
Alice ML Through the Looking Glass (Draft)
Andreas Rossberg Didier Le Botlan Guido Tack

Thorsten Brunklaus Gert Smolka

December 21, 2004

intellecttm

Abstract: We present the Alice ML programming language, a functional language that has been designed with
strong support for typed open programming. Alice incorporates concurrency with data flow synchronisation,
higher-order modularity, dynamic modules, and type-safe pickling. Based on these mechanisms it provides a
flexible notion of component, and high-level facilities for distributed programming.

0.1 INTRODUCTION

Software is decreasingly delivered as a closed, monolithic whole. As complexity and integration of software
grows it becomes more and more important to allow flexible dynamic acquisition of additional functionality. Also,
program execution is no longer restricted to one local machine only. With the Internet having gone mainstream
and net-oriented applications being omni-present, programs become increasingly distributed across local or global
networks. As a result, programs need to exchange larger amounts of data, and the exchanged data is of growing
complexity. In particular, programs need to exchange behaviour, that is, data may include code.

We refer to development for the described scenario as open programming. Our understanding of open pro-
gramming includes the following main characteristics:

• Modularity, the ability to flexibly combine software blocks that were created separately.

• Dynamicity, the ability to import and export software blocks in running programs.

• Safety, the ability to safely deal with unknown or untrusted software blocks.

• Distribution, the ability to communicate data and software blocks over networks.

• Concurrency, the ability to deal with asynchronous events and perform tasks non-sequentially.

Software blocks intended for dynamic combination are usually called components.
Most practical programming languages today have not been designed with open programming in mind. Even

the few that have been – primarily Java [GJS96] – do not adequately address all of the above points. For exam-
ple, Java is not statically type-safe, has only weak support for import/export, and rather clunky distribution and
concurrency mechanisms.

The programming language Oz [Smo95, Moz04, VH04] has the most advanced support for open programming
so far, with an expressive component model and high-level concurrency and mobility, but lacking static typing.
The aim of the Alice project [Ali04a] is to systematically reconstruct the essential functionality of Oz on top of a
simple and well-understood, typed functional core language.

The result is the programming language Alice, a conservative extension of Standard ML [MTHM97]. It adds
only few simple, orthogonal high-level concepts that together form a coherent framework supporting all aspects
of typed open programming. A central notion in this framework are components. However, they are not a prim-
itive concept but actually derived from several simpler concepts. Alice is strongly typed and supports typeful
programming [Car91] with abstraction safety (encapsulation) preserved at all times.

The Alice ML language has been implemented in the Alice Programming System, a fully-featured program-
ming environment based on a novel VM with just-in-time compilation, and noticeably support for platform-
independent persistence and platform-independent mobile code, and a rich library for constraint programming.



Organisation of the paper

This paper describes the concepts introduced in Alice to enable open programming. In order to support concur-
rency and laziness, Alice provides the concept of futures, described in Section 0.2. A higher-order extension to
the SML module system enhances modularity and is briefly sketched in Section 0.3. Type-safe import and export
is realized by introducing dynamically typed modules called packages that can be pickled, as described in Sec-
tion 0.4. In Section 0.5 we introduce the component model and show in Section 0.6 how it can be decomposed.
Communication through a network based on components is considered in Section 0.7. We illustrate most of the
features of Alice in Section 0.8 considering the case study of a distributed solver for constraint programming. We
discuss related work in Section 0.10 and conclude in Section 0.11.

0.2 FUTURES

Programs communicating with the outside world usually have to deal with non-deterministic events, at arbitrary
points in time. Purely sequential programming cannot adequately handle such scenarios. Alice hence has been
designed as a concurrent language throughout.

Concurrency in Alice is based uniformly on the concept of futures [NSS02], which has been mostly adapted
from Multilisp [Hal85]. A future is a transparent place-holder for a yet undetermined value that allows for implicit
synchronisation based on data flow. There are different kinds of futures, which we will describe in the following
sections. Futures are a generic mechanism for communication and synchronisation. As such, they are compara-
tively simple, but expressive enough to enable formulation of all kinds of communication abstractions or explicit
synchronisation patterns.

0.2.1 Concurrency

In Alice, any expression can be evaluated in its own thread. A simple expression form allows forking off concurrent
computation for evaluating an expression:

spawn exp

This phrase immediately evaluates to a fresh concurrent future, standing for the yet unknown result of exp. Simul-
taneously, evaluation of exp is initiated in a new thread. As soon as the thread terminates with a value v, the future
will be replaced by v.

A thread is said to touch a future [FF95] when it performs an operation that requires the actual value the future
stands for. A thread that touches a future is suspended automatically until the future’s value is determined. This is
known as data flow synchronisation.

If a concurrent thread terminates with an exception, the respective future is said to be failed. Any operation
touching a failed future will cause the respective exception to be synchronously re-raised in the current thread.

Thanks to futures, threads give results, and concurrency can be orthogonally introduced for arbitrary parts of
an expression. For example, to evaluate all constituents of the application e1(e2,e3) concurrently, it is sufficient
to annotate the application as follows:

(spawn e1) (spawn e2, spawn e3)

Hence, threads blend perfectly into the “everything is an expression” philosophy of functional programming. For
that reason, we call them functional threads.

Functional threads allow turning a synchronous function call to a function f into an asynchronous one by
simply prefixing the application with spawn:

val result = spawn f (x, y, z)

The ease of making asynchronous calls even where a result is required is important in combination with distributed
programming (Section 0.7), because it allows for lag tolerance: the caller can continue its computation while
waiting for the result to be delivered. Data flow synchronisation ensures that it will wait if necessary, but at the
latest possible time, thus maximising concurrency.

Futures provide for many-to-one communication and synchronisation. Consider the following example:

val offset = spawn (sleep (Time.fromSeconds 120); 20)
val table = Vector.tabulate (40, fn i => spawn fib (i + offset))

2



The first declaration starts a thread that takes two minutes to deliver the value 20. The computation for the
table entries in the second declaration depends on that value, but since the entries are computed concurrently,
construction of the table can proceed without delay. However, the individual threads computing its content will
all block until offset is determined. Consecutive code can access the vector without caring about the progress
of the threads. If evaluation depends on a value that is not yet determined, it will automatically block as long as
required.

