
Fortress: A New
Programming Language
for Scientific Computing
Guy Steele
Sun Fellow April 28, 2005

Fortress: A New Programming Language for Scientific Computing

Page 2© 2005 Sun Microsystems, Inc. All rights reserved.

The Context of the Research

● Improving programmer productivity for
scientific and engineering applications

● Research funded in part by the DARPA IPTO
(Defense Advanced Research Projects Agency
Information Processing Technology Office)
through their program on High Productivity
Computing Systems

● Goal is economically viable technologies for
both government and industrial applications
by the year 2010 and beyond

Fortress: A New Programming Language for Scientific Computing

Page 3© 2005 Sun Microsystems, Inc. All rights reserved.

“To Do for Fortran What JavaTM Did for C”

● Catch “stupid mistakes”
– Make sure array references are not out of bounds
– Make sure dereferenced pointers are not null
– Make sure storage is not deallocated prematurely

● Extensive libraries
● Platform independence
● Security model, including type safety
● Dynamic compilation

Fortress: A New Programming Language for Scientific Computing

Page 4© 2005 Sun Microsystems, Inc. All rights reserved.

Sketch of Fortress

● A growable, open language
● Components: management of large projects
● Distributed data and control models
● Type system organized as objects and “traits”
● Advances in syntax

Fortress: A New Programming Language for Scientific Computing

Page 5© 2005 Sun Microsystems, Inc. All rights reserved.

Interesting Language Design Strategy

Wherever possible,
consider whether a proposed language feature

can be provided by a library
rather than having it wired into the compiler.

Fortress: A New Programming Language for Scientific Computing

Page 6© 2005 Sun Microsystems, Inc. All rights reserved.

A Growable, Open Language
● Push decisions out to libraries
● Old model:
– Study applications
– Add language features to improve application coding

● Our new model:
– Study applications
– Study how a library can improve application coding
– Add language features to improve library coding

● Conjectures:
– Better leverage, leading to more rapid improvement
– Enables experimentation with open-source strategies

Fortress: A New Programming Language for Scientific Computing

Page 7© 2005 Sun Microsystems, Inc. All rights reserved.

Making Abstraction Efficient

We assume implementation technology that
makes aggressive use of runtime performance
measurement and optimization.

– Repeat the success of the JavaTM Virtual Machine
– Often faster than static compilers can produce!
– Inlining, loop unrolling, tests for special cases
– Automatic and/or programmer-guided
– IDE that tracks program transformations
– Goal: programmers (especially library writers)

need not fear subroutines, functions, and methods
for performance reasons

Fortress: A New Programming Language for Scientific Computing

Page 8© 2005 Sun Microsystems, Inc. All rights reserved.

Components: Managing Large Projects
● Management of APIs and code
● Explicitly control linking from within

Fortress
● Factoring and parameterization of project

components
● Management of unit testing

Fortress: A New Programming Language for Scientific Computing

Page 9© 2005 Sun Microsystems, Inc. All rights reserved.

Data and Control Models
● Data model: shared global address space
● Control model: multithreaded
● Declared distribution of data and threads
– Integrated into the type system
– Policies dictated by libraries, not wired in
– Details of “standard library” may be like HPF or Chapel

● Transactional access to shared variables
– Atomic blocks
– Explicit testing and signaling of failure/retry
– Lock-free (no blocking, no deadlock)

Fortress: A New Programming Language for Scientific Computing

Page 10© 2005 Sun Microsystems, Inc. All rights reserved.

Should Parallelism Be the Default?

● “Loop” is a misleading term
– A set of executions of a parameterized block of code
– Whether to order or parallelize those executions

should be a separate question
– Maybe you should have to ask for sequential execution!

● Fortress “loops” are parallel by default

Fortress: A New Programming Language for Scientific Computing

Page 11© 2005 Sun Microsystems, Inc. All rights reserved.

Type System: Objects and Traits
● Traits: like interfaces, but may contain code

– Based on work by Schärli, Ducasse, Nierstrasz, Black, et al.

● Types, methods, etc., may be parameterized
– Parameters may be traits or compile-time constants

● Primitive types are first-class
– Booleans, integers, floats, characters are all objects

● Support for useful mathematical concepts
– Vectors, matrices, sets, permutations, combinations,

associativity, commutativity, complex, intervals, units
– All defined by standard libraries
– Properties verified by automated unit testing

Fortress: A New Programming Language for Scientific Computing

Page 12© 2005 Sun Microsystems, Inc. All rights reserved.

Checking of Physical Dimensions
● Try not to wire a design into the language
– Use “growing a language” design principles:

can this feature be implemented gracefully as a library?

● Express dimensions as generic metaclasses
– Dimension is the metaclass of Length and Time
– Unit[Length] is the metaclass of Meter or Mile

● Overload operators to apply to types
– Mass·Length/Time is a type
– Must be the same type as Length·Mass/Time !

