
A Core Calculus of Metaclasses

Sam Tobin-Hochstadt Eric Allen

Sun Microsystems Laboratories
Burlington MA 01803

<first>.<last>@sun.com

Abstract

Metaclasses provide a useful method of abstraction for
programmers working with object-oriented languages,
but they have not seen the formal exploration applied
to more conventional object-oriented programming fea-
tures. In order to elucidate the structure of metaclasses
and their relationship with static typing, we present a
core calculus for a nominally-typed object-oriented lan-
guage with metaclasses and prove type soundness over
this core. This calculus is presented as an adaptation of
Featherweight GJ [13], and is powerful enough to cap-
ture metaclass relationships beyond what are express-
ible in common object-oriented languages, including ar-
bitrary metaclass hierarchies and classes as values. We
also explore the integration of object-oriented design
patterns with metaclasses, and show how our calculus
integrates several such patterns cleanly.

1 Introduction

One of the stated benefits of object-oriented languages
is their ability to model aspects of the world in the ob-
ject hierarchy. However, most such languages are un-
able to model many simple and common relationships.
For example, consider the relationship between physical
quantities, units of measurement, and physical dimen-
sions. It is obvious that “length” is a dimension, and
that “3 feet” is a length. However, modeling this rela-
tionship in a conventional language such as the JavaTM

Programming Language is impossible without attribut-
ing to some of these concepts properties which do not
properly belong to them. It is natural to model 3 feet

as an instance of class Length. But if we were to define
a class Dimension and define Length to be an instance

Submission for FOOL 2005

of class Dimension, then Length would not be a class
and so 3 feet could not be an instance of Length. Al-
ternatively, we might define Length to be a subclass of
Dimension. But then we still cannot define 3 feet to
be an instance of Length because anything that is an
instance of Length would also be an instance of class
Dimension and 3 feet is obviously not a dimension.

The fundamental limitation of conventional object-
oriented languages is that they do not allow a single
concept to serve both as a class and as an instance. In
[18], Welty and Ferrucci lay out a comprehensive case
that this limitation prevents conventional modeling lan-
guages from capturing many important aspects of the
world. In their primary example, they show the difficul-
ties in modeling a simple ontology including the notions
Species and Eagle, while also capturing the relation-
ship between Eagle and Harry, a particular eagle. One
solution they consider and reject is to separate the no-
tion of “eagle” into two concepts: the Eagle and Eagle,
with the former an instance of Species and the latter a
class whose instances are specific birds. This approach
is inadequate because it fails to express a relationship
between the notions the Eagle and Eagle.

In order to overcome these limitations in expres-
siveness, several object-oriented languages that are not
statically typed, such as Smalltalk, Python, and Self,
allow for more flexible class relationships [11], [14],
[17]. In the case of Smalltalk and Python, classes are
instances of metaclasses. Static members of a class
are modeled as ordinary members of the correspond-
ing metaclass. But traditional metaclass systems have
placed important limitations on expressiveness. For ex-
ample, in Smalltalk, the metaclass hierarchy is only two
levels deep. If we want to represent the relationships “A
is an instance of B”, “B is an instance of C”, and “C is
an instance of D”, we can only do this in Smalltalk if
D is the special Smalltalk class Metaclass. This does
not allow the multi-level hierarchies required to model
the examples discussed above [11]. Self, on the other
hand, is a prototype-based object-oriented language,



where there are no classes at all; object instantiation
consists of cloning an existing instance. The members
of the clone can be modified and added to at will, mak-
ing static checking difficult.

An extremely expressive system of metaclasses, very
similar to ours, was presented by Cointe in [6]. In his
paper, he makes a number of persuasive arguments for
the benefits of metaclasses. In response to complaints
that the Smalltalk80 metaclass system was too com-
plex, he suggested that a more powerful and flexible
system, as he and we present, has the potential to be
much simpler. He claims “The ObjVlisp model’s pri-
mary advantage is uniformity.” We agree, and believe
that the treatment of metaclasses presented here unifies
both disparate metaclass systems, and different ad-hoc
mechanisms describing the properties of classes as ob-
jects in languages without metaclasses.

Cointe also quotes from [4]: “With respect to Simula,
Smalltalk also abandons ... strong typing, allowing it
to ... introduce the notion of meta-classes”. In this
paper, we show that such a compromise is not necessary,
and that static typing can coexist with the flexibility of
metaclasses.

We present and formalize a statically typed calcu-
lus with nominal subtyping for metaclasses where every
class can serve as both an instance of a class and as
a class of instances, and there is no limitation on the
levels of nesting of metaclasses. Our work is motivated
by [2], which presents a system for integrating the static
checking of dimensions of physical quantities with a con-
ventional object-oriented type system. In that system,
metaclasses are used extensively to model the type re-
lationships of dimensions. The notion of metaclass in
that system is more general than that of languages such
as Smalltalk, where each class has a unique metaclass
that defines its class members. In this paper, we formal-
ize the core of that system related to metaclasses and
prove it sound. In the process, we discover several in-
teresting properties about the structure that a nominal
type system for metaclasses must take.

In the interests of economy and clarity of presen-
tation, in the following discussion we restrict ourselves
to simple examples, and do not delve in the the com-
plexities of object-oriented analysis, or of dimension
types. This is certainly not because we believe that
metaclasses are most useful for the development of toy
object-oriented programs. On the contrary, metaclasses
are likely to show their value in large systems, both in
terms of modeling and in the treatment of design pat-
terns in section 3.

The remainder of this paper is organized as follows.
In section 2 we present a core calculus for metaclasses
we dub MCJ. We introduce the language and describe
its key features, as well as some of the important design

choices. The motivating examples from the introduc-
tion are presented in MCJ in section 2.3, demonstrating
the benefits of metaclasses. We discuss in section 3 how
the need for many object-oriented “design patterns” is
obviated through the use of metaclasses. We then de-
scribe its formal properties in section 4. In section 4.2
we provide a formal semantics for the language, and in
section 4.3 we prove a type soundness result. In section
5 we consider related work and in section 6 we describe
conclusions and future directions.

2 MCJ

2.1 Overview

MCJ is a generically-typed object-oriented calculus
based on Featherweight GJ that includes metaclasses.
An MCJ program consists of a sequence of class defi-
nitions followed by a trailing expression. This trailing
expression is evaluated in the context of the class table
induced by the class definitions. Before discussing the
formal specification of MCJ, we first give a high-level
overview of the nature of MCJ class definitions.

