Object-Oriented Units of Measurement

Eric Allen

David Chase Victor Luchangco Jan-Willem Maessen

Guy L. Steele Jr.

Sun Microsystems Laboratories
Burlington MA 01803

<first>.<last>@sun.com

ABSTRACT

Programs that manipulate physical quantities typically rep-
resent these quantities as raw numbers corresponding to the
quantities’ measurements in particular units (e.g., a length
represented as a number of meters). This approach elimi-
nates the possibility of catching errors resulting from adding
or comparing quantities expressed in different units (as in
the Mars Climate Orbiter error [11]), and does not sup-
port the safe comparison and addition of quantities of the
same dimension. We show how to formulate dimensions and
units as classes in a nominally typed object-oriented lan-
guage through the use of statically typed metaclasses. Our
formulation allows both parametric and inheritance poly-
morphism with respect to both dimension and unit types.
It also allows for integration of encapsulated measurement
systems, dynamic conversion factors, declarations of scales
(including nonlinear scales) with defined zeros, and noncon-
stant exponents on dimension types. We also show how to
encapsulate most of the “magic machinery” that handles the
algebraic nature of dimensions and units in a single meta-
class that allows us to treat select static types as generators
of a free abelian group.

Categories and Subject Descriptors

D.1.5 [Programming Techniques|: Object-Oriented Pro-
gramming; D.3.1 [Programming Languages]|: Formal Def-
initions and Theory; D.3.3 [Programming Languages]:
Language Constructs and Features

General Terms

Design,Languages

1. INTRODUCTION

Physical units and dimensions are a commonly used com-
putational construct in science and engineering, but there is
relatively little support for them in programming languages.
Instead, physical quantities are typically represented as num-
bers that correspond to the quantities’ measurement in a
particular unit (e.g., a length represented as a number of

OOPSLA'040ctober 24-28, 2004 Vancouver, British Columbia, Canada,

Copyright 2004 Sun Microsystems, Inc. All rights reserved.
ACM 1-58113-712-5/03/0010 .

meters); the unit and dimension of the measurement are
not represented in the program at all (except possibly in
the names of variables used to hold these numbers). Thus,
the units and dimensions cannot be used in the analysis of
the program. In particular, they cannot be used to detect
errors resulting from mismatched quantities. While trivial,
such errors are not uncommon, and can have costly reper-
cussions. For example, the loss of the Mars Climate Orbiter
in September 1999 was ultimately traced to a failure in the
software to convert between English and metric units [11].
In another example, a space shuttle rolled itself away from
the Earth in response to an instruction to bounce a laser off
a mountain it was told was 10,000 miles high, rather than
the intended 10,000 feet [24]. Units were not programmed
as part of the input data and therefore all inputs were im-
plicitly interpreted as measurements in miles.

At least superficially, dimensions and units bear a strong
similarity to types. However, most contemporary type sys-
tems, even with generic types, are insufficiently expressive
to capture several properties necessary for dimension check-
ing. For example, dimension checking at compile-time re-
quires the compiler to manipulate dimensions according to
a dimensional algebra (e.g., Time X Length = Length X Time).
Most previous formulations of dimension checking in pro-
gramming languages have encoded dimensions as an ad hoc
language feature rather than integrating them into a gen-
eral type system. The few attempts at integrating dimen-
sions into more general type systems have focused on struc-
tural type systems over functional and procedural languages
with significantly different design considerations than those
of mainstream object-oriented languages [20].

In this paper, we show how to integrate dimensions and units
with classes in a nominally typed object-oriented language
(such as the Java™ Programming Language or C#) in a
way that supports static checking of units and dimensions,
and with a performance cost no greater than that of boxing
primitive values.

'Boxing is a technique that enables a primitive value (e.g.,
0) to be used in contexts requiring a reference value by wrap-
ping the primitive in a new reference (new Integer(0)). It
can negatively impact execution time because boxed values
must be dereferenced when accessed. However, clever com-
piler optimizations, particularly in just-in-time compilers,

Our formulation allows dimensions and units to be treated as
ordinary class-based types, and allows both parametric and
inheritance polymorphism with respect to both dimension
and unit types. We describe the new language features re-
quired to support this integration in the context of the Mix-
Gen extension [1] of the Java Programming Language, where
generic types are first-class. MixGen allows type-dependent
operations such as casts on arbitrary generic types, and even
expression of mizins (i.e., generic classes parameterized by
their own superclasses).

First-class generic types play a crucial role in our formula-
tion of dimensions. We present our language as an extension
of MixGen to ground it in a sound, statically typed object-
oriented language that supports first-class generic types. A
formulation in the context of C++ templates, in particular,
would not meet this criterion. MixGen includes many sub-
tle features to handle pathologies that do not arise in our
treatment of dimensions and units—for example, support
for polymorphic recursion, hygienic method overriding, and
nontrivial with clauses; we avoid discussing these features.
Therefore, we expect our formulation to be accessible to
readers familiar only with C++, C#, or the Java Program-
ming Language, and with the notion of encoding mixins via
generic types, as can be done with C++ templates. Also,
because our real interest is in understanding the relation-
ships of dimension and unit checking with object-oriented
type systems in general, we make no attempt to maintain
backward compatibility when extending MixGen.

Our main extension to MixGen is the addition of statically
typed metaclasses, which we use to model values that have
associated dimensional units. We also define a special meta-
class abelian class that provides the algebraic properties
necessary to model dimensions and units accurately. Al-
though we strive to introduce as few features as possible,
the language we end up with is quite different from the lan-
guage we started with; we dub our new language MetaGen.

In Section 2, we briefly analyze some concepts important
to dimension and unit checking, discuss design constraints
for a system to do this checking, and explain why existing
object-oriented languages do not satisfy these constraints.
In Section 3, we describe several common uses of physical
quantities for which we want to have static checking, and
the features of MetaGen that support this ability, and we
describe further extensions in Section 4. We discuss various
syntactic and performance issues in Section 5, survey related
work in Section 6, and conclude with future directions in
Section 7.

2. ANALYSIS AND DESIGN CHALLENGES

In this section, we lay out the basic framework and terminol-
ogy that we use throughout this paper. Although the view
we take is not the only way to understand dimensions and
units, we have found it useful for elucidating many design
issues. We also discuss several pragmatic requirements that
influence our design.

can eliminate much of this overhead by specializing code
with variants for unboxed values in contexts where observ-
able behavior is unaffected.

2.1 Basic terminology and analysis

The fundamental notion in our formulation is that of a quan-
tity. Every quantity exists in a particular dimension? (e.g.,
Length, Time). When two quantities () and Q' exist in the
same dimension, we can answer the question, “how much of
Q does it take to equal Q’?”

Some quantities are designated units and are denoted with
special symbols (e.g., Meter, Second). Every quantity can
be denoted by a measurement in terms of any unit U in its
dimension. If it takes x of U to equal) then we denote Q
with the measurement xU, and we call x the magnitude of
this measurement. For example, the denotation 5 Meters is
a measurement for a quantity in the dimension Length whose
magnitude in terms of the unit Meter is 5.

One advantage of using units is that it allows us to compare
two measurements of the same dimension algebraically. To
express a quantity @) denoted by a measurement M = xU in
unit U as a measurement in another unit V', we need not re-
measure the same quantity in V' (which is seldom practical,
and often impossible). Instead, we can measure our unit U
with unit V, resulting in a measurement yV; we say y is
the conversion factor from U to V. Then we can form the
measurement M’ of @ in unit V by substituting yV for U
in M: M =zU = zyV = (xy)V. Two measurements in the
same unit can be compared by comparing their magnitudes
arithmetically.

Magnitudes can be taken from an arbitrary algebraic field.
For now, we assume that magnitudes are always real num-
bers (i.e., instances of a class Real, which we intentionally
leave undefined). Furthermore, we use the standard liter-
als and mathematical operators to denote real numbers and
their methods, and we do not worry about errors due to
computational limitations such as imprecision and overflow.
We discuss taking magnitudes from arbitrary fields in Sec-
tion 4.2, and implementation issues in Section 5.2.

We can also combine quantities of distinct dimension via
multiplication and division to form new quantities. Such a
quantity exists in a new dimension denoted by combining
the respective dimensions with combinators x and /, which
satisfy certain algebraic properties (e.g., Length X Time =
Time X Length). The set of dimensions is an abelian group
under x [21]. We define a special dimension, called unity,
to serve as the multiplicative identity for dimensions, and
we denote the inverse of a dimension D by D™

Units of combined measurements are combinations of units
of the constituent measurements. Just as we can have sev-
eral units of a given primary dimension, we can have several
derived units for a given derived dimension. It is also possi-
ble to define new primitive units of combined dimensions.

2.2 Design Constraints

We want a design that accurately models our understand-
ing of dimensions and units. In addition, we impose the
following pragmatic design constraints:

2We adopt for now the naive view that every quantity exists
in a single, fixed, dimension. In Section 3.6, we discuss some
ways in which this naive view needs to be refined.

1. It should be easy to convert a measurement in one
unit to a measurement in another unit of the same
dimension.

2. Type-dependent operations on dimensions and units,
such as casting and instanceof tests, as well as the
ability to print and store measurements, should be sup-
ported.

3. It should be possible to require that a quantity be
denoted by a measurement in a specific unit (e.g., a
length that must be measured in meters) as an addi-
tional error check, to avoid unnecessary conversions,
and to manage the inaccuracies inherent in floating
point calculations.

4. Programmers should be able to define new units and
dimensions and to define behavior specific to that di-
mension (e.g., a method dilate for Time). Even if all
programmers and users were willing to use the SI sys-
tem, there are contexts in which units and dimension
checking can be employed (currency, information, etc.)
that are not part of this system.

5. We should allow for as much polymorphism as possible.
In particular, we should support type parameters for
dimensions and units.

6. Unit annotations on quantities should cost no more
in execution time and space than boxing of primitive
values.

7. We should add as few features to the language as pos-
sible without sacrificing conceptual coherence (i.e., “as

simple as possible, but no simpler”).

2.3 Why we need a new language

Ideally, we could model systems for static checking of dimen-
sions and units as libraries in existing object-oriented lan-
guages. Unfortunately, even with first-class generic types,
we quickly run into obstacles when trying to do so. The
fundamental difficulty, which we encounter in many guises,
is the need to treat a single entity as both a type and a
value. For example, dimensions must be types so that we
can statically check expressions for dimensional correctness.
However, there are several ways in which dimensions are
more like values than types. For example, we must be able
to multiply dimensions together to form new dimensions,
and this operation must obey algebraic properties such as
commutativity. Even syntactically, the form of dimensions
is value-like: the dimension Length/Time2 syntactically con-
tains the value 2.

