzed at run-time [15]. In the future, it
should be possible to use such typing information for anno-
tating binaries with a certification of safety [16, 171.

The results from TIL were very encouraging, but the
compiler implementation was inefficient and could only han-
dle complete programs written without use of modules. The
Fox Project group at Carnegie Mellon therefore decided to
completely re-engineer TIL to produce TILT (TIL Two), a
more practical compiler which could handle separate com-
pilation and the complete SML language.

One challenge in scaling up the compiler was properly
handling the propagation of type information. For exam-
ple, in the Standard ML module language we can have a
structure Set with the signature

sig
type item = int
type set
type setpair = set * set

val empty : set
val insert : set * item -> set
val member : set * item -> boo1
val union : setpair -> set
val intersect : setpair -> set

end

From this interface it is apparent that the module Set has
three type components: the type Set .item known to be
equal to int, the type Set .set about which nothing is
known, and the type Set. setpair which is the type of pairs
of Set. set’s.

There are two important points to note about this exam-
ple. First, equivalences such as the one between Set. item
and int are open-scope definitions available to “the rest of

214

the program”, which may not even be written when this
module is compiled. Such definitions cannot be eliminated
by a simple local substitution and forgotten. Second, in a
type-passing implementation like TILT these type compo-
nents really are computed and stored by the run-time code.
Although it is possible get rid of type definitions in signa-
tures by replacing all references to these components with
their definitions [19] we do not wish to do so; such sub-
stitutions could substantially increase the number of type
computations performed at run-time.

The choice we made for TILT was to use an typed in-
termediate language based on F, with the following kind
structure (recall that kinds classify type constructors):

A kind T classifying ordinary types such as int or
bool->bool.

Singleton kinds S(A) classifying all types of kind T
provably equivalent to A;

Dependent record kinds classifying records of type
constructors and dependent function kinds classifying
functions mapping type constructors to type construc-
tors’ ;

A sub-kinding relation induced by S(A) 5 T.

Modules are represented in this language using a phase-
splitting interpretation [8, 191. The main idea is that mod-
ules can be split into type constructor and a term, while
signatures split in a parallel way into a kind and a type. Sin-
gleton kinds are used to model definitions and type sharing
specifications in module signatures, dependent record kinds
model the type parts of structure signatures, dependent
function kinds model the type parts of functor signatures,
and subkinding models (non-coercive) signature matching.

For example, the kind corresponding to the above signa-
ture is a dependent record kind saying that there are three
type components: the first component item has kind S(int)
because its definition is known; the second component set
has kind T because its definition is not known; finally the
third component setpair has kind S(setxset), which takes
advantage of the record kind being dependent by referring
to the value of a previous field.

Singletons are used to describe and control the propa-
gation of type definitions and sharing in the compiler. The
type A has kind S(B) if and only if the types A and B are
provably equivalent. Thus, the hypothesis that the variable
(Y has type S(A) essentially says that CJ is a type variable
with definition A. This models open-scope definitions in the
source language.

Furthermore, singletons provide “partial” definitions for
variables. If Q is a pair of types with kind S(int)xT this
tells us that the first component of this pair, ~10, is int.
However, this kind tells us nothing about the identity of
the ~2a. As in the above example, partial definitions allow
natural modeling of definitions in a modular system, where
some components of a module have known definitions and
others remain abstract.

Interestingly, in a language with singleton kinds we can
additionally express with delimited scope (closed-scope) def-
initions. The expression

let cr:T = int x int in id[a](3,4)end

‘A record of type constructors should not be confused with a
record type, which would have kind ‘7. Similarly, functions of type
constructors are not the types of term-level functions, which would
also have kind T.

does not typecheck when expressed as a function application

(Aa:T.id[cr](3,4))[intx int];

the application of id[cr] to a pair of integers is only well-
formed if cy is known to be intx int, which is not apparent
while checking the abstraction. We can express this informa-
tion, however, by annotating the argument with a singleton
kind to get the well-formed term

(I\a:S(int xint).id[a](3,4))[intxint].

Now let-bindings of types can be added as a primitive no-
tion to the calculus, and this is probably a more efficient
arrangement. Nevertheless, the general ability to turn types
into function arguments (particularly into new arguments
of pre-existing functions) is necessary for a low-level de-
scription of type-preserving closure-conversion in the type-
passing framework [14]. It also enables finer control of when
type computations occur at run time, permitting optimiza-
tions such as improved common subexpression elimination
of types.

Given that we wish to typecheck our intermediate repre-
sentation, the question that arises is whether typechecking
is decidable. This question reduces to the decidability of
equivalence for well-formed type constructors. This latter
question is non-trivial because the equivalence of two con-
structors can depend both on the singletons (definitions) in
the context and - less obviously - on the kind at which
the constructors are being compared. (See Section 2.2.) The
common method of implementing equivalence via context-
insensitive rewrite rules is inapplicable for our calculus. The
goal of this paper is to show that constructor equivalence is
nevertheless decidable.

1.2 Outline

In Section 2 we introduce the xyS calculus (a formalization
of the key features of the type constructors and kinds of
the TILT intermediate representation). We explain some
of the more interesting aspects of this calculus, including
the dependency of equivalence on the typing context and
the classifying kind. We show that singletons containing
constructors of higher kinds are definable, and show that
every constructor has a principal (most-specific) kind.

In Section 3 we present a sound algorithm for determin-
ing equivalence of well-formed constructors. We were in-
spired by Coquand’s approach to ppequivalence for a type
theory with II types and one universe [3]. Coquand worked
with an algorithm which directly decides equivalence, rather
than using a confluent and strongly-normalizing reduction
relation. However, in contrast to Coquand’s system we can-
not compare terms by their shape alone; we must take ac-
count of both the context and the classifier. Where Co-
quand maintains a set of bound variables, we maintain a
fuIl typing context. Similarly, he uses shapes to guide the
algorithm where we maintain a classifying kind. (For ex-
ample, when he would check whether either constructor is a
lambda-abstraction, we check whether the classifying kind is
a function kind.) Although the natural presentation of our
algorithm defines a relation of the form r k AI ($ AZ : IC,
we cannot analyze the correctness of this algorithm directly.
Asymmetries in the formulation preclude a direct proof of
such simple properties as symmetry and transitivity, both of
which are immediately evident in Coquand’s case. Instead
we analyze a related algorithm which restores symmetry by

215

maintaining two typing context and two classifying kinds,
with the form I’i I- A1 : KI +- rz t- A2 : K2.

Our main technical result is the proof in Section 4 that
the algorithm of Section 3 is both complete and terminating.
Our proof of completeness is inspired by Coquand’s use of
Kripke logical relations, but our proof differs substantially
from his. Our “worlds” are full contexts rather than sets
of bound variables. More importantly, we make use of a
novel form of Kripke logical relations in which we employ
two worlds, rather than one.

In Section 5 we use this completeness result to show the
correctness of the natural algorithm. This yields the practi-
cal algorithm used in the TILT implementation.

Finally we discuss related work and conclude.

Due to space considerations, the proofs of our results
have been condensed or omitted in this extended abstract.
Full details can be found in the companion technical re-
port [ZO].

2 The AT’ calculus

2.1 Overview

The Xscs calculus models the type constructors and kinds
of theTILT intermediate language. Since the term level of
this language does not enter into the model, X2” can be
viewed in isolation as a dependently lambda cal&lus. It is
solely because of our particular application that we prefer to
refer to the constituents as “type constructors” and “kinds”
rather than “terms” and “types”.