Each class is an instance of a metaclass. A metaclass
is either a user-defined class or class Object. We say that
if a class C is an instance of a class D, then C is an instance
class of D, and that D is the immediate containing class,
or kind, of C. If class E is a superclass of D then we
also say that C is an instance class of E and that E is a
containing class of C.

There are two key distinguishing features of MCJ.
First, a class (or an instantiation of a generic class) can
be used as an expression. Second, all classes have both
a superclass and a kind. Instances of a class inherit
behavior from the superclass. The class itself, when
used in an expression context, inherits behavior from
its kind.

A class definition consists of a header plus a collec-
tion of fields and methods associated with the class.
The header names the class and specifies the type pa-
rameters, as well as the superclass and the kind. For
example, the following header declares a class C with
superclass Object and kind D and no type parameters:

class C kind D extends Object {...}

Each class may have both class members and in-
stance members. Class members define the behavior
of the class when used as an instance. Instance mem-
bers define the behavior of instances of a class. In the
abstract syntax presented in this paper, class members
are distinguished from instance members by order, and
with the keyword class 1. Members of a class definition

1This syntax is not ambiguous since MCJ has no inner classes.

2



are laid out as follows: first, class fields are defined, fol-
lowed by class methods, then instance fields and finally
instance methods. For example, the following class defi-
nition includes a class method m and an instance method
n:

class C kind Object extends Object {
class Object m() {...}
Object n() {...}

}

Class fields and methods bear a resemblance to static
fields and methods, but there are important differences.
For a given class C, instance members of C’s kind are
inherited as class members of C. For example, a class
method m in C with the same name as an instance
method of C’s kind overrides the definition of m in the
kind (and it must have the same signature as the over-
ridden method). Note that if an instance class C of
type T is assigned to a variable v of type T, references
to the instance members of v refer to the class mem-
bers of C. As in [2], a class is allowed to define both
a static method and an instance method of the same
name. We prevent ambiguity in member references by
requiring that all references to class members in MCJ
must explicitly denote the receiver.

Superclasses behave as in Featherweight GJ, pro-
viding implementation inheritance of instance behavior
and subtyping. A class, when used as an expression,
is an instance of its kind. If a method is invoked on
a class C, first the class methods of C are examined. If
the method is found there, it is invoked. Otherwise, the
instance methods of the kind D of C are searched, and
if it is found there, the method is invoked. Otherwise,
the superclass hierarchy of D is examined as it is for an
ordinary instance of D.

For example, consider the following class definitions:

class A kind Object extends Object {...}
class B kind Object extends A {...}
class C kind B extends Object {...}

To resolve the method call C.m() first the class meth-
ods of C are examined, and if a match is found, it is
invoked. Then the instance methods of B and then A
are examined.

If the method call were instead b.m(), where b de-
notes an instance of B, then the instance methods of
first B then A would be examined.

The generic type system of MCJ is similar to the
generic type system in Featherweight GJ. However, as
in [5, 2], we allow for type variables to occur in type-
dependent contexts such as casts, preventing the use of
type erasure as an implementation technique. In ad-
dition, the receiver of a reference to a class member

may be a type variable. Unlike the system presented in
[1], MCJ does not support first-class genericity because
a naked type variable must not appear in the extends

clause or kind clause of a class definition and new ex-
pressions on naked type variables are not supported.
Also, polymorphic methods (which are orthogonal to
the features we explore) are not supported.

Because classes can be used as expressions, we need
a bound on the behavior of classes when used in ex-
pression contexts. Therefore, we place two bounds on
every type variable T in the header of the class defini-
tion. The first bound on T is a bound on the kind of an
instantiation of T; the second bound is a bound on the
superclass of T. For example, the following class header
declares a class C with one type parameter T that must
be instantiated with a type of kind D that is a subtype
of E:

class C<T extends (D,E)>
kind Object
extends Object {...}

2.2 Key Design Points

Private Constructors One benefit of a metaclass
system is that constructors no longer need to play such
a central role in the language. Class instances exist at
the beginning of a program execution; they need not
be constructed. Non-class instances are naturally con-
structed with class (factory) methods [10]; in this way
a class instance can be passed as a type parameter and
factory methods can be called on the class instance to
construct new instances without stipulating the class of
the constructed instance. This flexibility is similar to
that provided with first-class genericity [5, 1], but obvi-
ates the need for with clauses because the bound on the
kind of a type variable stipulates what factory methods
can be called on it. A class can define class methods
with arbitrary signatures that return new instances of
the class, but each such method must ultimately in-
cludes a new expression, which can occur only within
the scope of the class whose instance it returns. A new

expression looks like a call to method named new, that
takes a single argument for each type parameter and
each instance field of the syntactically enclosing class.
The result of a new expression is a new instance of the
enclosing class whose type parameters are instantiated
with, and whose fields are initialized with, the given ar-
guments. In our formal semantics, new expressions are
annotated with the name of the enclosing class. These
annotations need not be added by a programmer; they
could be added easily by a straightforward syntactic
preprocessing over the program, since they can be de-
termined merely by the lexical scopes of the new expres-
sions.

3



All uses of constructors in Featherweight GJ [13] are
macro-expressible [9] in MCJ, that is, they can be ex-
pressed via local transformations. Of course, not all
Featherweight GJ programs can be expressed in MCJ,
because of the differences in the type system. Namely,
MCJ does not include polymorphic methods.

Metaclasses allow other kinds of flexibility in object
creation, as discussed in section 3.

Fields and Initialization To ensure type safety, we
must have an initial value for every field, or prevent
fields from being used before they are initialized. For
instance fields of objects created with a constructor, this
is achieved by requiring that the constructor have an
argument for every instance field. Combined with the
solution for flexibility in object creation outlined above,
this allows us the simplicity in semantics of FGJ, and
the flexibility of more general constructors.

However, classes which are themselves instances of
other classes have fields as well, and these fields must
also be initialized before they are used. These fields
include those instance fields of the kind which become
class fields of the new class. Our solution is to require
that all class fields, including those obtained by inheri-
tance, must be redeclared and provided with values.

typeOf Given that class references can be used as ex-
pressions, it is natural to ask: what is the type of a
class reference? In the world of the λ-calculus, such
types are known as kinds. In MCJ, however, the kind
of a class does not capture all of the properties of the
class as a value. For example, a class may add new
class fields or class methods which are not present in
the kind. Therefore, each class freely generates a new
type, which is the type of the class considered as a value.
We represent this type with the typeOf operator, which
is produces a type that is not also a class. Since this
type is not a class, it cannot be the superclass or kind
of another class, and it cannot serve as the instantiation
of a generic type parameter.