There is another more subtle way in which units and dimen-
sions behave like both types and values: a natural object-
oriented modeling of dimensions identifies each dimension
as a class—containing as instances the quantities of that
dimension—as well as an instance of a class Dimension. For
example, Length is a Dimension and 5 Meters is a Length.
We want to define a class Dimension so that we can spec-
ify polymorphic contexts that can be instantiated with any
dimension, and so we can define functionality common to
all dimensions in a single class. For example, we want to
declare that for every dimension D, every quantity of D has a
method inUnit that allows conversion to a measurement in

any unit of D. We may also want to declare abstract methods
such as shortName on dimensions, or a method devices that
returns a collection of the devices used to measure quantities
of a dimension. We cannot represent individual dimensions
as subclasses of Dimension because the instances of partic-
ular dimensions—naturally identified as quantities in that
dimension—should not be used in contexts requiring a di-
mension. If we model quantities as instances of their corre-
sponding dimension class, and we model dimension classes
as subclasses of Dimension, then by transitivity of subtyping,
every quantity would also be an instance of Dimension, which
is clearly wrong: 5 Meters is not an instance of Dimension.

We might try to break this inheritance relationship with
a shallow workaround, such as treating dimensions as sub-

classes of Dimension and introducing a parametric class Quantity

to model quantities of a particular dimension:

abstract class Dimension {...}
class Length extends Dimension {...}
class Time extends Dimension {...}

class Quantity<D extends Dimension> {...}

Then lengths would be instances of Quantity<Length> and
times would be instances of Quantity<Time>. This approach
introduces a spurious distinction between Quantity<Length>
and Length; these two classes are naturally identified. Fur-
thermore, it prevents us from defining behavior specific to
all quantities of a particular dimension. For example, there
is no place to define methods such as dilate that are com-
mon to all instances of Quantity<Time>: If they were defined
in class Time then they could not be accessed as methods of D
from within Quantity<D>. If they were defined in Quantity<D>
then they could be accessed by all instantiations of Quantity.
If we instead define class Quantity<D> as a mixin that extends
class D, then quantities of a particular dimension would again
be instances of Dimension and we would be back to square
one.

Continuing with yet another workaround, we could define an
ad hoc subclass for each (actual) instantiation of Quantity<D>
(e.g.7 QuantityOfLength extends Quantity<Length>).]Because
of the limitations of contemporary generic type systems, this
sort of workaround is quite common. But it is unsatisfac-
tory because it introduces critical invariants that cannot be
statically checked (e.g., there must be ezactly one ad hoc
subclass of Quantity<D> for each subclass of Dimension; the
name of each ad hoc subclass has a precise relationship with
the instantiation of Quantity<D> it extends; etc.). Moreover,
these unchecked invariants were introduced solely to work
around the constraints of the static type system!

What we really want is a language that allows us to express
the correct relationships among the concepts we are model-
ing. We want to define classes that can be used as values as
well as static types. The inability to define such constructs
is a pervasive but seldom recognized problem in contempo-
rary object-oriented languages. Sometimes the problem is
circumvented by defining unnatural class hierarchies with
unenforced invariants, such as our hierarchy involving class
Quantity<D>. Other times, the Singleton Pattern [12] is em-
ployed. This pattern involves constructing unique instances
of classes and storing them in static final fields with the

name ONLY. For example, we can define class Length as a
Singleton,

class Length extends Dimension {
static final Length ONLY = new Length();
private Length() {}

}

creating a one-one correspondence between class Length and
its sole instance. We can treat the instance as a value and
the class as a type while conceptually identifying the two.

The Singleton Pattern introduces extra machinery and ver-
bosity into a program, and does not really address the un-
derlying problem. We cannot use the (conceptually unique)
instance of a type in a context requiring a value without
first dereferencing the singleton instance ONLY, and we can-
not access the ONLY field of a Singleton type in a parametric
context. Furthermore, this pattern is useless in the cur-
rent context: defining dimension classes as Singleton sub-
classes of Dimension does not help us to statically check al-
gebraic combinations of dimensions and it does not address
the problem that instances of a particular dimension should
not be instances of class Dimension.

3. OUR SOLUTION

To properly capture the dual nature of dimensions and units
as both values and types, we generalize the conventional
notion of class inheritance. In addition to defining subtype
relationships between classes, we also allow classes to be
instances of other classes. These instance classes may be
used like values that are defined statically. In this way, they
obviate the need for the Singleton Pattern. But we also allow
instance classes themselves to contain instance classes, and
we allow class extension of instance classes.

These new instanceof relationships are expressed by replac-
ing the keyword class with programmer-defined classes as
necessary. For example, we can define the classes

abstract class Dimension {...}
Dimension Length {...}

where class Length is an instance of class Dimension.

The generalization of class relationships turns out to be the
key language feature needed for integrating dimensions and
units with object-oriented types. Furthermore, this gener-
alization has applicability beyond just dimension checking.
It allows us to more accurately model many mathematical
structures based on set membership and subsets. Metaphor-
ically, we can think of classes as sets. Class extension can be
thought of as the subset relationship, and instanceof can be
thought of as set membership. In this view, allowing classes
to contain other classes is quite natural.

We now describe the core of the new semantics of MetaGen,
an extension of the MixGen extension of the Java Program-
ming Language that allows us to express the type relation-
ships we want.

3.1 Metaclasses

First, we establish some terminology in order to describe
our new semantics. A program consists of a collection of
class definitions. The class definition of a class C specifies a
metaclass D, of which C is an instance. C is also an instance
of all superclasses of D. A metaclass is either a user-defined
class or a special metaclass such as class, abstract class,
or interface. We call D the kind of c. We also say that ¢ is
an instance class of D and all of D’s superclasses, and that
D (and all its superclasses) are containing classes of €. The
kind of a class C is specified in its header:

kind C<type params> [extends superclass] {...}

For example, we may define the core classes in our dimension-
checking library as follows:

abstract class Dimension {}
Dimension Length {...}
Dimension Time {...}

Classes Length and Time are instance classes of Dimension,
and Dimension is the kind of classes Length and Time. The
kind of Dimension is abstract class.

In general, there is no relationship between a class’s kind and
its superclasses. Instance classes should be viewed as special
values that also denote a static type. Note that instance
classes (like all classes) are defined statically; there is no
way to allocate a new instance class dynamically. Instance
classes may also have subclasses and instances of their own.
An interface may serve as the kind of an instance class.

It is often useful to specify that type parameters are of a
specific kind (e.g., that a parameter is of kind Dimension).
Thus, we extend MixGen syntax so that we can specify a
type parameter’s kind as well as its bounding superclass:

kind parameter extends bound

For example, we define generic classes for both units and
measurements. Units are tied to particular dimensions; we
parameterize the class representing them by a type of kind
Dimension. Measurements are tied to particular units; we
parameterize the class representing them by a unit in the
appropriate dimension.

class* Unit<Dimension D> extends D {...}

class Measurement<Dimension D, Unit<D> U> extends D {
private final Real _magnitude;

}

The special kind class* is introduced to designate a class
whose instances are all instance classes. Unit<D> is defined to
be of kind class* so we can enforce the property that every
unit will be associated with its own type. An instantiation
of D must be an instance of Dimension (and a subtype of
Object). For example, we can define the following instance
classes:

Unit<Time> Minute {...}
Unit<Length> Foot {...}
Unit<Length> Mile {...}

Both Unit<D> and Measurement<D,U> extend their dimension
D, allowing us to refer to the type D in places we expect mea-
surements of D, (e.g., we can say that a method m takes a
Length and call m with new Measurement<Length,Mile>(5), de-
noting 5 Miles). We also get a single point of control for
specifying functionality specific to a particular dimension D:
the class D itself. We stipulate that a naked type parameter
occurring in an extends clause or as a kind of a type param-
eter must be instantiated only with classes that contain a
zeroary constructor and no abstract methods (ensuring there
is a superconstructor to call and that a mixin will not acci-
dentally inherit abstract methods without defining them)3
Because Unit and Measurement both have a superclass type
parameter of kind Dimension, they implicitly require that all
instance classes of Dimension include a zeroary constructor.

Because the unit of a measurement is a type parameter, we
need not add an extra field to hold the unit; that is, the
implementation need not include an extra unit reference in
each instance. As in MixGen, instantiations of type param-
eters of a generic type can be stored in a class table en-
try shared by all instances of that instantiation. Therefore,
unit support is no more expensive than boxing provided that
magnitudes are represented with primitive values.

3.1.1 Static members and instance members
As in MixGen, a class definition includes both static mem-
bers and instance members. Each member is either a field
or a method (we leave open the question of how to integrate
inner classes into our metaclass semantics).

If ¢ is an instance class of D then the instance members of
D are static members of € (i.e., members of the class object
€). ¢ may override the instance methods of D by declaring
static methods with matching signatures. If D includes ab-
stract methods (via either inheritance or direct definition),
those methods must be defined as static methods in ¢. For
example, we add the following definitions to our dimension
classes:

abstract class Dimension {

abstract String shortName();
}

Dimension Length {

static String shortName() { return "L"; }
}

Dimension Time {

static String shortName() { return "T"; }

}

The expression Time.shortName() evaluates to "T". Also, if
we defined a method:

String dimName(Dimension d) { return d.shortName(); }

then the method call dimName (Time) evaluates to "T" as well.

3Readers familiar with MixGen semantics may note that our
restrictions on type parameters allow us to drop the use of
MixGen’s with clauses on type parameters.

In MetaGen, a class is allowed to define both a static method
and an instance method of the same name. However, this
allowance introduces the potential for ambiguity when a
method so defined is called from within an instance method
of the class it is defined in. Our solution is simply to require
references to static members from instance contexts to ex-
plicitly denote the receiver. The receiver of a static method
call may be any legal type, including a type parameter.

Static methods of ¢ must not conflict with final instance
methods of ¢’s kind and its superclasses. As with MixGen,
static methods must not be abstract. The static members
of a class define the members of that class when considered
as a value. They are not members of a class’s instances, nor
are they inherited by subclasses. For example, we cannot
write the expression Meter.shortName().

3.1.2 Constructors and instance classes

As with instance methods, the instance fields of a kind D
of ¢ are static fields of C. Because these fields are normally
initialized with a call to a constructor of D, we must answer
the question of how they are initialized for an instance class
such as ¢. We allow such fields to be initialized as follows:
class ¢ is allowed a single isolated constructor call to its kind
in a static block. This constructor call must occur before all
other static actions in the class definition. The new keyword
container is used to designate this call.

For example, we define an instance class of class
Measurement<Length,Mile>

that we name CircumferenceOfEarth. This class must call the
constructor of Measurement from a static block:

Measurement<Length,Mile> CircumferenceOfEarth {
static { container(24889); }
}

Then CircumferenceOfEarth, viewed as an instance, has a
single field _magnitude initialized with value 24889. Viewed
as a class, it has a single static field magnitude with value
24889.