Besides implicit synchronisation, Alice offers library primitives for explicit synchronisation:1

val await : ’a -> ’a
val awaitEither : ’a * ’b -> (’a,’b) alt

The functionawait is a future-strict variant of the identity function: if applied to a future, it blocks until the future
has been replaced by a proper value. A straightforward abstraction using this function is the barrier function that
implements a join point by computing a list of functions concurrently and waiting for all of them to terminate:

fun barrier fs = map await (map (fn f => spawn f ()) fs)

The function awaitEither implements non-deterministic choice: given two futures it blocks until at least
one has disappeared. It is sufficient as a primitive to encode complex synchronisation with multiple events. As a
simple example, consider an abstraction for waiting with time-out:

fun awaitTimeout time x =
case awaitEither (x, spawn sleep time) of

FST x => x
| SND _ => raise Timeout

0.2.2 Laziness

SML is an eager language. While eager evaluation has advantages (e.g. making algorithmic complexity more
predictable), certain algorithms are expressed more elegantly or more efficiently with lazy evaluation. It has
become a common desire to marry eager and lazy evaluation, and the future mechanism provides an elegant way
to do so. Alice keeps eager semantics the default behaviour, but full support for laziness is available through a
lazy variant of futures. A lazy future is introduced analogously to a concurrent one: the phrase

lazy exp

will not evaluate exp, but instead returns a fresh lazy future, standing for the yet unknown result of exp. Evaluation
of exp is triggered by a thread first touching the future. At that moment, the lazy future becomes a concurrent
future, associated with a fresh thread performing the computation. Evaluation proceeds as for concurrent futures.

In other words, lazy evaluation can be selected for individual expressions. A fully lazy evaluation regime can
be emulated by prefixing every subexpression with the lazy keyword, but usually only few strategic annotations
are necessary. In order to support the definition of lazy functions conveniently, Alice extends the definition of
SML’s sugared function declaration syntax with support for the lazy keyword.

0.2.3 Promises

Functional threads and lazy evaluation offer convenient means to introduce and eliminate futures. However, the
direct coupling between a future and the computation delivering its value often is too inflexible, because it demands
an initial commitment to the way the information is obtained. Alice hence offers promises as a more fine-grained
mechanism that allows for creation and elimination of futures in separate operations.

Promises are available through a library structure named Promise, with the following signature:

type ’a promise
exception Promise
val promise : unit -> ’a promise
val future : ’a promise -> ’a
val fulfill : ’a promise * ’a -> unit

1The type alt is defined in the Alice library as: datatype (’a,’b) alt = FST of ’a | SND of ’b

3



fun append (l1, l2) =
let

fun iter (p, nil) = fulfill (p, l2)
| iter (p, x::xs) = let val p’ = promise ()

in fulfill (p, x::future p’); iter (p’, xs) end
val p = promise ()

in
iter (p, l1); future p

end

FIGURE 1. Tail-recursive append with promises

A promise is an explicit handle for a future. It virtually states the assurance that a suitable value determining
the future will be made available at some later point in time, fulfilling the promise. The promised future itself is
obtained by applying the future function to the promise. It largely behaves like a concurrent future, in particular
by allowing data flow synchronisation, except that it is not replaced automatically, but has to be eliminated by
explicitly applying the fulfill function to its promise. A promise may only be fulfilled once – any further
attempt will raise the exception Promise.

Promises allow the partial and top-down construction of data structures with holes, as exemplified by the
tail-recursive formulation of the append function shown in Figure 1. However, they are particularly important
for concurrent programming: for example, they can be used to implement streams and channels as lists with a
promised tail, and they provide an important primitive for programming synchronisation, as we will see in the
next section.

0.2.4 Thread Safety

When multiple threads share mutable state it is imperative to synchronise access, usually by forms of locking on
critical sections. Alice has no locking mechanism built into the language proper. Instead it provides the necessary
primitives that enable providing synchronisation mechanisms as library abstractions. A crucial primitive is the
atomic exchange operation on references, a variant of the fundamental test-and-set operation [Hal85]:

val exchange : ’a ref * ’a -> ’a

The exchange operation is sufficient to bootstrap basic synchronisation mechanisms. Without further primitives
their implementation would often require forms of polling, though. Along with futures and promises such polling
can be circumvented.

As a simple example demonstrating this, Figure 2 presents a higher-order function implementing mutex locks
for synchronising an arbitrary number of functions.2 The following snippet illustrates its use to synchronise
concurrent communication to standard output, by preventing execution of f and g to be interleaved:

val mutex = mkMutex ()
val f = mutex (fn x => (print "x = "; print x; print "\n"))
val g = mutex (fn y => (print y; print "\n"))
spawn f "A"; spawn g "B"; spawn f "C"

0.2.5 Modules and Types

Futures are not restricted to the core language, entire modules can be futures, too. In particular, module expressions
can be evaluated lazily or concurrently, by explicitly prefixing them with the corresponding keywords lazy or
spawn. More importantly, we will see in Section 0.5 that lazy module futures are ubiquitous as a consequence of
the lazy linking mechanism for Alice components.

The combination of module futures and dynamic types (Section 0.4) also implies the existence of type futures.
They are touched only by the unpack operation introduced in Section 0.4.1 and by pickling (Section 0.4.2).
Touching a type generally can trigger arbitrary computations, e.g. by loading a component (Section 0.5).

2Alice defines exp1 finally exp2 as syntactic sugar for executing a finaliser exp2 after evaluation of exp1 regardless of
any exceptional termination, similar to the try. . .finally. . . in other languages.