These new types can create complex relationships
between classes and types. For example, the following
class headers:

class A() kind Object extends Object {...}
class B() kind A extends Object {...}

induce the following type relationships:

B : typeOf[B]
typeOf[B] <: A
B instanceof A

The name typeOf has been used in other contexts
to refer to a runtime operation that determines the dy-

namic type of a object. However, despite the name sim-
ilarity, these functions bear no relationship to the oper-
ator described here. In MCJ, an application of typeOf

is a static type reference.

Non-transitivity The standard subclassing relation-
ship, like subtyping, is transitive. That is, if B is sub-
class of C and C is a subclass of D, then B is a sub-
class of D. However, this relationship does not hold for
instanceof relationships. Therefore, if if B is an instance
of C and C is an instance of D, then no judgment about
the relationship of B to D can be inferred.

Cyclic class hierarchies One property of meta-
classes that we have not yet discussed is that cycles can
occur among instance class relationships. The simplest
such cycle is:

class C<> : C<> / Object{}

Although this pathology appears to be dangerously
close to Russell’s paradox, it does not lead to inconsis-
tencies. Class C is an instance of itself. It can be used
in any context where one of its instances can be used. C
can be thought of as a self-replicating value. This class
hierarchy causes no problems for method lookup be-
cause method resolution never proceeds through more
than a single containing class to an instance class.
Therefore, we see no reason to disallow it.

2.3 Examples, Reprised

Having seen the outlines of MCJ, we return to the mo-
tivational examples discussed earlier. First, the rela-
tionships between dimensions is easy to capture. 2 We
define

class Dimension kind Object extends Object { ... }
class Length kind Dimension extends Object { ... }
class Meter kind Length extends Object { ... }

Here Meter is a singleton class (there is only one Me-
ter, in the Platonic sense). We have easily expressed
the desired type relationships, and can statically check
program invariants that rely on dimensional relation-
ships.

The example from [18] is also easily expressed:

class Species kind Object extends Object { ... }
class Eagle kind Species extends Object {

class Eagle make(String name) { ... }
}
Eagle harry = Eagle.make("Harry")

2Of course, dimensions have many subtleties, not captured
here. All we present is the essence of the type relationships.

4



Here we simply create an object to represent our con-
crete instance of an Eagle. The naive implementation
of the above code in a conventional OO language would
look something like this:

class Species extends Object { ... }
class TheEagle extends Species { ... }
class Eagle extends Object { ... }
Eagle harry = new Eagle("Harry")

There are at least two substantial problems with this
code. First, TheEagle and Eagle have no relationship
to each other in the type system. One is a singleton
class, representing a particular species, and one is a
name for a set of objects, being the members of that
species. The fundamental nature of species has a two-
level containment relationship, which the type system
is failing to express. This means that our type checker
cannot determine what we want, and cannot help us
avoid mistakes.

Another problem, which is in some ways just a symp-
tom of the first problem, but which bears special atten-
tion, is the use of generic types. Imagine the following
method, where T is a type parameter in scope:3

foo(T x) { ... }

If we want to perform the call foo(harry), then the
bound on T must be either Object, in which case foo

must have no knowledge of the object, or Eagle, in
which case the function cannot handle multiple Species.
The “solution” in conventional languages is to use a
bound of Object and insert a downcast, which fails at
runtime if the wrong argument is passed. In MCJ T can
be bound by kind Species, and instantiated with Eagle,
allowing the original call to be type-checked. This gives
the programmer both safety and expressiveness.

3 Design Patterns as Language Features

Design Patterns, as exemplified in [10], have had a very
substantial impact on the world of object-oriented pro-
gramming and beyond. Design patterns allow program-
mers to increase the flexibility and abstraction of their
software designs. However, few design patterns have
been integrated into programming languages.

One of the advantages of our metaclass framework
is that it allows clean expression of several patterns in
the language, rather than adding additional abstrac-
tion techniques on top of the language. For example, a
number of the classic design patterns deal with object
creation, as discussed above in section 2.2. It is clear

3Generic methods would be straightforward to add to MCJ,
but we excluded them to simplify the presentation of the type
system, and since they do not add complexity to the proofs.

that the concept of a Factory method is easily (and
necessarily) expressed in MCJ. However, a number of
other patterns also find easy expression. The Abstract
Factory pattern is a simple application of inheritance
in the metaclass hierarchy. The Prototype pattern is,
as mentioned in the Design Patterns book, supported
in languages with metaclasses. Finally, there is no need
for the Singleton pattern, since the class itself can serve
as a singleton. While this is possible in the Java Pro-
gramming Language and in C++, it is undesirable since
the static behavior that would need to be used cannot
inherit from another class. In fact, the inflexibility of
class or static operations is one of the rationales cited
for the Singleton pattern.

Seeing that a number of patterns can be expressed
quite simply in MCJ, the question arises: is the simple
expression of these patterns a benefit? We argue that
it is. The existence of design patterns is a sign of short-
comings in language design. Fundamentally, a design
pattern is an abstraction that cannot be expressed in
the language. For example, the Singleton and Visitor
patterns are abstractions that have obvious invariants,
but they cannot be expressed directly and they require
complex cooperation from many parts of the system.

Sophisticated macro systems, such as those found in
Common Lisp [16] or Scheme [8] allow for expression
of many forms of abstraction, as do extremely flexible
object systems such as CLOS. However, these solutions
add significantly to what a programmer must under-
stand in order to use the language productively.

An alternative solution explored in this paper is
to provide additional flexibility in the language, which
does not allow for arbitrary additional abstraction, but
instead makes the abstractions commonly needed easy
to express. One does not need the full power of macros
to encode the Factory pattern. In MCJ, we have pre-
sented a language where several kinds of patterns are
easy to express, without adding an additional language
on top of the original.

4 Formal Specification of MCJ

Having outlined the motivation for metaclasses, and the
basics of their use, we now turn to a formal exposition
of the syntax and semantics of MCJ, followed by an
outline of the proof of soundness for the calculus.