If the immediate containing class of a class C is known to
have a zeroary constructor and the definition of ¢ does not
include a call to a containing constructor in a static block,
then ¢ acts as if the static block static { container(); }
were inserted at the beginning of the body of c.

3.1.3 Classes as values
Henceforth, we use variable to refer to fields, local variables,
and method parameters (but not type parameters).

A class can be assigned to a field or variable and passed as
an argument to a method, provided that it is an instance
class of the variable’s type.

In general, a variable may be bound to either an instance
class or an ordinary (non-class) instance. Member accesses
(i.e., field accesses and method calls) to a variable bound to
an instance class are interpreted as accesses to static mem-
bers of the instance class. Member access to a non-class
instance behaves in the usual way.

A variable may not be used in type contexts (e.g., the type
of a method parameter or the type specified in a cast opera-
tion), even if it is bound to an instance class. Also, there is
no way to call a constructor of a bound instance class on a
variable it is bound to (we are intentionally ignoring interac-
tions of metaclasses with reflection facilities). For example,
the constructor call in the following code is not allowed:

Length measurementMaker (Measurement<Length,Mile> m) {
return new m(); // not allowed

}

A type parameter of kind K can be used in all type contexts.
It can also be used in any context requiring a value of class
K. In particular, it can be assigned to variables of class K
and instance methods of K may be called on it, just like
ground instances or other variables of class K. For example,
we include the following method definition in class Unit<D>:

class* Unit<Dimension D> extends D {

String dimName() { return D.shortName(); }
}

Furthermore, Minute.dimName () evaluates to "T".

With this core semantics in hand, we now discuss advanced
aspects of our library definition, as well as some peripheral
language features motivated by it. Many of these additional
aspects are quite complex, but this complexity results pre-
cisely from our intention to provide programmers with the
behavior they intuitively expect. It is often the case with
language design that a semantics that correctly matches pro-
grammers’ intuitive expectations necessarily includes sub-
tleties that are seldom thought about or even noticed by
most users of the language.

3.2 Unit conversion and primary units

To convert between measurements in different units of the
same dimension, we must specify conversion factors between
various units of that dimension. A natural place to keep this
information is in the definition of a unit: each unit specifies
how to convert measurements in that unit to measurements
in any other defined unit (for the same dimension). Al-
though the number of such conversion factors is quadratic
in the number of units, it is not necessary to maintain so
many factors explicitly: if we can convert between measure-
ments in units A and B, and between measurements in units
B and C, then we can convert between measurements in A
and C' via B. Thus, it is sufficient to include in the defi-
nition of every unit a single conversion factor to a primary
unit of that dimension, and convert between any two com-
mensurable units via their common primary unit.

class* Unit<Dimension D> extends D {
final private Real _primaryConversion;

Unit(Real primaryConversion) {
if (primaryConversion == 0) {
throw new RuntimeException(

"Attempt to define a unit with a O conversion."

)5
_primaryConversion = primaryConversion;

}

Real getPrimaryConversion() { return _primaryConversion; }

<Unit<D> U> Real conversionFactor() {
return _primaryConversion / U.getPrimaryConversion();

}

<Unit<D> U> Measurement<D,U> inUnit() {
return new Measurement<D,U>(conversionFactor<U>());

}
}

The introduction of primary units also allows us to avoid
cyclic dependencies in unit definitions.

Note that the constructor of class Unit<D> ensures that no
instances of Unit<D> will have a _primaryConversion of 0.
Because this constructor is called in static blocks of each
instance class, we catch such violations when classes are
loaded.

We still need to reify primary units with separate classes
so we can refer to them. Given a dimension D, we want to
be able to easily obtain its primary unit. We also need to
ensure that each dimension has exactly one primary unit.
We meet both of these requirements by defining a new class
PrimaryUnit, parameterized by a dimension. Each instantia-
tion of this class with a particular dimension D is the primary
unit of D. We enforce that class PrimaryUnit has no subclasses
or instances by introducing a new modifier, finalx:

final* Unit<D> PrimaryUnit<Dimension D> {
static { container(1); }

}

The final* keyword indicates that PrimaryUnit has no sub-
classes or instances. Conceptually, we view final#* classes
as typed terminal values; they act like ordinary values with
unique types that could be represented in a more clumsy
fashion with the Singleton Pattern.

This solution gives a syntactically enforced bijection be-
tween dimensions and primary units: the primary unit of
dimension D is PrimaryUnit<D>. For convenience and read-
ability, we use aliases to identify primary units with familiar
units. For example,

alias Meter = PrimaryUnit<Length>;

Using the conversion factors defined by the units, we can
easily convert between measurements in different units:

class Measurement<Dimension D, Unit<D> U> extends D {
Real magnitude;

<Unit<D> V> Measurement<D,V> inUnit() {
return new Measurement<D,V> (
magnitude * U.conversionFactor<V>()
);
}

Measurement<D,PrimaryUnit<D>> asPrimary() {
return new Measurement<D,PrimaryUnit<D>> (
magnitude * U.getPrimaryConversion()

)5

The methods inUnit and asPrimary require calling a static
method on the type parameter U. Static checking ensures
that each instance class of Unit<D> defines conversionFactor
and getPrimaryConversion.

We can also name commonly used, algebraically formed di-

mensions using type aliases. For example, we use Area to

refer to the dimension Length? and Speed to refer to L,?Iilflzh.

We now turn turn to the question of how to handle alge-
braically formed dimensions such as these.

3.3 Dimensional algebra

Like quantities, dimensions and units can be combined via
multiplication and division operators. We might (naively)
try to model these operators as classes parameterized by
their operands:

Dimension DimProd<Dimension D, Dimension E> {...}
Dimension DimQuot<Dimension D, Dimension E> {...}

This model is unsatisfactory because the algebraic structure
of dimensions requires that we equate certain terms. For ex-
ample, Length X Time = Time X Length. Furthermore, the units
of a given dimension can be combined as well. Combined
units obey algebraic rules, and the subtyping relationships
between units and their dimensions should be respected dur-
ing algebraic manipulation.

Another complication is that combined forms of dimensions
and units may contain integers. For example, consider the
parameter type of a sqrt method over quantities (where we
part with the Java Programming Language specification by
using ~ to refer to exponentiation rather than exclusive or):

<Dimension D> D sqrt(D"2 x) {

)

Notice that the parameter type contains a numeric exponent
(namely 2). We want to allow combined dimensions that can
be raised to (constant) integer exponents.

3.3.1 Abelian classes

Rather than support algebraic manipulation in an ad hoc
fashion, we introduce a more general language extension
that gives us the expressiveness we need: a new (special)
metaclass abelian class. As with class*, a class of kind
abelian class must have only instance classes. The explic-
itly declared instance classes of an abelian class form the
identity and basis of a free abelian group* Metaclass abelian
class is parameterized by an identity element that desig-
nates the instance class that serves as the identity for the

An abelian group is a set A together with an operator,
often denoted + : A, A — A, that satisfies the following
properties:

e There exists i € A such that a +i =a for all a € A; @
is called the identity of A.

e For any a € A, there exists a’ € A such that a+a’ = i;
o’ is called the inverse of a in A.

e Foralla,a’,a” € A, (a+d')+d" =a+ (' +a").
e Foralla,a’ € A, a+a =d +a.

group. For notational convenience, we also parameterize
abelian class with two symbols, included in parentheses,
that denote (i) the binary operator of the group and (iz) a
repetition operator of the group, which takes an element of
the abelian group and an integer n, and yields the result of
repeated application of the binary operator to the element
n times (where, if n is negative, application to an element n
times is defined to denote the inverse of the result of appli-
cation to that element |n| times). We write an instantiation
of type abelian class as follows:

abelian class (bin_op,rep_op) <identity> name {...}
The repetition operator is given higher precedence than the
binary operator. Because we are modeling a multiplicative
semantics in this section, we use * as the binary operator and
~ as the repetition operator. For readability, we represent
applications of ~ with superscripts.
We refer to the set of explicitly defined instance classes of an
abelian class G as the base types of G. The set of instances
of G is the set generated by the following rules:

e All base types of G are elements of G.

o If T"and U are elements of G then T*U is an element
of G.

e If T is an element of G then for all n € Z, T" is an
element of G.

Additionally, generated elements are equated according to
the following rules:

o T'xU = UxT

o T+(UxV) = (T+xU)*V

o T° = identity

e T =T

o TUxT™ — TmHn
These rules imply all of the ordinary rules for manipulating
integer exponents that we make use of in this paper.
Now we can redefine class Dimension as an abelian class, with

the special dimension Unity as its identity element:

abelian class (*,”) <Unity> Dimension {...}
Dimension Unity {...}

Dimension Length {...}
Dimension Time {...}

Then in addition to Length, Time, etc., class Dimension also
contains Length>kTime_27 etc.

3.3.2 Abelian constructors

For instance classes B and C of an abelian class A, the class BxC
includes (as static fields) all instance fields in the definition
of A. It does not include any of the fields defined in B or
C. Initialization of the fields of B*C is defined by a special
constructor in A labeled by the binary operator of A. The
arguments to this constructor must be exactly two elements
of type A, denoting the two instance classes being combined
to form the new instance. Similarly, initialization of B" is
defined by a special constructor in A labeled by the repetition
operator of A. This constructor takes an argument of type
A and a final int n, denoting the numeric argument to the
repetition operator. The argument n is constrained by static
checking to be a constant (we discuss a generalization to
nonconstant exponents in Section 4.1). We refer to both
of these constructors as abelian constructors. Notice that
an abelian constructor is shared by all algebraically formed
elements of A.

If A is a generic class, we need to declare type parameters on
the abelian constructors to denote the instantiations of the
type parameters for a particular instance class. For example,
we revise our definition of class Unit to be an abelian class,
with PrimaryUnit<Unity> as its identity element, and abelian
constructors as follows:

abelian class (*,”) <PrimaryUnit<Unity>> Unit<Dimension D>

extends D
{
final private Real _primaryConversion;
<Dimension E, Dimension F> *(Unit<E> V, Unit<F> W) {
this(V.getPrimaryConversion() .multiply(
W.getPrimaryConversion()
N
}
<Dimension E> ~(Unit<E> V, final int n) {
this(V.getPrimaryConversion() .power(n));
}
}

For generic abelian classes, we impose restrictions on the re-
spective instantiations of type parameters for the elements
of a combination. The instantiations of a type parameter
whose kind is not an abelian class must match; the type
parameter of the combination is instantiated with the same
type. The instantiations of a type parameter whose kind is
an abelian class are combined pointwise in the new instan-
tiation. For example, because Meter is an instance class of
Unit<Length> and Second is an instance class of Unit<Time>,
Meter*Second is an instance of Unit<Length*Time>. In general,
the type Unit<E>*Unit<F> equals the type Unit<ExF>. Like-
wise, Unit<E>"n equals Unit<E"n>.