4



(* mkMutex : unit -> (’a -> ’b) -> (’a -> ’b) *)
fun mkMutex () =
let

val r = ref () (* create lock *)
in

fn f => fn x =>
let

val p = promise ()
in

await (exchange (r, future p)); (* take lock *)
f x
finally fulfill (p, ()) (* release lock *)

end
end

FIGURE 2. Mutexes for synchronised functions

0.3 HIGHER-ORDER MODULES

For open programming, good language support for modularity is vital. The SML module system is quite advanced,
but still limited by its restriction to first-order functors (parameterised modules) and its stratified design (modules
cannot be declared locally). Following a long line of work on higher-order modules [DCH03, Ler95, Lil97,
Rus98], Alice extends the SML module system in three ways:

• Higher-order functors. Functors can be arbitrarily nested and parameterised over other functors.

• Nested and abstract signatures. Signatures can be wrapped in structures and be specified abstractly.

• Local modules. All module entities can be defined within core let expressions.

Local modules are important for dealing with packages (Section 0.4), while the other two extensions allow more
general forms of abstraction. In particular, they turn structures into a general container for all language entities,
which is crucial for the design of the Alice component system (Section 0.5).

Abstract signatures have received little attention in literature, but they are interesting because they enable the
definition of polymorphic functors, exemplified by a general application functor:

functor Apply (signature S signature T) (F : S -> T) (X : S) = F X

Polymorphic functors are used in the Alice library to provide certain functionality at the module level. We will see
an example of this in Section 0.8. The presence of abstract signatures renders module type checking undecidable
[Lil97], but this has not turned out to be a problem in practice.

Space consideration preclude a detailed presentation of the Alice module language, but the knowledgeable
reader will realise that the above extensions turn it into a higher-order functional language that closely mirrors the
module language of OCaml [Ler03], except that functors are not applicative (in particular, OCaml type checking
is equally undecidable).

0.4 PACKAGES

When a program is supposed to be open – i.e. able to import and export data and functionality dynamically, from
statically unknown sources – then a certain amount of runtime checking is required to ensure the integrity of the
program and the runtime system. In a language with a strong static type system, like ML, it particularly must be
ensured that dynamic imports cannot undermine the type system. How can the tension be resolved?

Dynamics as a way to complement static typing with dynamic type checking were first proposed by Mycroft
[Myc83] and refined by Abadi, Cardelli, Pierce & Plotkin [ACPP91, ACPR95]. Intuitively, they introduce a
universal type dyn of ‘dynamic values’ that carry runtime type information. Values of every type can be injected
into this type. Projection is a complex type-case operation that dispatches on the runtime type found in the dynamic
value.

5



Dynamics maintain most properties of the static type system by isolating dynamic typing, and they solve the
problem of open programming by demanding external values to uniformly have type dyn. We see several hurdles
that nevertheless prevented the adoption of dynamics in practice: (1) the improper level of granularity they provide
for wrapping objects, (2) the complexity of the type-case construct, particularly with respect to polymorphic types,
(3) the lack of flexibility with matching types, which makes them fragile against interface changes.

For Alice we hence modified the concept of dynamics slightly: instead of encapsulating core values, dynamics
in Alice – called packages – contain modules. Projection simply matches the runtime package signature against
a statically specified one – with full respect for subtyping. Reusing module subtyping instead of type matching
and dispatch has several advantages: (1) it keeps the language simple, (2) it is flexible, and (3) it allows the
programmer to naturally adapt idioms already known from modular programming. Moreover, packages allow
modules to be passed as first-class values, a capability that is sometimes being missed from ML, and becoming
increasingly important with open programming. In Section 0.5 we will see that packages actually are expressive
enough to form the basis of a sophisticated component system.

0.4.1 Basics

Packages are the exclusive means for integrating dynamic typing into Alice. A package is a value of the abstract
type package. Intuitively, it contains a module, along with a dynamic description of its signature.

There are only two basic operations on packages. A package is created by injecting a module, expressed by a
structure expressions strexp in SML3 into the type package:

pack strexp : sigexp

The signature expression sigexp defines the package signature. Of course, the module expression strexp must
statically match this signature. The inverse operation is projection, eliminating a package. The module expression

unpack exp : sigexp

takes a package computed by exp and extracts the contained module, provided that the package signature matches
the target signature denoted by sigexp. Statically, the expression has the signature sigexp. If the dynamic check
fails, the pre-defined exception Unpack is raised.

0.4.2 Pickling

The primary purpose of packages is to type dynamic import and export of high-level language objects. At the
core of this functionality lies a service called pickling. Pickling takes a value and produces a transitively closed,
platform-independent representation of it that is transferable to other processes, where an equivalent copy of the
original value can be constructed. Since ML is a language with first-class functions, a pickle can naturally include
higher-order data, i.e. closures and code. Due to packages, even entire modules can be pickled.

One obvious application of pickling is persistence, available through two primitives in the library structure
Pickle:

val save : string * package -> unit
val load : string -> package

The save operation takes a file name and a package and writes it to that file. Any eventual future occurring in
the package will be touched. If the package contains a local resource, i.e. a value that is private or meaningless
outside the process, then the exception Sited is raised (we return to the issue of resources in Section 0.5.3). The
inverse operation load takes a file name and retrieves a package from the respective file.

For example, we can write the library structure Array to disk, using the following idiomatic code:

Pickle.save ("/tmp/array.alc", pack Array : ARRAY)

It can be retrieved again with the inverse sequence of operations:

structure Array1 = unpack Pickle.load "/tmp/array.alc" : ARRAY

Any attempt to unpack it with an incompatible signature will fail with an Unpack exception.
All subsequent accesses to Array1 or members of it are statically type-safe, no further checks are required.

The only possible point of type failure is the unpack operation.

3Note that Alice supports higher-order modules, such that strexp includes functor expressions.

6



0.4.3 Dynamic Type Sharing

Note that the type Array1.array from the example in the previous section will be statically incompatible with
the original type Array.array, since there is no way to know statically what type identities are found in a
package, and all types in the target signature must hence be considered abstract. If compatibility is required, it can
be enforced in the usual ML way, namely by putting sharing constraints on the target signature:

structure Array1 = unpack Pickle.load "/tmp/array.alc"
: ARRAY where type array = Array.array

The constraint effectively expresses dynamic type sharing. By restricting the target signature we ensure static
compatibility, but of course we also preclude successful loading of non-standard implementations of arrays. Much
like for programming with functors, it depends on the application how much sharing is required. Note that dynamic
type sharing can be employed for typeful programming [Car91] with dynamic types, when packages themselves
contain the implementation of abstract types.