The syntax of Ays is shown in Figure 1. The constants
bi of kind T represent base types such as int. As usual, we
use the usual notation of K1 x K2 for &:KI .Kz and K1 +K2
for lh:K1.K2 when cr is not free in K2.

There is a natural notion of size for kinds where
site(T) = 1, size(S(A)) = 2, and size(IIcr:K.K’) =
si.ze(Ccr:K.K’) = size(K) + size(K’) + 2. The size of a kind
is preserved under substitution of terms for variables.

The declarative rules defining the kinding and equiva-
lence system of Xszs are given in Appendix A. For the
most part, these aG the usual rules for a dependently-typed
lambda calculus with fin equivalence. We concentrate here
on presenting the less common rules.

Since we restrict constructors within singletons to be
types (constructors of kind T), we have the following well-
formedness rule for singleton kinds:

I-I-A:T
l- t- S(A).

However, Section 2.3 shows that singletons of constructors
of higher kind are definable in this language.

There are two introduction rules for singletons:

rl-A:T rl-A~-B:x
r I- A : S(A) I-EAEB:S(A)

and a corresponding elimination rule:

r b A: S(B)
l-‘l-AsB:T’

The calculus includes implicit subsumption, where the sub-
kinding relation is generated by the rules

l-l--:x rl-A1EA2:T

r !- S(A) < T I- I- S(A) 5 S(A2)

and is lifted to subkinding at II and C kinds with the usual
co- and contravariance rules. Under this ordering, the sin-
gleton introduction rule above allows a constructor A of kind
T to be viewed as a constructor of the subkind S(A). Sym-
metrically, by subsumption any constructor of a singleton
kind can be viewed as having the superkind T.

Constructor equivalence includes ,8 and n rules for func-
tions and pairs. We express the 11 rules as extensionality
principles:

l- I- A1 : l’h:K’.K;
l? t- A2 : !&r:K’.K;

r, (Y:K’ t Ala E A2cv : K”

r t- A~ E ~~ : ~K’.K”

r i- c~x'.K~~
l-l-qA~ss~Aa:K’

FI-A~AI s 7r2A2 : {cYH~IAI}K”

I t- Al s A2 : Cm K’.K”

The constructor well-formedness rules may be seen as re-
flexive instances of equivalence rules. For example, we have
the following two non-standard kinding rules corresponding
to the extensionality rules:

l- I- &:K’.K”
l? b A : l-Ia:K’.K; l? l- nlA : K’
r,dc' k Aa : K” l- I- 7r2A : {crmrlA}K”

l-’ I- A : l-Icr:K’.K” IT I- A : Ccv:K’.K”

Similar rules have previously appeared in the literature, in-
cluding the non-standard structure-typing rule of Harper,
Mitchell, and Moggi [S], the “VALUE” rules of Harper and
Lillibridge’s translucent sums [q, the strengthening oper-
ation of Leroy’s manifest type system [lo], and the “self”
rule of Leroy’s applicative functors [ll]. In the presence of
singletons, these rules give constructors more precise kinds
than would otherwise be possible. (See Section 2.3.)

2.2 Examples of Term Equivalence

As mentioned in the introduction, singletons in the context
can act as definitions and partial definitions for variables.
So the provable judgments include:

(Y : S(bi) I- (a, bi) z (bi,a) : TxT
(Y : TxS(bi) t- KZ(Y z bi : X
a : C@T.S(@ I- i~la E 7r2cr : T
a : C@T..S(fl) !- a E (AI(Y, rr~cu) : XxT.

In the last two of these equations, the assumption governing
CY gives a dellnition to Q(Y (namely rlcy) without specifying
what the two equal components actually are. Notice that the
last equation is not simply an example of surjective pairing.

Singletons behave like terminal types, so by extensional-
ity we can prove equivalences such as:

(Y : S(bi)+X t- cz E xp:S(bi).(abi) : S(bi)+T
CY : X+S(bi) I- CY 3 XP:X.bi : T+X

Notice that in the fist of these equations, the right-hand
side is not simply an r]-expansion of the left-hand side.

Because of subkinding, constructors do not have unique
kinds. The equivalence of two constructors depends on the
kind at which they are compared; they may be equivalent

216

Contexts

Kinds

r,A::= a
1 r,a:K

K,L::= T

I S(A)

Constructors A, B, C ::= bi
I a,P,***
1 Xa:K.A

.I AA’
I ?.A”
I *

Empty context
Context extension

Kind of types
Singleton kind
Dependent function hind
Dependent product kind

Base types
Variables
Function
Application
Pair
Projection

Figure 1: Syntax of X2”

at one kind but not at another. For example, one cannot
prove

k XCYZT.CY 3 Xa:T.bi : T+T

as the identity function and constant function have distinct
behaviors. However, by subsumption these two functions
also have hind S(bi)+T and the judgment

t Xa:T.a s ,h:T.bi : S(bi)+T

is provable using extensionality; the functions do yield equiv-
alent results for every argument of hind S(bi).

The classifying hind at which constructors are compared
depends on the context of their occurrence. For example,
from this last equation it follows that

/3 : (S(bi)+T)+T k P(X~:T.CY) E P(Xa:T.bi) : T

2.3 Labelled Singletons

In our calculus S(A) is well-formed if and only if A is of hind
T. Aspinall [l] has studied equivalence in a lambda calculus
with labelled singletons of the form S(A : K).’ This repre-
sents the kind of all constructors equivalent to A at kind I<.
Because equivalence depends on the classifier, the label K in
these labelled singletons does matter: it follows from the ex-
amples of the previous section that S(Xa:T.bi : IIa:S(bi).T)
and S(Xa:T.b; : T+T) are not equivalent; only the former
classifies the identity function Xa:T.a.

Our system does not contain such labelled singletons as
a primitive notion because they are all definable; Figure 2
gives an inductive definition.

For example, if S has kind T+T, then S(/3 : T+T) is
defined to be lk:T.S(/k~). This can be interpreted as “the
hind of all functions which, when applied to an argument of
hind T, yield the same answer as /3 would”. By extension-
ality, this is indeed the kind of all functions equivalent to ,Ll
at hind T+T. The non-standard kinding rules mentioned
in Section 2.1 are vital here, as they are necessary in order
to prove that p has this hind.

The following proposition shows that the definitions of
Figure 2 do have properties analogous to Aspinall’s labelled
singletons.

‘Aspinall’s notation for our S(A : K) is {A}K. Our S(A) is not
the same as Aspinall’s unlabelled singleton {A}, but rather would
correspond to {A)*.

Proposition 2.1
1. If l? t A2 : K and !Z I- AI : S(A2 : K) then

l-l-A1 sA2:K.

2. If l? I- AI s A2 : K then r I- A1 G A2 : S(A1 : K).

3. If F k A : K then I’ I- S(A : K) and I? +- A : S(A : K).

4. If r I- A : K then r I- S(A : K) < K.

5. If l? t- Al c A2 : Kl and l? I- Kr 5 K2 then
l- t- S(Ai : Kl) 5 S(A2 : K2).

It is curious to note that in our system, as in Aspinall’s,
,&rules become derivable in the presence of singletons. This
can be easily seen using Proposition 2.1; for example,

r, cY:K2 b A : K
r,a:K2t-A:S(A:K)

r I- Xa9C2.A : IIa:K2.S(A : K)
I-’ I- A2 : 11-2

r I- (hK2.A)A2 : S(~CW+A&~ : {~tc+&lK)

l? C‘(Xa:K2.A)A2 E.~~HA~}A : (atiA2)K’ *

For convenience we have chosen to formulate the system
with a stronger form of the S-rules (though we conjecture
this does not change the system) and we do not use this
admissibility result in the remainder of the paper.