The identity element of a generic abelian class is also con-
strained: every type parameter of an identity element whose
kind is an abelian class must be instantiated with the iden-
tity element of its kind. For example, the identity of Unit<D>
must be an instance of Unit<Unity> because Unity is the iden-
tity of Dimension.

An algebraically formed instance of an abelian class A in-
cludes (as static methods) all instance methods defined in
the definition of A. But an abelian class may also have ab-

stract methods. For example, class Dimension includes the
abstract method shortName. Abstract methods of an abelian
class A may be defined for algebraically formed instance
classes by defining them in the abelian class itself. Methods
defined this way must include definitions of behavior under
combination by both the binary operator and the repeti-
tion operator of A, and these definitions must be prefixed
by the binary and repetition operators. The definition pre-
fixed by the binary operator includes two type parameters
of kind A. The definition prefixed by the repetition operator
includes a type parameter of kind A and a final int param-
eter. For example, abstract method shortName is defined for
algebraically formed instance classes of Dimension by adding
the following method definitions to class Dimension:

<Dimension E, Dimension F>
* String shortName() {
return E.shortName() + "*" + F.shortName();

}

<Dimension E>
" String shortName(final int n) {
return E.shortName() + """ + n;

In the example above, does Time*Length.shortName() eval-
uate to "L*T" or "T+L"? The answer would appear to de-
pend on the order of the arguments. However, by the alge-
braic properties of abelian classes, Time*Length is the same
as Length*Time. To allow methods such as shortName to be
well-defined, we need to canonicalize all combined abelian
types. More importantly, canonicalization is a natural way
to statically determine type equivalence. We discuss a pro-
cedure for canonicalization in the next section.

Before any constructors are called on an algebraically formed
instance of an abelian class, the instance is canonicalized.
After canonicalization, the terms B" of the canonicalized
product are initialized from left to right via the abelian con-
structor prefixed by the repetition operator. Then combi-
nations of these terms are initialized from left to right via
the abelian constructor prefixed by the binary operator.

3.4 Canonicalization of abeliantype references
To statically check type equivalence between members of an
abelian class (7, we identify members of G and put them
in canonical form so they can be compared directly.

Ignoring for the moment the complication of type parame-
ters, elements of G can be identified syntactically: they are
simply type expressions whose base types are all elements
of G that are combined solely via the two operators of G.
To put elements of G into canonical form, we perform the
following steps:

1. Replace all occurrences of a base type T (no exponent)
with T

2. Distribute exponents so we are left with a product of
base types that are raised to various powers.

3. Eliminate all parentheses.

4. Put base types into lexicographic order.

5. For each occurrence of base type T', combine all tokens
T™ into a single token T ™.

6. Eliminate all base type tokens of exponent 0.
7. Eliminate all occurrences of the identity element of G.

8. If nothing is left but the empty product, add a single
occurrence of the identity element.

For example, the (improbable) dimension
(Length” Time ° % Unity)® * Length ° % Time®
is canonicalized as follows:

— (Length® * Time 2 * Unity')? * Length™® * Time®

— (Length® * Time ® * Unity®) * Length™® * Time®
— Length8 * Time ™S Unity4 * Lengt:h78 * Time®
— Length8 * Length78 * Time ™S * Time® Unity4
— LengthO * Time? * Unity4

— Unity

— €

— Unity

Once elements of G are in canonical form, type equivalence
can be determined via syntactic equivalence.

Generalizing to allow type parameters of kind G is straight-
forward: In a lexical scope binding new type parameters, we
identify type parameters of kind GG as elements of G, just as
if they were new base types of G. Elements of G can be built
with these type parameters just as they can with true base
types. Of course, these type parameters may be instantiated
with elements of GG that are not base types; we merely treat
them syntactically as base types within the scope that binds
them. Within that scope, canonicalized elements of G are
equated if and only if they are syntactically equivalent.

References to instance classes of abelian classes that are
syntactically contained in generic type instantiations are
also canonicalized. For example, because PrimaryUnit is pa-
rameterized by a dimension, our solution for algebra over
Dimension automatically allows us to form and compare pri-
mary units of compound dimension. Thus,

PrimaryUnit<Length*Time>

equals

PrimaryUnit<Time*Length>

For abelian classes with type parameters, an additional step
is necessary for canonicalization: instantiations of common

generic abelian classes are combined pointwise. For exam-
ple,

Unit<Length>~2*Unit<Length*Time>
is canonicalized to:

Unit<Length~3*Time>

3.5 Arithmetic operations on quantities

To use an arbitrary instance of a dimension D in arithmetic
contexts, we need to declare that instances of D define arith-
metic operations; that is, all instances of D must include a
set of arithmetic methods. To express such a restriction, we
add a new class modifier to our language. To motivate this
new modifier, let us reconsider our metaphor of classes as
sets. We can understand conventional class extension dec-
larations class C extends D as an assertion of the following
form:

VeeC.zeD

When the only relationship between classes is extension, this
simple form of assertion is sufficient to state the most es-
sential relationships. Once we generalize our language to
include metaclasses, several new assertions suggest them-
selves. For example, consider a class hierarchy for biologi-
cal applications with classes Species and LivingThing. We
want to declare that all instances of Species are subtypes of
LivingThing.

In general, we may want to make assertions of the following
form, relating classes to their subclasses and instances:

Vee C.x C D

To express this new relation, we add an optional extends*
clause to the header of a class definition. For example, we
can represent the constraint we would like on instances of
Species as follows:

abstract class LivingThing {}

abstract class Species extends* LivingThing {}
Species Human extends LivingThing {}

Species Lion extends LivingThing {}

Then Human and Lion would be invalid class definitions if they
did not extend LivingThing. We also allow for an implements*
clause that constrains instance classes to implement desig-
nated interfaces’®

As with instances of a class of kind class*, all instances of
a class that includes either an extends* or an implements*
clause in its definition must be instance classes.

We add an implements* clause to class Dimension, requiring
that each instance class D of class Dimension implements an
interface DimensionI that contains a set of arithmetic oper-
ations. In this way, we ensure that each instance of D will
define those methods.

The signatures of the arithmetic methods of an instance of
dimension D must refer to D itself:

D add(D x);

D subtract(D x);

<Dimension E> D*E multiply(E x);
<Dimension E> D*E~-1 divide(E x);
<Unit<D> U> Measurement<D,U> inUnit();

The method inUnit allows us to convert an arbitrary quan-
tity of D into a measurement in a given unit U of D so we can
add and subtract it to another measurement in U.

Of the two remaining variations, Vo C C'.x C D is logically
equivalent to the constraint for ordinary subtyping, and we
know of no motivation in practice for stipulating constraints
of the form Vx C C.x € D.

How can we put these declarations in an interface in such a
way that the interface has a handle on the type of an instance
class of Dimension? We need to include a type parameter on
the interface to represent the type of an instance class of
Dimension. The bound on this type parameter will therefore
be our interface instantiated with the type parameter itself:

interface DimensionI<DimensionI<This> This> {
<Unit<This> U> Measurement<This,U> inUnit();
This add(This x);
This subtract(This x);
<Dimension That> This*That multiply(That x);
<Dimension That> This*That~-1 divide(That x);
<Unit<This> U> Measurement<This,U> inUnit();

We now need to redefine Dimension to declare that each of its
instance classes implements an instantiation of this interface
with itself. We do that as follows:

abelian class (*,”) <Unity> Dimension<Dimension<This> This>

implements* DimensionI<This> {...}

Our instance classes of Dimension now need to instantiate
this parameter with themselves:

Dimension<Length> Length {...}
Dimension<Time> Time {...}

The tight bound on parameter This ensures that each in-
stance class of Dimension must instantiate This with itself.
Therefore, it is straightforward to introduce syntactic sugar
that implicitly includes a type parameter This on every class
of kind class* or abelian class and on every class that in-
cludes an extends* or implements* clause. We need only re-
serve the identifier This as a new keyword.

With this syntactic sugar, our class definitions revert almost
to their earlier form:

abelian class (*,”) <Unity> Dimension
implements* DimensionI<This> {...}

Dimension Length {...}

Dimension Time {...}

3.6 Zero quantities

When we introduced the notion of dimension, we said that if
two quantities @Q and @’ exist in the same dimension, we can
answer the question, “how much of) does it take to equal
Q'7?" If it takes = of Q to equal Q' then we write Q' = zQ.
We now discuss a minor complication with this naive view.

Consider the ability of two quantities to be related in this
way as a relation R. Because we naturally think of dimen-
sions as dividing quantities into disjoint sets, we might ex-
pect that R is an equivalence relation. Unfortunately, our
expectation is not quite right: although R is reflexive, it is
neither symmetric or transitive. The problem lies with zero
quantities: it takes 0 of any quantity to equal a zero quantity,
but no amount of a zero quantity equals a nonzero quantity.
Furthermore, the symmetric closure of R does not satisfy
transitivity. For example, suppose QRQ’ and Q' RQ"”. Then
it may be the case that Q' = 0Q and Q' = 0Q”, but that
QRQ" does not hold. Strictly speaking, we should define the

notion of dimension for nonzero quantities, and then add in
the notion of the zero quantity as special.

Given this special status of the zero quantity, it is natural
to ask whether there are any software engineering repercus-
sions as to how we treat it. In fact, there are [21, 27]. We
would like to allow programmers to write down zero quan-
tities without the tedium of having to add “dummy” units.
For example, we want the following code to be legal:

Length x = <some expression>;
if (x==0) {...}

Treating the zero quantity as polymorphic in this way is
harmless: If we can statically determine that a quantity is
zero, then no harm can come from adding it to, or multi-
plying it by, an arbitrary quantity; in the former case, the
result is simply the quantity it is added to; in the latter
case the result is simply the zero quantity. On the other
hand, if we cannot statically determine that a quantity is
zero, then static checking will prevent it from being used
polymorphically.

To include a special zero quantity, we might consider re-
stricting magnitudes of measurements to be nonzero and
then adding a new typed element Zero of class Measurement:

Measurement<D, U> Zero<Dimension D, Unit<D> U> {}

However, we do not want a separate Zero for each dimension
and unit. Rather, we want a single polymorphic zero quan-
tity that is an instance of all instantiations of Measurement.
We express this relationship by using wildcard instantiations
of type parameters of generic classes.

If T<Cc> is a generic type, then we can instantiate C with a
wildcard, written T<*>. An instance of T<*> is an instance of
all instantiations of T. Normally we cannot say such things
in object-oriented languages with generic types because the
notions of pointwise extension of a generic type and of ex-
tension of all instantiations of a generic type are conflated
(e.g., Zero<D,U> extends Measurement<D,U>). But it is help-
ful to distinguish these notions. Because the programmer
has no handle on the type argument of a wildcard instanti-
ation of a parent class, it is syntactically impossible for the
definition of such a class to depend on those arguments.