4.1 Syntax

The syntax of MCJ is given in Figure 1. When describ-
ing the formal semantics of MCJ, we use the following
metavariables:

• Expressions or mappings: e, d, r

5



CL : := class C<X / (T, T)> : A / A {class T f e; M; T f; N; } class declaration

N : := T m (T x) {return e; } method declaration
M : := class T m (T x) {return e; } class method declaration

e : := x variable reference
| e.f field access
| e.m(e) method invocation
| newC<R>(e) instance creation
| (T)e cast
| R type reference
| ΦG mapping

T : := R non-typeOf type
| typeOf[R] typeOf application

R : := X type variable
| A

A : := C<R> type application
| Object

Figure 1: MCJ Syntax

• Field names: f, g

• Variables: x

• Method names: m

• Values: v

• Method declarations: M, N

• Type names: C, D

• Types: I, J, K, T, U, V, W

• Non-typeOf Types: O, P, Q, R, S

• Types that are either Object or a type application:
A, B

• Ground types (contain no type variables): G

• Type variables: X, Y, Z

• Mappings (field name 7→ value): Φ

As in Featherweight Java and many other works, x
stands for a possibly-empty sequence of x. [X 7→ S]
denotes a substitution of the S for the X, which can be
applied to either an expression or a type, and which can
substitute either type or expression variables.

A number of symbols are used to abbreviate key-
words: / stands for extends and : stands for kind. Also
@ represents concatenation of sequences of syntactic
constructs. Finally, CT (T) is a lookup in the class table
for the definition of T.

A number of restrictions on MCJ programs are im-
plicit in the formal rules. First, we assume that all

sequences of methods and fields are free of duplicates.
Second, there is an implicit well-formedness constraint
on programs that no class be a superclass of itself, ei-
ther directly or indirectly (however, as discussed below,
cycles in the kind hierarchy are allowed). Third, we
assume that this is never used as the name of a vari-
able, method or field. We also take Object to be a
distinguished member of the hierarchy, with no specific
definition, which does not have a superclass or a kind.

For example, the simplest MCJ class is:
class C<> : Object / Object{}
This is a class named C, with no type arguments,

with kind Object and superclass Object, which has no
fields or methods whatsoever. In examples that follow,
we omit empty <>. Note that both the kind and the su-
perclass are Object. MCJ does not have a distinguished
class Class. Interestingly, we determined that a class
Class would need no consideration from the type sys-
tem. Since both Class and Object would sit atop the
hierarchy with no contents, we determined there was
no need to include both of them. In a more substantial
language, where Object might have methods or fields,
there might be a use for a distinguished Class class.
However, it would not need any special treatment by
the type system.

A more complicated MCJ class is:4

class Pair<A extends (Object, Object),
B extends (Object, Object)>

kind Object extends Object
4Here we use extends for / and kind for :.

6



{
class Pair<A,B> make(A a, B b){ new(A,B) (a,b) } ;
A fst;
B snd;
Pair<B,B> setfst(B b){

return new <B,B> (b, this.snd);
};
}

This class specifies a polymorphic pair data struc-
ture. It also demonstrates a number of important MCJ
features. First, we see two different kinds of methods.
The make method creates a new instance of Pair. This
method contains a new expression, which initializes the
instance fields of the class positionally, so that the first
argument to make becomes fst, and the second becomes
snd. Also, note that we must mention the type param-
eters of the newly created instance.

Second, we have an instance method, setfst, which
creates a new pair with the old second element, and a
new first element which has the same type as the second
element.

Finally, adding the following to the above definition
of Pair gives a full MCJ program:

class O kind Object extends Object
{
class O make(){return new () ()};
}

Pair<O,O>.make(O.make(), O.make()).fst

This program, which creates two instances of O, then
creates a Pair to hold them both, and finally selects one
of the two to become the value of the program, demon-
strates three of the expression forms in MCJ. Pair<O,O>
is a type, which, by itself, can be a value. O.make() is a
method invocation (here with a class, not an instance,
as the receiver). The entire expression is a field access,
of the fst instance field.

Other kinds of expressions are seen in the body of
the Pair class. new<A,B> (a,b) is a new expression,
which creates an instance of the enclosing class (here
Pair). In the body of make is a reference to the variable
b, which has the obvious value. The final directly ex-
pressible expression is the cast, which works as follows:
(Object)O.make() is an expression of type Objectthat
evaluates to an instance of O.

With an understanding of expressions, we can exam-
ine the rest of the Pair class. There are two methods: a
class method (make) and an instance method (setfst).
There are also two fields, both of which are instance
fields and initialized the new expressions. In MCJ, a new

expression is different from those in Featherweight GJ;

each new expression evaluates to an instance of the syn-
tactically enclosing class.5 Had there been additional
fields in the superclass of Pair, it would have been nec-
essary to initialize them in the new expression as well.
new expressions are explained in detail in section 2.2.

4.2 Semantics

There are two forms that a value can take in MCJ: that
of an instance class, and that of a conventional (non-
class) value. If we were to distinguish these two forms
of value, we would significantly increase the number of
rules necessary to describe our semantics because every
rule referring to a value would have to be written twice.
To avoid this complexity, we introduce a special map-
ping construct (similar to a record value) to denote the
results of computations.6 A mapping takes field names
to expressions, and is annotated with a ground type.
Mappings from a sequence of fields f to a sequence of
expressions e with type G are written {f 7→ e}G. A map-
ping denoting an instance class C consists of a sequence
of class fields mapped to a sequence of expressions and
is annotated with the type typeOf(C). Note that the
right hand sides of such maps need not always be val-
ues, and thus computation can take place inside of a
mappings. Mappings are not available to the program-
mer, and thus can only be created by operation of the
reduction rules. Therefore, unlike Featherweight Java,
our reductions do not operate entirely in the expressible
syntax of the language. We use the metavariable Φ to
range over mappings. When we need to refer to the type
annotation of a mapping explicitly, the metavariable is
written ΦG.

The semantics are given in figures 2, 3 ,4, and 5 with
auxiliary functions given in figure 6.

4.2.1 Typing

Rules governing the typing of MCJ programs are given
in figures 2, 3 and 4. The bound∆ function is defined as
follows:

bound∆(X) = ∆(X)
bound∆(typeOf[X]) = ∆(typeOf[X])

bound∆(S) = S

This function maps type variables and typeOf ap-
plied to type variables to their bounds, and leaves oth-
ers unchanged.

The metavariables ∆ and Γ range over bounds envi-
ronments, written X / S and type environments, written

5In the grammar of figure 1, new expressions are annotated
with this enclosing class. In the examples, this redundant infor-
mation is elided.

6This simplification was suggested by Jan-Willem Maessen in
response to an earlier draft of the MCJ semantics.

7



x : T respectively. A bounds environment contains two
bounds for each type variable, so that if ∆ = X <: (A, B),
then ∆(X) = A and ∆(typeOf[X]) = B.

The notation A <: B means A is a subtype of B. Sub-
typing judgments are made in the context of a bounds
environment, which relates a type to the declared bound
of that type from the class header.