2.4 Principal Kinds

Figure 3 gives an algorithm for determining the principal
hind of a well-formed constructor; given a well-formed con-
structor A in the context P, then there exists K such that
I? I- A fi I< and k is the most-specific kind of A. Correct-
ness is shown by the following lemma, which uses a slightly
strengthened induction hypothesis.

Lemma 2.2
IfI’kA:LthenI’t-AfiK,??i-A:K,and
I- I- K <, S(A : L).

3 An Algorithm for Constructor Equivalence

Following Coquaud, we present the equivalence test by defin-
ing a set of rules defming algorithmic relations, shown in Fig-
ure 4. It is clear that these rules can be translate directly

217

S(A : T) := S(A)
S(A : S(A’)) := S(A)
S(A : ~-II~:K~.K~) := l-Ia:K1.(S(Aa : I&))
S(A : CCX:KI.K~) := (S(nlA : KI))x(S(RZA : {cwr~A}&))

Figure 2: Encodings of Labelled Singletons

rFbi fiS(bi)
I- I- ck fi S(a : r(a))
r t- Xa:K’.A fi IILYX’X” where r, (Y : I<’ k A fi K”
r I- AA’ fi {al-+A’)K” where I’l- A fi IIa:K’.K”
r I- (A’, A”) fi K’XK” where r t- A’ fi IC’ and r I- A” fi I<“.
rhlAfiK where r I- A fi IIa:K’.IC”
l- I- ir2A e {cw+n~A}K’ where r t- A fi ll~a:K’.K”

Figure 3: Algorithm for Principal Kind Synthesis

into a deterministic algorithm, since for any goal there is at
most one algorithmic rule which can apply. Then decidabil-
ity of the algorithmic relations corresponds to termination
of the algorithm.

Our algorithm is somewhat more involved than that of
Coquand because of the context and kind-dependence of
equivalence. We divide the algorithmic constructor equiva-
lence rules into a kind-directed part and a structure-directed
part, while Coquand needs only structural comparison. Our
weak head normalization includes looking for definitions in
the context. We have also extended the algorithm in the
natural fashion to handle C kinds, pairing, and projection.

Define an elimination context to be a series of applica-
tions to and projections from “on, which we call the con-
text’s hole. If E is such a context, then E[A] represents the
constructor resulting by replacing the hole in E with A. If
a constructor is either of the form E[a] or of the form E[bi]
then we will call this a path and denote it by p.

E ::= o J EA 1 XIE 1 nzE

The kind extraction relation r I- p t I< attempts to
determine a kind for a path by taking the kind of the head
variable or constant and doing appropriate substitutions and
projections. A path is said to haoe a definition if its ex-
tracted kind is a singleton kind S(B); in this case we say B
is the definition of the path.

The extracted kind is not always the most precise kind.
For example, cr:T I- cy p T but the principal kind of (Y in
this context would be S(a). We can show that given a well-
formed path, kind extraction succeeds and returns a valid
kind for this path using induction on the well-formedness
proof for the path (with a strengthened induction hypothe-
sis).

Lemma 3.1

Corollary 3.2
IfrkE[p]:Kandrl-ppS(A) thenI’FEE[p]EE[A]:K.

The weak head reduction relation I’ I- A Q B contracts
the head &redex of A, if such a redex exists. Otherwise,
when the head of A is a path with a definition reduction
replaces the head with the definition.

Weak head normalization l? I- A JJ B repeatedly applies
weak head reduction to A until a weak head normal form is
found. Weak head reduction and weak head normalization
are deterministic, since the head P-redex is always unique if
one exists, and a path can have at most one prefix with a
definition.

The algorithmic constructor equivalence relation

is intended to model the declarative equivalence rl k A1 G
AZ : lcl, when I- r1 = rz and r1 k Kl z lcZ. The method
used is to use applications and projections to drive the con-
structors down to a base kind, at which point they can be
head-normalized and compared structurally. The algorithm
can terminate immediately, however, when comparing two
constructors at two singleton kinds because of our assump-
tions that the inputs are all well-formed: l?I I- A1 : S(Bl),
r2 I- A2 : sp2), b rr 3 r2, and rl t- s(B~) E sp2).
It follows that rl I- A1 E B1 s B2 E A2 : T and SO by
transitivity the algorithm can immediately succeed. (This
is an effect of singletons behaving as terminal types.) As
an alternative for this case the algorithm could make the
(redundant) check that I’1 I- A1 : T ++ l72 I- A2 : T. For cer-
tain theoretical purposes this might be preferable, and the
following proofs appear to go through essentially unchanged.

The algorithmic path equivalence relation

will be shown to implement constructor equality for head
normal paths when t- l?l G T2. As a notational convenience,
this relation explicitly includes the extracted kinds of the
two paths being compared.

Finally, the algorithmic kind equivalence relation

rl t- lcl N rz t- K2
determines whether two kinds are equivalent given I- rl 3
r2. This easily reduces to checking the equivalence of con-
structors appearing within singleton kinds.

218

Kind extraction
rtbitT
r I- a t r(a)
r b n1p t Kl

r t x2p t {P+mp}K2

r~pAt{P+++A}K2

Weak head reduction
r I- E[(Xa:K.A)A’] - E[{~HA’)A]
r k E[~~ (A~, A~)] - E[A~]
l- t E[Q(AI, Az)] LC* E[A2]
r !- E[p] cvt E[B]

Weak head normalization
I-I-AUB
l-l-AUA

Algorithmic constructor equivalence
I’1 I- Al : T e I-z !- AZ : T
rl I- AI : S(BI) * r2 t- A2 : S(B2)

rl I- A1 : IIa:KI.Ll e r2 I- A2 : lx~K2.L~
rl I- A1 : C~:KI.LI ++ l-2 t- AZ : Ca:K2.L2

Algorithmic path equivalence
rlt-bitzwr2kbJt2-

rl t at r+) f) rz k at r2(a)
l-1 t- plA1 t {CMAI}LI t)

I'2 ~p2Azt{a~Az)L2
rl t- 7rlpl t Kl C) r2 k 7rlpz t K2
rl k ~2~1t~~~7h~l)~1 4-b

r2 t- ~2~ t {a+mpz}La

Algorithmic kind equivalence
l-lbT@l?2bT
rl !- S(A1) * r2 t- S(Az)
rl t- IIa:KI.Ll 43 r2 t- &:K2.L2
rl I- Ca:KI.Ll e r2 k Ca:K2.L2

if r t-p t C/3:K1.K2
if r I- p t CP:Kl.K2
if r I-p t llfl:Kr.K2

ifri-ptS(B)

ifl-I-AwA’andI-FA’lJB
otherwise

ifrl~AlUp~,r2~A2~pz,rl~p1fT+,r2~~tT
always
ifI’l,a:K1~A~a:L~~r2,a:K21-A2a:L2
if JYr I- rlAl : K1 e r2 !- lrlA2 : Kz, and

rI I- i~A1 : {a+mIAI}LI w r2 I- ?rzA2 : {a+mAz}Lz

if;=j
always
if rI I- p1 t lkK1.L1 f) r2 l-m f I’Ia:Kz.Lz,

and r‘r t- A1 : K1 e r(2 I- A2 : K2.
if rl k pl f CCY:K~ .L1 f) r2 t- pz t CCCI(?.L~.
if rI l- pl t Ca:Kl.Ll t) r2 k pz t Ca:K2.L2

always
ifrItA1:T~r2CA2:T
ifrlt-K1ur2~K2andrl,a:K~~L1~r2,a:K21-L2
if rl I- K1 s rz I- K2 and rl,a:ICl F L1 w rp,a:K2 I- L2

Figure 4: Algorithmic Relations

To prove soundness of this equivalence algorithm, we first
prove that weak-head normalization preserves equivalence.