Using wildcards, we define the zero quantity to be a wildcard
instantiation of Measurement:

Measurement<*,*> Zero {...}

Although adding wildcards may seem excessive just to get
a polymorphic zero quantity, wildcards are useful in other
contexts. For example, wildcard instantiations are similar to
a standard interpretation of many type hierarchies as they
are written in a structurally typed languages such as ML
and Haskell, where parametric types are erased after type
checking and do not affect run-time behavior. For example,
lists are typically modeled in ML as follows:

’a List = Empty | ’a Cons

In this definition, there is one Empty list shared by all instan-
tiations of List. In contrast, Generic Java without wildcard

instantiations forces us to include a separate Empty for each
instantiation of List [6]:

class Empty<T> extends List<T> {...}

Using wildcards, we can define class Empty as:

List<*> Empty {...}

4. EXTENSIONS

We have presented our framework in the context of a general-
purpose object-oriented type system, adding only metaclasses,
abelian classes, and wildcards. With just these three ex-
tensions, we are able to express the most common uses of
physical quantities in computations. In particular, we can
express user-defined dimensions and units, automatic con-
version between units of a given dimension, static types cor-
responding to dimensions and units, parametric polymor-
phism with respect to these types, dimensional algebra, and
zero quantities of polymorphic dimension. Furthermore, our
formulation is general and robust enough to extend easily in
many ways to support additional static checking. In this
section, we discuss some of these ways.

4.1 Nonconstant exponents
In general, we prefer that exponents on abelian classes not
be limited to be constants. For example, we would like to
define a power function over quantities:

/** @precondition n >= 0 */

<Dimension D> D°n power (D x, int n) {
if (n == 0) return 1;
else return x.multiply(power(x, n-1));

}

where the value 1 is autoboxed to a value of type Unity.
Employing pure recursion is of course undesirable in a math
library function, but the specific implementation is irrele-
vant for our present purposes; what is relevant is that we
are able to type check even recursive definitions.

Parameterizing dimensions by run-time integer values is a
form of dependent typing. Because we cannot statically de-
termine precisely which integer computations will result in
equal values when the program is run, we must, as with all
static checking, settle for a conservative approximation.

One approximation that allows us to check many practical
examples and leverage the machinery we have already de-
veloped is to treat the set of ints as an abelian class!® The
binary operator of this class is addition; the repetition op-
erator is multiplication. Each int constant is treated as a
distinct type.

A final int bound in a lexical scope is treated as a type
parameter ranging over this abelian class. Thus, the set of
valid int types consists of all expressions of int variables and
constants formed via multiplication and addition. We iden-
tify and canonicalize elements of this type in the same way as
explained for general abelian classes. However, special prop-
erties of the ints allow us to equate even more terms than we

5We assume that autoboxingr of primitives is built into the
language, as it is in the Java™ 2 SDK1.5.

can for an ordinary abelian class. Specifically, because the
set of ints is the only abelian class with the property that
the second, numeric, argument to the repetition operator is
itself a element of the class, and the repetition operator rep-
resents multiplication, we allow additional canonicalization
for this special class! Automatic simplification of arith-
metic expressions is well understood, and is incorporated in
many production systems, including proof checkers such as
Isabelle and symbolic math tools such as Mathematica.

To support nonconstant exponents in type expressions in
other abelian classes (e.g., Dimension), we need to add one
step to the canonicalization process in Section 3.3, between
steps 5 and 6:

5.5. Canonicalize all exponents.

We can now type check our power method, provided the
parameter n is declared to be final (allowing it to be used
as a type):

/** @precondition n >= 0 */

<Dimension D> D"n power(D x, final int n) {
if (n == 0) return 1;
else return x.multiply(power(x, n-1));

}

4.2 Generalizing magnitudes to arbitrary fields
Note that a magnitude need not be a real number. For ex-
ample, the magnitude of an impedance is often represented
as a complex number?

We want to generalize our treatment of class Measurement so
that magnitudes may be elements of various numeric classes
(e.g., Float, Double, Complex, etc.). We define a new class
AlgebraicField that contains classes representing algebraic
fields. We want to be able to perform arithmetic operations
on any two elements of an AlgebraicField. But we also want
to require that elements of an AlgebraicField representing
magnitudes can be combined via arithmetic operations with
elements of any other AlgebraicField representing magni-
tudes (e.g., we want to allow a complex magnitude to be
multiplied by a real magnitude). We also want to be able to
combine dimensioned quantities with arbitrary magnitudes
via multiplication and division.

We can satisfy all of these requirements by extending class
AlgebraicField with a class MagnitudeField and requiring
every instance class of MagnitudeField to extend dimension
Unity.

class* MagnitudeField extends AlgebraicField
extends* Unity {}

" Alternatively, we could define another special metaclass
commutative ring and define int as an instance class of that
kind. But this approach requires adding additional com-
plexity to our language with little reward. Furthermore,
even the notion of a commutative ring does not capture all
of the algebraic simplification possible with the integers.
8We use the term “magnitude” as it is employed in most
contexts concerning dimension checking. However, this use
differs from its typical use with regard to impedance, to refer
to the square root of the sum of the squares of the real and
imaginary parts of what we call the magnitude.

Because class Unity implements DimensionI<Unity>, all in-
stance classes of MagnitudeField must implement it as well.
Thus, an element of an instance class of MagnitudeField can
be added to or subtracted from any other element of an in-
stance class of MagnitudeField. It may also be multiplied by
and divided by any other quantity. When an element e of an
instance class of MagnitudeField is multiplied by another ele-
ment e of an instance class of MagnitudeField, the dimension
of the result is Unity * Unity = Unity. When e is divided by
¢’, the dimension of the result is Unity*Unity ' = Unity. For
quantities of Dimension D, the dimension of a multiplication
is Unity * D = D and of a division is Unity *D~* =D .

DimensionI<Unity> also includes method inUnit, but the only
unit of dimension Unity is PrimaryUnit<Unity>. Therefore, we
define this method as follows: if it is called on an instance of
Unity and the given unit to convert to is PrimaryUnit<Unity>,
then the method simply returns its receiver. Otherwise, it
throws an exception.

We redefine existing classes Float and Double as instance
classes of kind MagnitudeField and provide them with ap-
propriate definitions of the arithmetic operations required
to satisfy the extends* constraint on MagnitudeField:

MagnitudeField Float extends Unity {...}
MagnitudeField Double extends Unity {...}

Now we need only modify field _magnitude in class Measurement
to be of type Unity. In this way, we allow the magnitude of
a measurement to be any dimensionless quantity. Note that
dimensionless products of measurements are both measure-
ments and instances of Unity. A definition of a Measurement
class with methods for binary operations and for unit conver-
sion is presented in Figure 1. Class Measurement includes sev-
eral polymorphic methods with type parameters that cannot
be inferred from method arguments alone. As in MixGen,
polymorphic methods in MetaGen employ explicit polymor-
phism.

We can also define new instance classes Complex, Rational,
Real, Interval, etc. with kind MagnitudeField, along with ap-
propriate subclassing relationships between them. A proper
encoding of these classes and their relation to one another
is beyond the scope of this paper.

4.3 Discovered dimensions

Sometimes the combination of measurements results in di-
mensionless quantities (i.e., quantities of dimension unity).
For example, we can think of an angle as being determined
by measuring two lengths (an arc and a radius) and dividing
one by the other. Similarly, a relative density is obtained by
dividing one density by another. Although angle and rela-
tive density are both of dimension unity, it is nonsense to
compare an angle to a relative density.

Therefore, a programmer may want to view (nonzero) mea-
surements as measurements of quantities in newly discovered
primary dimensions (e.g., angle, relative density, etc.). It is
often possible to measure such quantities directly (e.g., with
a protractor).

We leave the decision of when to treat a dimensionless quan-
tity in this way to the programmer. Our formulation allows

a programmer to easily convert dimensionless quantities to
dimensioned quantities when necessary. Because dimension-
less quantities are identified with elements of class Unity,
which are also used to represent magnitudes of Measurements,
a programmer wishing to treat such a quantity as having a
dimension other than unity can simply wrap it in a new
Measurement. For example, to treat a dimensionless quotient
of two Lengths 11 and 12 as an angle, we can write:

new Measurement<Angle,Radian>(11.divide(12))

4.4 Scales of measurement

Along with multiplicative conversions between units of the
same dimension, we often want to define scales with explicit
zeros that are based on a unit of measurement (e.g., the Cel-
sius, Kelvin, and Fahrenheit scales). Scale conversions may
involve more than just multiplication by conversion factors;
they can involve addition and subtraction as well (e.g., the
conversion of a Celsius scale reading to a Fahrenheit scale
reading involves multiplication by 9/5 and addition of 32 F°,
where we follow the convention that n°C means a Celsius
scale reading of n but nC° means a distance of n degrees be-
tween two readings on the scale). How are we to understand
scales and scale conversions in the context of our analysis?
In particular, can we explain scale conversion solely in terms
of manipulation of quantities?

The key to understanding the relation between quantities
and scale readings is to realize that a measurement of a
quantity is really a measurement of the difference between
two points in a continuum: an origin (or zero point) and
an external point. For example, a measurement of time is
really a measurement between an origin (e.g., the point at
which a stopwatch is started) and an external point (the
point at which the watch is stopped). Scale readings are
measurements for which the origin is fixed by the scale it-
self. Thus, even when two scales are applied to the same
external point, the quantities represented by the readings
may not be the same—the scales may have different origins.
When we convert a reading R of external point M in scale S
with zero point Zs to a reading R’ in another scale S’ with
zero point Zg/ we are really deducing the size of a measure-
ment from Zg to M given both a measurement from Zs to
M and a measurement from Zg to Zg. This deduction in-
volves a simple addition. Because scales may also represent
quantities in different units, unit conversions of the initial
measurements may be necessary as well.

For example, a reading of a temperature in degrees Celsius
is really a measurement of difference of an external “tem-
perature point” with a reference point (0°C) in unit C°. If
we write the external point as A and 0°C as Z then we can
express this difference with the following equation:

A—Z=xC°

Now suppose we want to convert the measurement x C° to
a measurement on the Fahrenheit scale. We represent 0°F
as Zr. Then we have:

Z — Zp = 32F°

We also know the conversion factor of C° to F°:

9
Co — ZF°
5

class Measurement<Dimension D, Unit<D> U> extends D {
private final Unity _magnitude;

Measurement (Unity magnitude) { _magnitude = magnitude; }
Unity getMagnitude() { return _magnitude; }
Unity getPrimaryConversion() { return _magnitude.multiply(U.getPrimaryConversion()); }

<Unit<D> V> Measurement<D,V> inUnit() {
if (U == V) return this;
else return new Measurement<D,V>(getMagnitude() .multiply(V.conversionFactor<u>()));

}

// Arithmetic operations are overloaded for cases where more specific arguments can be statically determined.