Type judgments are of the form ∆; Γ ` e : T, which
states that in bounds environment ∆ and type envi-
ronment Γ, expression e has type T. Type judgments
are not transitive in the way that instanceof relation-
ships are with respect to subtyping: if ∆; Γ ` e : T,
and ∆ ` T <: S, it is not necessarily the case that
∆; Γ ` e : S. This is important, since our proofs de-
pend on having unique derivations of a given typing
judgment. We represent empty environments with ∅
and we abbreviate judgments of the form ∅; ∅ ` e : T
and ∅ ` T <: S as e : T and T <: S respectively.

We now discuss several non-obvious aspects of our
type system resulting from the need to statically check
uses of metaclasses.

Casts and Mappings We follow [1] in typing all
casts as statically correct, so as to avoid the compli-
cations of “stupid casts”. Mappings, which are not ex-
pressible in the source language, are typed merely by a
well-formedness constraint.

4.2.2 Well-Formedness

There are three kinds of well-formedness constraints on
MCJ programs. First, type well-formedness, written
“∆ ` T ok”, states that type T refers to a defined class,
and that if it is a type application, the arguments satisfy
the bounds.

More important are the class and method well-
formedness constraints, which together determine if a
class table is well-formed, and thus part of a legal MCJ
program. Method well-formedness is a judgment of the
form “M ok in G”, where M is a method. We make use
of the latter portion (G) of this judgment as a second
argument, allowing us to use this rule to check both
instance and class methods. Method well-formedness
consists mostly in fitting the body to the return type,
and checking for invalid overrides.

Class well-formedness involves all of the above
checks. All methods must be well-formed, and all class
fields must have correct initialization expressions. Fur-
ther, class fields must contain the instance fields of the
kind. Finally, all new expressions must have the correct
class name annotation.

4.2.3 Evaluation

The evaluation rules for MCJ are given in figure 5. The
evaluation relation, written e → e′, states that e tran-
sitions to e′ in one step. The reflexive transitive closure
of this relation is written e→∗ e′.

Bad Casts There is one way that evaluation in MCJ
can get stuck: the bad cast. This problem occurs for all
languages that allow static downcasts. A expression e
is a bad cast iff e = (S)ΦT where S is not a supertype
of T.

The evaluation relation given here is non-
deterministic. For example, no order is prescribed
for evaluating the arguments to a new expression
or method call, or for evaluating the initializers for
class fields. There are also a number of places where
either congruence or reduction rules can be applied.
Therefore, in the presence of non-termination or bad
casts, the results may differ depending on evaluation
order. However, confluence can be regained simply
by requiring that [C-Mapping] is applied whenever
possible. This restriction, combined with the require-
ment in the premise of [R-New] that the arguments
be values, ensures that every program with an error
or non-termination will either cause an error, or fail to
terminate.

4.3 Type Soundness

With the above definitions, we are now able to turn
to a proof of type soundness. Given the simplicity we
are able to achieve in the definitions, the proof is not
significantly more complicated than the soundness proof
given for Featherweight GJ [13]. However, there are a
number of significant lemmas, of which we list the most
important:

Lemma 1 (Fields are Preserved by Subtypes)
If fields(U) = F and ∅ ` V <: U then ∃ G where
fields(V) = F @ G.

Proof We prove this by induction over the derivation
for fields(V).

Case V = Object: Then U = Object and ∅ = ∅ @ ∅.

Case V = C<R>: Then CT (C) =
class C<X / (I, J)> : B / A{...H...}
Continue by induction on the derivation of ∅ `
V <: U. The only interesting cases are [S-Super]
and [S-Trans].

Subcase [S-Super]: [X 7→ R]A = U. Thus G = H.

8



∆ ` T <: T [S-Reflex]
X / T ∈ ∆

∆ ` X <: T
[S-Bound]

∆ ` V <: T ∆ ` T <: U

∆ ` V <: U
[S-Trans]

CT (C) = class C<X / (I, J)> : B / A {...}
∆ ` typeOf[C<S>] <: [X 7→ S]B

[S-Kind]
CT (C) = class C<X / (I, J)> : B / A {...}

∆ ` C<S> <: [X 7→ S]A
[S-Super]

∆ ` Object ok [WF-Object]
∆ ` X <: T
∆ ` X ok

[WF-Var]
∆ ` T ok

∆ ` typeOf[T] ok
[WF-Typeof]

CT (C) = class C<X / (I, J)> : B / A {...}
∆ ` S <: [X 7→ S]I ∆ ` typeOf[S] <: [X 7→ S]J ∆ ` S ok

∆ ` C<S> ok
[WF-Class]

Figure 2: Subtyping and Well-Formed Types

∆; Γ ` x : Γ(x) [T-Var]
∆ ` T ok ∆; Γ ` e : U

∆; Γ ` (T)e : T
[T-Cast]

∆ ` S ok
∆; Γ ` S : typeOf[S]

[T-Class]

∆; Γ ` e : U
fields(bound∆(U)) = T f

∆; Γ ` e.fi : Ti
[T-Field]

∆ ` C<S> ok fields(C<S>) = T f
∆ ` U <: T ∆; Γ ` e : U

∆; Γ ` newC<S>(e) : C<S>
[T-New]

fields(G) = T f
∆; Γ ` e : S ∆ ` S <: T

∆; Γ ` {f 7→ e}G : G
[T-Mapping]

mtype(m, bound∆(W)) = U→T
∆; Γ ` r : W ∆; Γ ` e : V ∆ ` V <: U

∆; Γ ` r.m(e) : T
[T-Invk]

Figure 3: Expression Typing

params(G) = X @ (I, J)
∆ = {X / I, typeOf[X] / J} Γ = {x : T, this : G}
∆ ` T ok ∆ ` U ok override(m, super(G), T→U)

∆; Γ ` e : W ∆ ` W <: U

U m (T x) {return e; } ok in G
[WF-Method]

M ok in typeOf[C<X>] N ok in C<X> ∆ = {X / I, typeOf[X] / J}
∆ ` B ok ∆ ` A ok ∆ ` I ok ∆ ` J ok ∆ ` T ok ∆ ` W ok

fields(B) ⊆ T f ∆; ∅ ` e : T′ ∅ ` T′ <: T
∀ newD<S>(d) ∈ e, M, N. D = C

class C<X / (I, J)> : B / A {T f e; M; W g; N; } ok
[WF-ClassDef]

Figure 4: Well-Formed Constructs

Subcase [S-Trans]: Let T be the intermediate type.
Then fields(V) = fields(T) @ H′ and fields(V) =
fields(T) @ H′′ by the induction hypothesis. Thus
G = H′ @ H′′.