Proposition 3.3
If I‘ I- E[(Xa:L.A)A’] : K then
I’ I- E[(Xa:L.A)A’] s E[(w+A’}A] : K

Proposition 3.4
1. If r k E[m(A’, A”)] : K then r I- E[nl (A’, A”)] E

E[A’] : K.

2. zf$‘,- $m(A’,A”)] : K then I’ I- E[rz{A’,A”)] I
: ,

Corollary 3.5
Zfr~A:KalldrkAyBtZlenr~A~B:K.

Given the fact that weak-head reduction of a well-formed
constructor yields a well-formed and equivalence construc-
tor, we can then prove soundness of the algorithm by induc-
tion on derivations of the algorithmic judgments.

Theorem 3.6 (Soundness)
I. zf k rl E r2, rl t- Kl E K2, rl t Al : K1,

I’2 t 442 : K2, and I’1 I- A1 : Kl ++ J?z I- A2 : K2 then
rl I- Al sA2:Kl.

2. IfkIT ~r2,rl~pP1:L1,r2~-::2,and
lTl k p1 t K1 c) I’2 I- p2 t K2 then l-1 I- ICI = K2 and
rI kp1 =p2: Kl.

A key aspect of this algorithm is that it can easily be
shown to obey symmetry and transitivity properties neces-
sary for the decidability proof. It is for this purpose that the
algorithm maintains two contexts and two classifiers. (Sec-
tion 5 shows that this redundancy can be eliminated in an
actual implementation.)

Lemma 3.7 (Algorithmic PER Properties)
1. If A, t- A1 : K1 e3 A2 I- A2 : KQ then

A2 I- A2 : K2 u A1 I- A1 : KI.

219

Lemma 4.1 (Monotonicity) 2. lfA,~A1:1(1($A,~AAz:Kzand
A2 + A2 : K2 e A3 I- AS : KS then
A,l-Al:KleA3l-A3:Ks.

3. IfAll-AltK1 +,Azl-AztK2 then
AZ I- A2 f Kz t) At k AI t KI.

4. IfA, I-AltK1 +,&l-AztK2 and
A2 I- A2 t KZ t) As I- A3 t KS then
Al I- AI t KI f) A3 I- A3 t IC3.

4 Completeness and Termination

To show the completeness and termination for the algorithm
we define a collection of Kripke-style logical relations, shown
in Figures 5,6, and 7. The strategy for proving completeness
of the algorithm is to define the logical relations, show that
logically-related constructors are related by the algorithm,
and finally show that provably-equivalent constructors are
logically related. Using completeness we can then show the
algorithm terminates for all well-formed inputs.

We use the notation A to denote a Kripke world. Worlds
are restricted to contexts containing no duplicate bound
variables; the partial order 5 on worlds is simply the prefix
ordering.

The logical kind validity relation (A; K) valid is indexed
by the world A and is well-defined by induction on the size
of kinds. Similarly, the logical constructor validity relation
(A; A; K) valid is indexed by a A and defined by induction
on the size of K, which must itself be logically valid.

In addition to validity relations, we have logically-defined
binary equivalence relations between (logically valid) kinds
and constructors. The unusual part of these relations is
that rather than being a binary relation indexed by a world,
they are relations between two kinds or constructors which
have been determined to be logically valid under potentially
difierent worlds. Thus the form of the equivalence of kinds
is (Al; K1) is (A2; K2) and the form of the equivalence
on constructors is (A,; Al; K1) is (Az; AZ; K2). With this
modification, the logical relations are otherwise defined in a
reasonably familiar manner. At the base and singleton kinds
we impose the algorithmic equivalence as the definition of
the logical relation. At higher kinds we use a Kripke-style
logical relations interpretation of ll and C.

With these definitions in hand we construct some derived
relations. The relation (A,;K, 5 LI) is (AZ; KZ < LS) is
defined to satisfy the following “subsumption-like” behavior:

(hl;Al;K~) is (A,;&; KS)
(A;; K1 5 L1 j is {Ai; K2 5 i;,)

(Al; AI; Ll) is (AZ; AZ; ~52)

Finally, we have validity and equivalence relations on envi-
ronments (substitutions mapping variables to constructors)
which are defined by pointwise validity and pointwise equiv-
alence.

We f&t give some basic properties of the logical rela-
tions.

1.

2.

3.

4.

5.

6.

If (Al; K;)valid and A;.>- Al then (A;; Kl)valid.

Zf(Al; KI) is (AZ; Kz), Ai h AI, and Aa 2 A2 then
(A:; KI) is (A:; Kz).

Xf(A,; KI 5 LI) is (AZ; KZ < Lz), A; ? AI, and
A; 2 AZ then (Ah;; KI 5 LI) 7s (A$; Kz < Lz).

If (Al;Al; Kl) is (A,; AZ; K2), Ai k A,, and
Ai k A, then (A{; AI; K1) is (A;; A2; K2).

If (Al;Al; Kl)valid and A; 2 A, then
(A{; AI; KI) valid.

If (Al; yl;rl) is (A,; 72; rZ), A; k AI, and Ai >- A2
then (A;; ~1; rl) is (A;; ~2; r2)

We next give a technical lemma which shows that logical
equivalence of kinds is enough to get logical subkinding.

Lemma 4.2
If (Al; Ll) is (AS; Lz), (AI; hi) is (AI; LI), and
(AZ; ICZ) is (A2; 152) then
(At; KI 5 Ll) is (As; K2 5 IO).

An easy corollary of this lemma may be visualized as the
following rule:

(Al; AI; KI) is (A,; AZ; K2)

(hsK1) is (&$2)

(AI; LI) is (AZ; Lz)

(AGAG LS) is (A2;A2;L2)

The logical relations obey reflexivity, symmetry, and
transitivity properties. The logical relations were carefully
defined so that the following property holds:

Lemma 4.3 (Reflexivity)
1. (A; K> valid if and only if (A; K) is (A; K).

2. (A;A;K)validifandonIyif(A;A;K) is (A;A;K).

3. (A; 7; T’) valid if ad only if (A; y; !?) is (A; 7; I’).

Symmetry is straightforward and exactly analogous to
the symmetry properties of the algorithmic relations.

Lemma 4.4 (Symmetry)
1. If (A,;K,) is (A,; Kz) then (AZ; I(z) is (Al;K,)

2. If (Al;Al; K1) is (Az;As; KS) then
(AS; -42; I(2) is (AI; AI; KI).

3. If (A,; 71; l?l) is (A,; yz;I’z) then
(A2;y2;r2) is (Al;yl;rl).

In contrast, the logical relation cannot be easily shown
to obey the same transitivity property as the algorithm; it
does hold at the base kind but does not lift to function kinds.
We therefore prove a slightly weaker property, which is nev-
ertheless what we need for the remainder of the proof. The
key difference is that the transitivity property for the algo-
rithm involves three contexts/worlds whereas the following
lemma only involves two.