0.4.4 Parametricity

By utilising dynamic type sharing it is possible to dynamically test for type equivalences. In other words, evalua-
tion is not parametric [Rey83] in Alice. For example, the functor

functor F (type t) = unpack load file : sig val it : t end

behaves differently depending on what type it is passed.
Parametricity has important advantages:

• Theorems for free [Wad89]. Polymorphic types state strong invariants about terms, which allow deriving a
variety of useful laws.

• Abstraction [Rey83, MP88]. It is possible to achieve encapsulation solely by abstracting over types.

• Type erasure. Programs can be compiled and executed without maintaining costly type information at runtime.

Let us defer the second point to the next section and focus on the other two. Here, losing parametricity is partic-
ularly problematic for the core language, where polymorphism is ubiquitous. Alice thus has been designed such
that the core language maintains parametricity. As long as the package type is excluded, all laws derived by
parametricity hold for polymorphic functions. Polymorphic expressions do not depend on any type information
and their use is no more costly than in plain SML.

Only on the module level dynamic type information is required – the evaluation of module expressions can be
type-dependent. This design reduces the costs for dynamic types and provides a clear model for the programmer:
the only type information relevant to the dynamic semantics (and its costs) are explicitly declared in the program.
Implicit type information on the core level is not relevant.

The restriction of type-driven evaluation to the module language is not without drawback. The fact that or-
dinary evaluation cannot depend on types significantly restricts the expressive power of the language. In our
experience however, there is no strong need for more liberal dynamic typing. Thanks to higher-order and local
modules (Section 0.3) it is often possible to lift the procedure in question to a functor. Moreover, packages provide
a systematic way to work around the restriction: because they can carry modules and hence explicit types, they
can be abused to pass dynamic type information to core functions if really required.

0.4.5 Abstraction Safety and Generativity

The absence of parametricity on the module level still raises the question of how dynamic typing interferes with
type abstraction. Can we sneak through an abstraction barrier by dynamically discovering an abstract type’s
representation? Viz:

signature S = sig type t; val x : t end
structure M :> S = struct type t = int; val x = 37 end
structure M’ = unpack (pack M : S) : (S where type t = int)
val y = M’.x + 1

7



Fortunately, the unpack operation will fail at runtime. This behaviour is achieved by a dynamically generative
interpretation of type abstraction in Alice: with every abstraction operator :> evaluated, fresh type names are gen-
erated dynamically [Ros03]. Abstraction safety is maintained even across process boundaries, because type names
are globally unique. There is no way within the language to break abstractions, even when their implementations
are exported.

The generative semantics of abstract types implies that execution of the same implementation of an abstraction
will create incompatible instances between runs of the same program, or between different processes loading it.
However, this is not a severe restriction, because the availability of module-level pickling enables us to execute
it only once and then share the same evaluated instance of the abstraction between processes. As we will see in
Section 0.5.4, pickling a module actually creates a proper component that is interchangeable with components
generated by the compiler.

0.5 COMPONENTS

Software of non-trivial complexity can neither be developed nor deployed as a monolithic block. To keep the
development process manageable, and to allow flexible installation and configuration, software has to be split into
functional building blocks that can be created separately and configured dynamically. Such building blocks are
called components. We distinguish components from modules: while modules provide name spacing, genericity,
and encapsulation, components provide physical separation and dynamic composition. Both mechanisms comple-
ment each other. It is the component system that enables closing over free references in a module implementation
and hence turning it into a self-enclosed entity.

Alice incorporates a powerful notion of component, that is a refinement and extension of the component system
found in the Oz language [DKSS98], which in turn was partially inspired by Java [GJS96]. It provides all of the
following:

• Separate compilation. Components are physically separate program units that can be translated independently.
• Lazy dynamic linking. Loading is performed automatically when needed, by the run-time system.
• Static linking. Optionally, components can be bundled into larger components off-line.
• Dynamic creation. Programs can compute and export components dynamically.
• Type safety. Components carry type information, and linking involves dynamic type checks.
• Flexibility. Type checking is based on signature matching and is thus tolerant against interface changes.
• Sandboxing. Configurable component managers enables setting up custom import policies.

0.5.1 Introduction

Components are the unit of compilation as well as the unit of deployment in Alice. A program consists of a –
potentially open – set of components that are created separately and loaded dynamically. Static linking allows
both to be performed on a different level of granularity by bundling given components to form larger ones.

Every component defines a module – its export – and accesses an arbitrary number of modules from other
components – its imports – to realise this definition. Both, import and export interfaces, are fully typed by
ML signatures. Each Alice source file defines, and is compiled into, a component. Syntactically, a component
definition primarily is a sequence of SML declarations that is interpreted as a structure body, forming the export
module. The respective export signature is inferred by the compiler.

A component can access other components by importing from them. Syntactically, import is performed by a
declaration of the form

import spec from string

All import declarations have to appear before the first proper declaration in the component definition. The SML
signature specification spec in an import declaration describes the entities used from the imported structure, along
with their type. Because of Alice’s higher-order modules (Section 0.3), these entities can include functors and
even signatures. All identifiers bound in the specification are in scope in the rest of the program. The string
contains the URL under which the component is to be acquired at runtime. The exact interpretation of the URL is
up to the the component manager and its resolver (Section 0.5.3), but usually it either is a local file, an HTTP web
address, or a virtual URL denoting local library components. For example, the following are valid imports:

import structure Pickle : PICKLE from "x-alice:/lib/system/Pickle"

8



import structure Server :
sig val run : (’a->’b) -> (’a->’b) end from "http://domain.org/server"

For convenience, Alice allows the type annotations in import specifications to be dropped. In that case, the
imported component must be accessible (in compiled form) during compilation, so that the compiler can insert
the respective types from its signature. For example, the previous import declarations could be written as

import structure Pickle from "x-alice:/lib/system/Pickle"
import structure Server from "http://domain.org/server"

This is particularly needed for large modules, where repeating the signature would be tedious. As an additional
service, the compiler automatically thins implicit signatures to the minimum content required by the compiled
component, making it maximally robust against eventual changes in parts of an interface that are not accessed.