Case V = typeOf[C<S>]: Then CT (C) =
class C<X / (I, J)> : B / A{W h e...}. We continue
by induction over the derivation of ∅ ` V <: U. The
only complex cases are [S-Kind] and [S-Trans].

Subcase [S-Trans]: As above.

Subcase [S-Kind]: [X 7→ S]A = U Then fields(V) =
[X 7→ S]W h. By well-formedness of C, we know that

fields(B) ⊆ W h. Then [X 7→ S]fields(B) ⊆ [X 7→
S]W h, and fields([X 7→ S]B) ⊆ [X 7→ S]W h by lemma
Substitution Distributes over fields.

Lemma 2 (Subtyping Preserves Method Typing)
If mtype(m, U) = T→S and ∅ ` V <: U then
mtype(m, V) = T→S.

Proof By induction over the derivation of ∅ ` V <: U.

Case [S-Reflex]: Trivial.

Case [S-Bound]: Not applicable.

9



Object→ {}Object [R-Object]
fields(C<S>) = T f

newC<S>(v)→ {f 7→ v}C<S>
[R-New]

∅ ` G <: T
(T)ΦG → ΦG

[R-Cast]
field-vals(typeOf[C<S>]) = T f e

C<S>→ {f 7→ e}typeOf[C<S>]
[R-Class]

ΦG.f→ ΦG(f) [R-Field]
mbody(m, G) = (x, e0)

ΦG.m(d)→ [x 7→ d, this 7→ ΦG]e0

[R-Invk]

e→ e′

e.f→ e′.f
[C-Field]

e→ e′

e.m(d)→ e′.m(d)
[C-Rcvr]

e→ e′

newC<S>(e)→ newC<S>(e
′)

[C-New]

e→ e′

d.m(e)→ d.m(e′)
[C-Arg]

e→ e′

(T)e→ (T)e′
[C-Cast]

e→ e′

{f 7→ e}G → {f 7→ e′}G
[C-Mapping]

Figure 5: Computation Rules

fields(Object) = ∅ [F-Object] field-vals(Object) = ∅ [FV-Object] field-vals(C<S>) = ∅ [FV-Class]

CT (C) = class C<X / (I, J)> : B / A {T f e; M; W g; N; }
fields([X 7→ R]A) = U h

fields(C<R>) = U h ∪ [X 7→ R]W g
[F-Class]

CT (C) = class C<X / (I, J)> : B / A {T f e; M; W g; N; }
fields(typeOf[C<R>]) = [X 7→ R]T f

[F-Typeof]

CT (C) = class C<X / (I, J)> : B / A {T f e; M; W g; N; }
field-vals(typeOf[C<R>]) = [X 7→ R]T f e

[FV-Typeof]

U m (T x) {return e; } ∈ methods(G)
mtype(m, G) = T→U

[MType]
U m (T x) {return e; } ∈ methods(G)

mbody(m, G) = (x, e)
[MBody]

methods(Object) = ∅ [MethodsObject]

CT (C) = class C<X / (I, J)> : B / A {T f e; M; W g; N; }
methods(C<R>) = [X 7→ R]N ∪ methods([X 7→ R]A)

[MethodsClass]

CT (C) = class C<X / (I, J)> : B / A {T f e; M; W g; N; }
methods(typeOf[C<R>]) = [X 7→ R]M ∪ methods([X 7→ R]B)

[MethodsTypeof]

mtype(m, G) = U→V implies W = U and T = V

override(m, G, W→T)
[Override]

CT (C) = class C<X / (I, J)> : B / A {...}
params(C<T>) = X @ (I, J)

[Params]
CT (C) = class C<X / (I, J)> : B / A {...}

params(typeOf[C<T>]) = X @ (I, J)
[ParamsTypeof]

CT (C) = class C<X / (I, J)> : B / A {...}
super(C<T>) = A

[Super]
CT (C) = class C<X / (I, J)> : B / A {...}

super(typeOf[C<T>]) = B
[SuperTypeof]

Figure 6: Auxiliary Functions

Case [S-Super]: In this case, V = C<R>, where
CT (C) = class C<X / (I, J)> : B / A{...M} and U =
[X 7→ R]A. We need to show that mtype(m, C<R>) =
T→S. By lemma methods is well-defined, it
suffices to show that U m (T x) {return e; } ∈
methods(C<R>).

We know that U m (T x) {return e; } ∈
methods(U). So, we proceed by induction on
the derivation of methods(U).

Subcase U = Object: Impossible, since Object has no
methods.

Subcase U = D<W>: Then, U = [X 7→ R]A. By
[MethodsClass], methods(V) = methods(C<R>) =
([X 7→ R]M) ∪ methods([X 7→ R]A) = ([X 7→ R]M) ∪
methods(U). Therefore, any method in methods(U)
must be in methods(V).

Case [S-Typeof]: Analagous to [S-Super].

Case [S-Trans]: Let the intermediate type be T. Then
∅ ` V <: T and ∅ ` T <: U. Thus, by the in-
duction hypothesis, mtype(m, V) = mtype(m, T) =
mtype(m, U).

Lemma 3 (Substitution Preserves Typing)

10



If ∆; Γ ` e : T and Γ = x : S and ∆; ∅ ` d : U and
∆ ` U <: S then ∆; ∅ ` [x 7→ d]e : T′ where ∆ ` T′ <: T.

Proof With the above two lemmas, this one follows by
straightforward structural induction over the derivation
of ∆; Γ ` e : T.

Given the above lemmas, the following subject re-
duction proof is a simple structural induction with a
case analysis on the typing rule used to derive ∅; ∅ `
e : S.

Theorem 1 (Subject Reduction) If ∅; ∅ ` e : S and
e → e′ then ∅; ∅ ` e′ : T where ∅ ` T <: S.

Proof We prove this by structural induction on the
derivation of e → e′.

Case [R-Object]: Immediate.

Case [R-New]: Immediate from the premises of [T-

New] and [R-New].

Case [R-Class]: Immediate from the premises of
[WF-ClassDef] and [R-Class].

Case [R-Cast]: By [T-Cast], e = (T)ΦG must have
type T. By [T-Mapping], e′ = ΦG must have type
G. By hypothesis of the reduction rule, ∅ ` G <: T.

Case [R-Field]: We know that e = {f 7→ d}G.fi and
that e′ = di. Since e must have been typed by [T-

Field], we know that fields(G) = T f and ∅; ∅ `
e : Ti. Further, since {f 7→ d}G must have been
typed by [T-Mapping], we know that ∅; ∅ ` di : S
where ∅ ` S <: T.