220

l (Al;Kl)valid iff

1. - KI==T
- Or, K1 = S(Al) and (A~;A~;T)valid
- Or, Kl = lkr:K~.K.~ and (Al;K;) valid

(A;;{a*A1}K,‘) IS (A;);(wAZ}K;)
and VA; k Al,A;’ t Al if (Ai;Al;Ki) is (A;‘;Az;K;) then

- Or, K1 = Ca:Kj.K;’ and (Al;Ki)valid and VA), 2 Al,A:) k A, if (Al,;Al;K:) is (A:);&;K;) then
(A;;{a*A1}K;) IS (Al,;{actAz}K;‘)

l (al;Kl) is (Az;K2) iff

1. (AI;Kl)valid and (Az;Kz)valid.

2. And,

- K1 = T and h*z = T
- Or, Kl = S(Al) and K2 = S(A2) and (A~;AI;T) is (A2;Az;T)

- Or, K1 = IIa:Ki.K;’ and K2 = &:Kj.Kf and (Al;Ki) is (AZ; Ki) and t/Al,
(A;;Al;Ki) is (A;;Ag;Ki) then (A,;{cM+A~}K;‘) is (A;;(~H&}K~)

> Al ,A; k A2 if

- Or, Kl = Ca:K;.Kj’and K2 = Ca:fC~.K[and (Al;?:) is (Az;Ki) and VA;
(Ai;A,;Ki) is (A,;Az;K;) then (A,;{a++A~}K~) IS (A~;{LI*Az}K~)

2 Al,Ag 2 AZ if

l (Al;Kl 5 L1) is (AZ; K2 5 L2) iff

1. VA; k Al,A; k A2 if (A;;Al;Kl) is (A;;As;Kz) then (A;;Al;Ll) is (A;;Az;Lz).

Figure 5: Logical Relations on Kinds

l (A; A; ICI) valid iff

1. (A; ICI) valid

2. And,

- Kl=TandAtA:T++AtA:T.
- Or, Kl = S(B) and (A;A;T) is (A;B;T).
- Or, ICI = IIa:K.L, and VA’ k A, A” 2 A if (A’;#; K)

(A”; AB”; {ai-+B”}L).
is (A”; B”; I() then (A’; AB’; {m+ll’}L) is

- Or, ICI = Ca:K.L, (A; nlA; K) valid and (A; n2A; {cu~-+n~A}L) valid

l (AI; AI; KI) is (AZ; AZ; ICZ) iff

1. (Al;Kl) is (AZ; K2)
2. And, (Al;Al;K~)valid and (Az;Az;K2)valid

3. And,

- K1=K2=TandAltA1:T+A2t-A2:T.
- Or, KI = S(R), K2 = S(&), and (Al;Al;T) is (A2;A2;T)
- Or, K1 = l-Icr:K;.Kl’, K2 = l-Ia:K;.K;, and VA: k Al,Ai t A2 if (A;;&; I<;) is (A;;&; K;) then

(A;; AI&; {cwl-+B~}K~) is (A:; AZ&.; {a~&}K~).
- Or, Kl = CCY:K;.K~, I(z = Ccv:K~.K;), (Al; xlA1; K;) is (A2; r1A2; Ki) and

(AI; ~2.41; {~--~IAI}K:‘) is (AZ; 7r2A2; {(Yc)T~A~}K[)

Figure 6: Logical Relations on Constructors

l (A; y; I’) valid iff

1. Vcr E dom(I’). (A; ycy; y@‘(a))) valid.

l (Al;rl;rl) is (AZ; ‘yz;I’z) 8

1. (A,; yl; rl) valid and (A2; y2; r2) valid

2. And, t/a E dom(rl) = dom(r2). (A,; rla; yl (r,a)) is (AZ; “~ZCY; yz(lY2a)).

Figure 7: Logical Relations on Substitutions

221

Lemma 4.5 (Transitivity)
1. If(Al;Kl) is (Al; 151) and (Al;&) is (Az;Kz)

then (A,;Kl) is (Az;Kz).

2. If (Al;Al; K1) is (AI; BI; LI) and
(A,; BI ; 151) is (A,; AZ; KS) then
(AI; AI; KI) is (AZ; AZ; hi).

Because of this restricted formulation, we cannot use
symmetry and transitivity to derive properties such as “if
(Al;Kl) is (A,; KS) then (Al;Kl) is (A,; K1)“. An
important purpose of the validity predicates is to make sure
that this property does in fact hold (by building it into the
definition of the equivalence logical relations).

Next we show that logical relations are closed under head
expansion and reduction. Define r I- Al II A2 to mean that
A1 and A2 have a common weak head reduct. The following
lemma then follows by induction on the size of kinds.

Lemma 4.6 (Weak Head Closure)
1. If (A; A; K) valid A I- A’ Y A, then (A; A’; K) valid.

2. If (A,; Al; K1) is (AZ; AP; K2), AI k A; N Al, and
A2 t- Al N A2 then (AI; A;; KI) is (AZ; A:; Kz).

Following all this preliminary work, we can now show
by induction on the size of kinds that equivalence under
the logical relations implies equivalence under the algorithm.
This requires a stronger induction hypothesis: that under
suitable conditions variables (and more generally paths) are
logically valid or logically related.

Lemma 4.7 (Main Lemma)
1. If (A,; KI) is (AZ; I(z) then Al I- K1 ($ A2 I- K2.

2. If (Al; Al; K1) is (A,; AZ; Kz) then
AI I- A1 : KI e- A2 t- A2 : K2.

3. If (A; K’) valid, A k p t K ti A l-p t K, then
(A;p; K)valid.

4. If (A,;K,) is (A,; K2) and
A~FP~~K~HA~I--~K~ then
(Al;p~;Kl) is (Az;Pz;Kz).

Proof:
Due to space considerations, we show here just the II case in the
proof of Parts 2 and 3.

For Part 2, assume
(A1;Al;Ila:Kj.K.r) is (A2;Az;IIa:Ki.K;). Then
(AI;H~:K.~.K~‘) IS (A2;lla:K;.K);), so
(Al;K;) IS (A2;K;). Now
Al,a:Ki I- Q t K: C) A2,(r:K; I- a t Ki, so inductively by
Part 4 we have (Al,a:K’;a;Ki) is (A,a:Ki;a;K{). Then
(Al,a:Ki;Ala;Kr) is t Az,a:Ki;A2a;Kl). By theinductive
hypothesis, Al ,a:K; I- Ala : K;’ e Az,a:Ki I- Aza : KY.
Therefore Al I- A1 : IIa:Ki.K;’ ++ A2 I- A2 : l3a:Ki.K;.

For Part 3, assume (A; K) valid and A k p t K e, A I- p t K
where K = lTIa:K’.K”. Let A’, A” t A and assume
(A’;B’; K’) is (A”; B”; K’). Indu&ely by Part 2,
A’ I- B’ : K’ tj A” I- B” : K’. Since the ainorithmic relations
are closed under context weakening,
A’ I- pB’ t {Bha)K” +b A” k pB” t {B”*a}K”. By
(A; K) valid, (A’; {B’*a}K”) is (A”; {B”++a}K”).
Inductively by Part 4,

(A’;pB’; {B’t+a}K”) is (A”; pB”; {B”t+a}K”). Therefore
(A; p; lla:K’.K”) valid.

QED

Finally we come to the Fundamental Theorem of Log-
ical Relations, which relates provable equivalence of two
constructors to the logical relations The statement of the
theorem is strengthened to involve related substitutions of
constructors for variables within constructors and kinds.