// add
D add(D x) { return new Measurement<D,U>(getMagnitude().add(x.inUnit<U>().getMagnitude())); }

Measurement<D,U> add(Measurement<D,U> x) { return new Measurement<D,U>(getMagnitude().add(x.getMagnitude())); }

// subtract
D subtract(D x) { return new Measurement<D,U>(getMagnitude().subtract(x.inUnit<U>().getMagnitude())); }

Measurement<D,U> subtract(Measurement<D,U>) { return new Measurement<D,U>(getMagnitude().subtract(x.getMagnitude())); }

// multiply
<Dimension E> D*E multiply(E x) {
return new Measurement<D*E,U*PrimaryUnit<E>>(getMagnitude() .multiply(x.inUnit<PrimaryUnit<E>>().getMagnitude()));
}
<Dimension E, Unit<E> V> Measurement<D*E,U*V> multiply(Measurement<E,V> x) {
return new Measurement<D+E,U*V>(getMagnitude() .multiply(x.getMagnitude()));
}
<Dimension E, Unit<E> V> Measurement<D+*E,U*V> multiply(V v) { return new Measurement<D+*E,UxV>(getMagnitude()); }

Zero multiply(Zero x) { return Zero; }

// divide
<Dimension E> D*E~-1 divide(E x) {
return new Measurement<D*E~-1,U*PrimaryUnit<E~-1>>(getMagnitude().divide(x.inUnit<PrimaryUnit<E>>().getMagnitude()));
}
<Dimension E, Unit<E> V> Measurement<D*E~-1,U*V"-1> divide(Measurement<E,V> x) {
return new Measurement<D#E~-1,U*V"-1>(getMagnitude().divide(x.getMagnitude()));
}
<Dimension E, Unit<E> V> Measurement<D*E~-1,UxV~-1> divide(V v) {
return new Measurement<D*E~-1,UxV"-1>(getMagnitude());
}
Unity divide(D x) { return getMagnitude().divide(x.inUnit<U>().getMagnitude()); }

Unity divide(Measurement<D,U> x) { return getMagnitude().divide(x.getMagnitude()); }

Figure 1: Class Measurement

To derive an equation of the form A — Zr = yF°, we add
the two difference equations and perform unit conversion:

A-Zp = xC°+32F°
= ango—i—SQFo

— (gac +32)F°

yielding the standard formula. By viewing scale readings as
measurements from fixed reference points, we can convert
between scales while manipulating only quantities.

We can model scales and points similarly to how we model
measurements and units. Just as every dimension has a pri-
mary unit (which prevents cyclic dependencies), so too it
has a primary origin. Every point in a given dimension is
defined with respect to the primary origin of that dimen-
sion. Just as measurements are defined with respect to a
particular unit, scales are defined with respect to a unit and
origin. Therefore, we define a class Point as follows:

class Point<Dimension D> {
private final D _distanceToOrigin;

Point (D distanceToOrigin) {
_distanceToOrigin = distanceToOrigin;

}

D getDistanceToOrigin() {
return _distanceToOrigin;
}
D distanceTo(Point<D> p) {
return _distanceToOrigin - p.distanceToOrigin();
}
}

Unlike Units, we do not require all points to be instance
classes, so we do not define Point as having kind class*. We
also do not define Point as an abelian class.

As with PrimaryUnits, we define an instance class PrimaryOrigin
that is parametric in a dimension:

final* Point<D> PrimaryOrigin<Dimension D> {
static { container(0); }

}

We can now define classes Scale and ScaleReading that are
parametric in a dimension, a unit, and a point:

class Scale<Dimension D, Unit<D> U, Point<D> P> {
ScaleReading<D,U,P> newReading(Point<D> Q) {
return new ScaleReading<D,U,P>(Q.distanceTo(P));
}
}
class ScaleReading<Dimension D, Unit<D> U, Point<D> P> {
private final Measurement<D,U> _value;

ScaleReading(Measurement<D,U> value) { _value = value; }

Measurement<D,U> getValue() { return _value; }

<Unit<D> V, Point<D> Q> ScaleReading<D,V,Q> inScale() {
return new ScaleReading<D,V,Q> (

_value.subtract(P.distanceTo(Q)) .inUnit<U>()
);

A ScaleReading can be converted to any other ScaleReading
of the same dimension via method inScale. Class Scale is
merely a factory for new ScaleReadings. We may want to
alias particular instantiations of Scale with their common
names, €.g.,

alias KelvinScale =

Scale<Temperature,CelsiusDegrees,PrimaryOrigin<Temperature>>;

final* Point<Temperature> ZeroCelsius {
static {
container (
new Measurement<Temperature, CelsiusDegrees>(273)
);
}
}
alias CelsiusScale =
Scale<Temperature,CelsiusDegrees, ZeroCelsius>;

4.5 Nonlinear scales

More generally, zeroed “scales” are also defined in which
readings are nonlinear, e.g., the bel scale, which is a mea-
sure of the logarithm of the ratio of two measurements of
Power, and the Gregorian calendar, where the length of a
year depends on which year we're talking about. A par-
ticularly unusual nonlinear scale from science fiction is the
warp scale from Star Trek: The Next Generation? which is
asymptotic at Warp 10.

Although such “scales” appear superficially to be distinct
from linear scales such as Celsius and Fahrenheit, they re-
ally are the same kind of entity. Any scale can be thought of
as linear along a particular dimension. In fact, temperature
itself is equal to the reciprocal of the rate of increase of en-
tropy with respect to energy of a given system. In the case of
decibels, “absolute zero” corresponds to 0dB, and it is qual-
itatively different from other decibel readings. Differences
can be taken between two readings in the dB scale; the result
is expressed in a special unit (let us call it “decibel units”)
that is not typically written down.!® Another example is the
musical scale, which can be thought of as based on the unit
“halftone”. High C and middle C differ by 12 halftones. If
we start from middle C, and then add 4 halftones, we get
E, and if we add 8 more, we get high C. We can arbitrar-
ily pick middle C as the 0 point, and count halftones from
there. However, we can also associate a reading on the mu-
sical scale with the frequency of the note. A musical scale
based on halftone is logarithmic in the frequency. But we
might as easily say that the frequency scale is exponential
in the halftone scale.

Because scale readings are often logarithmic with respect to
other scales of more fundamental quantities (based on units
that the designers of the original scale may not have been
aware of), it is natural that we find readings on many scales
to be restricted to proper subintervals of a field (e.g., the
positive reals, the reals between 0 and 10, etc.).

9The warp scale from the original Star Trek series was based
on a less interesting formula.

0Because a decibel reading is measured as the logarithm of
the ratio of two quantities of Power, a decibel unit is like an
angle in that it can be viewed either as dimensionless or as
a unit in a discovered dimension.

5. PRAGMATICS

We now consider some pragmatic aspects of our system with
respect to syntax and performance.

5.1 Syntax

Many of the syntactic constructs in our finished design are
long-winded. However, this is an artifact of C++-style syn-
tax that is easily addressed with syntactic sugar. For one
thing, many of the instantiations of generic types involved
instantiations of multiple type parameters for Measurement,
Dimension, and Unit when instantiation of the Unit is all
that is needed to infer the others. Also, we have selected
long names for our classes to help communicate ideas; in a
production system, we may want to use shorter names in
some cases. Finally, support for operator overloading in our
language would allow us to specify arithmetic operations
on Measurements more concisely. If we had autoboxing of
numeric types and we could also overload arithmetic opera-
tions on numeric types to take a unit and return a measure-
ment in that unit, many expressions could be written more
succinctly. For example, we could replace expressions such
as:

new Measurement<Double,Length,Meter>(5)

with 5 * Meter.

5.2 Efficiency of our representation

Our formulation of dimensioned quantities is powerful, and
it allows for implementation with reasonable performance:
Our representation of measurements involves only a single
field for each measurement. Elements of this field are el-
ements of classes associated with primitive values such as
Float and Double. Because the _magnitude field is private
and final, rudimentary escape analysis should allow us to
inline these field values in many cases. Thus, run-time repre-
sentation of quantities should require overhead about equal
to that of boxing primitive values. Additionally, various
reductions in expressive power allow for even better per-
formance, giving library designers the freedom to choose
the power /performance tradeoff for their target applications.
When run-time representation of quantities is not required,
the Measurements themselves could be represented as primi-
tive values. Even when run-time representation of quantities
is important, it should be possible to simply pass this infor-
mation as type parameters to methods that require it and
represent the measurement values themselves as primitives.

All the arithmetic methods are simple nonrecursive one-
line methods that are easily inlined by modern just-in-time
compilers. Through static overloading, calls to the arith-
metic operations are more efficient when additional infor-
mation can be statically inferred. For example, when the
static types of the operands are Measurements with the same
Unit, no unit conversion is necessary. Additionally, field
_magnitude is final; a savvy just-in-time compiler could cal-
culate values for methods such as getPrimaryConversion on
the first call for a value and cache the result for subsequent
calls. If performance were still unsatisfactory, we could re-
quire all measurements to be kept in the primary unit of
their dimension. Although we may lose precision for some
programs, we would be able to reduce each of the four arith-
metic methods to a single arithmetic operation.

6. RELATED WORK
6.1 Dimension and unit checking

Most formulations of dimension checking in programming
languages encode dimensions as an ad hoc language feature
rather than integrating them into a more general type sys-
tem. Also, most formulations incorporate dimension check-
ing into functional and procedural languages rather than
object-oriented languages, where the design issues are sig-
nificantly different. Few formulations support parametric
polymorphism over dimensions. No previous formulation
presents dimension checking as a generalization of static
checking for metaclasses.

Andrew Kennedy presents an extension of a core calculus
for ML with support for dimension checking [20, 21]. Be-
cause ML is a structurally typed functional language rather
than a nominally typed object-oriented language, many of
the key issues that have driven our design do not apply to
this language. Units are not given separate types and each
dimension is associated with a single unit. Other units are
encoded by the programmer as constant values defined in
terms of this single unit. Because dimensions are added
as an ad hoc language extension, the issues involved in en-
coding them via metaclasses do not arise, nor do those in-
volved in general support for kinds whose elements satisfy
the properties of an abelian group. Nevertheless, Kennedy’s
approach shares similarities with ours. Dimension exponents
are constrained to be integers. The zero quantity is treated
as having polymorphic dimension. Also, function types may
be polymorphic with respect to dimensions. The problem
of typing functions that are polymorphic with respect to
a dimension exponent (such as power) is discussed but no
solution is presented.

A significant portion of Kennedy’s proposal involves the for-
mulation of type inference over dimension types. In this re-
spect, it builds on the work of Wand and O’Keefe [28] and
Goubault [16], which present formulations of dimension in-
ference for ML-like languages. Incorporating an inference
mechanism over metaclasses and abelian classes based on
these inference systems is an important direction for future
work.