Case [R-Invk]: We know that e = ΦG.m(d) and that
e′ = [x 7→ d, this 7→ ΦG]e0. Further, e was typed
by [T-Invk] to have type U where mtype(m, G) =
T→U and ∅; ∅ ` d : T′ and ∅ ` T′ <: T. As a premise
of [R-Invk], we know that mbody(m, G) = (x, e′0).

By the lemma mtype and mbody agree,
∅; x : T, this : G ` e′0 : U′ where ∅ ` U′ <: U.
Then by the lemma Substitution Preserves Typ-
ing, ∅; ∅ ` e′ = [x 7→ d, this 7→ ΦG]e0 : U′′ where
∅ ` U′′ <: U′.

Case [C-Cast]: Trivial, since ∅ ` (T)e : T for any e.

Case [C-Map]: Immediate from the induction hy-
pothesis and the transitivity of subtyping.

Case [C-New]: Immediate from the induction hy-
pothesis and the transitivity of subtyping.

Case [C-Arg]: Immediate from the induction hypoth-
esis and the transitivity of subtyping.

Case [C-Rcvr]: We know that e = e0.m(d) and e′ =
e′0.m(d). Further, e must have been typed by [T-

Invk], which means that ∅; ∅ ` e0 : W for some
ground type W, and that ∅; ∅ ` d : V and ∅ `
V <: U, and also mtype(m, W) = U→T. By the
induction hypothesis, ∅; ∅ ` e′0 : W′ where ∅ `
W′ <: W. Therefore, by lemma Subtyping Preserves
Method Typing, mtype(m, W′) = U→T and thus
∅; ∅ ` e′0.m(d) : T by [T-Invk].

Case [C-Field]: If e.fi → e′.fi, then e → e′. Fur-
ther, e.fi must have been typed by [T-Field] to
have type Ti. Therefore, by the induction hypoth-
esis, ∅; ∅ ` e : S and ∅; ∅ ` e′ : S′ where ∅ ` S <: S′.
Then, by the lemma Fields are Preserved by Sub-
types, fields(S′) = fields(S) @ F for some F, and by
[T-Field], ∅; ∅ ` e′.fi : Ti.

The proof of progress presents no additional compli-
cations, and requires only one new lemma.

Lemma 4 (Agreement of fields and field-vals) If
fields(G) = T f and field-vals(G) = T′ f′ e then T = T′,
f = f′ and ∅; ∅ ` e : S where ∅ ` S <: T.

Theorem 2 (Progress) If ∅; ∅ ` e : S then one of the
following holds:

• e = {f 7→ v}G
• e → e′

• e = (S)e′ and ∅; ∅ ` e′ : T and ∅ ` T 6<: S.

Proof By induction over the derivation of ∅; ∅ ` e : S.

Case [T-Var]: This is a contradiction, since e is
ground.

Case [T-Class]: In this case e = C<S′> where C<S′>
is ground. Then by the lemma Agreement of field-
vals and fields, params(C<S′>) = X @ (I, J) for
some Further, field-vals(typeOf[C<S′>]) = T f e
for some T, f, and e. Therefore, [R-Class] applies
and S→ {f 7→ [X 7→ S′]C<S′>}

typeOf[C<S′>]
.

Case [T-Mapping]: Either e is already a value, or
e = {f 7→ e}G where not all of the e are val-
ues. Then by the induction hypothesis, there is
some i such that either ei → e′i, in which case [C-

Mapping] applies, or ei contains a bad cast, and
the case is complete.

Case [T-Cast]: Here there are three cases:

• e = (S)e′ where e′ is not a mapping. Then
[C-Cast] applies.

11



• e = (S)ΦT where ∅ ` T <: S. Then [R-Cast]
applies.

• e = (S)ΦT where ` T 6<: S. Then e is a bad
cast.

Case [T-New]: From the antecedent of [T-New] the
premise of [R-New] applies.

Case [T-Invk]: Here there are two cases.

• e = r.m(d) where r is not a mapping. Then
by the induction hypothesis, either r contains
a bad cast or r→ r′ and [C-Rcvr] applies.

• e = ΦT.m(d) We know from the antecedent
that mtype(m, boundT) = U→V and therefore
mtype(m, T) = U→V since T is ground. There-
fore, since mbody is defined everywhere mtype
is defined, mbody(m, T) = (x, e0) for some x
and e0. Thus [R-Invk] applies.

Case [T-Field]: Here there are two cases, either the
reciever is a mapping or not. In the first, by the
antecedent of the typing rule, we can lookup the
field successfully and apply [R-Field]. Otherwise,
we can apply [C-Field].

From these, we can conclude the desired type safety
result.

Theorem 3 (Soundness) If e : S then either

• e→∗ {f 7→ v}G
• e→∗ e′ where e′ is an invalid cast

• e reduces infinitely.

Proof Immediate from Subject Reduction and
Progress.

5 Related Work

A number of object-oriented languages have included
some form of metaclass system. Most notable among
these is Smalltalk [11], but others include Common Lisp
with CLOS [14].

All of these systems share a common architecture
of the metaclass system in which each class has its own
freely generated metaclass, defined by the class methods
and fields of the class. In contrast, MCJ provides a
hierarchy for structuring metaclass relationships, which
provides significantly more modeling and abstraction
flexibility.

The metaclass system present in Python [17] is
quite similar to that provided here, with inheritance
of instance methods as class methods from arbitrary
other classes as metaclasses. However, Python is

dynamically-typed, and many of the uses to which
Python metaclasses are put are not possible in a stati-
cally typed language. The work on static type systems
for Python has not included metaclasses [15].

Several type systems have also been proposed for
languages with metaclasses, including the Strongtalk
language [3], which turns Smalltalk into a structurally-
typed language with extensive static checking. How-
ever, because the Smalltalk metaclass system is so dif-
ferent from the one in MCJ, many of the interesting
aspects of the type system do not carry over. Further-
more, the Strongtalk papers do not provide a formal
semantics and analysis of the system. A formal analy-
sis of inheritance in Smalltalk is provided in [7] but this
again does not consider the hierarchy of metaclasses
presented here.

Graver and Johnson [12] present another type sys-
tem for Smalltalk, with a formalism and sketch of a
safety proof. Again, the metaclass type system is sub-
stantially different, reflecting the underlying Smalltalk
system. Additionally, the paper is concerned primarily
with optimization as opposed to static checking.