Theorem 4.8 (Fundamental Theorem)
1. If r I- K and (AI; 71; r) is (AZ; 72; r) then

(AI; YIK) is (AZ; XX).

2. Zfl? I- K, 5 K2 and (A,; n;r) is (A2;yz;I’) then
(Al;nKl 5 nK2) is (&;mKl 5 79164,
(Al;wKl) is (A2;72K1), and
(AI; 7116) is (AZ; xX2).

3. Zfr t Kl E KZ and (AI; yl;I’) is (A2; ^l~;l?) then
(&;-rlI~l) is (A2; YZKZ), (AI;YIKI) is (As;rzKl),
and (&;ylK2) is (&;y~K2).

4. If I’ I- A : K and (A,; yl; r) is (A2; y2;r) then
(AI; YIA; YI K) is (AZ; WA; YzK).

5. Zfr t- A1 z A2 : K and (A,; yl;r) is (A,;y,;I’) then
(&;rlAl;rlK) is (A~;Y~AI;Y~K),
(Al;rlA~;ylK) is (Az;y2A2;72K), and
(AI; ~14; ~110 is (4 7~42; -M).

Proof: We show here the proof of just one case, for
derivations ending in Rule 20.

l?,a:K’ t A : K”

l- t Xa:K’.A : l-Ia:K’.K”

By an easy lemma there is a strict subderivation r t K’, so by
induction, (Al;ylK’) is (Az;-yzK’).
Let (Ai,Ai) h (Al, As) and assume that
(Aj; Bl;mK’) is (AL; Bg;+-ygK’). By monotonicity,
(A1;~l[a++B1];r,a:K’) is (A’;yz[a~Bz];r,a:K’). By
induction, (Al,; (-yl[ao+B1])A;&[a1+B1])K”) is
(A;; (~z[a*&])A; (rzb-+Bzl)K”). Now
Al I- (rl[ati&])A N (-yl(Xa:K’.A))Bl and
A2 t (Ys[actBz])A N (72(Xa:K’.A))B2. By Lemma 4.6,
(Aj; (-yl(Xa:K’.A))&; (yl[ac+B~])K”) is
(A,; (-y~(Xa:K’.A))&; (-y2[aw+B2])K”). Similar arguments
show that (Al;~~(Xa:K’.A);~~(%:K’.K”))valid, that
(A2;72(Xa:K’.A);72(IIa:K’.K”))valid, and that
(Al; yl(TIa:K’.K”)) is (A2;72(I’Ia:K’.K”)). Therefore
(Al;71 (Xa:K’.A);~l(lTa:K’.K”)) is
(A~;y~(Xa:K’.A);m(Ila:K’.K”)).

QED

A straightforward proof by induction on well-formed con-
texts shows that the identity substitution is related to itself:

Lemma 4.9
If I’ I- ok then for all P E dam(r) we have
(r;@; rp) is (r;p;rp). That is, (r;id;r) is (r;id;r)
where id is the identity function.

Corollary 4.10 (Completeness)
1. ZfrI-K1=K2 thenrl-KleJr+Kz.

2. If r I- Al z A2 : K then I? t- Al : K e r I- A2 : K.

222

Intuitively, the algorithmic constructor equivalence re-
lation can be viewed as simultaneously and independently
normalizing the two constructors and comparing the results
as it goes along. Then termination for both terms individ-
ually implies their simultaneous comparison will also termi-
nate. This can be proved by induction on the algorithmic
judgments (i.e., by induction on the steps of the algorithm).

Lemma 4.11
1. If l-1 t- A1 t KI ++ l-1 t- AI t KI and

r2 I- AZ t KZ tf rz I- AZ t K2 then
rl k AI t K1 +) I’z l- AZ t K2 is decidable.

2. If rl I- Ai : K1 o rI t- A1 : K1 and
r2 I- A2 : K2 u r2 I- A2 : K2 then
rr k A1 : K1 H r2 l- AZ : Kz is decidable.

3. If rl l- K1 e rr t K1 and I’z l- KS e r2 t K2 then
r1 k K1 M r2 I- KS is decidable.

Then since every well-formed term is declaratively equiv-
alent to itself, completeness yields the following corollary.

Corollary 4.12 (Decidability)
1. If r t- Al : K and r I- A2 : K then I I- AI : K ++ l- F

AZ : K is decidable.

2. If r + K1 and r t- Icz then r i- ICI e r i- KZ is

decidable.

We conclude this section with an application of complete-
ness.

Proposition 4.13 (Consistency)
Let bl and bz be two distinct constants of kind T. Then
the judgment “ I- bl z & : T 1, is not provable.

This inequivalence (and the inequivalence of Acy:T.a and
Xcu:T.bi at kind T+T mentioned in Section 2.2) is obvious
for algorithmic equivalence, which by completeness transfers
to inequivalence in the declarative system.

In proving soundness of the TILT compiler’s intermedi-
ate language, these sorts of consistency properties are essen-
tial. The argument that, for example, the only closed values
of type int are the integers would fail if the type int were
provably equal to another base type.

5 A Simpler Algorithm

We have shown that constructor equivalence is decidable
by presenting a sound, complete and terminating algorithm.
However, as an implementation it inefficiently maintains two
typing contexts and two classifying kinds. We would prefer
an algorithm more like the declarative rules for equivalence,
having only a single typing context and a single classifier.
The revised algorithmic relations are shown in Figure 8.

The definition of this simplified algorithm is asymmetric
because of essentially arbitrary choices between two prov-
ably equivalent kinds for the classifier or the typing context.
Because we cannot prove directly that this simplified algo-
rithm satisfies any symmetry or transitivity properties, we
cannot simply use the same proof strategy. However, we
can show the simplification is complete with respect to the
previous algorithm, from which the remaining correctness
properties follow easily.

One other small simplification is that in weak head re-
duction we need not worry about a path having a proper
prefix with a definition; for well-formed constructors this
can never occur. (This follows from Lemma 3.1 and the
definition of kind extraction.)

The precise details can be found in the companion tech-
nical report. We simply state the most important results
here.

The proofs use a “size” metric on derivations in the six-
place algorithmic system. This metric measures the size
of the derivation ignoring head reduction or head normal-
ization steps; equivalently, we can define the metric as the
number of term or path equivalence rules used in the deriva-
tion. Since every judgment has at most one derivation in the
six-place system, we can refer unambiguously to the size of
a provable algorithmic judgment.

The following lemma follows by induction on the size
of the given algorithmic judgment. The remaining proofs
are proved in essentially the same way as the corresponding
results for the algorithm of Section 3.

Lemma 5.1
1. Ift- rl x2, rl + K1 E K~, rl F A~ : K~,

r2 t- A2 : K2, ad rl t- A1 : Kl * r2 t- AZ : K2 then
rl t- A1 u .42 : &.

Corollary 5.2 (Completeness)
If r !- A1 E A2 : K then r I- Al ++ A2 : K.

Theorem 5.3 (Soundness)
1. If I’ I- A1 : K, r I- A2 : K, ad r I- A1 * AZ : K then

r I- A1 E AZ : K.

2. IfT~pl:1(1,r~p2:K2,andr~pl+,pzfI(then
r t-pl spz : I<.

Theorem 5.4 (Decidability)
1. If r I- A1 : K and J? I- A2 : K then r I- A1 (j AZ : K is

decidable.

2. If r I- K1 and I’ I- K2 then r I- Kr es K2 is decidable.

6 Related Work

Severi and Poll [18] studied confluence and normalization
of @-reduction for a pure type system with definitions (let
bindings), where 6 is the replacement of an occurrence of
a variable with its definition. Their calculus contains no
notion of partial definitions and no subtyping or subkinding.