0.5.2 Program Execution and Dynamic Linking

A designated root is the main component of a program. To execute a program, its root component is evaluated.
Loading of imported components is performed lazily – components are only loaded when needed. This is achieved
by treating every cross-component reference – i.e. a reference to an imported entity in a component – as a lazy
future (Section 0.2.2). Every component is loaded and evaluated only once.

The process of loading a component requested as import by another one is referred to as dynamic linking. It
involves several steps:

1. Resolution. The import URL is normalised to a canonical form.

2. Acquisition. If the component has not been loaded already from the URL, it is done so.

3. Evaluation. If the component has been loaded afresh, it is evaluated.

4. Type Checking. The component’s export signature is matched against the respective import signature.

Each of the steps except for the first can fail: the component might be inaccessible or malformed, evaluation may
terminate with an exception, or type checking may discover a mismatch. Under each of these circumstances, the
respective future is failed with the standard exception Component.Failure that carries a description of the
precise cause of the failure.

0.5.3 Component Managers and Sandboxing

Linking is performed with the help of a component manager, which is a module of the runtime library. A compo-
nent manager is similar to a class loader in Java [GJS96]. It is responsible for locating and loading components,
and keeping a table of components already loaded by a process.

In an open setting it is important to be able to deal with untrusted components. For example, an untrusted
component should not be given write access to the local file system. Alice inherits the approach taken by Java,
where components can be executed in a sandbox. Sandboxing relies on two factors: (1) all resources and capabil-
ities a component needs for execution have to be acquired via import through a component manager (in particular,
they cannot be taken from a pickle, because they cannot be pickled); (2) it is possible to create custom managers
and explicitly link components through them. The implementation of a custom manager can only use capabilities
provided by its ‘parent’ manager, so it can never grant more access than it has itself. A custom manager hence
represents a proper sandbox.

0.5.4 Dynamic Creation of Components

The external representation of a component is a pickle. It is hence possible to create a component not only
statically, by the compiler, but also dynamically, by a running Alice program. In fact, a pickle created with the
Pickle.save function (Section 0.4.2) is a component and can be imported as if it had been created through
compilation. The ability to create components dynamically is particularly important for distributed programming,
as we will see in Section 0.8. Basically, it allows the creation of components that close over dynamically obtained
information, e.g. configuration data or connections to other processes.

9



val table = ref []

fun link parent url =
let

val url’ = resolve (parent, url) (* get absolute URL *)
val p = promise ()
val table’ = exchange (table, future p) (* lock table *)

in
case List.find (fn (x,y) => x = url’) table’ of

SOME package => (* already in table *)
(fulfill (p, table’); package) (* release lock, return *)

| NONE => (* new *)
let

val component = acquire url’ (* load component *)
val package = lazy component (link url’) (* evaluate component *)

in
fulfill (p, (url’, package) :: table’); (* release lock *)
package

end
end

FIGURE 3. The essence of a component manager

0.6 DECOMPOSING COMPONENTS

What are components? The close relation to concepts presented in previous chapters, like modules, packages and
futures is obvious, so one might hope that there exists a simple reduction from components to simpler concepts.
And indeed, components are merely syntactic sugar. Basically, a component defined by a sequence of declarations
dec is interpreted as a higher-order procedure:

fn link => pack struct dec end : sigexp

where link is a reserved identifier and sigexp is the component signature derived by the compiler (the principal
signature of the structure). In dec, every import declaration

import spec from s

is rewritten as

structure strid = lazy unpack link s : sig spec end
open strid

where strid is a fresh identifier. The expansion makes laziness and dynamic type checking of imports immediately
obvious. Component acquisition is encapsulated in the component manager represented by the link procedure.
Every component receives that procedure for acquiring its imports and evaluates to a package that contains its
own export. The link procedure has type string -> package, taking a URL and returning a package
representing the export of the component identified by the URL. Imports are then simply structure declarations
that lazily unpack that package.

The link procedure represents the core of a component manager. Its job is locating components and keeping
a table of loaded components. If a component is requested for the first time it is loaded, evaluated and entered
into the table. Figure 3 contains a simple model implementation of such a procedure, that assumes existence of
two auxiliary procedures resolve, for normalising URLs relative to the URL of the parent component, and
acquire for loading a component from a normalised URL. The procedure takes the parent URL as an additional
parameter in order to allow the respective resolution. Note that the manager uses promises to implement locking
on the component table, to achieve proper reentrancy (Section 0.2.4).

Giving this reduction of components, execution of an Alice program can be thought of as evaluation of the
simple application

link "." root

10



where link is the initial component manager and root is the URL of the program’s root component, resolved
relative to the “current” location which we indicate by a simple dot here.

0.7 DISTRIBUTION

This section deals with distributed programming in Alice. Noticeably, only a few high-level primitives suffice
to hide all the embarrassing details of low-level communication. We first explain how to set up a client-server
connection4. Then, we consider a distributed scenario of computation with master and slave processes.

0.7.1 Client-Server

In our model, a client first establishes a connection to a server, then uses that connection to exchange values.

Establishing a connection The purpose of a server is to offer a service. In Alice, this service takes the form of
a local component, which we refer to as the mobile component. Mobile components can be made available in a
network through a simple transfer mechanism adapted from Mozart [Moz04]. To employ it, a component is first
packaged (see packages, Section 0.4), and then made available for download using the following primitive of the
Remote library:

val offer : package -> string

Given a package (Section 0.4), the function returns a URL, called a ticket, which publicly identifies the package in
the network. It is communicable to the outside world by any possible means such as a link on a web page, email,
by telephone, or pigeons. The client can use that ticket to fetch the package with Remote.take:

val take : string -> package

This primitive expects a valid ticket and retrieves the corresponding package from the server. The package can then
be opened using unpack, which dynamically checks that the package signature matches the expected signature.
As a result, the downloaded module is available to the rest of the program. Noticeably, this is the only point in the
program where a dynamic type check is necessary. Indeed, from now on, static type checking suffices to ensure
that all communication is dynamically well-typed.