Cointe [6] presents a model of metaclasses extremely
similar to that presented here. In it, he provides several
overlapping motivations to our own. One is to regular-
ize the metaclass system of Smalltalk, and another is to
enable additional programming flexibility. To this we
add modeling freedom, and a relation to static methods
in more recent OO languages. Cointe’s work, however,
does not provide a formal model, so it is difficult to
determine the exact relationship between the systems.
Additionally, his work is in a untyped setting (Lisp and
Smalltalk) and thus the safety theorems proved here are
not possible.

When viewed as “instance generators”, our meta-
classes are similar to prototypes in untyped languages
such as Self. Prototypes generate new instances, which
themselves can generate new instances. Our language
is more restrictive than prototype-based languages in
the sense that all metaclasses and instance classes must
be declared statically (i.e., by writing down class def-
initions). But our language is more expressive in the
sense that we include classes and subclassing relation-
ships. Also, unlike typical prototype-based languages,
our language is statically typed.

Formalized calculi for object-oriented languages are
abundant in the programming languages community
today, including Featherweight Java [13], upon which
MCJ is based. However, none of them have considered
static methods, which are the closest analogue of the
metaclass functionality in MCJ.

Finally, the motivation for this work comes from the
language MetaGen, introduced in [2]. MetaGen can be
seen as an extension of MCJ, which provides numerous

12



other advanced type features. Here we restrict ourselves
to metaclasses and analyze the properties of the system
formally.

6 Conclusions and Future Work

With MCJ, we have devised a core calculus for meta-
classes that is more flexible than that available in more
traditional metaclass systems such as Smalltalk and
that allows clean expression of many common design
patterns. In doing so, we have demonstrated that meta-
classes can be added to a nominally-typed, statically-
checked language without either significant complica-
tion of the semantics or difficulty in the proof of sound-
ness.

In addition to this contribution, we have elucidated
several other important points about the integration of
metaclasses into an object-oriented system. The typeOf

type operator is to our knowledge unique, and plays a
key role in the soundness of the system. The discovery
that the Class class played no special role, and that thus
the class and metaclass hierarchies could both be rooted
at Object is also novel. Finally, we have shown how an
expressive framework of metaclasses has positive effects
in other areas of the language, such as mechanisms for
object construction.

A natural extension of the work in this paper is to
expand MCJ to include more of the features presented
in [2], so as to allow inclusion of the system for checking
dimensions of physical quantities. Such an extension
would allow for a proof of “dimensional soundness” in
the resulting system. Further, any realistic system will
have imperative features, and while such features do
not seem likely to interact badly with metaclasses, no
sound system is built on such assumptions.

Another interesting extension would be to expand
our calculus to include either multiple inheritance (as
does Python) or some alternative such as mixins or
traits, as there may be interesting interactions between
metaclasses and these features that have yet to be dis-
covered.

Acknowledgments

We would like to thank Jan-Willem Maessen for his ex-
tremely helpful feedback on the formal rules presented
in this paper. We also thank David Chase for not be-
lieving in us unless we were right, Victor Luchangco for
many valuable discussions, and Guy Steele for his many
helpful comments.

References

[1] Eric Allen, Jonathan Bannet, and Robert
Cartwright. A first-class approach to genericity.
In Proceedings of the 2003 ACM SIGPLAN con-
ference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 96–114. ACM
Press, 2003.

[2] Eric Allen, David Chase, Victor Luchangco, Jan-
Willem Maessen, and Guy Steele. Object-
Oriented Units of Measurement. In Proceed-
ings of the 2004 ACM SIGPLAN Conference
on Object-oriented Programing, Systems, Lan-
guages, and Applications, 2004. Available at
http://research.sun.com/projects, under Program-
ming Languages.

[3] Gilad Bracha and David Griswold. Strongtalk:
Typechecking Smalltalk in a Production Envi-
ronment. In Proceedings of the OOPSLA ’93
Conference on Object-Oriented Programming Sys-
tems, Languages and Applications, pages 215–230,
September 1993.

[4] Luca Cardelli. A semantics of multiple inheritance.
In Proc. of the international symposium on Se-
mantics of data types, pages 51–67. Springer-Verlag
New York, Inc., 1984.

[5] Robert Cartwright and Guy L. Steele, Jr. Com-
patible genericity with run-time types for the java
programming language. In Proceedings of the 1998
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applica-
tions, pages 201–215. ACM Press, 1998.

[6] Pierre Cointe. Metaclasses are first class: the Ob-
jVLisp model. In Proceedings of the OOPSLA ’87
Conference on Object-Oriented Programming Sys-
tems, Languages and Applications, pages 156–162.
ACM Press, 1987.

[7] William R. Cook. A Denotational Semantics of
Inheritance. PhD thesis, Brown University, May 15
1989.

[8] R. Kent Dybvig. Writing Hygienic Macros in
Scheme with Syntax-Case. Technical report, In-
diana University Computer Science Dept., July 03
1992.

[9] Matthias Felleisen. On the expressive power of
programming languages. In Neil D. Jones, edi-
tor, ESOP’90, 3rd European Symposium on Pro-
gramming, volume 432 of Lecture Notes in Com-
puter Science, pages 134–151, Copenhagen, Den-
mark, 15–18 May 1990. Springer.

13



[10] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wes-
ley, Reading, Massachusetts, 1994.

[11] Adele Goldberg and David Robson. Smalltalk-80:
The Language and Its Implementation. Addison-
Wesley, Reading, Massachusetts, 1989.

[12] Justin O. Graver and Ralph E. Johnson. A type
system for Smalltalk. In Conference Record of the
Seventeenth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 136–150,
San Francisco, California, January 1990.

[13] Atshushi Igarashi, Benjamin Pierce, and Philip
Wadler. Featherweight Java: A minimal core cal-
culus for Java and GJ. In Proceedings of the 1999
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applica-
tions, pages 132–146. ACM Press, 1999.

[14] Gregor Kiczales, Jim des Rivières, and Daniel G.
Bobrow. The Art of the Metaobject Protocol. MIT
Press, Cambridge, MA, 1991.

[15] Michael Salib. Static Type Inference
with Starkiller. In PyCon DC, 2004.
http://www.python.org/pycon/dc2004/papers/1/paper.pdf.

[16] Guy L. Steele Jr. Common Lisp: The Language,
Second Edition. Digital Press, Bedford, Mas-
sachusetts, 1990.

[17] Guido van Rossum. Unifying
types and classes in Python 2.2.
http://www.python.org/2.2.2/descrintro.html,
2002.

[18] Christopher A. Welty and David A. Ferrucci.
What’s in an instance? Technical report,
Rochester Polytechnic Institute Computer Science
Dept., 1994.

14