David Aspinall [l] studied a calculus X5(1 with singleton
types and ,&equivalence between terms. Labelled singletons
are primitive notions in this system; in the absence of r]-
equivalence the encoding of Section 2.3 does not work. He
conjectured that equivalence in this system was decidable.
Karl Crary [4] studied an extension of A”,” with subtyping
and power kinds and also conjectured thZt typechecking was

decidable.
Singleton kinds should not be confused with the identity

types of extensional Martin-Lijf type theory 1131. There the
type I(K,A, B) represents the type of proofs that A G B :
K. Identity types allow arbitrary equational properties to

223

Weak head reduction
I’ I- E[(h:K.A)A’] cu E[{aeA’}A]
l- F- E[m (AI, Az)] 13 E[Al]

r I- E[AZ (AI, AZ)] Q E[Az]
ri- P-B ifrt-pfS(B)

Algorithmic constructor equivalence
l-l-A1(SAz:T ifrtAIUpl,r~AzUPz,andr~pplC)pztT
l- I- A, M A2 : S(B) always
r k A1 ti AZ : llcr:K’.K” if I’,a:K I- Ala e A2~ : K”
I’ I- A1 e A2 : Ccr:K’.K” if l? t- ?rlAl e7r1 A2 : K’ and I? t- 7rpAl (j x2Az : (cu-HT~A~)K”

Algorithmic path equivalence
rkbiob,tT
r t- a f) a t qcr)
r I- Pl Al ++ pzAz t ++h}Kz
r I- mp1 e+ mp2 t Kl

r c- r2p1 -c-s 7r2P2 t {(YwnPl}K2

Algorithmic kind equivalence
I’kTMT
r I- S(A) w S(A2)
r I- rIcY:l~t.L~ * IIa:K2.L2
r I- CWKI.LI M Ccx:K2.L2

if i=j

ifr+pl ++pztlkK1.Kz andalso rtA1 *A2 : K1
if r I- p1 f-3. p2 t Ca:K, .K2
if r k p1 H pi t CC&~ .K2

always
ifl-I-AleA2:T
if r I- K1 e K2 and I?, a:K1 k L1 +a L2
ifrt-1(1~K2andr,(Y:KI~L1($LZ

Figure 8: A Simplified Algorithm

be expressed, in comparison to the simpler definitional con-
straints allowed by singletons. The cost of identity types
is that typechecking becomes substantially more difficult, if
not undecidable.

Our proof was inspired by that of Coquand [3], but as
the equivalence considered there was not context-sensitive in
any way our algorithm and proof are substantially different.
Because of the validity logical relations and the form of the
symmetry and transitivity properties for logical equivalence,
our attempts to use more traditional Kripke logical relations
(with worlds being pairs of contexts) were unsuccessful.

Other researchers have considered lambda calculi with
more interesting equivalences. Lillibridge [12] considered
a language in which type constructors could be reified as
values and where equivalence depends on the typing con-
text. This system contains subtyping but not subkinding,
so equivalence does not depend on the classifying kind. He
eliminates context-sensitivity by tagging each path with its
enclosing typing context and then giving a rewriting strat-
egy for this t agged system.

Curien and Ghelli [S] gave a proof of decidability of term
equivalence in F< with @preduction and a Top type. Be-
cause their Top type is both terminal and maximal, equiv-
alence depends on both the typing context and the type at
which terms are compared. Context-sensitivity is removed
by the insertion of explicit coercions to mark uses of sub-
sumption. They show decidability by giving a rewriting
strategy for this calculus with coercions.

A drawback of both Lillibridge’s and Curien and Ghelli’s
approaches is that they require a studying a separate tagged
language and proofs that decidability results from this sys-
tem can be transfered back to the original systems. Also,
it does not seem particularly efficient in practice to trans-
late type constructors into a tagged system, normalizing the

tagged constructors, and compare normaI forms.

7 Conclusion and Future Work

We have confirmed that ,f3pequivalence for well-formed con-
structors is decidable in the presence of singleton kinds by
providing a sound, complete, and terminating algorithm.
This algorithm - with minor extensions such as stopping
early when constructors are found to be a-equivalent - is
used by the internal typechecker of the TILT compiler.

The form of our algorithm seems ideally suited for equa-
tional theories in which equivalence depends on the typing
context or the classifier. Examples other than A?” include
systems containing a terminal Top type (where any two
terms of type Top are equivalent), and systems including
records and width subtyping (where only the components
mentioned in the classifying record type matter in determin-
ing the equivalence of two records). Harper and Pfenning [9]
have even applied a simplified version of our algorithm to the
LF type theory, in part because of this sort of flexibility.

Although the pattern of our logical relations proof is
fairly standard, our formulation - in particular, the equiv-
alence relation involving two constructors, two kinds, and
two worlds - appears novel, as is the extension to subkind-
ing and singleton kinds. Because our algorithm is defined
separately from the equivalence rules (rather than being an
rewriting system based on oriented equivalence rules), the
correctness proof is not very sensitive to the exact form of
the X2” typing or equivalence rules.

WZ ex ect that our proof should generalize well to exten-
sions of $” such as subtyping and power kinds like those
found in Crary’s work. The approach may work as well for
other variants of the algorithm.

We are currently investigating the addition of singleton

224

types to the TILT compiler. These seem a promising formal-
ized vehicle for expressing the information needed by cross-
module inlining [2, 191 and modeling the structure sharing
feature of original Standard ML.

The formalization of this paper does not include an ac-
count of type analysis ‘constructs [IS] such as the Typecase
type constructor. Extending the algorithm to account for
these does not seem difficult, but we have not yet checked
carefully to see whether our proof can be correspondingly
extended.

The way in which our algorithm is guided by the classify-
ing kind bears a superficial resemblance to Goguen’s typed
operational semantics [6]. It would be interesting to know if
these techniques could be adapted to our system. This is not
immediately clear, because Goguen applies his technique to
a system in which type constructors have unique kinds and
where extensionality can be implemented via n-reduction.

8 Acknowledgements

We would like to thank Lars Birkedal for his suggestion that
the form of the logical relations should mirror the form of
the algorithmic relations and Karl Crary for his detailed
critique of our proofs. We also thank Perry Cheng, Mark
Lillibridge, Leaf Petersen, Frank Pfenning, John Reynolds,
Jon Riecke, and Rick Statman for helpful discussions.

References

PI

PI

PI

[41

PI

if-31

PI

PI

David Aspinall. Subtyping with Singleton Types. In
Proc. Computer Science Logic (CSL’94), 1995. In
Springer LNCS 933.

Matthias Blume and Andrew W. Appel. Lambda-
Splitting: A Higher-Order Approach to Cross-Module
Optimizations. In Proc. 1997 International Conference
on Functional Programming (ICFP ‘97), pages 112-
124, June 1997.

Thierry Coquand. An Algorithm for Testing Conver-
sion in Type Theory. In Gerard Huet and G. Plotkin,
editors, Logical frameworks, pages 255-277. Cambridge
University Press, 1991.

Karl F. Crary. Type-Theoretic Methodology for Practi-
cal Programming Languages. PhD thesis, Department
of Computer Science, Cornell University, 1998.

Pierre-Louis Curien and Giorgio Ghelli. Decidability
and Confluence of pntop, Reduction in F<. Informa-
tion and Computation, l/2:57-114, 1994. -

Healfdene Goguen. A Typed Operational Semantics for
Type Theory. PhD thesis, University of Edinburgh,
1994. Available as LFCS Technical Report ECS-LFCS-
94-304.