● One special tool for dimensional algebra
– Metaclass for “free abelian group”

Fortress: A New Programming Language for Scientific Computing

Page 13© 2005 Sun Microsystems, Inc. All rights reserved.

Advances in Syntax
● Support for customary mathematical syntax
– Libraries define math operators supplied by Unicode
– Convenient ASCII rendering (like TeX or Wiki notations)

● Syntactic abstraction
– Support for embedded domain-specific languages
– Libraries can define subgrammars
– Subgrammars invoked at specific points in a grammar
– Precompiled parsers
– Telescoping languages: beyond libraries to syntax

Fortress: A New Programming Language for Scientific Computing

Page 14© 2005 Sun Microsystems, Inc. All rights reserved.

Conventional Mathematical Notation
● The language of mathematics is centuries old,

convenient, and widely taught
● Programming language notation can become

closer to mathematical notation
– Asterisks are for accountants (or conjugate transpose)
– Letting juxtaposition represent multiplication, as in

 y = 3 x sin x cos 2 x log log x
is challenging but can be done

– Extra spaces required to allow multicharacter names
– Unicode allows a wide variety of operators
– More efficient way to use even plain old ASCII to encode

mathematical expressions

Fortress: A New Programming Language for Scientific Computing

Page 15© 2005 Sun Microsystems, Inc. All rights reserved.

Three Forms for Source Code
● Must be able to use emacs or vi in a pinch
● But a good IDE can support Unicode and

even two-dimensional notation
ASCII UNICODE Two-dimensional

rho0 = r DOT r ρ
0
 = r·r

v_norm = v / norm v v_norm = v / ‖v‖

SUM[k=1:n] a[k] x^k ∑[k=1:n] a[k] x^k

C = A UNION B C = A ∪ B

∑
k=1

n

ak x
k

vnorm=
v
∥v∥

0=r⋅r

C=A∪B

Fortress: A New Programming Language for Scientific Computing

Page 16© 2005 Sun Microsystems, Inc. All rights reserved.

We Are Actively Studying . . .
● Matlab, Mathematica, Maple, Macsyma
● Various mathematical typesetting languages
● Old languages (Algol, APL, COLASL, MADCAP,

MODCAP, the Klerer-May system)
● New languages (Co-Array Fortran, UPC, ZPL,

HPF, Fortran 2003, Chapel)

Fortress: A New Programming Language for Scientific Computing

Page 17© 2005 Sun Microsystems, Inc. All rights reserved.

Some Notational Rules We're Exploring
● Brackets after identifiers contain subscripts
– Even SUM[k=1:n] for ∑ notation

● Use ^ for any superscript
– Even A^T for matrix transpose

● Braces { } are for sets, not code blocks
● Brackets [] are for arrays and matrices
● Parentheses () are for tuples
– That includes argument lists as a special case

● Uppercase names (length>1) are operators

Fortress: A New Programming Language for Scientific Computing

Page 18© 2005 Sun Microsystems, Inc. All rights reserved.

Example: NAS Conjugate Gradient (ASCII)

conjGrad(A: Matrix[Float], x: Vector[Float]):
 (Vector[Float], Float)
 cgit_max = 25
 z: Vector[Float] = 0
 r: Vector[Float] = x
 p: Vector[Float] = r
 rho: Float = r^T r
 for j <- seq(1:cgit_max) do
 q = A p
 alpha = rho / p^T q
 z := z + alpha p
 r := r - alpha q
 rho0 = rho
 rho := r^T r
 beta = rho / rho0
 p := r + beta p
 end
 (z, ||x – A z||)

Matrix[T] and Vector[T] are
parameterized interfaces, where
T is the type of the elements.

The form x:T=e declares a variable x
of type T with initial value e, and
that variable may be updated using
the assignment operator :=.

Fortress: A New Programming Language for Scientific Computing

Page 19© 2005 Sun Microsystems, Inc. All rights reserved.

Example: NAS Conjugate Gradient (ASCII)

conjGrad[Elt extends Number, nat N,
 Mat extends Matrix[Elt,N BY N],
 Vec extends Vector[Elt,N]
](A: Mat, x: Vec): (Vec, Elt)
 cgitmax = 25
 z: Vec = 0
 r: Vec = x
 p: Vec = r
 rho: Elt = r^T r
 for j <- seq(1:cgit_max) do
 q = A p
 alpha = rho / p^T q
 z := z + alpha p
 r := r - alpha q
 rho0 = rho
 rho := r^T r
 beta = rho / rho0
 p := r + beta p
 end
 (z, ||x – A z||)

Here we make conjGrad a generic
procedure. The runtime compiler
may produce multiple instantiations
of the code for various types E.

The form x=e as a statement declares
variable x to have an unchanging
value. The type of x is exactly the
type of the expression e.

Fortress: A New Programming Language for Scientific Computing

Page 20© 2005 Sun Microsystems, Inc. All rights reserved.