Kennedy extends his own work by relating it to the para-
metricity result of System F [22]. By proving a “dimen-
sional invariance” principle over a core calculus based on
ML, Kennedy is able to establish several surprising prop-
erties of this calculus. For example, it is possible to show
that functions of the type Vu .num u? — u cannot return a
nonzero result for any argument value, and therefore that an
approximating square root function with this type cannot be
expressed in the language! It is not at all obvious how to
relate this work, which is based on F-bounded parametric
polymorphism over structural types, to an object-oriented
language with typed metaclasses and nominal types. But it
would be interesting to determine such a relationship.

Other formulations of dimension checking do not support
parametric polymorphism over dimensions. Formulations of
dimensions for object-oriented languages have typically en-
coded a fixed set of dimensions. A popular formulation of
dimension checking in C++ (via the Standard Template Li-
brary) is SIUnits [5], which provides for the checking of quan-

tities in the SI system by encoding the seven dimensions ad-
dressed by that system as integer parameters of a template
class Quantity. Parametric dimensions, class relationships
between units dimensions and quantities, and programmer
extensions of this hardwired template are not supported. In
addition, the underlying type system is unsafe and does not
directly represent the abstraction of generic types, greatly
reducing the value of static checking.

Fowler discusses a modeling of units of measurement used
in the Cosmos project for the U.K. National Health Ser-
vice [10]. In addition to units and quantities, Fowler in-
cludes a notion of “measurement” that includes the notion
of an observation and an observed “patient”. Dimensions
of quantities and the relationships of algebraically formed
units and dimensions are not modeled. Static checking and
dimensional parametricity are not discussed.

The formulation closest to our own is by van Delft [27], who
describes a mechanism for implementing dimensions in Java
class files as annotated classes. As with our approach, van
Delft treats the zero quantity as having polymorphic dimen-
sion. However, van Delft does not provide a specification for
the semantics of dimension types, does not encode dimen-
sions as part of a class hierarchy, does not allow for the
definition of new methods specific to a particular dimen-
sion, and does not include parametric polymorphism over
dimension types or separate types for units. As a result, the
issues in object-oriented modeling that we have addressed
in our proposal do not arise. Van Delft does includes a con-
struct dimension(exp), which evaluates to the dimension of
exp. Although this feature is useful for linking dimensions
of method parameters (the term “dimension” can be used
to take an argument of arbitrary dimension), and provides
some of the benefits of parametric dimensions, this limited
form of parametricity, combined with the restriction that di-
mension exponents be natural numbers, prevents definition
of a polymorphic sqrt function:

double dimension(v)~1/2 sqrt(double*dimension v)
van Delft proposes the following alternative:

double*dimension sqrt(double*dimension(return*return) v)

Where return is the type of the return value. This nota-
tion provides an ad hoc mechanism to allow for equating
the return type of a method with its parameter types. But
this mechanism is really just a workaround for the lack of
general support for parametricity, and it prevents expres-
sion of parametric dependencies between multiple method
parameters, e.g.,

<Dimension D> boolean lessThan(D x, D y)

Other published formulations of dimension checking have
been over procedural languages. Gehani contrasts the use
of derived types in Ada with the use of a facility for unit
checking, showing how derived types are an inadequate sub-
stitute for a special language feature for units [15]. He also
presents an extension of Pascal with support for units [13], in
which he allows for polymorphic use of units via a UNITS (*)
declaration, and a UNITSOF operator. However, his discus-
sion often conflates the notion of units and dimensions: he

does not include a notion of dimension in his language ex-
tension; instead, units of a common dimension are declared
to be related via a counits operator. As a result, unit con-
version can occur along multiple paths, adding significant
complexity to an implementation.

Gehani’s approach is criticized by House [18], who notes that
units are not actually declared in Gehani’s proposal. In-
stead, new units are simply used when needed by a variable
declaration. As a result, it is possible to form pathological
definitions where the name of a quantity is identical to the
name of a (distinct) unit. House also notes that Gehani’s
system is not statically checkable without severely restrict-
ing the use of the UNITS(*) operator. House goes on to cite
a litany of other criticisms of Gehani’s proposal and then
proposes his own extension of Pascal supporting dimension
checking.

In House’s proposal, each dimension is associated with a
unique primary unit. Exponents on dimensions are arbi-
trary rational numbers to allow the definition of methods
such as sqrt; the syntax for polymorphic dimensions pro-
hibits the solution we have presented, where the input di-
mension is defined to be the square of a dimension vari-
able. House also restricts exponents on dimensions to be
constants!! Generic type declarations are supported for
records and procedures. However, procedure return types
are precluded from being generic dimensions independent
of the parameter dimensions. House proposes to solve the
problem of scale conversion by allowing for “units with dif-
ferent zeros”; unit conversion involves both an additive and
a multiplicative conversion. This approach fails to recog-
nize that scale readings have distinct properties from other
quantities and should be modeled as separate entities.

Gehani also discusses the application of units of measure-
ment to databases [14]. In this context, conversion factors
can change dynamically (e.g., between monetary units), sug-
gesting that the best way to store data is not with a stan-
dard unit per dimension, but instead in the units in which
the data was originally entered.

In the context of database manipulation, Gehani recom-
mends the following operators:

e counits: specifies that two or more units are of the
same dimension

e remove counits: removes unit relationships

e ccc: changes the conversion constant between two units
(useful when dealing with rates of exchange, improving
precision of scientific constants, etc.)

e in: evaluates an expression in a given unit

e unitsof: returns the units of a given value

In our formulation, where dimensions of quantities are de-
noted explicitly, the counits operator is unnecessary, and

11n fact, because Pascal syntax does not include an expo-
nentiation operator, compound dimensions are expressed via
multiplication and division, which is expressively equivalent
to requiring dimension exponents to be constant.

the remove counits operator is nonsensical (remove counits
is apparently motivated by the need to maintain possibly
corrupted, persistent data in a database). In a program-
ming language, units either belong to a dimension or they
do not. Programmers may introduce and correct erroneous
declarations of unit classes in their programs, but dynam-
ically altering the dimension of a quantity is not needed.
The ability to support dynamically changing conversion con-
stants between two units could be supported by making the
conversion factor in class Unit mutable and allowing select
classes to support a ccc method. The in and unitsof oper-
ator are easily supported as methods in class Measurement.
The fact that we are able to easily incorporate Gehani’s
operators into our formulation is a demonstration of the ex-
tensibility we have attained by unifying our formulation into
a general object-oriented type system.

Manner describes a syntactic extension to Pascal and Ada in
which unit declarations are supported [23]. Each dimension
is associated with a unique primary unit and all quantities
of that dimension are kept in the primary unit. Polymor-
phism over quantities is not supported. Dreiheller et al. ex-
pand upon Manner’s syntax to provide a language extension
and implementation (via a preprocessor) for Pascal called
PHYSCAL [8]. PHYSCAL supports scale factors on units
as well as input/output facilities for quantities. PHYSCAL
is limited to supporting SI units; the programmer cannot de-
fine new units or dimensions. Scales of measurement are not
handled by PHYSCAL, nor is polymorphism over program
constructs involving dimensions.

Baldwin proposes another extension of Pascal supporting
units inspired by Manner [3]: a fixed set of dimensions is
added to Pascal as siblings of type REAL. Each dimension
is associated with a unique primary unit, and quantities of
that dimension are always kept in the primary unit. Multi-
plication and division of dimensioned quantities by dimen-
sionless quantities is not supported despite recognition that
such support is needed for correctness.

Hilfinger proposed an encoding of support for dimension
checking in Ada in [17]. Hilfinger’s approach shares some
of the flavor of ours in that he attempts to use existing lan-
guage abstraction mechanisms to encode dimensions rather
than introducing an ad hoc language feature. He relies on
the subtyping mechanism of Ada to encode dimensions as
subtypes of records of constant integers. Each field in this
record supertype corresponds to a primary dimension. Be-
cause the fields in this record are fixed, the programmer
cannot define new dimensions. Also, quantities of a di-
mension must be represented in a primary unit. Limited
polymorphism is allowed because a programmer can refer to
the record supertype of all dimensions when defining meth-
ods. However, general parametric polymorphism including
dependencies between the dimensions of multiple variables
is not supported.

Karr and Loveman discuss mechanically incorporating units
into a procedural programming language [19]. Like us, they
are concerned not with simply adding unit checking to an ex-
isting language, but rather with understanding more general
issues in adding unit checking to a class of languages. Karr
and Loveman do not include a separate notion of dimension.

As a result, detecting commensurability of units becomes a
central aspect of their approach. However, there is an upshot
to their focus on commensurability: their mechanism for
manipulating unit relationships is more general than ours:
Rather than defining the magnitudes of all units for a given
dimension in terms of a primary unit, each unit may be re-
lated to any other unit. Commensurability is determined
by a interesting computational trick where equations relat-
ing units are represented in logarithmic form, presented as
matrices, and put into row echelon form. Cycles and in-
consistencies in the unit relationships can be determined by
straightforward inspection of the reduced matrix.

Because we allow for dimension types in our approach, com-
mensurability detection is not necessary for static checking.
However, intelligent unit conversion at run time would al-
low for improved precision. For example, when converting
feet to inches, it may be advantageous to relate them di-
rectly rather than to relate them each to meters and then
divide. An interesting direction for future work is to try
to embed the row-echelon technique of Karr and Loveman
into the definition of method inUnit on measurements. Ide-
ally, the equations composing this matrix would be checked
statically.

Parametric units are not discussed in Karr and Loveman’s
proposal. Raising quantities to a (possibly nonconstant)
power is allowed, so long as the unit of the exponent is com-
mensurate with 1. If the exponent is nonconstant, the units
of the expression are assumed to be 1, breaking soundness
of static checking!? Scale measurements and input/output
of quantities are not addressed by their proposal.

The earliest mention of dimension checking for programming
languages that we are aware of occurs in J.C. Cleaveland’s
discussion of “pouches” [7]. Pouches are described as a gen-
eral way to allow programmers to organize numeric variables
into natural classes or categories. It is shown how a set of
pouches can be organized as the base elements of a freely
generated abelian group, and therefore as unit annotations.
No polymorphism is provided over pouches, but it is men-
tioned in passing that a notion of “hidden” pouches would be
useful when defining arithmetic functions that are naturally
polymorphic. Exponents on generated elements of pouches
are restricted to be constants. No subtyping is provided over
pouches. Pouches are used to describe units rather than di-
mensions, but no facility is provided for converting between
commensurable units.