Robert Harper and Mark Lillibridge. A Type-Theoretic
Approach to Higher-Order Modules with Sharing. In
Proc. Blat Symposium on Principles of Programming
Languages, pages 123-137, 1994.

Robert Harper, John C. Mitchell, and Eugenio Moggi.
Higher-order Modules and the Phase Distinction. In
17th Symposium on Principles of Programming Lan-
guages, pages 341-354, 1990.

PI

[ill

P21

[I31

P41

El51

[=I

D71

k31

WI

PO1

WI

Robert Harper and Frank Pferming. On equivalence
and canonical forms in the If type theory. In Proceed-
ings of the Workshop on Logical Frameworks and Meta-
Languages, September 1999. Extended version available
as CMU Technical Report CMU-CS-99-159.

Xavier Leroy. Manifest types, modules, and separate
compilation. In Proc. 2ist Symposium on Principles of
Programming Languages, pages 109-122, 1994.

Xavier Leroy. Applicative Functors and Fully Transpar-
ent Higher-Order Modules. In Proc. 2Pnd Symposium
on Principles of Programming Languages, pages 142-
153, 1995.

Mark Lillibridge. Translucent Sums: A Foundation for
Higher-Order Module Systems. PhD thesis, School of
Computer Science, Carnegie Mellon University, 1997.
Available as CMU Technical Report CMU-CS-97-122.

Per Martin-L&f. Intuitionistic Type Theory. Bibliopolis,
1994.

Yasuhiko Minamide, Greg Morrisett, and Robert
Harper. Typed Closure Conversion. In Proc. 23rd Sym-
posium on Princplea of Programming Languages, pages
271-283, 1996.

Greg Morrisett. Compiling with Types. PhD thesis,
School of Computer Science, Carnegie Mellon Univer-
sity, 1995. Available as CMU Technical Report CMU-
CS-95-226.

Greg Morrisett, David Walker, Karl Crary, and Neal
Glew. From System F to Typed Assembly Language.
Technical Report TR97-1651, Department of Computer
Science, Cornell University, 1997.

George C. Necula. Proof-Carrying Code. In 24th Sym-
posium on Principles of Programming Languages, pages
106-119. ACM Press, 1997.

Paula Severi and Eric Poll. Pure Type Systems with
definitions. In Logical Foundations of Computer Science
‘94, number 813 in LNCS, 1994.

Zhong Shao. Typed Cross-Module Compilation. In
Proc. 1998 ACM SIGPLAN International Conference
on Functional Programming (ICFP ‘98), pages 141-
152, September 1998.

Christopher A. Stone and Robert Harper. Decid-
ing Type Equivalence in a Language with Singleton
Kinds. Technical Report CMU-CS-99-155, Department
of Computer Science, Carnegie Mellon University, 1999.

David Tarditi, Greg Morrisett, Perry Cheng, Chris
Stone, Robert Harper, and Peter Lee. TIL: A Type-
Directed Optimizing Compiler for ML. In Proc. ACM
SJGPLAN ‘96 Conference on Programming Language
Design and Implementation, pages 181-192, 1996.

225

A Rules for X2”

Well-Formed Context , jIYok[

l t ok (1)

l--l-K a e dom(I’)

r, a:K I- ok (2)

Context Equivalence pzq

tare (3)

t l-1 s I?2 rl t K1 E Kz a # dom(rl)
t rlla:KI E rz,d2 (4

Well-Formed Kind

I t ok

I-l-T

rtA:T
r I- S(A)

r,dct I("
r t ndt~'.~~~

r, a:K’ t K”
r t Ca:K’.K”

Subkinding

rtA:T
!J t S(A) 5 T

r t ok

I’tT_<T

I-I-AI EA~:T
I’t S(AI) I S(h)

r t na:K;.K~

fTzq

(5)

(6)

(7)

(8)

-K’

(9)

(10)

(11)

r t K; 5 K; r,dC: t rc;l 5 K;
r t rh:~:.~;’ 5 ~:K;.K: (12)

r t Ca:K;.K:
r I- K: < II-4 r,dc: t K:’ 5 KC

r t Ca:K; .K:’ 5 LxK;.K; (13)

Kind Equivalence Ir t K1 E K2 (

rt ok

I-I-TzT (14)

l?t-Al zAz:T
r I- S(AI) s S(A2)

r t 1-c; 3 K; r,dc; t- K;’ G I(:
r t l-Ia:K;.K;’ i IIa:K;.K;

r I- K; G K; r,ax; t Kf z zq
l-t Ca:K;.K;’ E Ccr:K;.K;

(15)

(16)

(17)

Well-Formed Constructor

rt ok

rtb;:T

rt ok

r t (Y: rya)

T’,a:K’ I- A : K”
r t Xa:K’.A : IIa:K’.K”

I I- A : IIcu:K’.K” r I- A’ : K’
l- I- AA’ : {a+-+A’}K”

r t A : Ca:K’.K”
I’trlA:K

r t- A: c~:K’.K”
r t lF2~ : {a~rl~jK”

r t Ca:K’.K”
r t AI : K’

l? I- A2 : {at-+A~}K”
r t (Al, AZ) : Ca:K’.K”

J?t-A:T
r t- A : S(A)

l-t Ca:K’.K”
rtnlA:K'

l-’ t rr2A : {at+r~A}K”
r t A : Ccu:K’.K”

I t A : IIa:K’.K;
I’, a:K’ I- Acv : K”
r t A : Jh:K’.K”

r t A : Kl l-‘t K1 5 K2
r I- A : Ii-2

p-v-A:K1

(18)

iw
(20)

(21)
(22)

(23)

(24)

(25)

(26)

(271

(28)

Constructor Equivalence II-t-AzA’:KI

r, cv:K’ t A1 z Ap : K” rtA;=A;:K’
r t (x~:K’.A~)A; 3 +-+A:)A~ : ++A:)K”

r t A1 : rIa:K’.K;
l- t A2 : l-Ia:K’.K;

l-, a:K’ t Ala 3 Asa : K”
r t A~ I A~ : II~:K’.K”

r t Ca:K’.K”
I k al Al G nlAz : K’

r t r2~1 E n2~z : +MA~)K~~
r t A1 G A2 : Ca:K’.K”

r k A1 E A; : Kl r t A2 : K2
r t sl(A~,Az) G A; : KI

l-l-A, : K1 r t A2 E A; : K2

r t n2(A1,A2) E A; : K2

r t A: S(B)
I’tArB:T

(29)

(30)

(31)

(32)

(33)

(34)

226

l-I-A=B:T
I7 I- A G B : S(A)

l-‘t-A’rA:K
I’l-AEA’: K

l-l-AsA’:K l- I- A’ s A” : K
I-t-AAA”:K

rl-ok
rl-biSbi:T

I- l-ok
rb a I&: qcy)

r I- K: z K; r,a:K; I- A1 3 Az : K”
r I- hK;.A1 E Xa:K;.Az : IhK’.K”

I- I- A1 I Az : Ccr:K’.K”
r I- 7rz.A~ E ?rzAz : {cwr~A~}K”

r t- Cct:K’.K”
I-’ t- A; z A; : K’

l-l-A;'= A;’ : {m-+A;}K”
r I- (A;, AI’) I (A;, A;‘) : Ca:K’.K”

l-l-A1=Az:K l-l-K<Kt
I I- A1 E A2 : K’

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

227