Example: NAS Conjugate Gradient (UNICODE)

 conjGrad[Elt extends Number, nat N,
 Mat extends Matrix[Elt,NN],
 Vec extends Vector[Elt,N]
](A: Mat, x: Vec): (Vec, Elt)
 cgit_max = 25
 z: Vec = 0
 r: Vec = x
 p: Vec = r
 ρ: E = r^T r
 do j ← seq(1:cgit_max) do
 q = A p
 α = ρ / p^T q
 z := z + α p
 r := r - α q
 ρ₀ = ρ
 ρ := r^T r
 β = ρ / ρ₀
 p := r + β p
 end do
 return (z, ‖x - A z‖)

This would be considered entirely
equivalent to the previous version.
You might think of this as an abbre-
viated form of the ASCII version, or
you might think of the ASCII version
as a way to conveniently enter this
version on a standard keyboard.

Fortress: A New Programming Language for Scientific Computing

Page 21© 2005 Sun Microsystems, Inc. All rights reserved.

Example: NAS Conjugate Gradient (math)

conjGrad [Elt extends Number, nat N,

Mat extends Matrix [Elt,N×N] ,
Vec extends Vector [Elt, N]

]A :Mat, x : Vec:Vec, Elt
cgitmax = 25
z : Vec = 0
r : Vec = x
p : Vec = r
 :Elt = rTr
for j seq 1:cgitmax do
q = A p

 =

pTq

z := z p
r := r−q
0=
 := rT r

 =

0

p := r p
end
 z , ∥x−A z∥

It's not new or surprising that code
written in a programming language
might be displayed in a conventional
math-like format. The point of this
example is how similar the code is to
the math notation: the gap between
the two syntaxes is relatively small.
We want to see what will happen if
a principal goal of a new language
design is to minimize this gap.

Fortress: A New Programming Language for Scientific Computing

Page 22© 2005 Sun Microsystems, Inc. All rights reserved.

Comparison: NAS NPB 1 Specification

z = 0
r = x
= rT r
p = r
DO i= 1,25

q = A p
 = / pT q
z = z p
0=
r = r−q
= rT r
 = /0

p = r p
ENDDO
compute residual norm explicitly: ∥r∥=∥x−A z∥

z : Vec = 0
r : Vec = x
p : Vec = r
 :Elt = rT r
for j seq 1:cgitmax do
q = A p

 =

pTq

z := z p
r := r−q
0=
 := rT r

=

0

p := r p
end
 z , ∥x−A z∥

Fortress: A New Programming Language for Scientific Computing

Page 23© 2005 Sun Microsystems, Inc. All rights reserved.

Comparison: NAS NBP 2.3 Serial Code
 do j=1,lastrow-firstrow+1
 sum = 0.d0
 do k=rowstr(j),rowstr(j+1)-1
 sum = sum + a(k)*z(colidx(k))
 enddo
 w(j) = sum
 enddo
 do j=1,lastcol-firstcol+1
 r(j) = w(j)
 enddo
 sum = 0.0d0
 do j=1,lastcol-firstcol+1
 d = x(j) - r(j)
 sum = sum + d*d
 enddo
 d = sum
 rnorm = sqrt(d)

 do j=1,naa+1
 q(j) = 0.0d0
 z(j) = 0.0d0
 r(j) = x(j)
 p(j) = r(j)
 w(j) = 0.0d0
 enddo
 sum = 0.0d0
 do j=1,lastcol-firstcol+1
 sum = sum + r(j)*r(j)
 enddo
 rho = sum
 do cgit = 1,cgitmax
 do j=1,lastrow-firstrow+1
 sum = 0.d0
 do k=rowstr(j),rowstr(j+1)-1
 sum = sum + a(k)*p(colidx(k))
 enddo
 w(j) = sum
 enddo
 do j=1,lastcol-firstcol+1
 q(j) = w(j)
 enddo

 do j=1,lastcol-firstcol+1
 w(j) = 0.0d0
 enddo
 sum = 0.0d0
 do j=1,lastcol-firstcol+1
 sum = sum + p(j)*q(j)
 enddo
 d = sum
 alpha = rho / d
 rho0 = rho
 do j=1,lastcol-firstcol+1
 z(j) = z(j) + alpha*p(j)
 r(j) = r(j) - alpha*q(j)
 enddo
 sum = 0.0d0
 do j=1,lastcol-firstcol+1
 sum = sum + r(j)*r(j)
 enddo
 rho = sum
 beta = rho / rho0
 do j=1,lastcol-firstcol+1
 p(j) = r(j) + beta*p(j)
 enddo
 enddo

Fortress: A New Programming Language for Scientific Computing

Page 24© 2005 Sun Microsystems, Inc. All rights reserved.

Our Key Design Themes
● Make abstraction efficient
– Aggressive static and dynamic optimization

● Make stupid mistakes impossible
– And make clever mistakes relatively unlikely

● Design the language to be grown by users
– Rich library language simple application languages

● Make parallelism normal and tractable
– Identify and support standard communication patterns

● Emulate standard mathematical notation
– Reduce translation effort from science to computation