Two-way connection So far, we can transfer a component from a server to a client. This component may contain
code, types and signatures. However, we have not shown yet how the client can communicate values back to the
server. This is achieved by implementing some functions in the mobile component as proxies. A proxy is a
mobile, remote wrapper for a stationary function: when applied on a site, the call is automatically forwarded to
the original site as remote procedure call. Arguments and results are automatically transferred between sites by
means of pickling. Proxies are created using the following primitive of the Remote library:

val proxy : (’a -> ’b) -> (’a -> ’b)

As a higher-level abstraction, a polymorphic functor (Section 0.3) Remote.Proxy is available to transform all
functions of a given structure into proxies.

As an example, the expression proxy (fn x => x+1) creates a synchronous proxy. All its invocations
on the client side will result in a synchronous remote function call. In order to create asynchronous proxies, it
suffices to wrap the definition using spawn. This immediately returns a future that will be bound to the result of
the remote call once it has finished.

Using a Connection We see that using a connection simply consists in calling a proxy function. Furthermore,
no dynamic type check is necessary once the connection is established since all remote calls through proxies are
necessarily well-typed. This makes a significant difference: if transmission were explicit through offer and
take, all data would have to be dynamically type-checked on unpacking.

In the setting we have described, only the client can call a proxy on the server side. In order to get a more
symmetrical connection, it is still possible to transmit a client-side proxy to the server. Indeed, since functions are
first-class values, such a proxy can perfectly be shipped as the argument of some server-side function. Such an
example of a symmetrical two-way connection is given in Section 0.8, where we describe a distributed constraint
solver.

4Where “connection” means a logical connection, and is definitely not a permanent connection at the network level.

11



0.7.2 Distribution: master-slave

In the client-server setting, clients choose independently to connect to a known server. In contrast, in an alternative
distribution scenario a master initiattes shifting computational tasks to a number of slave computers. The Alice
Remote library provides a functor Execute that automatically performs most of the respective procedure. More
precisely, it connects to a remote machine by using a low-level service (such as ssh), and starts a process that
immediately connects to the master. This slave then evaluates a component and sends the result back to the master.

functor Execute (val host : string
signature RESULT
functor Start (CM: COMPONENT_MANAGER) : RESULT) : RESULT

Execute is a polymorphic functor (Section 0.3) that expects two concrete arguments: the name of the remote
host, and a functor Start to be executed remotely. Start is basically a component that will be evaluated on the
slave machine. It expects as an argument a structure representing the local component manager (see Section 0.5.3)
that can be used to access local libraries and resources.

By using proxies defined outside of the functor Start, and by creating proxies inside the functor and ex-
ported in the RESULT signature, a two-way communication is immediately established. We illustrate the use of
Execute with a practical example in the next section.

0.8 DISTRIBUTED SOLVER

In this section, we illustrate the main features of Alice by showing the implementation of a distributed application,
namely a distributed solver for constraint programming.

Description In the context of constraint programming, a solver is a program that explores a tree in order to find
the solutions of a given constraint program. Nodes of the tree represent choice points. Leaves represent failures
(previous choices are inconsistent) or solutions. From a logical point of view, searching amounts only to traversing
a tree and asking the status of each node.

In a distributed setting, each remote computer (worker) explores a different subtree. The interesting infor-
mation, that is the solutions, are transmitted back to a manager. The manager also organises the search. In the
following, we focus on the distribution aspect. More information about the search itself can be found in [TL04],
which contains a formalisation of the underlying abstractions.

The interface between the workers and the manager can be represented as follows (see Chapter 9 of [Sch02]
for a more detailed presentation of this interface):

ManagerWorker

find

collect

ManagerWorker

share

explore

stop

The find message is sent by a worker that is idle. It requests a job, that is, the path of a subtree of the search
tree that remains to be explored. When a worker encounters a solution, it sends the collect message, along
with the solution, to the manager. The share message is used by the manager to ask a worker whether it
can give away a subtree that remains to be explored. The worker is required to answer either negatively, or
positively by providing the path associated to the corresponding unexplored subtree (hence the type unit ->
path option below), The manager commands a worker to explore a subtree by sending the exploremessage
along with the corresponding path. The stop message is used to stop the worker when the search is finished (for
example when the first solution was found in a one-solution search).

Implementation The implementation of the distributed search engine consists basically of two components: the
Manager and the Worker. The manager keeps a list of the workers it is connected to. Each worker has the same
interface:

signature WORKER =
sig

12



val share : unit -> path option
val explore : path -> unit
val stop : unit -> unit

end

The manager creates workers by using the Execute functor. Before that, the proxies of the manager interface
have to be defined. As explained above, the manager interface provides two functions: find and collect:

val find = proxy (fn () => body)
val collect = proxy (fn sol => body)

The definition of a worker also takes place in the manager. Basically, we create a dynamic component (Sec-
tion 0.5.4). The worker interface provides three function proxies: share, explore, and stop. Additionally,
the library used for constraint solving, named Gecode, is a native library that cannot be pickled, it is sited (Sec-
tion 0.4.2). Thus, each worker needs to acquire this local library by using the component manager; this is the
purpose of the call to the Link functor the manager provides.

functor StartWorker (CM : COMPONENT_MANAGER) =
struct

structure Gecode = CM.Link (val url = "x-alice:/lib/Gecode"
signature S = GECODE)

val share = proxy (fn () => find some unexplored subtree)
val explore = proxy (fn path => explore the given subtree)
val stop = proxy (fn () => OS.Process.exit OS.Process.success)

end

In the implementation of explore, two special cases are interesting. If the exploration is finished, the worker
asks for some more work by calling find (). If a solution sol is found, it is transmitted to the manager by per-
forming an asynchronous call spawn collect sol. In both cases, a remote procedure call is automatically
done since the corresponding functions find and collect are proxies.