6.2 Generalized class relationships in other
languages

The use of class relationships beyond simple class exten-
sion is essential for modeling many real-world ontologies [9].
Many non-statically-typed object-oriented languages, such

12Because parametric polymorphism is not supported, this
design decision is reasonable as long as all occurrences of
these exponent expressions are either accompanied by a
static warning or required to be annotated by the program-
mer. Provided that enough information is kept to deter-
mine the actual units of these expressions at run time and
to check their use, exponents with nonconstant exponents
in this proposal are akin to downcasts in the Java Program-
ming Language.

as Smalltalk, Python, and Self, allow for more flexible re-
lationships. In the case of Smalltalk and Python, classes
are instances of metaclasses. Static members of a class are
modeled as ordinary members of the corresponding meta-
class. Self, on the other hand, is a prototype-based object-
oriented language, where there are no classes at all: object
instantiation consists of cloning an existing instance. The
members of the clone can be modified and added to at will.

Our notion of metaclass differs from that in languages such
as Smalltalk and Python, where each class has a unique
metaclass that defines its class members. Metaclasses in
these languages are typically used to define customized prop-
erties of select classes. In contrast, we use metaclasses to
augment traditional static checking of properties that are
typically encoded indirectly. Not all classes have a distinct
metaclass.

When viewed as “instance generators”, our metaclasses are
similar to prototypes in untyped languages such as Self. Pro-
totypes generate new instances, which themselves can gen-
erate new instances. Our language is more restrictive than
prototype-based languages in the sense that all metaclasses
and instance classes must be declared statically (i.e., by writ-
ing down class definitions). But MetaGen is more expressive
in the sense that we include classes and subclassing rela-
tionships. Also, unlike typical prototype-based languages,
MetaGen is statically typed.

Because our formulation of metaclasses includes nominal
generic types, we can handle certain (conceptually paramet-
ric) metaclasses more gracefully than they are handled in
dynamically typed languages like Smalltalk. For example, in
Smalltalk (pre Smalltalk 80)} the upper ontology of classes
and metaclasses is as follows (using MetaGen syntax) [29]:

ObjectClass Object{...}

ClassDescriptionClass ClassDescription extends Object {...

MetaclassClass Metaclass extends ClassDescription {...}
ClassClass class extends ClassDescription {...}

Metaclass ObjectClass extends class {...}

Metaclass classDescriptionClass extends ObjectClass {...}
Metaclass

Metaclass ClassClass extends ClassDescriptionClass {...}

User-defined classes are instances of new metaclasses. For

example, class Dimension would be represented as:

Metaclass DimensionClass extends ObjectClass {...}
DimensionClass Dimension extends Object {...}

The metaclasses hold the static members of their instances.

Notice that in Smalltalk we are prevented from modeling the
structure we really want over these classes because we do not
have generic types. An object-oriented generic type system
with nominal subtyping such as in NextGen and MixGen [6,
2, 1] have the important property that each instantiation of
a generic type has a distinct run-time representation (this is
not the case for a structural type system).!* We can lever-
age this fact to encode a metaclass hierarchy much more

13Smalltalk 80 includes a more complex hierarchy with soft-
ware engineering benefits orthogonal to the issues under dis-
cussion.

141n Java 2 SDK v.1.5, generic types are erased to their upper
bounds after type checking. Consequently, type-dependent

MetaclassClass extends ClassDescriptionClass {..

-3

concisely than can be done in Smalltalk. Instead of writing
classes such as ClassClass, ObjectClass, etc., we can define a
metaclass Class that is parameterized by its contained class:

Class<Class<C>> Class<Class<C> C> {...}

Note that the bound on type parameter C is itself Class<C>.
This bound allows us to define instance classes such as

Class<Object> Object {...}
Class<Dimension> Dimension {...}

So instead of having ObjectClass and DimensionClass, we
have Class<Object> and Class<Dimension>. If we want to in-
clude extra class members in the metaclass of Dimension (for
instance, if we want to model static members of Dimension as
members of the metaclass), we can subclass Class<Dimension>
and define Dimension to be a member of the subclass. The
important point is that we do not need an explicit Metaclass
class because we can represent metaclasses as instantiations
of a single generic type. Likewise, there is no need for a
ClassDescription class, significantly simplifying the class hi-
erarchy.

Dynamically typed languages such as Smalltalk, Self, and
Python are inappropriate for modeling dimension checking.
The reflection facility in the Java Programming Language
can also be thought of as providing some of the power of
metaclasses. For example, each class is regarded by the re-
flection facility as an instance of class Class. However, use
of the reflection facility is not statically checked in the Java
Programming Language, effectively placing it in the same
category as dynamically typed languages in this respect.

Nominal subtyping is an essential property of our extended
language. Many of the instance classes we define may them-
selves contain no internal structure, but establishing subtype
relationships that are independent of structure is central to
our approach. A static type inference system is provided for
Smalltalk-like metaclasses in Strongtalk in [4]. However, this
type system is based on structural subtyping with no run-
time representation of types. Therefore, it is inadequate for
encoding our formulation of dimensions and units, which
relies fundamentally on first-class genericity and run-time
representation of types.

7. FUTURE DIRECTIONS

In this paper, we introduce a generic static-checking system
over dimensions and units. There are several interesting
directions to extend this work. For example, our system
employs explicit polymorphism, which is strictly more ex-
pressive in a nominal generic type system with support for
type-dependent operations (consider, for example, a poly-
morphic method that takes no arguments and returns an
instance of a type parameter). Nevertheless, it would be
natural to extend this system with limited forms of implicit
polymorphism where type instantiations can be inferred.

Another important extension to our system would be to pro-
vide support for programmers to define new classes with
equational constraints such as those we have built into abelian
classes. A natural approach to this problem would be to

operations such as casts and instanceof tests cannot be
performed safely on generic types in that language.

transfer and extend results from constrained type systems
such as the HM(X) extension to Hindley-Milner type infer-
ence, presented in [26] and implemented in the Chameleon
extension of Haskell [25], from a structural type system to
a nominally typed object-oriented type system.

We would also like to examine to what degree we can unbox
dimensioned quantities in real programs to achieve perfor-
mance acceptable for high-performance computation.

Finally, formalizing the MetaGen semantics over a core cal-
culus (e.g., an extension of Core MixGen) is an important
next step in helping us to better analyze its properties and
interactions with other language extensions.

Acknowledgements

We are gratetful to Matthias Felleisen, Sam Tobin-Hochstadt,
Cheryl McCosh, Miriam Kadansky, and the anonymous ref-
erees for their comments on earlier drafts of this work.

8. REFERENCES

[1] E. Allen, J. Bannet, and R. Cartwright. A First-Class
Approach to Genericity. In Proceedings of the
FEighteenth Annual SIGPLAN Conference on
Object-Oriented Systems, Languages, and
Applications, Anaheim CA 2003.

[2] E. Allen, R. Cartwright, and B. Stoler. Efficient
implementation of run-time generic types for Java. In
IFIP WG2.1 Working Conference on Generic
Programming, 2002.

[3] G. Baldwin. Implementation of Physical Units.
SIGPLAN Notices, V. 22(8). August 1987.

[4] G. Bracha, D. Griswold. Strongtalk: Typechecking
Smalltalk in a production environment. In Proceedings
of the Eighth Annual SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages
and Applications, pages 215-230, 1993.

[5] W. Brown. Applied Template Metaprogramming in
SIUnits: the Library of Unit-Based Computation. In
Proceedings of the Second Workshop on C++ Template
Programming, October 2001. Available at
http://www.oonumerics.org/tmpw0l/brown.pdf.

[6] R. Cartwright and G. Steele. Compatible genericity
with run-time types for the Java programming
language. In Proceedings of the Thirteenth Annual
SIGPLAN Conference on Object-Oriented Systems,
Languages, and Applications, Vancouver BC 1998.

[7] J.C. Cleaveland. Redundant Specification in
Programming Languages Through Pouches. UCLA
Technical Report. 1975.

[8] A. Dreiheller, M. Moerschbacher, B. Mohr.
PHYSCAL: Programming Pascal with Physical Units.
SIGPLAN Notices, V. 21(12), December 1986.

[9] D. Ferrucci, C. Welty. What’s in an Instance? RPI
Computer Science Technical Report. 1994.

[10] M. Fowler. Analysis Patterns: Reusable Object
Models. Addison-Wesley 1997.

[11] D. Isbell, D. Savage. Mars Climate Orbiter Failure
Board Releases Report, Numerous NASA Actions
Underway in Response. NASA Press Release 99-134.
http://nssdc.gsfc.nasa.gov/planetary/text/
mco_pr_19991110.txt. Nov. 10, 1999.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[13] N. Gehani. Units of Measure as a Data Attribute.
Computer Languages, Vol. 2. pp. 93-111. Pergamon
Press, 1977. Printed in Great Britain.

[14] N. Gehani. Databases and Units of Measure. IEEE
Transactions on Software Engineering. Vol. SE-8, No.
6, November 1982.

[15] N. Gehani. Ada’s Derived Types and Units of
Measure. Software — Practice and Experience, Vol.
15(6), 555-569. June 1985.

[16] J. Goubault. Inference d’unites physiques en ML. In
P. Cointe, C. Queinnec, and B. Serpette, editors,
Journees Francophones des Langages Applicatifs,
Noirmoutier, p.3-20. INRIA, Collection didactique,
1994.

[17] P. Hilfinger. An Ada Package for Dimensional
Analysis. ACM Transactions on Programming
Languages and Systems, Vol. 10, No. 2, April 1988. p.
189-203.

[18] R. T. House. A Proposal for an Extended Form of
Type Checking of Expressions. The Computer
Journal, Vol. 26, No. 4. 1983.

[19] M. Karr, D. B. Loveman III. Incorporation of units
into programming languages. Communications of the
ACM, 21(5):385-391, May 1978.

[20] A. Kennedy. Dimension Types. In Proceedings of the
5th European Symposium on Programming Languages
and Systems. Edinburgh, U.K. 1994.

[21] A. Kennedy. Programming Languages and
Dimensions. PhD Thesis. St. Catharine’s College.
November 1995.

[22] A. Kennedy. Relational Parametricity and Units and
Measure. In Proceedings of the 24th Annual ACM
Sympostum on Principles of Programming Languages,
Paris, France. January 1997.

[23] R. Manner. Strong Typing and Physical Units.
SIGPLAN Notices V. 21(3), March 1986.

[24] P. Neumann. Risks to the public from the use of
computers. ACM Software Engineering Notes, 10(3)
July 1985.

[25] M. Sulzmann, The Chameleon website.
http://www.comp.nus.edu.sg/ sulzmann/chameleon/

[26] M. Sulzmann, M. Odersky, M. Wehr, Type Inference
with Constrained Types. Theory and Practice of
Object Systems, 5(1), 1999.

[27] A. van Delft. A Java Extension with Support for [29] A. Goldberg, D. Robson. Smalltalk-80: The Language.
Dimensions. Software — Practice and Experience, Addison-Wesley, 1989.
29(7), 605-616. 1999.

[28] M. Wand, P. M. O’Keefe. Automatic dimensional
inference. In J.-L. Lassez and G. Plotkin, editors,
Computational Logic: Essays in Honor of Alan
Robinson. MIT Press, 1991.