In order to create distant workers, the manager uses the functor Remote.Execute repeatedly.

structure Worker = Remote.Execute (val host = host−name
signature RESULT = WORKER
functor Start = StartWorker)

Each newly created worker is stored in the worker list. Then, the search starts by sending the root path of the
search tree to the first worker of the list, then ask it for some work to give to other workers.

Concurrency The manager must be able to handle concurrent requests from workers. For example, the collect
message stores the given solution in a list, which is protected using a locking mechanism (Section 0.2.4). Notice-
ably, the list of collected solutions is returned immediately when the search engine starts, in the form of a future.
The list is built concurrently while solutions are sent to the manager.

0.9 IMPLEMENTATION

An implementation of Alice must meet two key requirements: dealing efficiently with the future-based concur-
rency model, and supporting open programming by providing a truly platform independent and generic pickling
mechanism.

The state-of-the-art technique for platform independence is to use a virtual machine together with just-in-time
(JIT) compilation to native machine code. Futures and lightweight threads are implemented at the core of the sys-
tem, making thread creation and data flow synchronisation as efficient as possible. More detailed implementation
notes can be found in a technical report [BK02].

0.9.1 Pickling

The Alice system provides a generic pickling and unpickling mechanism that can be applied to all objects in the
store. The pickler takes a store object and transforms the subgraph of objects reachable from there into a platform

13



independent external representation (a pickle) that is suitable for transportation over a network or storage in a
file. The unpickler recreates a copy of the original subgraph from a pickle. Pickling and unpickling preserve
the structure of the original graph, including cycles and sharing of nodes. The low-level pickling service thus
implements the transitive closure semantics sketched in Section 0.4.2.

In order to support a platform independent external and an efficient internal representation of data, the system
offers a generic transformation mechanism: in a pickle, certain data is marked to be transformed on unpickling.
It will be converted to an internal, possibly platform dependent format. The internal data is also marked and
preserves enough information to recreate an external, platform independent version during pickling. Floating point
numbers, for instance, have different efficient internal representations on different platforms, but their external,
pickled representation must be uniform.

The pickler features a minimisation mechanism that removes redundany by maximising sharing of equivalent
subgraphs of objects in a pickle. This produces compact and efficient pickles.

0.9.2 Codes and interpreters

Code is just data in the store, it is subject to garbage collection and can be pickled and unpickled. While there is
exactly one external representation (called Alice Abstract Code), Alice features several internal types of code, and
there may be more than one interpreter (or execution unit) for each type. Different codes and different interpreters
can coexist and cooperate, and selected on a per-procedure level.

The advantage of this generic model is that for different purposes, different internal codes can be employed:
usually, JIT compiled native code delivers the best execution speed. For code only executed once, direct interpre-
tation of the abstract code is superior. A debugging interpreter can make use of additional annotations and check
more invariants – the user can decide to run just a certain function in debug mode, with the rest of the system
being JIT compiled.

JIT compilation builds on only two mechanisms: the transformation mechanism of the unpickler, and lazy
futures. Unpickling transforms abstract code into a lazy future, which triggers JIT compilation of the code on
request and results in the respective native machine code. Thus, native code is only created when actually needed.

JIT compilation is the adequate way to deal with a future-based and open programming language: at run
time, a lot of optimisations can be applied that are not possible for a static compiler. The JIT compiler can be
reflective, taking advantage of the ability to dynamically inspect referenced value. This is particularly important
in the optimization of futures and cross-component references represented as futures.

0.9.3 Safety

The Alice implementation does not yet give any safety guarantees – in particular, the integrity and signature
information of components is not verified currently. While type-annotated code is rather standard, the ability
to dynamically create components via pickling also requires a certain amount of type information about data in
the heap. It hence was a conscious decision for the Alice project to focus on language design first and consider
implementation-level safety issues in a second phase.

0.10 RELATED WORK

Java [GJS96] was the first major language designed for open programming. It is object-oriented and only weakly
typed. Concurrency is very basic. Open programming is based on reflection, which not only allows a component to
describe itself, but also allows other components to exploit this information constructively. We feel that reflection
is expensive, invites abuse, and usually demands a rather limited type system. Packages may be considered
as providing a weak form of reflection that avoids these issues. Serialisation in Java is simplistic and requires
support from the programmer. Code cannot be serialised, only class names can be used to represent code, which
is a weak and fragile abstraction. No structural type checks are performed when a class is loaded, method calls
may cause a NoSuchMethodError.

The Microsoft “.NET” Common Language Runtime [Mic03] is a framework that is very similar to Java in
most aspects related to open programming, but unlike Java is meant to support multiple languages.

Many of the concepts in Alice have been inherited from Oz [Smo95, VH04] and its implementation, the Mozart
programming system [Moz04]. It has high-level support for concurrency, pickling, components and distribution
similar to Alice. The distribution subsystem is more expressive, supporting distributed state and futures. Unlike

14



Alice, Oz is not statically typed and it is based on a relational core language with logic variables being the primary
means for data flow synchronisation.

Acute [SLW+04] is an experimental, ML-based language for strongly typed open programming. It has an
expressive but ad-hoc notion of component with versioning. It supports distribution, but the details are left to the
programmer. Resources can be dynamically rebound upon unpickling, using explicit marks in the program. No
safety mechanism is built in. Abstraction safety is ensured, with different levels of generativity, but can be broken
by explicit means. No implementation is available yet.

JoCaml [FMS01] is a distributed extension of OCaml [Ler03] based on the Join calculus. Concurrency and
distribution are more high-level than in Alice: channels achieve both, concurrency and distribution, with expres-
sive means of synchronisation and thread migration. On the other hand, JoCaml is not really open: pickles contain
just monomorphic values and can only be stored on a global name server, and there is only a weak component
concept. There is only an experimental implementation.

CML [Rep99] is a concurrent extension of SML. It is based on first-class channels and synchronisation events,
and does not support data flow synchronisation. It has no distribution features, nor does it address other aspects of
open programming.

Erlang [AVWW96] is an untyped, purely functional language with an additional process layer, designed for
embedded distributed applications. Processes can only communicate over implicit, process-global message chan-
nels. On the other hand, Erlang has a rich repertoire for dealing with failure. Erlang is not designed for open
programming, and does not directly support code mobility nor safety policies. As an important feature, it provides
the ability for updating code in active processes.

Clean is a concurrent, purely functional language with a type-safe import/export facility based on simple
dynamics [Pv00, Pil96]. It does not have advanced support for components or distribution.

0.11 OUTLOOK

We presented the design of Alice, a language for open progamming. Alice provides a novel combination of
features to provide concurrency, modularity, a flexible component model and high-level support for distribution.
Alice is typed and supports typeful programming (abstraction-safety) dynamically. It is fully implemented as part
of a rich programming environment [Ali04b].

There is not yet a formal specification of the full language. Moreover, the implementation does not yet provide
extra-lingual safety and security on the level of pickles. To that end, heap and byte code need to carry sufficient
type information to allow creation of verifiable pickles. Research on these issues has been left for future work.

Other open questions we plan to address in the future are – among others – applicative type generativity,
a semantics for unloading or even updating components in a manager, and higher-level library abstractions for
concurrency and distribution.

Acknowledgements We thank our former colleague Leif Kornstaedt, who co-designed the Alice System and
invested invaluable amounts of work into making it fly.

REFERENCES

[ACPP91] Martı́n Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typing in a statically-typed lan-
guage. TOPLAS, 13(2), 1991.

[ACPR95] Martı́n Abadi, Luca Cardelli, Benjamin Pierce, and Didier Rémy. Dynamic typing in polymorphic languages.
Journal of Functional Programming, 5(1), 1995.

[Ali04a] The Alice Project. http://www.ps.uni-sb.de/alice, 2004. Homepage at the Programming Systems Lab, Universität
des Saarlandes, Saarbrücken, Germany.

[Ali04b] Alice Team. The Alice System. Programming System Lab, Universität des Saarlandes, http://www.ps.un-
sb.de/alice/, 2004.

[AVWW96] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent Programming in Erlang,
Second Edition. Prentice-Hall, 1996.

[BK02] Thorsten Brunklaus and Leif Kornstaedt. A virtual machine for multi-language execution. Technical report,
Universität des Saarlandes, Saarbrücken, Germany, 2002.

[Car91] Luca Cardelli. Typeful programming. In Formal Description of Programming Concepts. Springer-Verlag, Berlin,
Germany, 1991.

15



[DCH03] Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-order modules. In POPL, New Orleans,
USA, 2003.

[DKSS98] Denys Duchier, Leif Kornstaedt, Christian Schulte, and Gert Smolka. A higher-order module discipline with
separate compilation, dynamic linking, and pickling. Technical report, Programming Systems Lab, Universität
des Saarlandes, Saarbrücken, Germany, 1998.

[FF95] Cormac Flanagan and Matthias Felleisen. The semantics of future and its use in program optimizations. In
POPL, San Francisco, USA, 1995.

[FMS01] Cédric Fournet, Luc Maranget, and Alan Schmitt. The JoCaml Language beta release. INRIA,
http://pauillac.inria.fr/jocaml/htmlman/, 2001.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Programming Language Specification. Addison–Wesley,
1996.

[Hal85] Robert Halstead. Multilisp: A language for concurrent symbolic computation. TOPLAS, 7(4), 1985.

[Ler95] Xavier Leroy. Applicative functors and fully transparent higher-order modules. In POPL, San Francisco, USA,
1995. ACM.

[Ler03] Xavier Leroy. The Objective Caml System. INRIA, 2003.

[Lil97] Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems. PhD thesis, Carnegie
Mellon University, Pittsburgh, USA, 1997.

[Mic03] Microsoft Corporation. Microsoft .NET. http://www.microsoft.com/net/, 2003.

[Moz04] Mozart Consortium. The Mozart programming system, 2004. www.mozart-oz.org.

[MP88] John Mitchell and Gordon Plotkin. Abstract types have existential type. TOPLAS, 1988.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. Definition of Standard ML (Revised). The
MIT Press, 1997.

[Myc83] Alan Mycroft. Dynamic types in ML, 1983.

[NSS02] Joachim Niehren, Jan Schwinghammer, and Gert Smolka. Concurrent computation in a lambda calculus with
futures. Technical report, Universität des Saarlandes, 2002.

[Pil96] Marco Pil. First class file I/O. In IFL’96, LNCS, vol.1268. Springer-Verlag, 1996.

[Pv00] Rinus Plasmeijer and Marko van Eekelen. Concurrent Clean Language Report, 2000.

[Rep99] John Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.

[Rey83] John Reynolds. Types, abstraction and parametric polymorphism. In Information Processing, Amsterdam, 1983.
North Holland.

[Ros03] Andreas Rossberg. Generativity and dynamic opacity for abstract types. In PPDP, 2003.

[Rus98] Claudio Russo. Types for Modules. Dissertation, University of Edinburgh, 1998.

[Sch02] Christian Schulte. Programming Constraint Services, volume 2302 of LNAI. 2002.

[SLW+04] Peter Sewell, James J. Leifer, Keith Wansbrough, Mair Allen-Williams, Francesco Zappa Nardelli, Pierre
Habouzit, and Viktor Vafeiadis. Acute: High-level programming language design for distributed computation.
Technical Report RR-5329, INRIA, 2004.

[Smo95] Gert Smolka. The Oz programming model. In Computer Science Today, volume 1000 of LNCS. Springer-Verlag,
Berlin, Germany, 1995.

[TL04] Guido Tack and Didier Le Botlan. Compositional abstractions for search factories. In MOZ 2004, Charleroi,
Belgium, LNCS. Springer-Verlag, 2004.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. MIT Press, 2004.

[Wad89] Philip Wadler. Theorems for free! In FPCA. ACM Press, 1989.

16


